
IBM WebSphere Application Server - Express for
Distributed Platforms, Version 8.0

Tuning various types of applications

���

Note
Before using this information, be sure to read the general information under “Notices” on page 113.

Compilation date: July 16, 2011

© Copyright IBM Corporation 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

How to send your comments . vii

Changes to serve you more quickly . ix

Chapter 1. Tuning Application profiling . 1
Application profiling performance considerations . 1

Chapter 2. Tuning Client applications . 5
Adding tracing and logging for stand-alone clients . 5

Chapter 3. Tuning Data access resources . 7
Tuning data . 7

Tuning connection pools . 7
Throttling inbound message flow for JCA 1.5 message-driven beans 10
Database performance tuning . 11
Data access tuning parameters . 15
Directory conventions . 16

Chapter 4. Tuning EJB applications . 19
EJB 2.1 container tuning . 19

EJB container tuning . 19
Tuning Enterprise JavaBeans applications . 24

Tuning EJB cache with trace service . 24
EJB method Invocation Queuing . 27

Tuning applications that use the Java Persistence API 28
Configuring OpenJPA caching to improve performance 28
Configuring the WSJPA Object Cache to improve performance 31

Chapter 5. Tuning Messaging resources . 33
Tuning messaging . 33

Tuning messaging performance with service integration technologies 33
Configuring MDB throttling for the default messaging provider 36

Chapter 6. Tuning messaging destinations for the WebSphere MQ or V5 default messaging
providers . 39

Performance for WebSphere MQ queues . 39
Performance for Version 5 default messaging queues 40

Chapter 7. Throttling inbound message flow for JCA 1.5 message-driven beans 41

Chapter 8. Monitoring server session pools for listener ports 43

Chapter 9. Tuning Object Request Broker (ORB) . 45
Tuning Object Request Brokers . 45

Object Request Broker tuning guidelines . 45

Chapter 10. Tuning Service integration . 49
Tuning messaging engines . 49

Setting tuning properties of a messaging engine . 49
Controlling the memory buffers used by a messaging engine 50
Tuning the JDBC data source of a messaging engine 51
Setting tuning properties by editing the sib.properties file 51

Tuning messaging performance with service integration technologies 53

© Copyright IBM Corp. 2011 iii

Configuring MDB throttling for the default messaging provider 55

Chapter 11. Tuning messaging engine data stores 59
Tuning the JDBC data source of a messaging engine 59
Controlling the memory buffers used by a messaging engine 59
Increasing the number of data store tables to relieve concurrency bottleneck 61

Increasing the number of item tables for a messaging engine when tables are not automatically
created . 61

Increasing the number of item tables for a messaging engine when tables are automatically created 62
Tuning one-phase commit optimization . 62
Tuning the detection of database connection loss . 63

Chapter 12. Setting tuning properties for a mediation 67

Chapter 13. Enabling CMP entity beans and messaging engine data stores to share database
connections . 69

Chapter 14. Tuning security . 71
Tuning, hardening, and maintaining security configurations 71

Tuning security configurations . 71
Hardening security configurations . 77
Enablement and migration considerations of Security hardening features 77
Securing passwords in files . 80

Chapter 15. Tuning Session Initiation Protocol (SIP) applications 87
Tuning SIP servlets for Linux . 87

Chapter 16. Tuning Transactions . 91

Chapter 17. Tuning web applications . 93
Tuning URL cache . 93

Tuning URL invocation cache . 93
Tuning sessions . 94

Session management tuning . 94
Tuning parameter settings . 94
Tuning parameter custom settings . 95
Best practices for using HTTP sessions . 96

Chapter 18. Tuning web services . 101
Tuning Web Services Security . 101

Tuning Web Services Security for Version 8.0 applications 101
Tuning Web Services Security for Version 5.x applications 103

Tuning web services reliable messaging applications 103
Tuning bus-enabled web services . 104

Including SOAP header schemas in the SDO repository 105

Chapter 19. Tuning Work area . 107
Work area service performance considerations . 107

Work area service performance considerations . 107

Appendix. Directory conventions . 109

Notices . 113

Trademarks and service marks . 115

iv Tuning various types of applications

Index . 117

Contents v

vi Tuning various types of applications

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2011 vii

viii Tuning various types of applications

Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book
delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF
format more frequently. During a temporary transition phase, you might experience broken links. During
the transition phase, expect the following link behavior:

v Links to Web addresses beginning with http:// work

v Links that refer to specific page numbers within the same PDF book work

v The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2011 ix

x Tuning various types of applications

Chapter 1. Tuning Application profiling

This page provides a starting point for finding information about application profiling, a WebSphere
extension for defining strategies to dynamically control concurrency, prefetch, and read-ahead.

Application profiling and access intent provide a flexible method to fine-tune application performance for
enterprise beans without impacting source code. Different enterprise beans, and even different methods in
one enterprise bean, can have their own intent to access resources. Profiling the components based on
their access intent increases performance in the application server run time.

Application profiling performance considerations
Application profiling enables assembly configuration techniques that improve your application run time,
performance and scalability. You can configure tasks that identify incoming requests, identify access
intents determining concurrency and other data access characteristics, and profiles that map the tasks to
the access intents.

The capability to configure the application server can improve performance, efficiency and scalability, while
reducing development and maintenance costs. The application profiling service has no tuning parameters,
other than a checkbox for disabling the service if the service is not necessary. However, the overhead for
the application profile service is small and should not be disabled, or unpredictable results can occur.

Access intents enable you to specify data access characteristics. The WebSphere runtime environment
uses these hints to optimize the access to the data, by setting the appropriate isolation level and
concurrency. Various access intent hints can be grouped together in an access intent policy.

In the product, it is recommended that you configure bean level access intent for loading a given bean.
Application profiling enables you to configure multiple access intent policies on the entity bean, if desired.
Some callers can load a bean with the intent to read data, while others can load the bean for update. The
capability to configure the application server can improve performance, efficiency, and scalability, while
reducing development and maintenance costs.

Access intents enable the EJB container to be configured providing optimal performance based on the
specific type of enterprise bean used. Various access intent hints can be specified declaratively at
deployment time to indicate to WebSphere resources, such as the container and persistence manager, to
provide the appropriate access intent services for every EJB request.

The application profiling service improves overall entity bean performance and throughput by fine tuning
the run time behavior. The application profiling service enables EJB optimizations to be customized for
multiple user access patterns without resorting to "worst case" choices, such as pessimistic update on a
bean accessed with the findByPrimaryKey method, regardless of whether the client needs it for read or for
an update.

Application profiling provides the capability to define the following hierarchy: Container-Managed Tasks >
Application Profiles > Access Intent Policies > Access Intent Overrides. Container-managed tasks
identify units of work (UOW) and are associated with a method or a set of methods. When a method
associated with the task is invoked, the task name is propagated with the request. For example, a UOW
refers to a unique path within the application that can correspond to a transaction or ActivitySession. The
name of the task is assigned declaratively to a Java EE client or servlet, or to the method of an enterprise
bean. The task name identifies the starting point of a call graph or subgraph; the task name flows from the
starting point of the graph downstream on all subsequent IIOP requests, identifying each subsequent
invocation along the graph as belonging to the configured task. As a best practice, wherever a UOW
starts, for example, a transaction or an ActivitySession, assign a task to that starting point.

© IBM Corporation 2009 1

The application profile service associates the propagated tasks with access intent policies. When a bean is
loaded and data is retrieved, the characteristics used for the retrieval of the data are dictated by the
application profile. The application profile configures the access intent policy and the overrides that should
be used to access data for a specific task.

Access intent policies determine how beans are loaded for specific tasks and how data is accessed during
the transaction. The access intent policy is a named group of access intent hints. The hints can be used,
depending on the characteristics of the database and resource manager. Various access intent hints
applied to the data access operation govern data integrity. The general rule is, the more data integrity, the
more overhead. More overhead causes lower throughput and the opportunity for simultaneous data access
from multiple clients.

If specified, access intent overrides provide further configuration for the access intent policy.

Best practices

Application profiling is effective in a variety of different scenarios including:
v The same bean is loaded with different data access patterns

The same bean or set of beans can be reused across applications, but each of those applications has
differing requirements for the bean or for beans within the invocation graph. One application can require
that beans be loaded for update, while another application requires beans be loaded for read only.
Application profiling enables deploy time configuration for beans to distinguish between EJB loading
requirements.

v Different clients have different data access requirements

The same bean or set of beans can be used for different types of client requests. When those clients
have different requirements for the bean, or for beans within the invocation graph, application profiling
can be used to tailor the bean loading characteristics to the requirements of the client. One client can
require beans be loaded for update, while another client requires beans be loaded for read only.
Application profiling enables deploy time configuration for beans to distinguish between EJB loading
requirements.

Monitoring tools

You can use the Tivoli Performance Viewer, database and logs as monitoring tools.

You can use the Tivoli Performance Viewer to monitor various metrics associated with beans in an
application profiling configuration. The following sections describe at a high level the Tivoli Performance
Viewer metrics that reflect changes when access intents and application profiling are used:
v Collection scope

The enterprise beans group contains EJB life cycle information, either a cumulative value for a group of
beans, or for specific beans. You can monitor this information to determine the difference between using
the ActivitySession scope versus the transaction scope. For the transaction scope, depending on how
the container transactions are defined, activates and passivates can be associated with method
invocations. The application could use the ActivitySession scope to reduce the frequency of activates
and passivates. For more information, see the topic, Using the ActivitySession service.

v Collection increment

The enterprise beans group contains EJB life cycle information, either a cumulative value for a group of
beans, or for specific beans. You can monitor Num Activates to watch the number of enterprise beans
activated for a particular findByPrimaryKey operation. For example, if the collection increment is set to
10, rather than the default 25, the Num Activates value shows 25 for the initial findByPrimaryKey, before
any result set iterator runs. If the number of activates rarely exceeds the collection increment, consider
reducing the collection increment setting.

v Resource manager prefetch increment

2 Tuning various types of applications

The resource manager prefetch increment is a hint acted upon by the database engine to depend upon
the database. The Tivoli Performance Viewer does not have a metric available to show the effect of the
resource manager prefetch increment setting.

v Read ahead hint

The enterprise beans group contains EJB life cycle information, either a cumulative value for a group of
beans, or for specific beans. You can monitor Num Activates to watch the number of enterprise beans
activated for a particular request. If a read ahead association is not in use, the Num Activates value
shows a lower initial number. If a read ahead association is in use, the Num Activates value represents
the number of activates for the entire call graph.

Database tools are helpful in monitoring the different bean loading characteristics that introduce
contention and concurrency issues. These issues can be solved by application profiling, or can be made
worse by the misapplication of access intent policies.

Database tools are useful for monitoring locking and contention characteristics, such as locks, deadlocks
and connections open. For example, for locks the DB2 Snapshot Monitor can show statistics for lock waits,
lock time-outs and lock escalations. If excessive lock waits and time-outs are occurring, application
profiling can define specific client tasks that require a more string level of locking, and other client tasks
that do not require locking. Or, a different access intent policy with less restrictive locking could be applied.
After applying this configuration change, the snapshot monitor shows less locking behavior. Refer to
information about the database you are using on how to monitor for locking and contention.

The application server logs can be monitored for information about rollbacks, deadlocks, and other data
access or transaction characteristics that can degrade performance or cause the application to fail.

Chapter 1. Tuning Application profiling 3

4 Tuning various types of applications

Chapter 2. Tuning Client applications

This page provides a starting point for finding information about application clients and client applications.
Application clients provide a framework on which application code runs, so that your client applications can
access information on the application server.

For example, an insurance company can use application clients to help offload work on the server and to
perform specific tasks. Suppose an insurance agent wants to access and compile daily reports. The
reports are based on insurance rates that are located on the server. The agent can use application clients
to access the application server where the insurance rates are located.

Adding tracing and logging for stand-alone clients
You can add tracing and logging to help analyze performance and diagnose problems with stand-alone
clients.

About this task

This information applies to the following WebSphere® Application Server stand-alone clients:

v Thin Client for JMS with WebSphere Application Server

v Thin Client for EJB with WebSphere Application Server

v Thin Client for JAX-WS with WebSphere Application Server

v Thin Client for JAX-RPC with WebSphere Application Server

Procedure
v To enable trace, use either a long form or short form system property.

Note: Trace settings are determined from the system property values the first time that a WebSphere
Application Server client is called. The trace settings are then fixed. Therefore, any subsequent
changes to the system property settings do not change the trace settings that the WebSphere
Application Server client uses.

For further information, see the information on the trace user interface for stand-alone clients.

v To enable First Failure Data Capture (FFDC), use either a long or short form system property.

Note: FFDC settings are determined from the system property values the first time that a WebSphere
Application Server client performs an FFDC. The FFDC settings are then fixed. Therefore, any
subsequent changes to the system property settings do not change the FFDC settings that the
WebSphere Application Server client uses.

For further information, see the information on the First Failure Data Capture user interface for
stand-alone clients.

© IBM Corporation 2009 5

6 Tuning various types of applications

Chapter 3. Tuning Data access resources

This page provides a starting point for finding information about data access. Various enterprise
information systems (EIS) use different methods for storing data. These backend data stores might be
relational databases, procedural transaction programs, or object-oriented databases.

The flexible IBM® WebSphere Application Server provides several options for accessing an information
system backend data store:

v Programming directly to the database through the JDBC 4.0 API, JDBC 3.0 API, or JDBC 2.0 optional
package API.

v Programming to the procedural backend transaction through various J2EE Connector Architecture (JCA)
1.0 or 1.5 compliant connectors.

v Programming in the bean-managed persistence (BMP) bean or servlets indirectly accessing the
backend store through either the JDBC API or JCA-compliant connectors.

v Using container-managed persistence (CMP) beans.

v Using the IBM data access beans, which also use the JDBC API, but give you a rich set of features and
function that hide much of the complexity associated with accessing relational databases.

Service Data Objects (SDO) simplify the programmer experience with a universal abstraction for messages
and data, whether the programmer thinks of data in terms of XML documents or Java objects. For
programmers, SDOs eliminate the complexity of the underlying data access technology, such as, JDBC,
RMI/IIOP, JAX-RPC and JMS, and message transport technology, such as, (java.io.Serializable, DOM
Objects, SOAP and JMS).

Tuning data

Tuning connection pools
Using connection pools helps to both alleviate connection management overhead and decrease
development tasks for data access. Each time an application attempts to access a backend store (such as
a database), it requires resources to create, maintain, and release a connection to that datastore. To
mitigate the strain this process can place on overall application resources, the application server enables
administrators to establish a pool of backend connections that applications can share on an application
server. Connection pooling spreads the connection overhead across several user requests, thereby
conserving application resources for future requests.

About this task

Connection pooling can improve the response time of any application that requires connections, especially
Web-based applications. When you make a request over the web to a resource, the resource accesses a
data source. Because you connect and disconnect frequently with applications on the Internet, the
application requests for data access can surge to considerable volume. Consequently, the total overhead
for a datastore can quickly become high for Web-based applications, causing performance to deteriorate.
When connection pooling capabilities are used, however, web applications can realize performance
improvements of up to 20 times the normal results.

Procedure
v Prevent a connection deadlock. Deadlock can occur if the application requires more than one

concurrent connection per thread, and the database connection pool is not large enough for the number
of threads. Suppose each of the application threads requires two concurrent database connections and
the number of threads is equal to the maximum connection pool size. Deadlock can occur when both of
the following are true:

– Each thread has its first database connection, and all are in use.

© Copyright IBM Corp. 2011 7

– Each thread is waiting for a second database connection, and none would become available since all
threads are blocked.

To prevent the deadlock in this case, increase the maximum connections value for the database
connection pool by at least one. This ensures that at least one of the waiting threads obtains a second
database connection and avoids a deadlock scenario.

For general prevention of connection deadlock, code your applications to use only one connection per
thread. If you code the application to require C concurrent database connections per thread, the
connection pool must support at least the following number of connections, where T is the maximum
number of threads:
T * (C - 1) + 1

The connection pool settings are directly related to the number of connections that the database server
is configured to support. If you increase the maximum number of connections in the pool and the
corresponding settings in the database are not increased accordingly, the application might fail. The
resulting SQL exception errors are displayed in the following locations:

– the stderr.log file

One of the most common causes of connection deadlock is the use of the same connection pool by
both servlets and by Enterprise JavaBeans (EJBs), and where the servlet directly or indirectly invokes
the bean. For example, a servlet that obtains a JMS connection from the connection pool, sends a
message to a Message Driven Bean (MDB) and waits for a reply. The MDB is configured to use the
same connection pool as the servlet, therefore, another connection from the pool is required for the
MDB to send a reply to the servlet. Servlets and enterprise beans do not share the same connection
pool. This is a classic case of concurrent (C) threads, where C=2 and T is the maximum size of the
servlet and EJB thread pools.

v Disable connection pooling.

– For relational resource adapters (RRAs), add the disableWASConnectionPooling custom property for
your data sources.

1. Click JDBC > Data sources.

2. Click on the name of the data source that you want to configure.

3. Click Custom properties under the Additional Properties heading.

4. Click New.

5. Complete the required fields with the following information:

- Name: disableWASConnectionPooling

- Value: true

– For other resource adapters, consult with the binding specifications for that resource adapter to
configure your applications to disable connection pooling.

1. Programmatically disable connection pooling through the resource adapter.

2. The application server leverages the following code to detect the
javax.resource.NotSupportedException exception and disable connection pooling:
_managedFactory.matchManagedConnections(s,subject,cri); // 169059 174269 }
 catch(javax.resource.NotSupportedException e){

v Enable deferred enlistment. In the application server environment, deferred enlistment refers to the
technique in which the application server waits until the connection is used before the connection is
enlisted in the application's unit of work (UOW) scope.

Consider the following illustration of deferred enlistment:

– An application component that uses deferred enlistment calls the getConnection method from within
a global transaction.

– The application component does not immediately use the connection.

– When the application issues the call for initial use of the connection, the transaction manager
intercepts the call.

8 Tuning various types of applications

– The transaction manager enlists the XA resource for the connection and calls the XAResource.start
method.

– The connection manager associated with the XA resource sends the call to the database.

Given the same scenario, but the application component does not use deferred enlistment, the
component container immediately enlists the connection in the transaction. Thus the application server
incurs, for no purpose, an additional load of all of the overhead associated with that transaction. For XA
connections, this overhead includes the two phase commit (2PC) protocol to the resource manager.

Deferred enlistment offers better performance in the case where a connection is obtained, but not used,
within the UOW scope. The technique saves the cost of transaction participation until the UOW in which
participation must occur.

Check with your resource adapter provider if you need to know if the resource adapter provides this
functionality. The application server relational resource adapter automatically supports deferred
enlistment.

Incorporating deferred enlistment in your code:

The Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) Version 1.5 and later
specification calls the deferred enlistment technique lazy transaction enlistment optimization. This
support comes through a marker interface (LazyEnlistableManagedConnection) and a method on the
connection manager (LazyEnlistableConnectionManager()):
package javax.resource.spi; import javax.resource.ResourceException; import
 javax.transaction.xa.Xid; interface LazyEnlistableConnectionManager { // application server void
 lazyEnlist(ManagedConnection) throws ResourceException; } interface LazyEnlistableManagedConnection
{ // resource adapter }

v Control connection pool sharing.

You can use the defaultConnectionTypeOverride, or globalConnectionTypeOverride connection pool
custom property for a particular connection factory or data source to control connection sharing.

The defaultConnectionTypeOverride property changes the default sharing value for a connection pool.
This property enables you to control connection sharing for direct look-ups. If resource references are
configured for this data source or connection factory the resource reference's configurations take
precedence over the defaultConnectionTypeOverride property settings. For example, if an application is
doing direct look-ups and unshared connections are needed, set the defaultConnectionTypeOverride
property to unshared.

The value specified for the globalConnectionTypeOverride custom property takes precedence over all of
the other connection sharing settings. For example if you set this property to unshared, all connection
requests are unshared for both direct look-ups and resource reference lookups. This property provides
you with a quick way to test the consequences of moving all connections for a particular data source or
connection factory to unshared or shared without changing any resource reference setting.

If you specify values for both the defaultConnectionTypeOverride and the globalConnectionTypeOverride
properties, only the values specified for the globalConnectionTypeOverride property are used to
determine connection sharing type.

The following is an example of how to set these properties for a particular data source:

Create a new custom property on the connection pool belonging to the data source in the administrative
console: JDBC providers > DB2 Universal JDBC Driver Provider > Data sources > DB2 Universal
JDBC Driver DataSource > Connection pools > Custom Properties > New. Then specify
defaultConnectionTypeOverride or globalConnectionTypeOverride in the Name field, and shared or
unshared in the Value field.

Connection pool custom properties

You can use the custom properties page to define the following connection pool custom properties:

v “defaultConnectionTypeOverride” on page 10

v “globalConnectionTypeOverride” on page 10

Chapter 3. Tuning Data access resources 9

defaultConnectionTypeOverride

You can use the defaultConnectionTypeOverride connection pool custom property for a particular
connection factory or data source to control connection sharing.

The defaultConnectionTypeOverride property changes the default sharing value for a connection pool. This
property enables you to control connection sharing for direct look-ups. If resource references are
configured for a data source or connection factory they take precedence over this property and the
resource reference settings are used. For example, if an application is doing direct look-ups, and you do
not want unshared connections, set this property to unshared.

 Data Type String
Value unshared, shared

globalConnectionTypeOverride

You can use the globalConnectionTypeOverride connection pool custom property to globally control
connection sharing for a particular connection factory or data source.

The value specified for the globalConnectionTypeOverride custom property takes precedence over all of
the other connection sharing settings. For example, if you set this property to unshared, all connection
requests are unshared for both direct look-ups and resource reference lookups.

This property provides you with a quick way to test the consequences of moving all connections for a
particular data source or connection factory to unshared or shared without changing the resource
reference settings.

If you specify values for both the defaultConnectionTypeOverride and the globalConnectionTypeOverride
properties, only the value that is specified for the globalConnectionTypeOverride property is used to
determine connection sharing type.

 Data Type String
Value unshared, shared

For more information on how these properties are used, see the topic, Tuning connection pools.

Throttling inbound message flow for JCA 1.5 message-driven beans
This topic describes how to throttle message delivery for message-driven beans (MDB) which are
deployed as message endpoints for Java Platform, Enterprise Edition (Java EE) Connector Architecture
(JCA) Version 1.5 inbound resource adapters.

Before you begin

The throttling of messages as described in this topic does not apply to the two JCA 1.5-compliant
messaging providers that are supplied with WebSphere Application Server:

v The default messaging provider.

v The WebSphere MQ messaging provider.

For the default messaging provider, you configure message throttling as described in the related tasks. For
the WebSphere MQ messaging provider, you configure message throttling by setting the maximum server
sessions property on the WebSphere MQ messaging provider activation specifications panel, or the
maxPoolSize property when using the createWMQActivationSpec or modifyWMQActivationSpec wsadmin
commands.

10 Tuning various types of applications

If you have a third-party JCA 1.5-compliant JMS messaging provider, check with your supplier to see
whether the method of message throttling described in this topic is appropriate for their messaging
provider.

About this task

For installations that use resource adapters that implement the Java EE Connector Architecture (JCA)
Version 1.5 message delivery support, the WebSphere Application Server provides message throttling
support to control the delivery of messages to endpoint message-driven beans (MDB). You can use this
support to avoid overloading the server with a flood of inbound messages.

Message delivery is throttled on a message-driven bean basis by limiting the maximum number of
endpoint instances that can be created by the adapter that the MDB is bound to. When the adapter
attempts to create an endpoint instance, a proxy for the MDB instance is created and returned as allowed
by the JCA 1.5 architecture. There is a one-to-one correspondence between proxies and MDB instances,
and like the MDB instances, the proxies are pooled based on the minimum and maximum pool size values
associated with the message-driven bean. Throttling is performed through the management of the proxy
pool.

At the time the adapter attempts to create an endpoint, if the number of endpoint proxies currently created
is equal to the maximum size of the pool, adapter createEndPoint processing returns an Unavailable
Exception. When this displays, the adapter does not issue any more createEndPoint() requests until it has
released at least one endpoint back to the server for reuse. Thus, installations can control the throttling of
message delivery to a JCA 1.5 MDB based on the setting of the maximum size of the pool associated with
each JCA 1.5 message-driven bean.

You can specify the pool size by using the com.ibm.websphere.ejbcontainer.poolsize JVM system property
to define the minimum and maximum pool size of stateless, message-driven, and entity beans. For a
message-driven bean that supports JCA 1.5, the maximum pool size value specified limits how many
message endpoint instances can be created for that message-driven bean. For example, if the installation
sets the maximum size of a JCA 1.5 MDB pool to 5, then at most 5 messages can be concurrently
delivered to 5 instances of the message-driven bean. This property can be specified using the wsadmin
scripting tool or by specifying it under the administrative console as an environmental variable.

Procedure
 1. Open the administrative console.

 2. Select Servers > Server Types > WebSphere application server > server_name.

 3. Under Server Infrastructure, expand Java and Process Management >Process Definition.

 4. Under Additional Properties, select Java Virtual Machine.

 5. Under Additional Properties, select Custom Properties.

 6. Select New. A panel with three General Properties fields displays. This is where you set the
property.

 7. In the Name field, enter com.ibm.websphere.ejbcontainer.poolsize.

 8. To complete the Value field, see the EJB container system properties for values.

 9. After defining the value of the property, click OK. You are now prompted to save the changes you
have made.

10. Click Save.

Database performance tuning
Database performance tuning can dramatically affect the throughput of your application. For example, if
your application requires high concurrency (multiple, simultaneous interactions with backend data), an
improperly tuned database can result in a bottleneck. Database access threads accumulate in a backlog
when the database is not configured to accept a sufficient number of incoming requests.

Chapter 3. Tuning Data access resources 11

Because WebSphere Application Server supports the integration of many different database products,
each one with unique tuning configurations, consult your database vendor documentation for
comprehensive tuning information. This information center provides introductory material in the following
topics:

v DB2® tuning parameters

DB2 tuning parameters
Read this topic for parameters that you can configure for better database performance.

For complete DB2 tuning information, refer to the DB2 UDB Administration Guide: Performance document.

For more information about using AIX® with DB2 see the topic Tuning AIX systems.

DB2 logging:

DB2 has corresponding log files for each database that provides services to administrators, including
viewing database access and the number of connections. For systems with multiple hard disk drives, you
can gain large performance improvements by setting the log files for each database on a different hard
drive from the database files.
 v How to view or set: At a DB2 command prompt, issue the command: db2 update db cfg for

[database_name] using newlogpath [fully_qualified_path].
v Default value: Logs reside on the same disk as the database.
v Recommended value: Use a separate high-speed drive, preferably performance enhanced through a

redundant array of independent disk (RAID) configuration.

DB2 configuration advisor:

Located in the DB2 Control Center, this advisor calculates and displays recommended values for the DB2
buffer pool size, the database, and the database manager configuration parameters, with the option of
applying these values. See more information about the advisor in the online help facility within the Control
Center.

Number of connections to DB2 - MaxAppls and MaxAgents:

When configuring the data source settings for the databases, confirm the DB2 MaxAppls setting is greater
than the maximum number of connections for the data source. If you are planning to establish clones, set
the MaxAppls value as the maximum number of connections multiplied by the number of clones. The
same relationship applies to the session manager number of connections. The MaxAppls setting must be
equal to or greater than the number of connections. If you are using the same database for session and
data sources, set the MaxAppls value as the sum of the number of connection settings for the session
manager and the data sources.

 For example, MaxAppls = (number of connections set for the data source + number of connections in the
session manager) multiplied by the number of clones.

After calculating the MaxAppls settings for the WebSphere Application Server database and each of the
application databases, verify that the MaxAgents setting for DB2 is equal to or greater than the sum of all
of the MaxAppls values. For example, MaxAgents = sum of MaxAppls for all databases.

DB2 buffpage:

Improves database system performance. Buffpage is a database configuration parameter. A buffer pool is
a memory storage area where database pages containing table rows or index entries are temporarily read
and changed. Data is accessed much faster from memory than from disk.

12 Tuning various types of applications

v How to view or set: To view the current value of buffpage for database x, issue the DB2 command get
db cfg for x and look for the value BUFFPAGE. To set BUFFPAGE to a value of n, issue the DB2
command update db cfg for x using BUFFPAGE n and set NPAGES to -1 as follows:
db2 <-- go to DB2 command mode, otherwise the following "select" does not work as is
 connect to x <-- (where x is the particular DB2 database name)
 select * from syscat.bufferpools
 (and note the name of the default, perhaps: IBMDEFAULTBP)
 (if NPAGES is already -1, there is no need to issue following command)
 alter bufferpool IBMDEFAULTBP size -1
 (re-issue the above "select" and NPAGES now equals -1)

You can collect a snapshot of the database while the application is running and calculate the buffer pool
hit ratio as follows:
1. Collect the snapshot:

a. Issue the update monitor switches using bufferpool on command.
b. Make sure that bufferpool monitoring is on by issuing the get monitor switches command.
c. Clear the monitor counters with the reset monitor all command.

2. Run the application.
3. Issue the get snapshot for all databases command before all applications disconnect from the

database, otherwise statistics are lost.
4. Issue the update monitor switches using bufferpool off command.
5. Calculate the hit ratio by looking at the following database snapshot statistics:

– Buffer pool data logical reads
– Buffer pool data physical reads
– Buffer pool index logical reads
– Buffer pool index physical reads

v Default value: 250
v Recommended value: Continue increasing the value until the snapshot shows a satisfactory hit rate.

The buffer pool hit ratio indicates the percentage of time that the database manager did not need to load a
page from disk to service a page request. That is, the page is already in the buffer pool. The greater the
buffer pool hit ratio, the lower the frequency of disk input and output. Calculate the buffer pool hit ratio as
follows:
v P = buffer pool data physical reads + buffer pool index physical reads
v L = buffer pool data logical reads + buffer pool index logical reads
v Hit ratio = (1-(P/L)) * 100%

DB2 query optimization level:

Sets the amount of work and resources that DB2 puts into optimizing the access plan. When a database
query runs in DB2, various methods are used to calculate the most efficient access plan. The range is
from 0 to 9. An optimization level of 9 causes DB2 to devote a lot of time and all of its available statistics
to optimizing the access plan.
 v How to view or set: The optimization level is set on individual databases and can be set with either the

command line or with the DB2 Control Center. Static SQL statements use the optimization level that is
specified on the prep and bind commands. If the optimization level is not specified, DB2 uses the
default optimization as specified by the dft_queryopt setting. Dynamic SQL statements use the
optimization class that is specified by the current query optimization special register, which is set using
the SQL Set statement. For example, the following statement sets the optimization class to 1:
Set current query optimization = 1

If the current query optimization register is not set, dynamic statements are bound using the default
query optimization class.

v Default value: 5
v Recommended value: Set the optimization level for the needs of the application. Use high levels only

when there are very complicated queries.

DB2 reorgchk:

Chapter 3. Tuning Data access resources 13

Obtains the current statistics for data and rebinding. Use this parameter because SQL statement
performance can deteriorate after many updates, deletes or inserts.
 v How to view or set: Use the DB2 reorgchk update statistics on table all command to perform the

runstats operation on all user and system tables for the database to which you are currently connected.
Rebind packages using the bind command. If statistics are available, issue the db2 -v "select tbname,
nleaf, nlevels, stats_time from sysibm.sysindexes" command on DB2 CLP. If no statistic updates
exist, nleaf and nlevels are -1, and stats_time has an empty entry (for example: "-"). If the runstats
command was previously run, the real-time stamp from completion of the runstats operation also
displays under stats_time. If you think the time shown for the previous runstats operation is too old, run
the runstats command again.

v Default value: None
v Recommended value: None

DB2 locktimeout:

Specifies the number of seconds that an application waits to obtain a lock. Setting this property helps
avoid global deadlocks for applications.
 v How to view or set: To view the current value of the lock timeout property for database xxxxxx, issue

the DB2 get db cfg for xxxxxx command and look for the value, LOCKTIMEOUT. To set
LOCKTIMEOUT to a value of n, issue the DB2 update db cfg for xxxxxx command using
LOCKTIMEOUT n, where xxxxxx is the name of the application database and n is a value between 0
and 30 000 inclusive.

v Default value: -1, meaning lock timeout detection is turned off. In this situation, an application waits for
a lock if one is not available at the time of the request, until either of the following events occurs:
– The lock is granted
– A deadlock occurs

v Recommended value: If your database access pattern tends toward a majority of writes, set this value
so that it gives you early warning when a timeout occurs. A setting of 30 seconds suits this purpose. If
your pattern tends toward a majority of reads, either accept the default lock timeout value, or set the
property to a value greater than 30 seconds.

DB2 maxlocks:

Specifies the percentage of the lock list that is reached when the database manager performs escalation,
from row to table, for the locks held by the application. Although the escalation process does not take
much time, locking entire tables versus individual rows decreases concurrency, and potentially decreases
overall database performance for subsequent attempts to access the affected tables.
v How to view or set: To view the current value of the maxlocks property for database xxxxxx, issue the

DB2 get db cfg for xxxxxx command and look for the MAXLOCKS value. To set MAXLOCKS to a
value of n, issue the DB2 update db cfg for xxxxxx command using MAXLOCKS n, where xxxxxx is
the name of the application database and n is a value between 1 and 100 inclusive.

v Default value: Refer to the current database information for property default values per operating
system.

v Recommended value: If lock escalations are causing performance concerns, you might need to
increase the value of this parameter or the locklist parameter, which is described in the following
paragraph. You can use the database system monitor to determine if lock escalations are occurring.

DB2 locklist:

Specifies the amount of storage that is allocated to the lock list.
v How to view or set: To view the current value of the locklist property for database xxxxxx, issue the

DB2 get db cfg for xxxxxx command and look for the LOCKLIST value . To set LOCKLIST to a value
of n, issue the DB2 update db cfg for xxxxxx command using LOCKLIST n, where xxxxxx is the
name of the application database and n is a value between 4 and 60 000 inclusive.

v Default value: Refer to the current database information for property default values per operating
system.

14 Tuning various types of applications

v Recommended value: If lock escalations are causing performance concerns, you might need to
increase the value of this parameter or the maxlocks parameter, which is described in the previous
paragraph. You can use the database system monitor to determine if lock escalations are occurring.
Refer to the DB2 Administration Guide: Performance document for more details.

Data access tuning parameters
For better application performance, you can tune some data access resources through the WebSphere
Application Server administrative console.

Tune these properties of data sources and connection pools to optimize the performance of transactions
between your application and datastore. See the Administering applications and their environment PDF for
more information.

Data source tuning

To view the administrative console page where you configure the following properties, click Resources >
JDBC Providers > JDBC_provider > Data sources > data_source > WebSphere Application Server
connection properties.

Enable JMS one phase optimization support
If your application does not use JMS messaging, do not select this option. Activating this support
enables the Java Message Service (JMS) to get optimized connections from the data source.
Activating this support also prevents JDBC applications from obtaining connections from the data
source. For further explanation of JMS one phase support, refer to the article entitled "Sharing
connections to benefit from one phase commit optimization" in this information center.

Statement cache size
Specifies the number of statements that can be cached per connection.

 The WebSphere Application Server data source optimizes the processing of prepared statements
and callable statements by caching those statements that are not being used in an active
connection. Both statement types help reduce overhead for transactions with backend data.

v A prepared statement is a precompiled SQL statement that is stored in a PreparedStatement
object. Application Server uses this object to run the SQL statement multiple times, as required
by your application run time, with values that are determined by the run time.

v A callable statement is an SQL statement that contains a call to a stored procedure, which is a
series of precompiled statements that perform a task and return a result. The statement is
stored in the CallableStatement object. Application Server uses this object to run a stored
procedure multiple times, as required by your application run time, with values that are
determined by the run time.

In general, the more statements your application has, the larger the cache should be. Be aware,
however, that specifying a larger statement cache size than needed wastes application memory
and does not improve performance.

 Determine the value for your cache size by adding the number of uniquely prepared statements
and callable statements (as determined by the SQL string, concurrency, and the scroll type) for
each application that uses this data source on a particular server. This value is the maximum
number of possible statements that can be cached on a given connection over the life of the
server. See the Administering applications and their environment PDF for more information.

Default: For most databases the default is 10. Zero means there is no cache statement.

Connection pool tuning

To view the administrative console page where you configure the following properties, click Resources >
JDBC Providers > JDBC_provider > Data sources > data_source > Connection pool settings.

Chapter 3. Tuning Data access resources 15

Maximum connections
Specifies the maximum number of physical connections that can be created in this pool. These are
the physical connections to the backend datastore. When this number is reached, no new physical
connections are created; requestors must wait until a physical connection that is currently in use is
returned to the pool.

 For optimal performance, set the value for the connection pool lower than the value for the web
container threadpool size. Lower settings, such as 10 to 30 connections, might perform better than
higher settings, such as 100. See the Administering applications and their environment PDF for
more information.

Default: 10

Minimum connections
Specifies the minimum number of physical connections to maintain. Until this number is exceeded,
the pool maintenance thread does not discard physical connections.

 If you set this property for a higher number of connections than your application ultimately uses at
run time, you do not waste application resources. WebSphere Application Server does not create
additional connections to achieve your minimum setting. Of course, if your application requires
more connections than the value you set for this property, application performance diminishes as
connection requests wait for fulfillment. See the Administering applications and their environment
PDF for more information.

Default: 1

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server - Express products or components require multiple locations. Default values for installation actions
by root and nonroot users are given. If no nonroot values are specified, then the default directory values
are applicable to both root and nonroot users.

app_client_root

 Table 1. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root

/usr/IBM/WebSphere/AppClient (Java EE Application client
only)

/opt/IBM/WebSphere/

AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot

user_home/IBM/WebSphere/AppClient (Java EE Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

16 Tuning various types of applications

Table 2. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server - Express.
User Directory

Root

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/

AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot

user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this topic.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside
the installing product's directory structure and is no longer installed in a global location on the
target system. The following list shows the default installation root directory for Version 8 of the
GSKit, where product_root is the root directory of the product that is installing GSKit, for example
IBM HTTP Server or the web server plug-in.

product_root/gsk8

product_root\gsk8

profile_root

 Table 3. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/

AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\

profile_name

Nonroot

user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

Chapter 3. Tuning Data access resources 17

Table 4. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root

/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/

Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot

user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

 Table 5. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root

/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/

Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

Nonroot

user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

 Table 6. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root

/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot

user_home/IBM/HTTPServer

C:\IBM\HTTPServer

18 Tuning various types of applications

Chapter 4. Tuning EJB applications

This page provides a starting point for finding information about enterprise beans.

Based on the Enterprise JavaBeans (EJB) specification, enterprise beans are Java components that
typically implement the business logic of Java 2 Platform, Enterprise Edition (J2EE) applications as well as
access data.

EJB 2.1 container tuning
This page provides a starting point for finding information about tuning the Enterprise JavaBeans 2.1
container.

About this task

The following topic listed here to get started with tuning your EJB 2.1 container.

EJB container tuning
If you use applications that affect the size of the Enterprise JavaBeans (EJB) container cache, it is
possible that the performance of your applications can be affected by an incorrect size setting. Container
managed persistence (CMP) is discussed in this topic; although it is important to know that entity beans
are not supported in an EJB 3.x module.

EJB cache size
Monitor Tivoli® Performance Viewer to diagnose whether the EJB container cache size setting is tuned
correctly for your application.

If the application has filled the cache causing evictions to occur, Tivoli Performance Viewer shows a high
rate of the ejbStores method being called and probably a lower than expected processor utilization on the
workstation machine.

All applications that use enterprise beans must have this setting adjusted from the default value, if the
following formula result equals more than 2000:
EJB_Cache_Size = (Largest number of Option B or C entity beans enlisted in a
transaction * maximum number of concurrent transactions) +
(Largest number of unique Option A entity beans expected to be accessed during
typical application workload) +
(Number of stateful session beans active during typical workload) +
(Number of stateless session bean types used during typical workload)

Where:
Option B and C entity beans are only held in the EJB cache during the lifetime
of the transaction they are enlisted in. Therefore, the first term in the formula
computes the average EJB cache requirements for these types of beans.

Option A entity beans are held in the EJB cache indefinitely, and are only removed
 from the cache if there starts to become more beans in the cache than the cache
size has been set to. If your application uses Read Only Beans, consider them to be
Option A beans for this tuning calculation.

Stateful session beans are held in the EJB cache until they are removed by the
application, or until their session timeout value is reached.

Only a single stateless session bean instance for each EJB type is held in the
cache during the time any methods are running on that stateless session
bean. If two or more methods are being implemented simultaneously on the same
stateless session bean type, each method runs on its own bean instance, but
only one cache location is used for all of these instances.

© Copyright IBM Corp. 2011 19

This formula calculates the upper bound on the maximum number of enterprise beans active at one time
inside the application server. Because the cache of the EJB container is built to contain all these beans for
performance optimizations, best performance can be achieved by setting this cache size to be larger than
the number resulting from the previous formula.

You can set the EJB cache size in the administrative console under Servers > Application Servers >
server_name > EJB Container > EJB Cache Settings.

Also, while adjusting the EJB cache size, you can tune the EJB container management thread parameter
to meet the needs of the application. The management thread is controlled through the Clean Up Interval
setting. This setting controls how frequently a daemon thread inside of the product attempts to remove
bean instances from the cache that have not been used recently, attempting to keep the number of bean
instances at or below the cache size. This behavior ensures that the EJB container places and looks up
items in the cache quickly. Leave this interval set to the default; however, in some cases, it might be
worthwhile to see if there is a benefit to reducing this interval.

For information about tuning the EJB cache using the EJB cache trace service, read about tuning the EJB
cache and using the trace service.

EJB stateful session bean tuning
Stateful session bean timeout is configured in different ways, with different scopes, depending on the
version of WebSphere Application Server.

WebSphere Application Server version 6.1 and earlier supports configuration of stateful session bean
timeout, per bean, using the ibm-ejb-jar-ext.xmi file.

WebSphere Application Server version 7.0 supports configuration of stateful session bean timeout, per
bean, using the ibm-ejb-jar-ext.xmi file (for EJB 2.x modules), and the ibm-ejb-jar-ext.xml file (for EJB
3.x modules).

WebSphere Application Server version 8 supports configuration of stateful session bean timeout, per bean,
using the ibm-ejb-jar-ext.xmi (for EJB 2.x modules) and the ibm-ejb-jar-ext.xml (for EJB 3.x modules)
files, and the stateful-timeout XML element and the @StatefulTimeout annotation. Additionally, you can
configure a server-wide (global) stateful session timeout value using the
com.ibm.websphere.ejbcontainer.defaultStatefulSessionTimeout system property.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Stateless session beans do not have a timeout value because they have no conversational state and are
not dedicated to any specific client.

20 Tuning various types of applications

You can use Rational® Application Developer to update the ibm-ejb-jar-ext.xmi file, which is used to
configure the stateful session timeout value for beans in an EJB 2.x module. For more information, read
about defining session timeout settings for a bean in the Rational Application Developer Information
Center.

For example, the generated XMI code to set a stateful session timeout value of 15 minutes is:
<ejbExtensions xmi:type="ejbext:SessionExtension" xmi:id="SessionExtension_1"
 timeout="15">

You can modify the ibm-ejb-jar-ext.xml file to set the stateful session timeout for beans in an EJB 3.x
module. For example, the code to set a stateful session timeout value to 15 minutes for the myBean bean
is:
<ejbExtensions xmi:type="ejbext:SessionExtension" xmi:id="SessionExtension"
 timeout="15">
 <enterpriseBean xmi:type="ejb:Session" href="META-INF/ejb-jar.xml#MyBean"/>
 </ejbExtensions>

You can configure stateful session bean timeout using the @StatefulTimeout annotation. The
@StatefulTimeout annotation takes a required value parameter representing the duration of the timeout,
and an optional unit parameter. If the optional unit parameter is not specified, the default unit is minutes.
The @StatefulTimeout annotation is introduced as part of EJB 3.1.

For example, use the @StatefulTimeout annotation to declare a timeout value of 100 seconds:
@StatefulTimeout(value=100 unit=java.util.concurrent.TimeUnit.SECONDS)

You can configure stateful session bean timeout using the stateful-timeout XML element in the
ejb-jar.xml deployment descriptor. The stateful-timeout element is introduced as part of EJB 3.1.

For example, to set a timeout value of 100 seconds:
<stateful-timeout>
 <timeout>100</timeout>
 <unit>Seconds</unit>
</stateful-timeout>

The @StatefulTimeout annotation and the stateful-timeout XML element are the specification-defined
mechanisms for declaring timeout values per bean, beginning with EJB 3.1. Before EJB 3.1, there is no
specification-defined way for declaring stateful session timeout per bean. When using the stateful-timeout
XML element or @StatefulTimeout annotation, a value of -1 means that the bean never times out, and a
value of 0 means that the bean is immediately eligible for removal.

You can configure stateful session bean timeout on a global (server-wide) basis, using the
com.ibm.websphere.ejbcontainer.defaultStatefulSessionTimeout system property. The unit of time for the
com.ibm.websphere.ejbcontainer.defaultStatefulSessionTimeout is minutes. The specified value must be 0
or greater, and if an invalid value is specified, the default value of 10 minutes is used instead. The global
timeout value cannot be configured using XML or annotations. The global timeout value applies to all
stateful session beans running in the server, including stateful session beans in EJB 2.x or EJB 3.x
modules.

In WebSphere Application Server version 8, bean-level stateful timeout settings take precedence over the
server-wide timeout setting. The server-wide timeout setting takes precedence over the default
(unspecified) timeout. The following order of precedence is used to determine the stateful session timeout
value for a bean running in WebSphere Application Server version 8:

1. stateful-timeout XML element

2. @StatefulTimeout annotation

3. ibm-ejb-jar-ext.xml or ibm-ejb-jar-ext.xmi

Chapter 4. Tuning EJB applications 21

4. com.ibm.websphere.ejbcontainer.defaultStatefulSessionTimeout system property

5. If no bean-level or server-wide timeout value is explicitly specified, then the default timeout value of 10
minutes is applied.

Dcom.ibm.websphere.ejbcontainer.poolSize
If the application is using most bean instances in the pool, the Tivoli Performance Viewer indicates this.
When the majority of the bean instances are used, increase the size of those bean pools that are being
exhausted by adding this parameter in the custom properties tag of the JVM; for example:
-Dcom.ibm.websphere.ejbcontainer.poolSize=<application_name>#<module_name>#
<enterprisebean_name>=<minSize>,<maxSize>

Where:

The <application_name> element is the Java EE application name as defined in the enterprise archive
(EAR) file deployment descriptor, for the bean whose pool size is being set.

The <module_name> element is the Java archive (JAR) file name of the EJB module, for the bean whose
pool size is being set.

The <bean_name> element is the Java EE enterprise bean name as defined in the EJB module
deployment descriptor, for the bean whose pool size is being set

The <minSize> element is the number of bean instances the container maintains in the pool, irrespective
of how long the beans have been in the pool (beans greater than this number are cleared from the pool
over time to optimize memory usage)

The <maxSize> element is the number of bean instances in the pool where no more bean instances are
placed in the pool after they are used (that is, when the pool is at this size, any additional beans are
discarded rather than added into the pool, which ensures the number of beans in the pool have an upper
limit so that memory usage does not grow in an unbounded way).

To keep the number of instances in the pool at a fixed size, the minSize and maxSize elements can be set
to the same number. A separate instance pool for every EJB type running in the application server exists,
and that every pool starts out with no instances; the number of instances grow as beans are used and
then placed in the pool.

When a bean instance is needed by the container and no beans are available in the pool, the container
creates a bean instance, uses it, then places that instance in the pool, unless there are already maxSize
instances in the pool. For example, the statement -
Dcom.ibm.websphere.ejbcontainer.poolSize=ivtApp#ivtEJB.jar#ivtEJBObject=125,1327

would set a minSize of 125 and a maxSize of 1327 on the bean named ivtEJBObject within the ivtEJB.jar
file, in the application ivtApp.

The application, ivtApp, is replaced by the actual application name, the ivtEJB.jar file is replaced by the
JAR file that contains the bean that must have its pool size increased, and ivtEJBObject is the bean name
of the enterprise bean whose pool size must be increased. The minimum number of beans that are held in
the pool is 125. The maximum number of beans that are held in the pool is 1327. Set these so that no
more evictions occur from the pool. In most cases these must be set equal if memory is plentiful because
no growth and shrinkage of the pool occurs.

Dcom.ibm.websphere.ejbcontainer.noPrimaryKeyMutation
You must understand how your application handles the creation of primary key objects for use by CMP
beans and bean-managed persistence (BMP) beans inside of the product.

22 Tuning various types of applications

The EJB container uses the primary key of an entity bean as an identifier inside of internal data structures
to optimize performance. However, the EJB container must copy these primary key objects upon the first
access to the bean to ensure that the objects stored in the internal caches are separate from the ones
used in an application. This process occurs to keep the internal structures consistent in case the
application changes or mutates the primary key. If the application does not mutate any of the primary keys
used to create and access entity beans after they are created, a special flag can be used that ensures that
the EJB container skips the copy of the primary key object, saving processor cycles, and increasing
performance. This mechanism can be enabled at your own risk by adding the –D property to the JVM
custom property field.
-Dcom.ibm.websphere.ejbcontainer.noPrimaryKeyMutation=true

Note: Entity beans are not supported in EJB 3.x and later modules.

The performance benefit of this optimization depends on the application. If the application uses primitive
types for the primary keys of enterprise beans, there is no gain because these objects are already
immutable and the copy mechanism takes this into account. If, however, the application uses many
complex primary keys, that is, an object for a primary key or multiple fields, this parameter can yield
significant improvements.

Dcom.ibm.ws.pm.deferredcreate
The persistence manager is used by the EJB container to persist data to the database from CMP entity
beans.

When creating entity beans by calling the ejbCreate method, by default the persistence manager
immediately inserts the empty row with only the primary key in the database. In most cases, after creating
the bean you must modify fields in the bean created or in other beans inside of the same transaction. If
you want to postpone the insert into the database until the end of the transaction to eliminate one trip to
the database, set the –D flag inside of the JVM custom properties field. The data is inserted into the
database and consistency is maintained.

Note: Entity beans are not supported in EJB 3.x and later modules.
-Dcom.ibm.ws.pm.deferredcreate=true

The performance benefit of this optimization depends on the application. If the EJB applications
transactions are insert intensive, the application can benefit from this optimization. If the application
performs few inserts, the benefit of this optimization is less.

Dcom.ibm.ws.pm.batch
When an EJB application accesses multiple CMP beans inside of a single transaction, depending on the
operations performed on the beans, such as updates, inserts, and reads, the number of operations issued
to the database corresponds directly to the operations performed on the CMP beans. If the database
system you are using supports batching of update statements, you can enable this flag and increase
performance on all interactions with the database that involve more than two updates in a single
transaction.

Note: Entity beans are not supported in EJB 3.x and later modules.

Use this flag, which supports the persistence manager adding all the update statements into one single
batch statement that is issued to the database. This process saves round trips to the database, which
increases performance. If you know that your application exhibits the behavior of updating multiple CMP
beans in a single transaction, and the database supports batch updates, you can set the –D flag inside of
the JVM custom properties field; for example:
-Dcom.ibm.ws.pm.batch=true

Chapter 4. Tuning EJB applications 23

The performance benefit of this optimization depends on the application. If the application never or
infrequently updates CMP beans, or updates only a single bean per transaction, there is no performance
gain. If the application updates multiple beans per transaction, this parameter benefits the applications
performance.

The following table lists the backend databases that support batch update.

 Table 7. Backend databases that support batch update. The following table lists the backend databases that support
batch update.

Database Supports batch update
Supports batch update with
Optimistic Concurrency Control

DB2 yes no

Oracle yes no

DB2 Universal Driver yes yes

Informix® yes yes

SQLServer yes yes

Apache Derby yes yes

Note: Batch update with OCC cannot be performed for databases that do not support it, even if specified
by the access intent.

com.ibm.ws.pm.useLegacyCache
Specifies the name of the Java class that the product uses to implement the
javax.rmi.CORBA.UtilDelegate interface.

Note: Entity beans are not supported in EJB 3.x and later modules.

Persistence manager has two types of caching mechanisms, legacy cache and two-level cache. Typically,
two-level cache is more efficient than legacy cache because of optimizations in this mode. The default is
legacy cache, although two-level cache is recommended. Set this configuration through the system
property as follows:
com.ibm.ws.pm.useLegacyCache=false

com.ibm.ws.pm.grouppartialupdate and com.ibm.ws.pm.batch
The partial updates feature enhances the performance of applications with enterprise beans in certain
scenarios. Persistence manager has two caching mechanisms available, legacy cache and two-level
cache. Typically, two-level cache performs better than legacy cache because of the optimizations in this
mode.

Note: Entity beans are not supported in EJB 3.x and later modules.

In certain applications where you must perform both batch updates and partial updates, you must
configure the following system properties to gain the benefits of both:
'com.ibm.ws.pm.grouppartialupdate=true’ and 'com.ibm.ws.pm.batch=true’

Tuning Enterprise JavaBeans applications

Tuning EJB cache with trace service
The size of your Enterprise JavaBeans (EJB) cache can affect the performance of the application server.
One of the steps in tuning your EJB container to optimum performance levels is to fine-tune the EJB
cache.

24 Tuning various types of applications

Before you begin

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

About this task

The following procedure describes how to use the diagnostic trace service to help determine the best
cache size.

Procedure
1. Enable the EJB cache trace. To learn about working with the trace service, see the topic, Working with

trace. For information about the trace service settings, see the topic, Diagnostic trace service settings.

Set up your trace to use this trace string:
com.ibm.ejs.util.cache.BackgroundLruEvictionStrategy=all=enabled:com.ibm.ejs.util.cache.CacheElementEnumerator=
all=enabled

Set Maximum File Size to 200MB or more. If you leave the default value of 20MB, you could fill up the
single 20 MB trace log and lose some data because of trace wrapping.

Set Maximum Number of Historical Files to 5. Five files should be sufficient, but if you see that all
five files are full and trace wrapping occurs, increase this value.

2. Stop your server, delete existing logs, then start your server.

3. Run typical scenarios to capture cache trace data. By running a typical scenario with the trace
enabled, you get the EJB cache trace data to analyze in the following steps.

4. View and analyze the trace output.

a. Open your trace log. Look for either or both of the following trace strings to display:

BackgroundLru 3 EJB Cache: Sweep (1,40) - Cache limit not reached : 489/2053
BackgroundLru > EJB Cache: Sweep (16,40) - Cache limit exceeded : 3997/2053 Entry

In the trace strings that include the words Cache limit you find a ratio. For example, 3997/2053.
The first number is the number of enterprise beans currently in the EJB cache (called the capacity).
The second number is the EJB cache setting (more about this in later steps). Use this ratio,
particularly the capacity, in your analysis.

Also look for the statements Cache limit not reached and Cache limit exceeded.
Cache limit not reached

Your cache is equal to or larger than what is appropriate. If it is larger, you are wasting
memory, and should reduce the cache size to a more appropriate value.

Cache limit exceeded
The number of beans currently being used is greater than the capacity you have specified,
indicating that your cache is not properly tuned. The capacity can exceed the EJB Cache
setting because the setting is not a hard limit. The EJB Container does not stop adding
beans to the cache when the limit is reached. Doing so could mean that when the cache is
full, a request for a bean would not be fulfilled, or would at least be delayed until the cache
fell below the limit. Instead, the cache limit can be exceeded, but the EJB Container
attempts to clean up the cache and keep it below the EJB Cache size.

 In the case where the cache limit is exceeded, you might see a trace point similar to this:

BackgroundLru < EJB Cache: Sweep (64,38) - Evicted = 50 : 3589/2053 Exit

Chapter 4. Tuning EJB applications 25

Notice the Evicted = string. If you see this string, you are using either Stateful Session
Beans or Entity Beans configured for Option A or B caching. Evicted objects mean that you
are not taking full advantage of the caching option that you have chosen. Your first step is
to try increasing the EJB Cache size. If continued running of your application results in
more evictions, it means that the application is accessing or creating more new beans
between EJB Cache sweeps than the cache can hold, and NOT reusing existing beans.

You might want to consider using Option C caching for your entity beans, or checking your
application to see if it is not removing Stateful Session Beans after they are no longer
needed.

Note: Entity beans configured with Option C caching are only in the cache while in a
transaction, and are required to be held in the cache for the entire transaction.
Therefore, they are never evicted during a cache sweep, but are removed from the
cache when the transaction completes. In addition, if you are using only Stateless
Session Beans or Entity Beans with Option C caching (or both), then you might
want to increase your EJB Cache cleanup interval to a larger number. The cleanup
interval can be set as described in EJB cache settings. Stateless Session Beans are
NOT in the EJB Cache, and since Entity Beans using Option C caching are never
evicted by the caching (LRU) strategy, there is really no need to sweep often. When
using only Stateless Session Beans or Option C caching, you should only see
"Evicted = 0" in the trace example shown above.

b. Analyze your trace log. Look for the trace string Cache limit exceeded.
v You might find more than one instance of this string. Examine them all to find the highest

capacity value of beans in the EJB Cache. Reset your EJB Cache size to about 110% of this
number. Setting the EJB Cache size is explained in a later step.

v You might find no instances of this string. This means that you have not exceeded the capacity
of the EJB Cache (which is your end goal), but not seeing it during your initial analysis could
also mean that your cache is too large and using unnecessary memory. In this case, you still
must tune your cache by reducing the cache size until your cache limit is not exceeded, then
increasing it to the optimum value. Setting the EJB Cache size is explained in a later step.

Your ultimate goal is to set the cache limit to a value that does not waste resources, but also does
not get exceeded. A good set-up gives you a trace with only the Cache limit not reached message,
and a ratio where the capacity number can be near, but below, 100% of the EJB Cache setting.

Note: It is recommended that you do not set your cache size to anything less than the default of
2053.

5. Modify the cache settings based on your analysis. See EJB cache settings for information about how
to do this.

6. Stop your server, delete all logs, and restart your server.

7. Repeat the previous steps until you are satisfied with your settings.

8. Disable the EJB Cache trace. With the cache properly tuned, you can remove the trace, remove old
logs, and restart your server.

What to do next

From your analysis, it is possible to set the EJB cache optimally from an EJB Container perspective, but
perhaps not optimally from a WebSphere Application Server perspective. A larger cache size provides
more hits and better EJB cache performance, but uses more memory. Memory used by the cache is not
available to other areas of the product, potentially causing the overall performance to suffer. In a system
with ample memory, this might not be an issue and properly tuning the EJB cache might increase overall
performance. However, you should take into account this system performance versus EJB cache
performance when configuring the cache.

26 Tuning various types of applications

EJB method Invocation Queuing
Method invocations to enterprise beans are only queued for remote clients making the method call. An
example of a remote client is an Enterprise JavaBeans (EJB) client running in a separate Java virtual
machine (JVM) (another address space) from the enterprise bean. In contrast, no queuing occurs if the
EJB client, either a servlet or another enterprise bean, is installed in the same JVM on which the EJB
method runs, and on the same thread of execution as the EJB client.

Remote enterprise beans communicate by using the Remote Method Invocation over Internet Inter-ORB
Protocol (RMI-IIOP). Method invocations initiated over RMI-IIOP are processed by a server-side object
request broker (ORB). The thread pool acts as a queue for incoming requests. However, if a remote
method request is issued and there are no more available threads in the thread pool, a new thread is
created. After the method request completes the thread is destroyed. Therefore, when the ORB is used to
process remote method requests, the EJB container is an open or closed queue, due to the use of
unbounded threads.

The following illustration depicts the two queuing options of enterprise beans.

The following are two tips for queueing enterprise beans:
v Analyze the calling patterns of the EJB client.

When configuring the thread pool, it is important to understand the calling patterns of the EJB client. If a
servlet is making a small number of calls to remote enterprise beans and each method call is relatively
quick, consider setting the number of threads in the ORB thread pool to a value lower than the web
container thread pool size value.

Chapter 4. Tuning EJB applications 27

The degree to which the ORB thread pool value needs increasing is a function of the number of
simultaneous servlets, that is, clients, calling enterprise beans and the duration of each method call. If
the method calls are longer or the applications spend a lot of time in the ORB, consider making the
ORB thread pool size equal to the web container size. If the servlet makes only short-lived or quick calls
to the ORB, servlets can potentially reuse the same ORB thread. In this case, the ORB thread pool can
be small, perhaps even one-half of the thread pool size setting of the web container.

v Monitor the percentage of configured threads in use.

Tivoli Performance Viewer shows a metric called percent maxed, which is used to determine how often
the configured threads are used. A value that is consistently in the double-digits, indicates a possible
bottleneck a the ORB. Increase the number of threads.

Tuning applications that use the Java Persistence API

Configuring OpenJPA caching to improve performance
The OpenJPA implementation gives you the option of storing frequently used data in the memory to
improve performance. OpenJPA provides concurrent data and concurrent query caches that support
applications to save persistent object data and query results in memory to share among threads and for
use in future queries.

About this task

OpenJPA data cache functionality

The OpenJPA data cache is a cache of persistent object data that operates at the EntityManagerFactory
level. This optional-use cache is designed to increase performance while remaining in full compliance with
the Java Persistence API (JPA) standard. This means that enabling the caching option can increase the
performance of your application, with no changes to your code. The OpenJPA data cache is designed to
provide significant performance increases over cacheless operations and ensures that behavior is identical
in both cache-enabled and cacheless operations.

When enabled, the cache is examined before accessing the data store. The cache stores data when
objects are committed and when persistent objects are loaded from the data store. If operating in a single
Java virtual machine (JVM) environment, the JVM maintains and shares a data cache across all

28 Tuning various types of applications

EntityManager instances obtained from a particular EntityManagerFactory. The OpenJPA data cache
cannot do this in a distributed environment because caches in different JVMs, created from different
EntityManagerFactory objects are not synchronized.

Using the OpenJPA cache in a multi-JVM environment can be done by configuring the OpenJPA second
level (L2) cache provider plug-in. See the topic, Dynamic cache provider for the JPA 2.0 second level
cache, and the section "Using the dynamic cache L2 Cache Provider in a clustered environment", for more
information. Configuring the DynaCache plug-in allows for the Data and Query cache content to be
replicated and consistent across JVMs. Other alternatives include setting up an event notification
framework or using a third-party distributed cache such as IBM WebSphere eXtreme Scale.

Enabling and configuring the OpenJPA data cache

You can enable the OpenJPA data cache for a single or a multiple JVM environment, set its default
element size, including soft references, and specify timeout values.

To set up and configure the OpenJPA data cache, do the following:

1. To enable the cache for a single JVM, set the openjpa.DataCache property to true, and set the
openjpa.RemoteCommitProvider property to sjvm:
<property name="openjpa.DataCache" value="true"/>
<property name="openjpa.RemoteCommitProvider" value="sjvm"/>

To enable the data cache in a distributed environment, the openjpa.RemoteCommitProvider must be
configured specifically for the environment, or a third-party cache management utility can be used.

2. The maximum cache size can be adjusted by setting the CacheSize property:
<property name="openjpa.DataCache" value="true(CacheSize=5000...

By default, the OpenJPA data cache holds 1000 elements. Objects that are pinned into the cache are
not counted when determining if the cache size exceeds its maximum size. If the cache overflows, it
evicts random elements. You can preserve evicted elements longer with the SoftReferenceSize
property. By default, soft references are unlimited. If you must, you can limit the number of soft
references or set to 0 to disable soft references completely:
<property name="openjpa.DataCache" value="true(CacheSize=5000 SoftReferenceSize=0 ...

3. You can specify that a cache is cleared at certain times. The EvictionSchedule property of the
OpenJPA cache implementation accepts a cron style eviction schedule. The cron format specifies the
minute, hour of day, day of month, day of month, and day of the week beginning with 1 for Sunday; the
* symbol (asterisk), indicates match all. To schedule a cache to evict at 45 minutes past 3 PM on
Sunday every month you would add this property:
<property name="openjpa.DataCache" value="true(CacheSize=5000 SoftReferenceSize=0 EvictionSchedule=’15,45 * * 1’")/>

4. You also can specify a cache timeout value for a single class by setting the timeout metadata
extension to the amount of time in milliseconds that the data of the class is valid; for example:
@Entity
@DataCache(timeout=10000)
public class Employee {
 ...
}

Refer to the org.apache.openjpa.persistence.DataCache Javadoc for more information.

After configuring your data cache, you can use it after you restart your application.

Refresh with active DataCache

Refreshing an entity may lead to different behavior with or without a DataCache when a separate process
or part of the same application are updated or even deleted the corresponding record in the database. By
default, entities are refreshed from the database even when DataCache is active. Therefore, with the

Chapter 4. Tuning EJB applications 29

default configuration the refresh behaves identically with or without a DataCache. However, a persistence
unit can be configured to refresh entities from DataCache with the property
openjpa.RefreshFromDataCache for improved performance. Under this configuration, any out-of-band
changes that occur in the database record do not appear in the refreshed state of the entity.

Note: Regardless of the openjpa.RefreshFromDataCache setting, the DataCache is always bypassed
for refresh when locks are active, such as for a pessimistic transaction, in a persistence context. An
application may activate openjpa.RefreshFromDataCache but can still bypass the DataCache
while refreshing an entity by explicitly evicting the entity from DataCache before refresh.

Query Caching functions

OpenJPA provides a concurrent query cache that supports applications to save persistent object data and
query results in memory to share among threads and for use in future queries. The query cache stores the
object IDs returned by query executions. When you run a query, OpenJPA assembles a key based on the
query properties and the parameters used at execution time, and checks for a cached query result. If one
is found, the object IDs in the cached result are looked up, and the resultant persistence-capable objects
are returned. Otherwise, the query is executed against the database, and the object IDs loaded by the
query are put into the cache.

Configuring or disabling the query cache

You can configure the query cache settings in a similar way to the data cache. The interface provided to
the query cache is the org.apache.openjpa.persistence.QueryResultCache class. You can access this
class through the OpenJPAEntityManagerFactory.

The default query cache implementation caches 100 query executions in a least-recently-used cache. This
can be changed by setting the cache size in the CacheSize plug-in property. Like the data cache, the
query cache also has a backing soft reference map that can be changed using the SoftReferenceSize
property. To keep queries in the cache at all times, you can pin them to a cache. To change the query
cache properties do the following:

1. Modify the CacheSize property of the openjpa.QueryCache:
<property name="openjpa.QueryCache" value="true("CacheSize=1000, ...

2. Change the SoftReferenceSize property to enable and control the size of this map:
<property name="openjpa.QueryCache" value="true(CacheSize=1000, SoftReferenceSize=100")/>

The SoftReferenceSize table is disabled by default. Setting the size enables it.

3. Pin or unpin queries in the cache through the QueryResultCache with this syntax:
public void pin(Query q);
public void unpin(Query q);

Modifying these properties allows you to make better use of the query cache.

Extending a cache

OpenJPA provides classes that may be extended for further functionality.

v As previously mentioned, if you want to implement a distributed cache that uses an unsupported
method for communications, create an implementation of
org.apache.openjpa.event.RemoteCommitProvider.

v If you are adding new behavior, extend org.apache.openjpa.datacache.DataCacheImpl.

v To use your own storage mechanism, extend org.apache.openjpa.datacache.AbstractDataCache.

v To add query functionality, you can extend the default org.apache.openjpa.datacache.QueryCacheImpl.

v Implement your own storage mechanism for query results by extending
org.apache.openjpa.datacache.AbstractQueryCache

30 Tuning various types of applications

OpenJPA query SQL cache

OpenJPA provides a cache that provides caching of SQL strings used by find operations performed on the
entity manager and some queries to manage eagerly fetched relationships. When this cache is enabled,
SQL queries used by these operations are generated one time per entity manager factory and can be
reused. This cache is enabled by default but can also be configured through the
openjpa.jdbc.QuerySQLCache configuration property.

Configuring or disabling the SQL query cache

The query SQL cache can be configured or disabled through the openjpa.jdbc.QuerySQLCache property.
By default, this property is set to true. When the property is set to true, the cache is enabled and uses
the org.apache.openjpa.util.CacheMap class for its cache store. The CacheMap is a managed cache,
meaning that it limits the number of cache entries and has a cache eviction scheme to manage memory
usage. If the cache is set to all the org.apache.openjpa.lib.util.ConcurrentHashMap class is used as a
cache store. The ConcurrentHashMap is not a managed cache so entries remain in the cache for the
lifetime of an entity manager factory. This caching mechanism can provide better performance at the
expense of increased memory usage. A custom cache store class can also be specified if it implements
the java.util.Map interface. To disable the cache, specify the value false. See the following examples on
how to configure or disable the SQL query cache:

v To use an unmanaged cache:
<property name="openjpa.jdbc.QuerySQLCache" value="all"/>

v To specify a custom cache class:
<property name="openjpa.jdbc.QuerySQLCache" value="com.mycompany.MyCustomCache"/>

v To use an unmanaged cache:
<property name="openjpa.jdbc.QuerySQLCache" value="false"/>

What to do next

You can read more about Caching in the OpenJPA for all caching extensions in the Apache OpenJPA User
Guide.

Configuring the WSJPA Object Cache to improve performance
The WebSphere Java Persistence API (WSJPA) extension to OpenJPA provides a read-only object cache
that can improve performance in certain use cases.

Before you begin

This cache can improve the performance of an application which has a set of data that is used in a static,
read-only method. For example, accessing basic persistent fields and persisting unidirectional relationships
to a read-only type. This set of data has a number of restrictions that are documented here.

The WSJPA object cache is a non-distributed cache of read-only Entities that operates at the
EntityManagerFactory level. These cached instances are shared by all EntityManagers in the Java virtual
machine (JVM), but not managed by any. When enabled, the ObjectCache is examined before accessing
the OpenJPA DataCache and database. When persistent objects are loaded from the database they are
stored in the OpenJPA ObjectCache. The ObjectCache can be used with the OpenJPA DataCache and
QueryCache for even greater performance. Types that are included in the ObjectCache must not be
eligible to be cached in the OpenJPA DataCache. The object cache is not to be confused with a
second-level cache as defined by the JPA 2.0 specification.

Types that are included in the OpenJPA ObjectCache are as follows:

v Strictly read-only from the application point-of-view

– Passing a read only type into the following operations results in an UnsupportedOperationException.

Chapter 4. Tuning EJB applications 31

- Passing a read only Entity into EntityManager.merge(...).

- Passing a read only Entity into EntityManager.persist(...).

- Passing a read only Entity into EntityManager.remove(...).

– Calling a setter method on a read-only type that was returned by the WebSphere JPA runtime results
in an UnsupportedOperationException.

v Restricted to having only basic fields. An exception occurs on EntityManager creation if this rule is
broken.

v Not to intersect types that are cacheable by the OpenJPA L2 cache (openjpa.DataCache). An exception
occurs on EntityManager creation if this rule is broken.

v Passing a read-only Entity into EntityManager.contains(...) always returns false, even if it was just
returned from a find/query operation.

About this task

You can enable the object cache for a single JVM environment, specify the types that are included in this
cache, set its maximum element size and specify timeout values. To set up and configure the object
cache, do the following:

Attention: The preferred property name is wsjpa.ObjectCache, but openjpa.ObjectCache is also a valid
configuration.

Procedure
1. To enable the cache for a single JVM, set the wsjpa.ObjectCache property to true and specify a list of

Types.
<property name="wsjpa.ObjectCache " value="true(Types=com.ibm.wsjpa.Foo; com.ibm.wsjpa.Bar)"/>

2. Adjust the maximum cache size by setting the MaxSize property:
<property name=" wsjpa.ObjectCache" value=”true(Types=com.ibm.wsjpa.Foo; com.ibm.wsjpa.Bar, MaxSize=5000)”/>

By default, the object cache holds 1000 elements. If the cache overflows, it evicts random elements.
Evicted elements are preserved in a soft reference map. The size of the soft reference map is
unlimited and cannot be configured.

3. Specify that the ObjectCache should be cleared at certain times. The EvictionSchedule property of the
object cache implementation accepts a cron-style eviction schedule. The cron format specifies the
minute, hour of day, day of month, and day of the week beginning with 1 for Sunday; the * (asterisk)
indicates match all. To schedule a cache to evict at 3:45 PM on Sunday every month, add this
property:

<property name="openjpa.DataCache" value="true(Types=com.ibm.wsjpa.Foo; com.ibm.wsjpa.Bar, MaxSize=5000,
 EvictionSchedule=’15,45 * * 1’)”/>

In addition to the cron syntax you can specify an interval style eviction schedule. The format of this
property is a plus sign (+) followed by the number of minutes between each time that the cache should
be evicted. To schedule a cache to evict every 20 minutes add this property:

<property name="openjpa.DataCache" value="true(Types=com.ibm.wsjpa.Foo; com.ibm.wsjpa.Bar, MaxSize=5000,
EvictionSchedule=’+20’)”/>

What to do next

Read about caching in the OpenJPA User Guide for information about all caching extensions.

32 Tuning various types of applications

Chapter 5. Tuning Messaging resources

This page provides a starting point for finding information about the use of asynchronous messaging
resources for enterprise applications with WebSphere Application Server.

WebSphere Application Server supports asynchronous messaging based on the Java Message Service
(JMS) and the Java EE Connector Architecture (JCA) specifications, which provide a common way for
Java programs (clients and Java EE applications) to create, send, receive, and read asynchronous
requests, as messages.

JMS support enables applications to exchange messages asynchronously with other JMS clients by using
JMS destinations (queues or topics). Some messaging providers also allow WebSphere Application Server
applications to use JMS support to exchange messages asynchronously with non-JMS applications; for
example, WebSphere Application Server applications often need to exchange messages with WebSphere
MQ applications. Applications can explicitly poll for messages from JMS destinations, or they can use
message-driven beans to automatically retrieve messages from JMS destinations without explicitly polling
for messages.

WebSphere Application Server supports the following messaging providers:

v The WebSphere Application Server default messaging provider (which uses service integration as the
provider).

v The WebSphere MQ messaging provider (which uses your WebSphere MQ system as the provider).

v Third-party messaging providers that implement either a JCA Version 1.5 resource adapter or the ASF
component of the JMS Version 1.0.2 specification.

Tuning messaging
To tune asynchronous messaging, you can, for example, configure message-driven bean (MDB) throttling
for a JCA 1.5-compliant messaging provider.

About this task

To tune your asynchronous messaging, complete one or more of the following steps.

Procedure
v Configure MDB throttling for a JCA 1.5-compliant messaging provider:

– For the default messaging provider, complete the task “Configuring MDB throttling for the default
messaging provider” on page 36.

– For the WebSphere MQ messaging provider, set the maximum server sessions property on the
WebSphere MQ messaging provider activation specifications advanced properties page, or the
maxPoolSize property when using the createWMQActivationSpec or modifyWMQActivationSpec
wsadmin commands.

– For a third-party JCA 1.5-compliant JMS messaging provider, refer to the generic method of
message throttling described in “Throttling inbound message flow for JCA 1.5 message-driven beans”
on page 10.

v Tune messaging destinations for the WebSphere MQ or V5 default messaging provider.

Tuning messaging performance with service integration technologies
To help optimize performance, you can set tuning properties that control the performance of
message-driven beans and other messaging applications deployed to use service integration technologies.

© IBM Corporation 2009 33

About this task

To optimize the performance of messaging with service integration technologies, you can use the
administrative console to set various parameters as described in the steps below. You can also set these
parameters by using the wsadmin tool.

Procedure
v View the Available Message Count on a destination.

Viewing the Available Message Count on a destination enables you to determine whether your message
consumers are able to cope with your current workload. If the available message count on a given
destination is too high, or is increasing over time, consider some of the tuning recommendations in this
topic.

1. Enable AvailableMessageCount statistics for a queue. If you restart the administrative server, enable
AvailableMessageCount statistics again because such runtime settings are not preserved when the
server is restarted.

a. In the navigation pane, click Monitoring and Tuning -> Performance Monitoring
Infrastructure (PMI).

b. In the content pane, click server_name.

c. Click the Runtime tab.

d. In the Currently monitored statistic set, click Custom.

e. On the Custom monitoring level panel, click SIB Service > SIB Messaging Engines >
engine_name > Destinations > Queues > queue_name.

f. Select the AvailableMessageCount option.

g. Click Enable at the top of the panel.

2. View the available message count for a queue.

a. In the navigation pane, click Monitoring and Tuning -> Performance Viewer -> Current
activity.

b. In the content pane, click server_name.

c. Click Performance Modules > SIB Service > SIB Messaging Engines > engine_name >
Destinations > Queues > queue_name.

d. Click View Module(s) at the top of the Resource Selection panel, located on the left side. This
displays the AvailableMessageCount data in the Data Monitoring panel, located on the right side.

You can use the Data Monitoring panel to manage the collection of monitoring data; for example,
you can use the buttons to start or stop logging, or to change the data displayed as either a
table or graph.

v Monitor MDB Thread Pool Size for the Default Message Provider.

You might experience a performance bottleneck if there are insufficient threads available for the
message-driven beans. There is a trade-off between providing sufficient threads to maximize the
throughput of messages and configuring too many threads, which can lead to CPU starvation of the
threads in the application server. If you notice that the throughput for express nonpersistent, reliable
nonpersistent, or reliable persistent messaging has fallen as a result of increasing the size of the default
thread pool, then decrease the size of the thread pool and reassess the message throughput.

1. View or change the number of threads in the default thread pool for an application server. By
default, message-driven beans use the default thread pool.

a. Click Servers -> Server Types -> WebSphere application servers -> server_name ->
[Additional Properties] Thread Pools > Default. By default the Minimum size value is set to 5
and the Maximum size value is set to 20. The best performance is obtained by setting the
Maximum size value to the expected maximum concurrency for all message-driven beans. For
high throughput using a single message bean, 41 was found to be the optimal Maximum size
value.

b. Change the Maximum size value, then click OK.

34 Tuning various types of applications

2. Optional: Create your own thread pool. The default thread pool is also used by other WebSphere
Application Server components, so you might want to define a separate thread pool for the
message-driven beans. This reduces thread contention for the default thread pool.

a. Click Servers -> Server Types -> WebSphere application servers -> server_name ->
[Additional Properties] Thread Pools.

b. Create a new thread pool.

c. Create sufficient threads to support the maximum amount of concurrent work for the
message-driven beans.

d. Change the SIB JMS Resource Adapter to use the new thread pool:

1) Click Resources -> Resource Adapters -> Resource adapters.

2) If you cannot see any SIB JMS Resource Adapter instances in the list, expand Preferences
and enable Show built-in resources.

3) Select the SIB JMS Resource Adapter with the appropriate scope depending upon the
scope of the connection factories.

4) Add the name of the new thread pool in the Thread pool alias box.

5) Click Apply .

3. Save your changes to the master configuration.

v Tune MDB performance with the default messaging provider.

1. Click Resources -> JMS -> Activation specifications -> activation_specification_name.

2. Set the maximum batch size for this activation specification.

Delivering batches of messages to each MDB endpoint can improve performance, particularly when
used with Acknowledge mode set to Duplicates-ok auto-acknowledge. However, if message
ordering must be retained across failed deliveries, set this parameter to 1.

3. Set the maximum number of concurrent endpoints for this activation specification.

The maximum concurrent endpoints parameter controls the amount of concurrent work that can be
processed by a message bean. The parameter is used with message-driven beans. Increasing the
number of concurrent endpoints can improve performance but can increase the number of threads
in use at one time. To benefit from a change in this parameter, there should be sufficient threads
available in the MDB thread pool to support the concurrent work. However, if message ordering
must be retained across failed deliveries, set this parameter to 1.

4. Save your changes to the master configuration.

For additional information about tuning the throttling of message-driven beans, including controlling the
maximum number of instances of each message bean and the message batch size for serial delivery,
see “Configuring MDB throttling for the default messaging provider” on page 36.

v Ensure that application servers hosting one or more messaging engines are provided with an
appropriate amount of memory for the message throughput you require.

You can tune the initial and maximum Java Virtual Machine (JVM) heap sizes when adding a server to
a messaging bus, that is when you create a messaging engine. You have the option to do this in any of
the following cases:

– When adding a single server to a bus

– When adding a cluster to a bus

– When adding a new server to an existing cluster that is itself a bus member

For an application server that is a bus member of at least one bus, or a member of a cluster that is a
bus member of at least one bus, the recommended initial and maximum heap sizes are 768MB.

When you are adding a cluster to a bus, you are recommended to increase the initial and maximum
JVM heap sizes for every server in the cluster to 768MB.

– Increasing the initial heap size improves the performance for small average message sizes

– Increasing the maximum heap size improves the performance for higher average message sizes

v Reduce the occurrence of OutOfMemoryError exceptions

Chapter 5. Tuning Messaging resources 35

If the cumulative size of the set of messages being processed within a transaction by the service
integration bus is large enough to exhaust the JVM heap, OutOfMemoryError exceptions occur.
Consider one of the following options for reducing the occurrence of OutOfMemoryError exceptions
when processing a large set of messages within a transaction.

– Increase the JVM heap sizes for the application server.

– Reduce the cumulative size of the set of messages being processed within the transaction.

v Change the maximum connections in a connection factory for the default messaging provider.

The maximum connections parameter limits the number of local connections. The default is 10. This
parameter should be set to a number equal to or greater than the number of threads (enterprise beans)
concurrently sending messages.

1. Click Resources -> JMS -> Topic connection factories -> factory_name > [Additional
Properties] Connection pool properties.

2. Enter the required value in the Maximum connections field.

3. Click Apply.

4. Save your changes to the master configuration.

v Tune reliability levels for messages.

The reliability level chosen for the messages has a significant impact on performance. In order of
decreasing performance (fastest first), the reliability levels are:

Best effort nonpersistent

Express nonpersistent

Reliable nonpersistent

Reliable persistent

Assured persistent

For MDB point-to-point messaging, best effort nonpersistent throughput is more than six times greater
than assured persistent. For more information about reliability levels, see Message reliability levels -
JMS delivery mode and service integration quality of service.

Configuring MDB throttling for the default messaging provider
Use this task to configure the throttling of messages for message-driven beans that you have deployed as
JCA 1.5 resources on the default messaging provider.

Before you begin

The throttling support described in this topic only applies to the default messaging provider (the service
integration JMS Resource Adapter).

For the WebSphere MQ messaging provider, you configure message throttling by setting the maximum
server sessions property on the WebSphere MQ messaging provider activation specifications panel, or
the maxPoolSize property when using the createWMQActivationSpec or modifyWMQActivationSpec
wsadmin commands.

If you have a third-party JCA 1.5-compliant JMS messaging provider, refer to the generic method of
message throttling described in “Throttling inbound message flow for JCA 1.5 message-driven beans” on
page 10.

About this task

Use this task if you want to throttle messages for a message-driven bean deployed as a J2EE Connector
Architecture (JCA) 1.5 resource on the default messaging JMS provider.

36 Tuning various types of applications

The default messaging provider (the service integration JMS Resource Adapter) uses a special type of
message throttling. You can leave the message-driven bean pools to the default size of 500.

The default messaging provider enables the throttling of message delivery to a message-driven bean
through the Maximum concurrent endpoints configuration option on the JMS activation specification
used to deploy the bean.

v The maximum number of instances of each message-driven bean is controlled by the Maximum
concurrent endpoint setting in the activation specification used to deploy the message-driven bean. This
maximum concurrency limit helps prevent a temporary build up of messages from starting too many
MDB instances. By default, the maximum number of concurrent MDB instances is set to 10.

The Maximum concurrent endpoints field limits the number of endpoints (instances of a given
message-driven bean) that process messages concurrently. If the maximum has been reached, new
messages are not accepted from the messaging engine for delivery until an endpoint finishes its current
processing.

If the available message count (queue depth) associated with a message-driven bean is frequently high,
and if your server can handle more concurrent work, you can benefit from increasing the maximum
concurrency setting.

If you set the maximum concurrency for a message-driven bean, be sure that you specify a value
smaller than the maximum number of endpoint instances that can be created by the adapter that the
message-driven bean is bound to. If necessary, increase the endpoint instance limit.

v An activation specification also has a Maximum batch size that refers to how many messages can be
allocated to an endpoint in one batch for serial delivery. So, for example, if you have set the Maximum
concurrent endpoints property to 10 and the Maximum batch Size property to 3, then there can be up to
10 endpoints each processing up to 3 messages giving a total of 30 messages allocated to that
message-driven bean. If there are multiple message-driven beans deployed against a single activation
specification then these maximum values apply to each message-driven bean individually.

v Take care to ensure that you always set the Maximum concurrent endpoints property is always less
than the JCA pool size.

Note: You might want to tune the throttling of your message-driven beans, which is especially important
on z/OS®. Workload arriving on the destination the message-driven bean is consuming from might
use up more server resource and therefore obstruct other activities. An example of this is when
restarting MDB applications you find a backlog of messages. The number of messages can be
throttled so that the message-driven bean can process them in the most efficient manner.

To configure the message throttling support of the default messaging provider (the service integration bus
JMS Resource Adapter), use the administrative console to complete the following steps.

Procedure
v Tune the maximum number of instances of a message-driven bean.

The maximum concurrency is set in the activation specification used to deploy the message-driven
bean.

1. Click Resources -> Resource Adapters -> J2C activation specifications ->
activation_specification_name -> [Additional Properties] J2C activation specification custom
properties.

2. View the maxConcurrency custom property. The default is value is 10. For high throughput primitive
MDB tests, 40 was found to be an optimal value.

3. Optional: To change the maxConcurrency setting, click the value field. This displays a panel for you
to type a new value. In the Value field, type the new value then click OK. Save your changes to the
master configuration.

v Tune the maximum batch size for a message-driven bean.

By default, only a single message is delivered to a message-driven bean instance at one time. You can
improve performance by batching messages to the message-driven bean. Each message-driven bean

Chapter 5. Tuning Messaging resources 37

instance then receives a number (between 1 and the batch size) of messages at a time. A change in
the maximum concurrency is likely to be beneficial if the available message count (queue depth)
associated with the message-driven bean is frequently high. For more information about the available
message count, see View the Available Message Count on a destination. The maximum batch size is
set in the activation specification used to deploy the message-driven bean.

1. Click Resources -> Resource Adapters -> J2C activation specifications ->
activation_specification_name -> [Additional Properties] J2C activation specification custom
properties.

2. View the maxBatchSize custom property. The default value is 1. For high throughput primitive MDB
tests, 5 was found to be optimal value (providing a 20 per cent gain over batch size 1).

3. Optional: To change the maxBatchSize setting, click the value field. This displays a panel for you to
type a new value. In the Value field, type the new value then click OK. Save your changes to the
master configuration.

38 Tuning various types of applications

Chapter 6. Tuning messaging destinations for the WebSphere
MQ or V5 default messaging providers

Use this task to configure the properties of a messaging destination to optimize performance of
applications that use the WebSphere MQ messaging provider or the V5 default messaging provider.

About this task

To optimize performance, configure destination properties to best fit your applications. For the V5 default
messaging provider, you should also consider queue attributes of the JMS server that is associated with
the queue name.

Procedure
v To optimize queue performance by configuring queue destination properties see “Performance for

WebSphere MQ queues.”

v To configure the JMS queue destination properties to best fit your WebSphere Application Server
Version 5 applications see “Performance for Version 5 default messaging queues” on page 40.

Performance for WebSphere MQ queues
To optimize performance, configure the queue destination properties to best fit your message-driven bean
(MDB) or other applications that use the queue destinations.

For example:

v When MDB applications are configured to queues on WebSphere MQ for z/OS, the INDEX by MSGID is
very important.

v Setting the Expiry property to SPECIFIED and the Specified Expiry property to 30000 milliseconds for
the expiry timeout, reduces the number of messages that can be queued.

To ensure that there are enough underlying WebSphere MQ resources available for the queue, you must
ensure that you configure the queue destination properties adequately for use by your message-driven
beans or other applications that use the queue.

You must also consider the queue attributes associated with the queue name you created with WebSphere
MQ. Inappropriate queue attributes can reduce the performance of WebSphere operations. You can use
WebSphere MQ commands to change queue attributes for the queue name.
BOQNAME

The excessive backout requeue name. This attribute can be set to a local queue name that can
hold the messages that were rolled back by the WebSphere applications. This queue name can be
a system dead letter queue.

BOTHRESH
The backout threshold and can be set to a number when the threshold is reached, the message is
moved to the queue name specified in BOQNAME.

INDXTYPE
Set this attribute to MSGID to cause an index of message identifiers to be maintained, which can
improve WebSphere MQ retrieval of messages.

DEFSOPT
Set this attribute to SHARED (for shared input from the queue).

SHARE
This attribute must be specified (so that multiple applications can get messages from this queue).

 For more information about using these properties, see the following sections of the WebSphere MQ
information center:

© Copyright IBM Corp. 2011 39

v For BOQNAME and BOTHRESH, see “Handling poison messages” in the Using Java section

v Script (MQSC) Command Reference

Performance for Version 5 default messaging queues
To optimize performance, configure the JMS queue destination properties to best fit your WebSphere
Application Server Version 5 applications.

For example, setting the Expiry property to SPECIFIED and the Specified Expiry property to 30000
milliseconds for the expiry timeout, reduces the number of messages that can be queued.

To ensure that there are enough underlying WebSphere MQ resources available for the queue, you must
ensure that you configure the queue destination properties adequately for your application usage.

40 Tuning various types of applications

Chapter 7. Throttling inbound message flow for JCA 1.5
message-driven beans

This topic describes how to throttle message delivery for message-driven beans (MDB) which are
deployed as message endpoints for Java Platform, Enterprise Edition (Java EE) Connector Architecture
(JCA) Version 1.5 inbound resource adapters.

Before you begin

The throttling of messages as described in this topic does not apply to the two JCA 1.5-compliant
messaging providers that are supplied with WebSphere Application Server:

v The default messaging provider.

v The WebSphere MQ messaging provider.

For the default messaging provider, you configure message throttling as described in the related tasks. For
the WebSphere MQ messaging provider, you configure message throttling by setting the maximum server
sessions property on the WebSphere MQ messaging provider activation specifications panel, or the
maxPoolSize property when using the createWMQActivationSpec or modifyWMQActivationSpec wsadmin
commands.

If you have a third-party JCA 1.5-compliant JMS messaging provider, check with your supplier to see
whether the method of message throttling described in this topic is appropriate for their messaging
provider.

About this task

For installations that use resource adapters that implement the Java EE Connector Architecture (JCA)
Version 1.5 message delivery support, the WebSphere Application Server provides message throttling
support to control the delivery of messages to endpoint message-driven beans (MDB). You can use this
support to avoid overloading the server with a flood of inbound messages.

Message delivery is throttled on a message-driven bean basis by limiting the maximum number of
endpoint instances that can be created by the adapter that the MDB is bound to. When the adapter
attempts to create an endpoint instance, a proxy for the MDB instance is created and returned as allowed
by the JCA 1.5 architecture. There is a one-to-one correspondence between proxies and MDB instances,
and like the MDB instances, the proxies are pooled based on the minimum and maximum pool size values
associated with the message-driven bean. Throttling is performed through the management of the proxy
pool.

At the time the adapter attempts to create an endpoint, if the number of endpoint proxies currently created
is equal to the maximum size of the pool, adapter createEndPoint processing returns an Unavailable
Exception. When this displays, the adapter does not issue any more createEndPoint() requests until it has
released at least one endpoint back to the server for reuse. Thus, installations can control the throttling of
message delivery to a JCA 1.5 MDB based on the setting of the maximum size of the pool associated with
each JCA 1.5 message-driven bean.

You can specify the pool size by using the com.ibm.websphere.ejbcontainer.poolsize JVM system property
to define the minimum and maximum pool size of stateless, message-driven, and entity beans. For a
message-driven bean that supports JCA 1.5, the maximum pool size value specified limits how many
message endpoint instances can be created for that message-driven bean. For example, if the installation
sets the maximum size of a JCA 1.5 MDB pool to 5, then at most 5 messages can be concurrently
delivered to 5 instances of the message-driven bean. This property can be specified using the wsadmin
scripting tool or by specifying it under the administrative console as an environmental variable.

© IBM Corporation 2005, 2008 41

Procedure
 1. Open the administrative console.

 2. Select Servers > Server Types > WebSphere application server > server_name.

 3. Under Server Infrastructure, expand Java and Process Management >Process Definition.

 4. Under Additional Properties, select Java Virtual Machine.

 5. Under Additional Properties, select Custom Properties.

 6. Select New. A panel with three General Properties fields displays. This is where you set the
property.

 7. In the Name field, enter com.ibm.websphere.ejbcontainer.poolsize.

 8. To complete the Value field, see the EJB container system properties for values.

 9. After defining the value of the property, click OK. You are now prompted to save the changes you
have made.

10. Click Save.

42 Tuning various types of applications

Chapter 8. Monitoring server session pools for listener ports

You can minimize the number of resources that server sessions use by enabling server session pool
monitoring and defining the timeout value to be applied to a server session.

About this task

Each listener port uses one or more server sessions, which are held in a server session pool. Each server
session is associated with a JMS session, which is taken from the JMS session pool that is associated
with the JMS connection factory that the listener port is configured to use.

By default, server session pool monitoring is disabled. When a listener port uses a server session the
listener port does not release the server session from the server session pool until the listener port is shut
down. This means that the associated JMS session is not released into the JMS session pool until the
listener port is shut down, even if the listener port is not processing any messages. Consequently the
resources that the JMS session uses, for example TCP/IP connections, can be held for a long time, and
this can cause problems for resource-constrained systems.

To minimize the number of resources that server sessions use, you must monitor the server session pools.
When you enable server session pool monitoring each server session in each server session pool that a
listener port uses is monitored to determine how much time has elapsed since the server session was last
used. If the elapsed time is greater than the timeout value that you have configured, the server session is
removed from the server session pool and its associated JMS session is returned to the JMS session
pool. The returned JMS session can be either reused by another application or closed, depending on your
JMS session pool settings. You can also configure additional pooling mechanisms, depending on your JMS
provider.

Note: Server session pool monitoring cannot be used if the message listener service is operating in
non-Application Server Facilities (non-ASF) mode, that is if the NON.ASF.RECEIVE.TIMEOUT
message listener service custom property is set to a non-zero value.

Procedure

To enable server session pool monitoring, configure the following message listener service custom
properties on each application server as required.

SERVER.SESSION.POOL.REAP.TIME
To enable server session pool monitoring, set this property to the time in seconds between checks
on server session pools (this must be a non-negative value).

SERVER.SESSION.POOL.UNUSED.TIMEOUT
To specify the default server session pool timeout, set this property to the required number of
seconds for the timeout. When this property is set to a non-negative value, it is compared with the
time that has elapsed since a server session was used. If the timeout value is less than the
elapsed time, the server session is removed from the server session pool and its JMS session is
returned to the JMS session pool. For example, if the timeout value is one second and the time
that has elapsed since a particular server session was used is two seconds, that server session is
removed from the server session pool and its JMS session is returned to the JMS session pool.

SERVER.SESSION.POOL.UNUSED.TIMEOUT.lpname
To override the default SERVER.SESSION.POOL.UNUSED.TIMEOUT value for the listener port
with the name lpname, set this property to the appropriate value:

v To override the SERVER.SESSION.POOL.UNUSED.TIMEOUT for the specified listener port,
set this property to a non-negative value defining the required number of seconds for the server
session timeout for this listener port.

© Copyright IBM Corp. 2011 43

v To disable server session pool monitoring for the specified listener port, set this property to a
negative value.

The value that you set for this property applies to all message-driven beans that are using the
specified listener port.

Example

For example, consider an application server that is configured with listener ports lp1, and lp2.

The following rules apply:

No properties set
If none of the properties are set, server session pool monitoring is disabled and JMS sessions
used by server sessions are not returned to the JMS session pool until the listener port (lp1 or
lp2), or its associated message-driven bean, is shut down.

SERVER.SESSION.POOL.REAP.TIME and SERVER.SESSION.POOL.UNUSED.TIMEOUT set
Consider, for example, the following settings:

 SERVER.SESSION.POOL.REAP.TIME=60

 SERVER.SESSION.POOL.UNUSED.TIMEOUT=120

The server session pool of both listener ports (lp1 and lp2) is checked for inactive server sessions
every 60 seconds. If a server session is detected as being inactive for more than 120 seconds, it
is removed from the server session pool and its JMS session is returned to the JMS session pool.
Taking into account the SERVER.SESSION.POOL.REAP.TIME value, the server session pool
could be removed from the session pool between two and three minutes after the server session
was last used.

SERVER.SESSION.POOL.REAP.TIME and SERVER.SESSION.POOL.UNUSED.TIMEOUT set, and
overrides set for SERVER.SESSION.POOL.UNUSED.TIMEOUT.lpname

Consider, for example, the following settings:

 SERVER.SESSION.POOL.REAP.TIME=60

 SERVER.SESSION.POOL.UNUSED.TIMEOUT=120

 SERVER.SESSION.POOL.UNUSED.TIMEOUT.lp2=-1

 SERVER.SESSION.POOL.UNUSED.TIMEOUT.lp1=60

The server session pool for listener port lp2 is not checked because it has a negative timeout
value. In the server session pool for listener port lp1, any server sessions that are inactive for
more than 60 seconds are removed from the server session pool.

44 Tuning various types of applications

Chapter 9. Tuning Object Request Broker (ORB)

This page provides a starting point for finding information about the Object Request Broker (ORB). The
product uses an ORB to manage communication between client applications and server applications as
well as among product components. These Java Platform, Enterprise Edition (Java EE) standard services
are relevant to the ORB: Remote Method Invocation/Internet Inter-ORB Protocol (RMI/IIOP) and Java
Interface Definition Language (Java IDL).

The ORB provides a framework for clients to locate objects in the network and call operations on those
objects as though the remote objects were located in the same running process as the client, providing
location transparency.

Tuning Object Request Brokers

Object Request Broker tuning guidelines
Use the guidelines in this document any time the Object Request Broker (ORB) is used in a workload.

The ORB is used whenever enterprise beans are accessed through a remote interface. If you experience
particularly high or low CPU consumption, you might have a problem with the value of one of the following
parameters. Examine these core tuning parameters for every application deployment.

Thread pool adjustments
Size

Tune the size of the ORB thread pool according to your workload. Avoid suspending threads because they
have no work ready to process. If threads do not have work ready to process, CPU time is consumed by
calling the Object.wait method, performing a context switch. Tune the thread pool size such that the length
of time that the threads wait is short enough to prevent them from being destroyed because they are idle
too long.

The thread pool size is dependent on your workload and system. In typical configurations, applications
need 10 or fewer threads per processor.

However, if your application is performing a very slow backend request, like a request to a database
system, a server thread blocks waiting for the backend request to complete. With backend requests, CPU
use is fairly low. In this case, increasing the load does not increase CPU use or throughput. Your thread
dumps indicate that nearly all the threads are in a call out to the backend resource. In this case, consider
increasing the number of threads per processor until throughput improves and thread dumps show that the
threads are in other areas of the run time besides the backend call. You should adjust the number of
threads only if your backend resource is tuned correctly.

The Allow thread allocation beyond maximum thread size parameter also affects thread pool size, but
do not use this parameter unless your back end stops for long periods of time, causing the blocking of all
the run-time threads waiting for the backend system instead of processing other work that does not involve
the backend system.

You can adjust the thread pool size settings in the administrative console. Click Servers > Server Types >
Application servers > server_name > Container services > ORB service > Thread pool. You can
adjust the minimum and maximum number of threads.

Thread pool timeout
Each inbound and outbound request through the ORB requires a thread from the ORB thread pool. In
heavy load scenarios or scenarios where ORB requests nest deeply, it is possible for a Java virtual
machine (JVM) to have all threads from the ORB thread pool attempting to send requests. Meanwhile, the

© Copyright IBM Corp. 2011 45

remote JVM ORB that process these requests has all threads from its ORB thread pool attempting to send
requests. As a result, progress is never made, threads are not released back to the ORB thread pool, and
the ORB is unable to process requests. As a result, there is a potential deadlock. Using the administrative
console, you can adjust this behavior through the ORB com.ibm.websphere.orb.threadPoolTimeout custom
property. For more information, see the documentation about the Object Request Broker custom
properties.

Fragment size
The ORB separates messages into fragments to send over the ORB connection. You can configure this
fragment size through the com.ibm.CORBA.FragmentSize parameter.

To determine and change the size of the messages that transfer over the ORB and the number of required
fragments, perform the following steps:

1. In the administrative console, enable ORB tracing in the ORB Properties page.

2. Enable ORBRas tracing from the logging and tracing page.

3. Increase the trace file sizes because tracing can generate a lot of data.

4. Restart the server and run at least one iteration (preferably several) of the case that you are
measuring.

5. Look at the traceable file and do a search for Fragment to follow: Yes.

This message indicates that the ORB transmitted a fragment, but it still has at least one remaining
fragment to send before the entire message arrives. A Fragment to follow: No value indicates that the
particular fragment is the last in the entire message. This fragment can also be the first, if the message
fit entirely into one fragment.

If you go to the spot where Fragment to follow: Yes is located, you find a block that looks similar to
the following example:

Fragment to follow: Yes
Message size: 4988 (0x137C)
 --
Request ID: 1411

This example indicates that the amount of data in the fragment is 4988 bytes and the Request ID is
1411. If you search for all occurrences of Request ID: 1411, you can see the number of fragments that
are used to send that particular message. If you add all the associated message sizes, you have the
total size of the message that is being sent through the ORB.

6. You can configure the fragment size by setting the com.ibm.CORBA.FragmentSize ORB custom
property.

Interceptors
Interceptors are ORB extensions that can set up the context before the ORB runs a request. For example,
the context might include transactions or activity sessions to import. If the client creates a transaction, and
then flows the transaction context to the server, then the server imports the transaction context onto the
server request through the interceptors.

Most clients do not start transactions or activity sessions, so most systems can benefit from removing the
interceptors that are not required.

To remove the interceptors, manually edit the server.xml file and remove the interceptor lines that are not
needed from the ORB section.

Connection Cache Adjustments
Depending on an application server's workload, and throughput or response-time requirements, you might
need to adjust the size of the ORB's connection cache. Each entry in the connection cache is an object
that represents a distinct TCP/IP socket endpoint, identified by the hostname or TCP/IP address, and the
port number used by the ORB to send a GIOP request or a GIOP reply to the remote target endpoint. The

46 Tuning various types of applications

purpose of the connection cache is to minimize the time required to establish a connection by reusing
ORB connection objects for subsequent requests or replies. (The same TCP/IP socket is used for the
request and corresponding reply.)

For each application server, the number of entries in the connection cache relates directly to the number of
concurrent ORB connections. These connections consist of both the inbound requests made from remote
clients and outbound requests made by the application server. When the server-side ORB receives a
connection request, it uses an existing connection from an entry in the cache, or establishes a new
connection and adds an entry for that connection to the cache.

The ORB Connection cache maximum and Connection cache minimum properties are used to control the
maximum and minimum number of entries in the connection cache at a given time. When the number of
entries reaches the value specified for the Connection cache maximum property, and a new connection is
needed, the ORB creates the requested connection, adds an entry to the cache and searches for and
attempts to remove up to five inactive connection entries from the cache. Because the new connection is
added before inactive entries are removed, it is possible for the number of cache entries to temporarily
exceed the value specified for the Connection cache maximum property.

An ORB connection is considered inactive if the TCP/IP socket stream is not in use and there are no
GIOP replies pending for any requests made on that connection. As the application workload diminishes,
the ORB closes the connections and removes the entries for these connections from the cache. The ORB
continues to remove entries from the cache until the number of remaining entries is at or below the value
specified for the Connection cache maximum property. The number of cache entries is never less then the
value specified for the Connection cache minimum property, which must be at least five connections less
than the value specified for the Connection cache maximum property.

Adjustments to the connection cache in the client-side ORB are usually not necessary because only a
small number of connections are made on that side.

JNI Reader Threads
By default, the ORB uses a Java thread for processing each inbound connection request it receives. As
the number of concurrent requests increases, the storage consumed by a large number of reader threads
increases and can become a bottleneck in resource-constrained environments. Eventually, the number of
Java threads created can cause out-of-memory exceptions if the number of concurrent requests exceeds
the system's available resources.

To help address this potential problem, you can configure the ORB to use JNI reader threads where a
finite number of reader threads, implemented using native OS threads instead of Java threads, are created
during ORB initialization. JNI reader threads rely on the native OS TCP/IP asynchronous mechanism that
enables a single native OS thread to handle I/O events from multiple sockets at the same time. The ORB
manages the use of the JNI reader threads and assigns one of the available threads to handle the
connection request, using a round-robin algorithm. Ordinarily, JNI reader threads should only be configured
when using Java threads is too memory-intensive for your application environment.

The number of JNI reader threads you should allocate for an ORB depends on many factors and varies
significantly from one environment to another, depending on available system resources and workload
requirements. The following potential benefits might be achieved if you use JNI threads:

v Because a fixed number of threads is allocated, memory usage is reduced. This reduction provides
significant benefit in environments with unusually large and sustained client-request workloads.

v The time needed to dynamically create and destroy Java threads is eliminated because a fixed number
of JNI threads is created and allocated during ORB initialization.

v Each JNI thread can handle up to 1024 socket connections and interacts directly with the asynchronous
I/O native OS mechanism, which might provide enhanced performance of network I/O processing.

Chapter 9. Tuning Object Request Broker (ORB) 47

48 Tuning various types of applications

Chapter 10. Tuning Service integration

This page provides a starting point for finding information about service integration.

Service integration provides asynchronous messaging services. In asynchronous messaging, producing
applications do not send messages directly to consuming applications. Instead, they send messages to
destinations. Consuming applications receive messages from these destinations. A producing application
can send a message and then continue processing without waiting until a consuming application receives
the message. If necessary, the destination stores the message until the consuming application is ready to
receive it.

Tuning messaging engines
Use this task to set tuning properties for the service integration environment.

About this task

The service integration environment includes properties that you can set to improve the performance of a
messaging engine or the component of the messaging engine that manages the data store. These
properties are known collectively as tuning properties. You can set these properties either with the
WebSphere Application Server administrative console or by editing the sib.properties file.

Tip: Properties set with the administrative console take precedence over properties set in the
sib.properties file.

Procedure
v Set tuning properties by using the administrative console:

– Set the tuning properties of a messaging engine.

– Control the memory buffers used by a messaging engine.

v Use the administrative console to tune the data source.

v Set tuning properties for any of the components mentioned above by editing the sib.properties file.

Setting tuning properties of a messaging engine
You can set the tuning properties for a messaging engine to improve its performance.

About this task

You can set the following tuning property for a messaging engine:

sib.trm.retry
The messaging engine to messaging engine connection retry interval, in seconds. The retry interval is
the time delay left between attempts to contact neighboring messaging engines with which
communications exist. The default retry interval is 30 seconds.

To set the tuning properties for a messaging engine, use the administrative console to complete the
following steps.

Procedure
1. In the navigation pane, click Service integration -> Buses -> bus_name -> [Topology] Messaging

engines -> engine_name -> [Additional Properties] Custom properties.

2. Type the name of the property that you want to set.

3. Type the value that you want to set for that property.

4. Click OK.

© Copyright IBM Corp. 2011 49

5. Save your changes to the master configuration.

6. Restart the messaging engine for the changes to take effect.

Controlling the memory buffers used by a messaging engine
Every messaging engine manages two memory buffers that contain messages and message-related data.
You can improve the interaction of a messaging engine with its data store by tuning the properties that set
the sizes of the two buffers.

About this task

You can set the following properties to improve the interaction of a messaging engine with its data store:

sib.msgstore.discardableDataBufferSize
The size in bytes of the data buffer that the messaging engine uses to contain data for which the
quality of service attribute is best effort nonpersistent. The default value is 320000, which is
approximately 320 kilobytes.

 The discardable data buffer contains all data for which the quality of service attribute is best effort
nonpersistent. That data comprises both data that is involved in active transactions, and any other
best effort nonpersistent data that the messaging engine has neither discarded nor consumed. The
messaging engine holds this data entirely within this memory buffer and never writes the data to the
data store. When the messaging engine adds data to the discardable data buffer, for example when
the messaging engine receives a best effort nonpersistent message from a client, the messaging
engine might discard data already in the buffer to make space. The messaging engine can discard
only data that is not involved in active transactions. This behavior enables the messaging engine to
discard best effort nonpersistent messages.

Increasing the size of the discardable data buffer allows more best effort nonpersistent data to be
handled before the messaging engine begins to discard messages.

If the messaging engine attempts to add data to the discardable data buffer when insufficient space
remains after discarding all the data that is not involved in active transactions, the messaging engine
throws a com.ibm.ws.sib.msgstore.OutOfCacheSpace exception. Client applications can catch this
exception, wrapped inside API-specific exceptions such as javax.jms.JMSException.

sib.msgstore.cachedDataBufferSize
The size in bytes of the data buffer that the messaging engine uses to contain data for which the
quality of service attribute is better than best effort nonpersistent and that is held in the data store. The
default value is 320000, which is approximately 320 kilobytes.

 The purpose of the cached data buffer is to optimize the performance of the messaging engine by
caching in memory the data that the messaging engine might otherwise have to read from the data
store. As it writes data to the data store and reads from the data store, the messaging engine attempts
to add that data to the cached data buffer. The messaging engine might discard data already in the
buffer to make space.

sib.msgstore.transactionSendLimit
The maximum number of operations that the messaging engine includes in each transaction. For
example, each JMS send or receive is an operation that counts towards the transaction send limit. The
default value is 100.

Attention: The messaging engine uses approximate calculations to manage the data it holds in the
memory buffers. Neither of the DataBufferSize properties gives an accurate indication of the amount of
memory that the messaging engine consumes in the JVM heap. The messaging engine can consume
considerably more heap storage than the DataBufferSize properties indicate.

To set the properties of a messaging engine to improve its interaction with its data store, use the
administrative console to complete the following steps:

50 Tuning various types of applications

Procedure
1. In the navigation pane, click Service integration -> Buses -> bus_name -> [Topology] Messaging

engines -> engine_name -> [Additional Properties] Custom properties.

2. Type the name of the property that you want to set.

3. Type the value that you want to set for that property.

4. Click OK.

5. Save your changes to the master configuration.

What to do next

Remember: When you change any of these properties, the new values do not take effect until you restart
the messaging engine.

Tuning the JDBC data source of a messaging engine
The messaging engine needs to have the correct configuration for JDBC data source to achieve
messaging performance on a service integration bus.

Before you begin

Consider whether you must configure the connection pool for the JDBC data source to achieve your
requirements for messaging performance.

About this task

The messaging engine uses the connection pool to obtain its connections to the database. With a heavy
workload, a messaging engine might require a large number of concurrent connections to avoid delays
waiting for connections to become available in the pool. For example, a very heavily loaded messaging
engine might need 50 or more connections. Complete the following steps to configure the connection pool
to meet your performance requirements:

Procedure
1. Ensure that the configuration of your relational database management system (RDBMS) permits the

number of connections that you require. Refer to the documentation for your RDBMS for more
information.

2. Use the administrative console to set the connection pool parameters for your data source. Navigate to
Resources -> JDBC -> Data sources -> data_source_name -> [Additional Properties] Connection
pool properties.

a. Set Maximum connections to the number of connections you require, for example, at least 50.
The default number of connections is 10.

Tip: If your messaging engine times out when requesting a database connection, check the error
log. If the error log contains error message CWSIS1522E, increase the number of
connections and ensure that the configuration of your RDBMS permits that number of
connections.

b. Set Purge policy to EntirePool. This policy enables the connection pool to release all connections
when the messaging engine stops.

Setting tuning properties by editing the sib.properties file
Use this task to set tuning properties for the service integration environment by editing the sib.properties
file

Chapter 10. Tuning Service integration 51

About this task

You can set the following tuning properties to improve the performance of components in the service
integration environment.

Properties for a messaging engine

sib.trm.retry
The messaging engine to messaging engine connection retry interval, in seconds. The retry
interval is the time delay left between attempts to contact neighboring messaging engines with
which communications exist. The default retry interval is 30 seconds.

Properties for the component of a messaging engine that manages the data store

sib.msgstore.discardableDataBufferSize
The size in bytes of the data buffer that the messaging engine uses to contain data for which
the quality of service attribute is best effort nonpersistent. The default value is 320000, which
is approximately 320 kilobytes.

 The discardable data buffer contains all data for which the quality of service attribute is best
effort nonpersistent. That data comprises both data that is involved in active transactions, and
any other best effort nonpersistent data that the messaging engine has neither discarded nor
consumed. The messaging engine holds this data entirely within this memory buffer and never
writes the data to the data store. When the messaging engine adds data to the discardable
data buffer, for example when the messaging engine receives a best effort nonpersistent
message from a client, the messaging engine might discard data already in the buffer to make
space. The messaging engine can discard only data that is not involved in active transactions.
This behavior enables the messaging engine to discard best effort nonpersistent messages.

Increasing the size of the discardable data buffer allows more best effort nonpersistent data to
be handled before the messaging engine begins to discard messages.

If the messaging engine attempts to add data to the discardable data buffer when insufficient
space remains after discarding all the data that is not involved in active transactions, the
messaging engine throws a com.ibm.ws.sib.msgstore.OutOfCacheSpace exception. Client
applications can catch this exception, wrapped inside API-specific exceptions such as
javax.jms.JMSException.

sib.msgstore.cachedDataBufferSize
The size in bytes of the data buffer that the messaging engine uses to contain data for which
the quality of service attribute is better than best effort nonpersistent and that is held in the
data store. The default value is 320000, which is approximately 320 kilobytes.

 The purpose of the cached data buffer is to optimize the performance of the messaging engine
by caching in memory the data that the messaging engine might otherwise have to read from
the data store. As it writes data to the data store and reads from the data store, the
messaging engine attempts to add that data to the cached data buffer. The messaging engine
might discard data already in the buffer to make space.

sib.msgstore.transactionSendLimit
The maximum number of operations that the messaging engine includes in each transaction.
For example, each JMS send or receive is an operation that counts towards the transaction
send limit. The default value is 100.

To set these properties by editing the sib.properties file, complete the following steps:

Procedure
1. Navigate to the profile_root/properties directory, where profile_root is the directory in which

profile-specific information is stored.

52 Tuning various types of applications

2. If the directory does not contain a sib.properties file, then copy the template sib.properties files from
the app_server_root/properties directory, where app_server_root is the root directory for the installation
of WebSphere Application Server.

3. Using a text editor, open the sib.properties file and add the name and value of the property that you
want to set. The format is name=value. For example sib.trm.retry=60

Tuning messaging performance with service integration technologies
To help optimize performance, you can set tuning properties that control the performance of
message-driven beans and other messaging applications deployed to use service integration technologies.

About this task

To optimize the performance of messaging with service integration technologies, you can use the
administrative console to set various parameters as described in the steps below. You can also set these
parameters by using the wsadmin tool.

Procedure
v View the Available Message Count on a destination.

Viewing the Available Message Count on a destination enables you to determine whether your message
consumers are able to cope with your current workload. If the available message count on a given
destination is too high, or is increasing over time, consider some of the tuning recommendations in this
topic.

1. Enable AvailableMessageCount statistics for a queue. If you restart the administrative server, enable
AvailableMessageCount statistics again because such runtime settings are not preserved when the
server is restarted.

a. In the navigation pane, click Monitoring and Tuning -> Performance Monitoring
Infrastructure (PMI).

b. In the content pane, click server_name.

c. Click the Runtime tab.

d. In the Currently monitored statistic set, click Custom.

e. On the Custom monitoring level panel, click SIB Service > SIB Messaging Engines >
engine_name > Destinations > Queues > queue_name.

f. Select the AvailableMessageCount option.

g. Click Enable at the top of the panel.

2. View the available message count for a queue.

a. In the navigation pane, click Monitoring and Tuning -> Performance Viewer -> Current
activity.

b. In the content pane, click server_name.

c. Click Performance Modules > SIB Service > SIB Messaging Engines > engine_name >
Destinations > Queues > queue_name.

d. Click View Module(s) at the top of the Resource Selection panel, located on the left side. This
displays the AvailableMessageCount data in the Data Monitoring panel, located on the right side.

You can use the Data Monitoring panel to manage the collection of monitoring data; for example,
you can use the buttons to start or stop logging, or to change the data displayed as either a
table or graph.

v Monitor MDB Thread Pool Size for the Default Message Provider.

You might experience a performance bottleneck if there are insufficient threads available for the
message-driven beans. There is a trade-off between providing sufficient threads to maximize the
throughput of messages and configuring too many threads, which can lead to CPU starvation of the
threads in the application server. If you notice that the throughput for express nonpersistent, reliable

Chapter 10. Tuning Service integration 53

nonpersistent, or reliable persistent messaging has fallen as a result of increasing the size of the default
thread pool, then decrease the size of the thread pool and reassess the message throughput.

1. View or change the number of threads in the default thread pool for an application server. By
default, message-driven beans use the default thread pool.

a. Click Servers -> Server Types -> WebSphere application servers -> server_name ->
[Additional Properties] Thread Pools > Default. By default the Minimum size value is set to 5
and the Maximum size value is set to 20. The best performance is obtained by setting the
Maximum size value to the expected maximum concurrency for all message-driven beans. For
high throughput using a single message bean, 41 was found to be the optimal Maximum size
value.

b. Change the Maximum size value, then click OK.

2. Optional: Create your own thread pool. The default thread pool is also used by other WebSphere
Application Server components, so you might want to define a separate thread pool for the
message-driven beans. This reduces thread contention for the default thread pool.

a. Click Servers -> Server Types -> WebSphere application servers -> server_name ->
[Additional Properties] Thread Pools.

b. Create a new thread pool.

c. Create sufficient threads to support the maximum amount of concurrent work for the
message-driven beans.

d. Change the SIB JMS Resource Adapter to use the new thread pool:

1) Click Resources -> Resource Adapters -> Resource adapters.

2) If you cannot see any SIB JMS Resource Adapter instances in the list, expand Preferences
and enable Show built-in resources.

3) Select the SIB JMS Resource Adapter with the appropriate scope depending upon the
scope of the connection factories.

4) Add the name of the new thread pool in the Thread pool alias box.

5) Click Apply .

3. Save your changes to the master configuration.

v Tune MDB performance with the default messaging provider.

1. Click Resources -> JMS -> Activation specifications -> activation_specification_name.

2. Set the maximum batch size for this activation specification.

Delivering batches of messages to each MDB endpoint can improve performance, particularly when
used with Acknowledge mode set to Duplicates-ok auto-acknowledge. However, if message
ordering must be retained across failed deliveries, set this parameter to 1.

3. Set the maximum number of concurrent endpoints for this activation specification.

The maximum concurrent endpoints parameter controls the amount of concurrent work that can be
processed by a message bean. The parameter is used with message-driven beans. Increasing the
number of concurrent endpoints can improve performance but can increase the number of threads
in use at one time. To benefit from a change in this parameter, there should be sufficient threads
available in the MDB thread pool to support the concurrent work. However, if message ordering
must be retained across failed deliveries, set this parameter to 1.

4. Save your changes to the master configuration.

For additional information about tuning the throttling of message-driven beans, including controlling the
maximum number of instances of each message bean and the message batch size for serial delivery,
see “Configuring MDB throttling for the default messaging provider” on page 36.

v Ensure that application servers hosting one or more messaging engines are provided with an
appropriate amount of memory for the message throughput you require.

You can tune the initial and maximum Java Virtual Machine (JVM) heap sizes when adding a server to
a messaging bus, that is when you create a messaging engine. You have the option to do this in any of
the following cases:

54 Tuning various types of applications

– When adding a single server to a bus

– When adding a cluster to a bus

– When adding a new server to an existing cluster that is itself a bus member

For an application server that is a bus member of at least one bus, or a member of a cluster that is a
bus member of at least one bus, the recommended initial and maximum heap sizes are 768MB.

When you are adding a cluster to a bus, you are recommended to increase the initial and maximum
JVM heap sizes for every server in the cluster to 768MB.

– Increasing the initial heap size improves the performance for small average message sizes

– Increasing the maximum heap size improves the performance for higher average message sizes

v Reduce the occurrence of OutOfMemoryError exceptions

If the cumulative size of the set of messages being processed within a transaction by the service
integration bus is large enough to exhaust the JVM heap, OutOfMemoryError exceptions occur.
Consider one of the following options for reducing the occurrence of OutOfMemoryError exceptions
when processing a large set of messages within a transaction.

– Increase the JVM heap sizes for the application server.

– Reduce the cumulative size of the set of messages being processed within the transaction.

v Change the maximum connections in a connection factory for the default messaging provider.

The maximum connections parameter limits the number of local connections. The default is 10. This
parameter should be set to a number equal to or greater than the number of threads (enterprise beans)
concurrently sending messages.

1. Click Resources -> JMS -> Topic connection factories -> factory_name > [Additional
Properties] Connection pool properties.

2. Enter the required value in the Maximum connections field.

3. Click Apply.

4. Save your changes to the master configuration.

v Tune reliability levels for messages.

The reliability level chosen for the messages has a significant impact on performance. In order of
decreasing performance (fastest first), the reliability levels are:

Best effort nonpersistent

Express nonpersistent

Reliable nonpersistent

Reliable persistent

Assured persistent

For MDB point-to-point messaging, best effort nonpersistent throughput is more than six times greater
than assured persistent. For more information about reliability levels, see Message reliability levels -
JMS delivery mode and service integration quality of service.

Configuring MDB throttling for the default messaging provider
Use this task to configure the throttling of messages for message-driven beans that you have deployed as
JCA 1.5 resources on the default messaging provider.

Before you begin

The throttling support described in this topic only applies to the default messaging provider (the service
integration JMS Resource Adapter).

Chapter 10. Tuning Service integration 55

For the WebSphere MQ messaging provider, you configure message throttling by setting the maximum
server sessions property on the WebSphere MQ messaging provider activation specifications panel, or
the maxPoolSize property when using the createWMQActivationSpec or modifyWMQActivationSpec
wsadmin commands.

If you have a third-party JCA 1.5-compliant JMS messaging provider, refer to the generic method of
message throttling described in “Throttling inbound message flow for JCA 1.5 message-driven beans” on
page 10.

About this task

Use this task if you want to throttle messages for a message-driven bean deployed as a J2EE Connector
Architecture (JCA) 1.5 resource on the default messaging JMS provider.

The default messaging provider (the service integration JMS Resource Adapter) uses a special type of
message throttling. You can leave the message-driven bean pools to the default size of 500.

The default messaging provider enables the throttling of message delivery to a message-driven bean
through the Maximum concurrent endpoints configuration option on the JMS activation specification
used to deploy the bean.

v The maximum number of instances of each message-driven bean is controlled by the Maximum
concurrent endpoint setting in the activation specification used to deploy the message-driven bean. This
maximum concurrency limit helps prevent a temporary build up of messages from starting too many
MDB instances. By default, the maximum number of concurrent MDB instances is set to 10.

The Maximum concurrent endpoints field limits the number of endpoints (instances of a given
message-driven bean) that process messages concurrently. If the maximum has been reached, new
messages are not accepted from the messaging engine for delivery until an endpoint finishes its current
processing.

If the available message count (queue depth) associated with a message-driven bean is frequently high,
and if your server can handle more concurrent work, you can benefit from increasing the maximum
concurrency setting.

If you set the maximum concurrency for a message-driven bean, be sure that you specify a value
smaller than the maximum number of endpoint instances that can be created by the adapter that the
message-driven bean is bound to. If necessary, increase the endpoint instance limit.

v An activation specification also has a Maximum batch size that refers to how many messages can be
allocated to an endpoint in one batch for serial delivery. So, for example, if you have set the Maximum
concurrent endpoints property to 10 and the Maximum batch Size property to 3, then there can be up to
10 endpoints each processing up to 3 messages giving a total of 30 messages allocated to that
message-driven bean. If there are multiple message-driven beans deployed against a single activation
specification then these maximum values apply to each message-driven bean individually.

v Take care to ensure that you always set the Maximum concurrent endpoints property is always less
than the JCA pool size.

Note: You might want to tune the throttling of your message-driven beans, which is especially important
on z/OS. Workload arriving on the destination the message-driven bean is consuming from might
use up more server resource and therefore obstruct other activities. An example of this is when
restarting MDB applications you find a backlog of messages. The number of messages can be
throttled so that the message-driven bean can process them in the most efficient manner.

To configure the message throttling support of the default messaging provider (the service integration bus
JMS Resource Adapter), use the administrative console to complete the following steps.

Procedure
v Tune the maximum number of instances of a message-driven bean.

56 Tuning various types of applications

The maximum concurrency is set in the activation specification used to deploy the message-driven
bean.

1. Click Resources -> Resource Adapters -> J2C activation specifications ->
activation_specification_name -> [Additional Properties] J2C activation specification custom
properties.

2. View the maxConcurrency custom property. The default is value is 10. For high throughput primitive
MDB tests, 40 was found to be an optimal value.

3. Optional: To change the maxConcurrency setting, click the value field. This displays a panel for you
to type a new value. In the Value field, type the new value then click OK. Save your changes to the
master configuration.

v Tune the maximum batch size for a message-driven bean.

By default, only a single message is delivered to a message-driven bean instance at one time. You can
improve performance by batching messages to the message-driven bean. Each message-driven bean
instance then receives a number (between 1 and the batch size) of messages at a time. A change in
the maximum concurrency is likely to be beneficial if the available message count (queue depth)
associated with the message-driven bean is frequently high. For more information about the available
message count, see View the Available Message Count on a destination. The maximum batch size is
set in the activation specification used to deploy the message-driven bean.

1. Click Resources -> Resource Adapters -> J2C activation specifications ->
activation_specification_name -> [Additional Properties] J2C activation specification custom
properties.

2. View the maxBatchSize custom property. The default value is 1. For high throughput primitive MDB
tests, 5 was found to be optimal value (providing a 20 per cent gain over batch size 1).

3. Optional: To change the maxBatchSize setting, click the value field. This displays a panel for you to
type a new value. In the Value field, type the new value then click OK. Save your changes to the
master configuration.

Chapter 10. Tuning Service integration 57

58 Tuning various types of applications

Chapter 11. Tuning messaging engine data stores

Obtain an overview of improving the performance of messaging engine data stores.

About this task
v “Tuning the JDBC data source of a messaging engine” on page 51
v “Controlling the memory buffers used by a messaging engine” on page 50
v Sharing connections to benefit from one-phase commit optimization

Tuning the JDBC data source of a messaging engine
The messaging engine needs to have the correct configuration for JDBC data source to achieve
messaging performance on a service integration bus.

Before you begin

Consider whether you must configure the connection pool for the JDBC data source to achieve your
requirements for messaging performance.

About this task

The messaging engine uses the connection pool to obtain its connections to the database. With a heavy
workload, a messaging engine might require a large number of concurrent connections to avoid delays
waiting for connections to become available in the pool. For example, a very heavily loaded messaging
engine might need 50 or more connections. Complete the following steps to configure the connection pool
to meet your performance requirements:

Procedure
1. Ensure that the configuration of your relational database management system (RDBMS) permits the

number of connections that you require. Refer to the documentation for your RDBMS for more
information.

2. Use the administrative console to set the connection pool parameters for your data source. Navigate to
Resources -> JDBC -> Data sources -> data_source_name -> [Additional Properties] Connection
pool properties.

a. Set Maximum connections to the number of connections you require, for example, at least 50.
The default number of connections is 10.

Tip: If your messaging engine times out when requesting a database connection, check the error
log. If the error log contains error message CWSIS1522E, increase the number of
connections and ensure that the configuration of your RDBMS permits that number of
connections.

b. Set Purge policy to EntirePool. This policy enables the connection pool to release all connections
when the messaging engine stops.

Controlling the memory buffers used by a messaging engine
Every messaging engine manages two memory buffers that contain messages and message-related data.
You can improve the interaction of a messaging engine with its data store by tuning the properties that set
the sizes of the two buffers.

About this task

You can set the following properties to improve the interaction of a messaging engine with its data store:

© Copyright IBM Corp. 2011 59

sib.msgstore.discardableDataBufferSize
The size in bytes of the data buffer that the messaging engine uses to contain data for which the
quality of service attribute is best effort nonpersistent. The default value is 320000, which is
approximately 320 kilobytes.

 The discardable data buffer contains all data for which the quality of service attribute is best effort
nonpersistent. That data comprises both data that is involved in active transactions, and any other
best effort nonpersistent data that the messaging engine has neither discarded nor consumed. The
messaging engine holds this data entirely within this memory buffer and never writes the data to the
data store. When the messaging engine adds data to the discardable data buffer, for example when
the messaging engine receives a best effort nonpersistent message from a client, the messaging
engine might discard data already in the buffer to make space. The messaging engine can discard
only data that is not involved in active transactions. This behavior enables the messaging engine to
discard best effort nonpersistent messages.

Increasing the size of the discardable data buffer allows more best effort nonpersistent data to be
handled before the messaging engine begins to discard messages.

If the messaging engine attempts to add data to the discardable data buffer when insufficient space
remains after discarding all the data that is not involved in active transactions, the messaging engine
throws a com.ibm.ws.sib.msgstore.OutOfCacheSpace exception. Client applications can catch this
exception, wrapped inside API-specific exceptions such as javax.jms.JMSException.

sib.msgstore.cachedDataBufferSize
The size in bytes of the data buffer that the messaging engine uses to contain data for which the
quality of service attribute is better than best effort nonpersistent and that is held in the data store. The
default value is 320000, which is approximately 320 kilobytes.

 The purpose of the cached data buffer is to optimize the performance of the messaging engine by
caching in memory the data that the messaging engine might otherwise have to read from the data
store. As it writes data to the data store and reads from the data store, the messaging engine attempts
to add that data to the cached data buffer. The messaging engine might discard data already in the
buffer to make space.

sib.msgstore.transactionSendLimit
The maximum number of operations that the messaging engine includes in each transaction. For
example, each JMS send or receive is an operation that counts towards the transaction send limit. The
default value is 100.

Attention: The messaging engine uses approximate calculations to manage the data it holds in the
memory buffers. Neither of the DataBufferSize properties gives an accurate indication of the amount of
memory that the messaging engine consumes in the JVM heap. The messaging engine can consume
considerably more heap storage than the DataBufferSize properties indicate.

To set the properties of a messaging engine to improve its interaction with its data store, use the
administrative console to complete the following steps:

Procedure
1. In the navigation pane, click Service integration -> Buses -> bus_name -> [Topology] Messaging

engines -> engine_name -> [Additional Properties] Custom properties.

2. Type the name of the property that you want to set.

3. Type the value that you want to set for that property.

4. Click OK.

5. Save your changes to the master configuration.

60 Tuning various types of applications

What to do next

Remember: When you change any of these properties, the new values do not take effect until you restart
the messaging engine.

Increasing the number of data store tables to relieve concurrency
bottleneck
Service integration technologies enables users to spread the data store for a messaging engine across
several tables. In typical use this is unlikely to have a significant influence. However, if statistics suggest a
concurrency bottleneck on the SIBnnn tables for a data store, you might try to solve the problem by
increasing the number of tables.

About this task

For more information about the set of tables in a data store see Data store tables.

 SIB000 contains information about the structure of the data in the
other two tables - the "stream table"

SIB001 contains persistent objects - the "permanent item table"

SIB002 contains nonpersistent objects that have been saved to
the data store to reduce the messaging engine memory
requirement - the "temporary item table"

Having multiple tables means you can relieve any performance bottleneck you might have in your system.
You can modify SIBnnn tables of the data store of a messaging engine. You can increase the number of
permanent and temporary tables (SIB001 and SIB002), although there is no way to increase the number
of stream tables (SIB000).

Example

This example illustrates what the SIBnnn tables for a data store might look like after modification:

 SIB000 contains information about the structure of the data in the
other two tables - the "stream table"

SIB001 contains persistent objects - the "permanent item table"

SIB002 contains persistent objects - the "permanent item table"

SIB003 contains persistent objects - the "permanent item table"

SIB004 contains nonpersistent objects that have been saved to
the data store to reduce the messaging engine memory
requirement - the "temporary item table"

SIB005 contains nonpersistent objects that have been saved to
the data store to reduce the messaging engine memory
requirement - the "temporary item table"

Increasing the number of item tables for a messaging engine when
tables are not automatically created
If a concurrency bottleneck occurs on the item tables, increasing the number of item tables will increase
the throughput of the messaging engine.

Chapter 11. Tuning messaging engine data stores 61

Before you begin

Before performing this task you must ensure that the messaging engine is using a data store, and that its
Create tables option is set to False.

Procedure
1. Relevant performance monitoring tools show that the throughput of a messaging engine is inefficient.

2. Use your database performance monitoring tools to examine lock statistics for the item tables for
evidence of a bottleneck. Consult database documentation on how to interpret the locking statistics.

3. Create tables and increase data store attributes.

v Create tables for the data store schema. For more information see Creating data store tables

v Increase number of permanent tables or temporary tables, or both, for the data store. For more
information see Configuring a messaging engine data store to use a data source

You can only increase the number of permanent tables or temporary tables, not decrease them.

4. Stop and restart the WebSphere Application Server so that configuration changes take effect. The
extra tables are used when the messaging engine restarts.

5. Observe the effect on throughput and lock statistics by checking performance monitoring tools.
Consider whether any improvement is sufficient and modifying the data store attributes further would
be beneficial

Increasing the number of item tables for a messaging engine when
tables are automatically created
If a concurrency bottleneck occurs on the item tables, increasing the number of items tables will increase
the throughput of the messaging engine.

Before you begin

Before performing this task you must ensure that the messaging engine is using a data store, and that its
Create tables option is set to True.

Procedure
1. Relevant performance monitoring tools show that the throughput of a messaging engine is insufficient.

2. Use your database performance monitoring tools to examine lock statistics for the item tables for
evidence of a bottleneck. Consult your database documentation on how to interpret the locking
statistics.

3. Increase the attributes for the messaging engine data store: the number of permanent tables or
temporary tables, or both. For more information see Configuring a messaging engine data store to use
a data source. You can only increase the number of permanent tables or temporary tables, not
decrease them.

4. Stop and restart the messaging engine so that configuration changes take effect. The extra tables are
created when the messaging engine starts again.

5. Observe the effect on throughput and lock statistics by checking performance monitoring tools.
Consider whether any improvement is sufficient and modifying the data store attributes further would
be beneficial

Tuning one-phase commit optimization
If you have configured your messaging engine to use a data store, you can achieve better performance by
configuring both the messaging engine and container-managed persistent (CMP) beans to share the same
data source.

62 Tuning various types of applications

About this task

You must configure both the CMP bean and the messaging engine resource authorization so that they
share the same data source.

Procedure
1. Open the administrative console.

2. Click Applications -> Application Types -> WebSphere enterprise applications ->
application_name -> [Enterprise Java Bean Properties] Map data sources for all 2.x CMP beans.

3. On the content pane, select the check boxes next to all the CMP beans.

4. Select Per application in the Resource authorization drop-down list.

5. Modify the messaging engine resource authorization to Per application by modifying the property file
sib.properties and adding the custom property
sib.msgstore.jdbcResAuthForConnections=Application.

Tuning the detection of database connection loss
If a messaging engine is configured to use a data store and cannot connect to its data store, for example
because the database that contains the data store is not running, the messaging engine does not start.
You can tune your system to increase the chance of a successful start of the messaging engine.

About this task

In a single-server environment, when you start the application server the messaging engine attempts to
start. If the database is unavailable for more than 15 minutes, the messaging engine might enter the
stopped state and need to be started manually.

You can increase the chance of the messaging engine starting successfully by configuring various
parameters, such as the 15 minute default timeout, on the database server or application server.

Procedure
1. On the database server, configure the operating system to minimize the amount of time taken to detect

the loss of a network connection to an application server. Refer to the documentation for the operating
system for details. For example, the following table lists the relevant parameters for Windows and AIX
operating systems:

 Table 8. TCP/IP parameters. The first column of the table provides the list of TCP/IP parameters for the
Windows operating systems. The second column of the table provides the list of TCP/IP parameters for the AIX
operating systems. The third column provides the description of the parameters.

Parameter name on Windows
operating systems

Parameter name on AIX operating
systems

Description

KeepAliveTime tcp_keepidle The amount of time (in milliseconds on
Windows operating systems and in 0.5
seconds on AIX operating systems) to
wait before sending a keepalive request
for an inactive connection.

KeepAliveInterval tcp_keepintvl The amount of time (in milliseconds on
Windows operating systems and in 0.5
seconds on AIX operating systems) to
wait for a response.

TCPMaxDataRetransmissions tcp_keepcnt The number of requests to send before
ending the connection.

You can calculate the total amount of time taken for the database server to detect the failure of the
connection to the application server, by using the following formula:

Chapter 11. Tuning messaging engine data stores 63

time to detect connection failure = keep alive time + (keep alive interval x number of requests)

For example, for a Windows system with the parameters set according to the following table, the total
amount of time taken for the database server to detect the failure of the connection to the application
server is 350 seconds.

 Table 9. Example parameter values. The first column provides the parameter names. The second column
provides a sample value for the parameters.
Parameter Value

KeepAlive 300000 milliseconds

KeepAliveInterval 10000 milliseconds

TCPMaxDataRetransmissions 5

Your database product might also have relevant parameters that you can configure, for example, the
IDLE THREAD TIMEOUT parameter in DB2 for z/OS.
When the database server detects the loss of the connection to the application server, the database
releases the locks on the data store. The messaging engine can now access the data store and can
therefore start successfully.

2. On the application server, tune the messaging engine to wait for an appropriate amount of time for the
data store to become available. By default, the messaging engine will attempt to connect to the data
store every 2 seconds for 15 minutes. Complete the rest of this step if you want to adjust these
timings.

a. Click Service integration -> Buses -> bus_name -> [Topology] Messaging engines ->
engine_name -> [Additional Properties] Custom properties to navigate to the custom properties
panel for the messaging engine.

b. Click New.

c. Type sib.msgstore.jdbcInitialDatasourceWaitTimeout in the Name field and an appropriate value
in the Value field. This property is the time, in milliseconds, to wait for the data store to become
available. The default value is 900000 (15 minutes). This time includes the time required to
establish a connection to the database and to obtain the required table locks.

Ensure that the value of this property is greater than the total time taken for the database server to
detect the loss of a network connection, as configured in step 1.

d. Click OK.

e. Click New.

f. Type sib.msgstore.jdbcStaleConnectionRetryDelay in the Name field and an appropriate value in
the Value field. This property is the time, in milliseconds, to wait between attempts to connect to the
data store. The default value is 2000 (2 seconds). For example, if you set the
sib.msgstore.jdbcInitialDatasourceWaitTimeout property to 600000, and the
sib.msgstore.jdbcStaleConnectionRetryDelay property to 3000, the messaging engine will attempt to
connect every 3 seconds until 10 minutes has passed.

g. Click OK.

h. Save your changes to the master configuration.

i. Restart the application server.

Results

By configuring these parameters and custom properties, you minimize the amount of time taken for the
database server to detect the loss of a network connection, and ensure that the messaging engine waits
for a reasonable amount of time for the database connection to recover before attempting to start.

64 Tuning various types of applications

What to do next

You might want to configure the messaging engine and server to restart in the event of a database
connection failure. This behavior reduces the risk of the messaging engine being in an inconsistent state
when the database connection is restored.

Chapter 11. Tuning messaging engine data stores 65

66 Tuning various types of applications

Chapter 12. Setting tuning properties for a mediation

Use this task to tune a mediation for performance by using the administrative console.

Before you begin

Review the guidance on when it is appropriate to tune a mediation for performance in the topic
Performance tuning for mediations.

About this task

You can set the following tuning property in the administrative console to improve the performance of a
mediation:

sib:SkipWellFormedCheck
Whether you want to omit the well formed check that is performed on messages after they have been
processed by the mediation. Either true or false.

Note: This property is overridden for messages that have the delivery option assured persistent, and
a well formed check is always performed.

To set, or unset, one or more tuning properties for a mediation, use the administrative console to complete
the following steps:

Procedure
1. Display the mediation context information:

a. Click Service integration -> Buses -> bus_name -> [Destination resources] Mediations.

b. In the content pane, select the name of the mediation for which you want to configure tuning
information.

c. Click [Additional Properties] Context information.

2. In the content pane, click New.

3. Type the name of the property in the Name field.

4. Select the type Boolean from the drop-down list.

5. Type true in the Context Value field to set the property, or type false to unset the property.

6. Click OK.

7. Save your changes to the master configuration.

© Copyright IBM Corp. 2011 67

68 Tuning various types of applications

Chapter 13. Enabling CMP entity beans and messaging engine
data stores to share database connections

Use this task to enable container-managed persistence (CMP) entity beans to share the database
connections used by the data store of a messaging engine. Performing this task has been estimated to
provide a potential performance improvement of 15% for overall message throughput, but can only be
used for entity beans connected to the application server that contains the messaging engine.

About this task

To enable CMP entity beans to share the database connections used by the data store of a messaging
engine, complete the following steps.

Procedure
1. Configure the data store to use a data source that is not XA-capable. For more information about

configuring a data store, see Configuring a JDBC data source for a messaging engine.

2. Select the Share data source with CMP option. This option is provided on the JMS connection factory
or JMS activation specification used to connect to the service integration bus that hosts the bus
destination that is used to store and process messages for the CMP bean.

For example, to select the option on a unified JMS connection factory, complete the following steps:

a. Display the default messaging provider. In the navigation pane, click Resources -> JMS -> JMS
providers.

b. Select the default provider for which you want to configure a unified connection factory.

c. Optional: Change the Scope check box to set the level at which the connection factory is to be
visible, according to your needs.

d. In the content pane, under Additional Properties, click Connection factories.

e. Optional: To create a new unified JMS connection factory, click New.

Specify the following properties for the connection factory:

Name Type the name by which the connection factory is known for administrative purposes.

JNDI name
Type the JNDI name that is used to bind the connection factory into the namespace.

Bus name
Type the name of the service integration bus that the connection factory is to create
connections to. This service integration bus hosts the destinations that the JMS queues
and topics are assigned to.

f. Optional: To change the properties of an existing connection factory, select its name from one of the
connection factories displayed. The properties for the connection factory are displayed in the
content pane.

g. Select the check box for the Share data source with CMP field.

h. Click OK.

i. Save your changes to the master configuration.

The JMS connection factory can only be used to connect to a “local” messaging engine that is in the
application server on which the CMP beans are deployed.

3. Deploy the CMP beans onto the application server that contains the messaging engine, and specify
the same data source as that used by the messaging engine. You can use the administrative console
to complete the following steps:

a. Optional: To determine the data source used by the messaging engine, click Servers -> Server
Types -> WebSphere application servers -> server_name -> [Server messaging] Messaging
engines -> engine_name -> [Additional Properties] Message store.

© Copyright IBM Corp. 2011 69

The Data source name field displays the name of the data source, which is by default:
jdbc/com.ibm.ws.sib/engine_name

b. Click Applications -> New Application -> New Enterprise Application.

c. On the first Preparing for the application installation page, specify the full path name of the source
application file (.ear file, otherwise known as an EAR file), then click Next.

d. On the second Preparing for the application installation page, complete the following steps:

1) Select the check box for Generate Default Bindings. Data source bindings (for EJB 1.1 JAR
files) are generated based on the JNDI name, data source, user name, and password options.
This results in default data source settings for each EJB JAR file. No bean-level data source
bindings are generated.

2) Under Connection Factory Bindings, select the check box for Default connection factory
bindings:, then type the JNDI name for the data source and optionally select a Resource
authorization value.

3) Click Next to display the Install New Application pages. The contents of the application that you
are installing determines which pages are available.

4. If your application uses EJB modules that contain CMP beans that are based on the EJB 1.x
specification, for Map default data sources for modules containing 1.x entity beans, specify a
JNDI name for the default data source for the EJB modules. The default data source for the EJB
modules is optional if data sources are specified for individual CMP beans.

5. If your application has CMP beans that are based on the EJB 1.x specification, for Map data sources
for all 1.x CMP, specify a JNDI name for data sources to be used for each of the 1.x CMP beans. The
data source attribute is optional for individual CMP beans if a default data source is specified for the
EJB module that contains CMP beans.

6. Click Finish. If neither a default data source for the EJB module nor a data source for individual CMP
beans are specified, a validation error displays and the installation is cancelled.

7. Complete other pages as needed.

8. On the Summary page, verify the cell, node, and server onto which the application modules will install.

a. Beside Cell/Node/Server, click Click here.

b. Verify the settings on the Map modules to servers page that is displayed. Ensure that the
application server that is specified contains the messaging engine and its data store.

c. Specify the web servers as targets that will serve as routers for requests to this application. This
information is used to generate the plug-in configuration file (plugin-cfg.xml) for each web server.

d. Return to the Summary page.

e. Click Finish.

Results

For more information about installing applications, see Installing enterprise application files with the
console.

70 Tuning various types of applications

Chapter 14. Tuning security

This page provides a starting point for finding information about how to maintain, improve and harden your
security configurations.

Tuning, hardening, and maintaining security configurations
After installing WebSphere Application Server, there are several considerations for tuning, strengthening,
and maintaining your security configuration.

About this task

The following topics are covered in this section:

Procedure
v Tuning security configurations You can tune your security configuration to balance performance with

function. You can achieve this balance following considerations for tuning general security, Common
Secure Interoperability version 2 (CSIv2), Lightweight Directory Access Protocol (LDAP) authentication,
web authentication, and authorization. For more information on tuning security, see “Tuning security
configurations.”

v Hardening security configurations Several methods exist that you can use to protect your infrastructure
and applications from different forms of attack. For more information on hardening your security, see
“Hardening security configurations” on page 77.

v Securing passwords in files Password encryption and encoding can add protection to passwords
existing in files. For more information on encoding and encrypting passwords, see “Securing passwords
in files” on page 80.

What to do next

For additional information about hardening security configurations, see the WebSphere Application Server
security web page.

Tuning security configurations
You can tune security to balance performance with function. You can achieve this balance following
considerations for tuning general security, Common Secure Interoperability version 2 (CSIv2), Lightweight
Directory Access Protocol (LDAP) authentication, web authentication, and authorization.

About this task

Performance issues typically involve trade-offs between function and speed. Usually, the more function
and the more processing that are involved, the slower the performance. Consider what type of security is
necessary and what you can disable in your environment. For example, if your application servers are
running in a Virtual Private Network (VPN), consider whether you can disable Secure Sockets Layer
(SSL). If you have a lot of users, can they be mapped to groups and then associated to your Java
Platform, Enterprise Edition (Java EE) roles? These questions are things to consider when designing your
security infrastructure.

Procedure
v Consider the following recommendations for tuning general security.

– Consider disabling Java 2 security manager if you know exactly what code is put onto your server
and you do not need to protect process resources. Remember that in doing so, you put your local
resources at some risk.

© Copyright IBM Corp. 2011 71

http://www.ibm.com/developerworks/websphere/zones/was/security/
http://www.ibm.com/developerworks/websphere/zones/was/security/

– Consider increasing the cache and token timeout if you feel your environment is secure enough. By
increasing these values, you have to re-authenticate less often. This action supports subsequent
requests to reuse the credentials that already are created. The downside of increasing the token
timeout is the exposure of having a token hacked and providing the hacker more time to hack into
the system before the token expires. You can use security cache properties to determine the initial
size of the primary and secondary hashtable caches, which affect the frequency of rehashing and the
distribution of the hash algorithms.

See the article Authentication cache settings for a list of these properties.

– Consider changing your administrative connector from Simple Object Access Protocol (SOAP) to
Remote Method Invocation (RMI) because RMI uses stateful connections while SOAP is completely
stateless. Run a benchmark to determine if the performance is improved in your environment.

– Use the wsadmin script to complete the access IDs for all the users and groups to speed up the
application startup. Complete this action if applications contain many users or groups, or if
applications are stopped and started frequently. WebSphere Application Server maps user and group
names to unique access IDs in the authorization table. The exact format of the access ID depends
on the repository. The access ID can only be determined during and after application deployment.
Authorization tables created during assembly time do not have the proper access IDs. See the
Commands for the AdminApp article for more information about how to update access IDs.

– Consider tuning the Object Request Broker (ORB) because it is a factor in enterprise bean
performance with or without security enabled. Refer to the information about ORB tuning guidelines.

– If using SSL, enable the SSL session tracking mechanism option as described in the information
about session management settings.

– In some cases, using the unrestricted Java Cryptography Extension (JCE) policy file can improve
performance. Refer to the information about tuning Web Services Security.

– Distributing the workload to multiple Java virtual machines (JVMs) instead of a single JVM on a
single machine can improve the security performance because there is less contention for
authorization decisions.

v Consider the following steps to tune Common Secure Interoperability version 2 (CSIv2).

– Consider using Secure Sockets Layer (SSL) client certificates instead of a user ID and password to
authenticate Java clients. Because you are already making the SSL connection, using mutual
authentication adds little overhead while it removes the service context that contains the user ID and
password completely.

– If you send a large amount of data that is not very security sensitive, reduce the strength of your
ciphers. The more data you have to bulk encrypt and the stronger the cipher, the longer this action
takes. If the data is not sensitive, do not waste your processing with 128-bit ciphers.

– Consider putting only an asterisk (*) in the trusted server ID list (meaning trust all servers) when you
use identity assertion for downstream delegation. Use SSL mutual authentication between servers to
provide this trust. Adding this extra step in the SSL handshake performs better than having to fully
authenticate the upstream server and check the trusted list. When an asterisk (*) is used, the identity
token is trusted. The SSL connection trusts the server through client certificate authentication.

– Ensure that stateful sessions are enabled for CSIv2. This is the default, but requires authentication
only on the first request and on any subsequent token expirations.

– Consider changing the values for the CSIv2 session cache. Changing these values can avoid
resource shortages. Refer to the Common Secure Interoperability Version 2 outbound
communications topic for more information.

– If you are communicating only with WebSphere Application Server Version 5 or higher servers, make
the Active Authentication Protocol CSI, instead of CSI and SAS. This action removes an interceptor
invocation for every request on both the client and server sides.

Important: SAS is supported only between Version 6.0.x and previous version servers that have
been federated in a Version 6.1 cell.

v Consider the following steps to tune Lightweight Directory Access Protocol (LDAP) authentication.

72 Tuning various types of applications

1. In the administration console, click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry and click Configure.

3. Select the Ignore case for authorization option in the stand-alone LDAP registry configuration,
when case-sensitivity is not important.

4. Select the Reuse connection option.

5. Use the cache features that your LDAP server supports.

6. Choose either the IBM Tivoli Directory Server or SecureWay™ directory type, if you are using an IBM
Tivoli Directory Server. The IBM Tivoli Directory Server yields improved performance because it is
programmed to use the new group membership attributes to improve group membership searches.
However, authorization must be case insensitive to use IBM Tivoli Directory Server.

7. Choose either iPlanet Directory Server (also known as Sun ONE) or Netscape as the directory if you
are an iPlanet Directory user. Using the iPlanet Directory Server directory can increase performance
in group membership lookup. However, use Role only for group mechanisms.

v Consider the following steps to tune web authentication.

– Increase the cache and token timeout values if you feel your environment is secure enough. The
web authentication information is stored in these caches and as long as the authentication
information is in the cache, the login module is not invoked to authenticate the user. This supports
subsequent requests to reuse the credentials that are already created. A disadvantage of increasing
the token timeout is the exposure of having a token stolen and providing the thief more time to hack
into the system before the token expires.

– Enable single sign-on (SSO). To configure SSO, click Security > Global security. Under Web
security, click Single sign-on (SSO).

SSO is only available when you configure LTPA as the authentication mechanism in the
Authentication mechanisms and expiration panel. Although you can select Simple WebSphere
Authentication Mechanism (SWAM) as the authentication mechanism on the Authentication
mechanisms and expiration panel, SWAM is deprecated in Version 8.0 and does not support SSO.
When you select SSO, a single authentication to one application server is enough to make requests
to multiple application servers in the same SSO domain. Some situations exist where SSO is not a
desirable and you do not want to use it in those situations.

– Disable or enable the Web Inbound Security Attribute Propagation option on the Single sign-on
(SSO) panel if the function is not required. In some cases, having the function enabled can improve
performance. This improvement is most likely for higher volume cases where a considerable number
of user registry calls reduces performance. In other cases, having the feature disabled can improve
performance. This improvement is most likely when the user registry calls do not take considerable
resources.

– The following two custom properties might help to improve performance when security attribute
propagation is enabled:

- com.ibm.CSI.propagateFirstCallerOnly

The default value of this property is true. When this custom property is set to true the first caller
in the propagation token that stays on the thread is logged when security attribute propagation is
enabled. When this property is set to false, all of the caller switches are logged, which can affect
performance.

- com.ibm.CSI.disablePropagationCallerList

When this custom property is set to true the ability to add a caller or host list in the propagation
token is completely disabled. This function is beneficial when the caller or host list in the
propagation token is not needed in the environment.

v Consider the following steps to tune authorization.

– Map your users to groups in the user registry. Associate the groups with your Java Platform,
Enterprise Edition (Java EE) roles. This association greatly improves performance when the number
of users increases.

Chapter 14. Tuning security 73

– Judiciously assign method-permissions for enterprise beans. For example, you can use an asterisk
(*) to indicate all the methods in the method-name element. When all the methods in enterprise
beans require the same permission, use an asterisk (*) for the method-name to indicate all methods.
This indication reduces the size of deployment descriptors and reduces the memory that is required
to load the deployment descriptor. It also reduces the search time during method-permission match
for the enterprise beans method.

– Judiciously assign security-constraints for servlets. For example, you can use the *.jsp URL pattern
to apply the same authentication data constraints to indicate all JavaServer Pages (JSP) files. For a
given URL, the exact match in the deployment descriptor takes precedence over the longest path
match. Use the *.jsp, *.do, *.html extension match if no exact matches exist and longest path
matches exist for a given URL in the security constraints.

v Use new tuning parameters when using Java 2 security. The new tuning parameters can improve
performance significantly, and introduce a new concept called Read-only Subject, which enables a new
cache for J2C Auth Subjects when using container-managed auth data aliases. If the J2C auth subject
does not need to be modified after it is created, the following new tuning parameters can be used to
improve Java 2 Security performance:

– com.ibm.websphere.security.auth.j2c.cacheReadOnlyAuthDataSubjects=true

– com.ibm.websphere.security.auth.j2c.readOnlyAuthDataSubjectCacheSize=50 (This is the maximum
number of subjects in the hashtable of the cache. Once the cache reaches this size, some of the
entries are purged. For better performance, this size should be equal to the number of unique
subjects (cache based on uniqueness of user principal + auth data alias + managed connection
factory instance) when role-based security and Java 2 security are used together).

v Use new tuning parameters to improve the performance of Security Attribute Propagation. The new
tuning parameters can be set through custom properties in the administrative console to reduce the
extra overhead of Security Attribute Propagation:

– com.ibm.CSI.disablePropagationCallerList=true

– com.ibm.CSI.propagateFirstCallerOnly=true (use if you want to track the first caller only).

Results

You always have a trade off between performance, feature, and security. Security typically adds more
processing time to your requests, but for a good reason. Not all security features are required in your
environment. When you decide to tune security, create a benchmark before making any change to ensure
that the change is improving performance.

What to do next

In a large scale deployment, performance is very important. Running benchmark measurements with
different combinations of features can help you to determine the best performance versus the benefit of
configuration for your environment. Continue to run benchmarks if anything changes in your environment,
to help determine the impact of these changes.

Secure Sockets Layer performance tips
Use this page to learn about Secure Sockets Layer (SSL) performance tips. Be sure to consider that
performance issues typically involve trade-offs between function and speed. Usually, the more function and
the more processing that are involved, the slower the performance.

The following are two types of Secure Sockets Layer (SSL) performance:
v Handshake
v Bulk encryption and decryption

When an SSL connection is established, an SSL handshake occurs. After a connection is made, SSL
performs bulk encryption and decryption for each read-write. The performance cost of an SSL handshake
is much larger than that of bulk encryption and decryption.

74 Tuning various types of applications

To enhance SSL performance, decrease the number of individual SSL connections and handshakes.

Decreasing the number of connections increases performance for secure communication through SSL
connections, as well as non-secure communication through simple Transmission Control Protocol/Internet
Protocol (TCP/IP) connections. One way to decrease individual SSL connections is to use a browser that
supports HTTP 1.1. Decreasing individual SSL connections can be impossible if you cannot upgrade to
HTTP 1.1.

Another common approach is to decrease the number of connections (both TCP/IP and SSL) between two
WebSphere Application Server components. The following guidelines help to verify the HTTP transport of
the application server is configured so that the Web server plug-in does not repeatedly reopen new
connections to the application server:
v Verify that the maximum number of keep alives are, at minimum, as large as the maximum number of

requests per thread of the web server (or maximum number of processes for IBM HTTP Server on
UNIX). Make sure that the web server plug-in is capable of obtaining a keep alive connection for every
possible concurrent connection to the application server. Otherwise, the application server closes the
connection after a single request is processed. Also, the maximum number of threads in the web
container thread pool should be larger than the maximum number of keep alives, to prevent the keep
alive connections from consuming the web container threads.

Note: HTTP Transports have been deprecated. For instructions on how to set a maximum keep alive
value for channel based configurations, see HTTP transport channel settings.

v Increase the maximum number of requests per keep alive connection. The default value is 100, which
means the application server closes the connection from the plug-in after 100 requests. The plug-in then
has to open a new connection. The purpose of this parameter is to prevent denial of service attacks
when connecting to the application server and preventing continuous send requests to tie up threads in
the application server.

v Use a hardware accelerator if the system performs several SSL handshakes.

Hardware accelerators currently supported by WebSphere Application Server only increase the SSL
handshake performance, not the bulk encryption and decryption. An accelerator typically only benefits
the web server because Web server connections are short-lived. All other SSL connections in
WebSphere Application Server are long-lived.

v Use an alternative cipher suite with better performance.

The performance of a cipher suite is different with software and hardware. Just because a cipher suite
performs better in software does not mean a cipher suite will perform better with hardware. Some
algorithms are typically inefficient in hardware, for example, Data Encryption Standard (DES) and
triple-strength DES (3DES); however, specialized hardware can provide efficient implementations of
these same algorithms.

The performance of bulk encryption and decryption is affected by the cipher suite used for an individual
SSL connection. The following chart displays the performance of each cipher suite. The test software
calculating the data was Java Secure Socket Extension (JSSE) for both the client and server software,
which used no cryptographic hardware support. The test did not include the time to establish a
connection, but only the time to transmit data through an established connection. Therefore, the data
reveals the relative SSL performance of various cipher suites for long running connections.

Before establishing a connection, the client enables a single cipher suite for each test case. After the
connection is established, the client times how long it takes to write an integer to the server and for the
server to write the specified number of bytes back to the client. Varying the amount of data had
negligible effects on the relative performance of the cipher suites.

Chapter 14. Tuning security 75

An analysis of the above data reveals the following:
v Bulk encryption performance is only affected by what follows the WITH in the cipher suite name. This is

expected since the portion before the WITH identifies the algorithm used only during the SSL
handshake.

v MD5 and Secure Hash Algorithm (SHA) are the two hash algorithms used to provide data integrity. MD5
is generally faster than SHA, however, SHA is more secure than MD5.

v DES and RC2 are slower than RC4. Triple DES is the most secure, but the performance cost is high
when using only software.

v The cipher suite providing the best performance while still providing privacy is
SSL_RSA_WITH_RC4_128_MD5. Even though SSL_RSA_EXPORT_WITH_RC4_40_MD5 is
cryptographically weaker than RSA_WITH_RC4_128_MD5, the performance for bulk encryption is the
same. Therefore, as long as the SSL connection is a long-running connection, the difference in the
performance of high and medium security levels is negligible. It is recommended that a security level of
high be used, instead of medium, for all components participating in communication only among
WebSphere Application Server products. Make sure that the connections are long running connections.

Tuning security performance
Use the following procedures to tune the performance, without compromising your security settings.

About this task

Enabling security decreases performance. The following tuning parameters provide ways to minimize this
performance impact.

Procedure
v Disable security on any application servers that do not need security. You can disable security in the

administrative console by clicking Security > Global security and deselecting the Enable
administrative security option.

v Fine-tune the Authentication cache timeout value on the Authentication mechanisms and expiration
panel in the administrative console. For more information, see the Global security settings topic.

v Configure the security cache properties. For more information, see the Authentication cache settings
topic.

76 Tuning various types of applications

v Enable the Enable SSL ID tracking option on the Session management panel in the administrative
console.

v Improve the performance of Web Services Security by downloading a Java Cryptography Extension
(JCE) unlimited jurisdiction policy file that does not have restrictions on cryptography strength. See the
information about tuning Web Services Security for Version 8.0 applications for details.

v Read the Secure Sockets Layer performance tips and “Tuning security configurations” on page 71
topics for more information.

Hardening security configurations
There are several methods that you can use to protect the WebSphere Application Server infrastructure
and applications from different forms of attack. Several different techniques can help with multiple forms of
attack. Sometimes a single attack can leverage multiple forms of intrusion to achieve the end goal.

About this task

For example, in the simplest case, network sniffing can be used to obtain passwords and those passwords
can then be used to mount an application-level attack. The following issues are discussed in IBM
WebSphere Developer Technical Journal: WebSphere Application Server V5 advanced security and
system hardening:

Procedure
v Take preventative measures to protect the infrastructure.

v Make applications less vulnerable to attack.

v At a minimum, ensure administrative security is enabled in all WebSphere processes. This protects
access to the administrative ConfigService interface and managed beans (MBeans) that enables control
over the WebSphere process if it is compromised.

v Ensure Secure Sockets Layer (SSL) is used whenever possible, and mutual SSL whenever possible.
However, mutual SSL requires all clients to supply a trusted personal certificate in order to connect.

v Remove any unnecessary certificate authority (CA) signer certificates from your trust stores.

v Change default keystore passwords during or after profile creation using the AdminTask
changeMultipleKeyStorePasswords command.

v Change your Lightweight Third-Party Authentication (LTPA) keys periodically. You can configure the
automatic regeneration of LTPA keys if necessary.

v Common Secure Interoperability version 2 (CSIv2) inbound Basic authentication is supported in this
release of WebSphere Application Server. The authentication default is 'required'.

What to do next

Note: In this release of WebSphere Application Server, more security hardening features of the server are
enabled by default. However, if the features are not enabled after migration you can enable them
yourself. See the Security hardening features enablement and migration article for more
information.

For additional information about hardening security configurations, see the WebSphere Application Server
security web page.

Enablement and migration considerations of Security hardening
features
In this release of WebSphere Application Server, more security hardening features of the server are
enabled out-of-the-box by default. When migrating, the settings that were enabled prior to migration are
retained. However, if the features are not enabled after migration you can enable them yourself.

Chapter 14. Tuning security 77

http://www-128.ibm.com/developerworks/websphere/techjournal/0406_botzum/0406_botzum.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0406_botzum/0406_botzum.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0406_botzum/0406_botzum.html
http://www.ibm.com/developerworks/websphere/zones/was/security/
http://www.ibm.com/developerworks/websphere/zones/was/security/

Note: To ensure that WebSphere Application Server configuration is set to be secure by default, the
following defaults have been changed as part of the new security hardening features in WebSphere
Application Server Version 8.0:

v Enablement of Secure Sockets Layer (SSL)-required on Common Secure Interoperability version
2 (CSIv2) transport by default

The following settings for the CSIv2 transport layer exist: TCP/IP for a TCP/IP connection,
SSL-supported for a TCP/IP or an SSL connection, and SSL-required for an SSL connection
only. SSL-required is the new default in this release of WebSphere Application Server. Switching
to SSL-required as the default setting ensures that all CSIv2 connections into and out of the
server are using the secure SSL connection.

v Enablement of the HttpOnly attribute on LTPA cookies by default

When the com.ibm.ws.security.addHttpOnlyAttributeToCookies custom property is set to true, the
HttpOnly attribute is added to those security cookies (LTPA and WASReqURL cookies) that are
created by the server. The HttpOnly attribute is a browser attribute created to prevent client side
applications (such as Java scripts) from accessing cookies to prevent some cross-site scripting
vulnerabilities. This attribute is now configurable in the administrative console. Prior to
WebSphere Application Server Version 8.0, the
com.ibm.ws.security.addHttpOnlyAttributeToCookies custom property default was false. For
WebSphere Application Server Version 8.0, the default is now true for both the LTPA cookie and
the Session Cookie.

For more information see the custom property
com.ibm.ws.security.addHttpOnlyAttributeToCookies in the Security custom properties article.

v Enablement of session security integration by default

Only authenticated users can access sessions created in secure pages. The session
management facility uses the security infrastructure to determine the authenticated identity
associated with a client HTTP request, and either retrieves or creates a session. For more
information on session security, read the Session security support article.

Along with enabling session security integration, credential persistence is enabled as well. This
allows login information to be available to unprotected web clients to enable additional access to
user information. For more information on credential persistence, see the "Use available
authentication data when an unprotected URI is accessed" feature in the web authentication
settings article.

Enabling the new security hardening features after migration

If the new security features are not enabled after migration, you can enable them yourself using the
administrative console or by scripting.

Enablement of SSL by default on CSIv2
To enable SSL by default for inbound and outbound transports on CSIv2:

 If you are using the administrative console, select Security > Global security > RMI/IIOP > CSIv2
inbound communications. In the Transport box, select SSL- required from the pull-down list and
then click Apply.

Repeat the same steps for CSIv2 outbound communications and click Security > Global security
> RMI/IIOP > CSIv2 outbound communications. In the Transport box, select SSL- required
from the menu list and then click Apply.

If you want to enable SSL by default for inbound and outbound transports on CSIv2 using
scripting, use the configureCSIInbound and configureCSIOutbound commands. See the
Configuring Common Secure Interoperability authentication using scripting topic for more
information.

78 Tuning various types of applications

For the client side, edit the sas.client.props file. Change
com.ibm.CSI.performTransportAssocSSLTLSRequired to true and change
com.ibm.CSI.performTransportAssocSSLTLSSupported to false.

Enablement of the HttpOnly cookie attribute
To enable the HttpOnly attribute on cookies attribute by default:

 If you are using the administrative console, click Security > Global security > Custom
properties. Click New and enter com.ibm.ws.security.addHttpOnlyAttributeToCookies for the
Name and true for the Value.

You can also enable the HttpOnly attribute using the administrative console by clicking Security >
Global security > Single sign-on (SSO). Click Set security cookies to HTTPOnly to help
prevent cross-site scripting attacks, and then click Apply.

To enable the HttpOnly attribute on cookies attribute by default using scripting, use the
setAdminActiveSecuritySettings command.

Enablement of session security integration
To enable session security integration for each server by using the administrative console, select
Servers > Server types > WebSphere application servers > <server1> > Session
management. Select the security integration check box.

 To enable persisting credentials from the administrative console, click Security > Global security
> Web and SIP security > General settings. Select the Use available authentication data
when an unprotected URI is accessed check box.

Security hardening features enablement troubleshooting

When the new security hardening features are enabled you might see some differences in system
behavior depending upon which environment you might have used in the past.

For example, if you are coming from an environment where CSIv2 transport was set to the previous
default of SSL-supported, you do not experience any differences, as SSL-supported communicates with
both TCP/IP and SSL connections. If a problem is encountered, however, certificates might not have been
exchanged correctly to enable the client and server to communicate. Read about the Secure
communications using Secure Sockets Layer (SSL) topic for more information.

If you worked in an environment where TCP/IP is used for the connection to CSIv2, you might experience
connection problem to the SSL-enabled CSIv2 connection. The server configuration can be modified to
SSL-supported or to TCP/IP if SSL is not required.

For the HttpOnly attribute, when the attribute is added to the security cookies, the browser prevents client
side scripts from accessing these cookies. In most case this should be the default behavior to minimize
cross-site scripting vulnerabilities. If there is an absolute need to allow client-side scripts to access
WebSphere security cookies, and you are aware of the possible consequences, then the setting of the
HttpOnly attribute can be disabled.

However, the HttpOnly attribute can possibly uncover client-side scripts that are used to access
WebSphere cookies, and can then use them even though it was not intended to do so. If this happens, the
web application that enables the scripts to access the WebSphere cookies must be evaluated.

For session security integration enablement, when session integrated security is enabled you might
receive an UnauthorizedSessionRequestException exception on servlets if they access a session that
belongs to authenticated identities other than to the identity that currently owns the session. If you do not
want this checking to occur, you can disable session security from the server that is experiencing the
problem.

Chapter 14. Tuning security 79

Securing passwords in files
Password encoding and encryption deters the casual observation of passwords in server configuration and
property files.

About this task

The following topics can be used to add protection for passwords located in files:

Procedure
v Encoding passwords in files WebSphere Application Server contains some encoded passwords that are

not encrypted. The PropFilePasswordEncoder utility is included to encode these passwords. For more
information on encoding passwords in a file, see “Encoding passwords in files.”

v Enabling custom password encryption You need to protect passwords that are contained in your
WebSphere Application Server configuration. You can added protection by creating a custom class for
encrypting the passwords. For more information on custom password encryption, see “Enabling custom
password encryption” on page 83.

Encoding passwords in files
The purpose of password encoding is to deter casual observation of passwords in server configuration and
property files. Use the PropFilePasswordEncoder utility to encode passwords stored in properties files.
WebSphere Application Server does not provide a utility for decoding the passwords. Encoding is not
sufficient to fully protect passwords. Native security is the primary mechanism for protecting passwords
used in WebSphere Application Server configuration and property files.

About this task

WebSphere Application Server contains several encoded passwords in files that are not encrypted.
WebSphere Application Server provides the PropFilePasswordEncoder utility, which you can use to
encode passwords. The purpose of password encoding is to deter casual observation of passwords in
server configuration and property files. The PropFilePasswordEncoder utility does not encode passwords
that are contained within XML or XMI files.

 Table 10. XML and XMI files that contain encoded passwords. Instead, WebSphere Application Server automatically
encodes the passwords in these files. XML and XMI files that contain encoded passwords include the following:
File name Additional information

profile_root/config/cells/cell_name/security.xml The following fields contain encoded passwords:
v LTPA password
v JAAS authentication data
v User registry server password
v LDAP user registry bind password
v Keystore password
v Truststore password
v Cryptographic token device password

war/WEB-INF/ibm_web_bnd.xml Specifies the passwords for the default basic authentication
for the resource-ref bindings within all the descriptors,
except in the Java cryptography architecture

ejb jar/META-INF/ibm_ejbjar_bnd.xml Specifies the passwords for the default basic authentication
for the resource-ref bindings within all the descriptors,
except in the Java cryptography architecture

client jar/META-INF/ibm-appclient_bnd.xml Specifies the passwords for the default basic authentication
for the resource-ref bindings within all the descriptors,
except in the Java cryptography architecture

ear/META-INF/ibm_application_bnd.xml Specifies the passwords for the default basic authentication
for the run as bindings within all the descriptors

profile_root/config/cells/cell_name
/nodes/node_name/servers/
server_name/security.xml

The following fields contain encoded passwords:
v Keystore password
v Truststore password
v Cryptographic token device password
v Session persistence password

80 Tuning various types of applications

Table 10. XML and XMI files that contain encoded passwords (continued). Instead, WebSphere Application Server
automatically encodes the passwords in these files. XML and XMI files that contain encoded passwords include the
following:
File name Additional information

profile_root/config/cells/cell_name
/nodes/node_name/servers/
server_name/resources.xml

The following fields contain encoded passwords:
v WAS40Datasource password
v mailTransport password
v mailStore password
v MQQueue queue mgr password

v profile_root/config/cells/cell_name
/ws-security.xml

v profile_root/config/cells/cell_name
/nodes/node_name/servers/server_name/ws-security

ibm-webservices-bnd.xmi

ibm-webservicesclient-bnd.xmi

 Table 11. The PropFilePasswordEncoder utility - Partial File List. You use the PropFilePasswordEncoder utility to
encode the passwords in properties files. These files include:
File name Additional information

profile_root
/properties/sas.client.props

Specifies the passwords for the following files:
v com.ibm.ssl.keyStorePassword
v com.ibm.ssl.trustStorePassword
v com.ibm.CORBA.loginPassword

profile_root
/properties/sas.tools.properties

Specifies passwords for:
v com.ibm.ssl.keyStorePassword
v com.ibm.ssl.trustStorePassword
v com.ibm.CORBA.loginPassword

profile_root
/properties/sas.stdclient.properties

Specifies passwords for:
v com.ibm.ssl.keyStorePassword
v com.ibm.ssl.trustStorePassword
v com.ibm.CORBA.loginPassword

profile_root
/properties/wsserver.key

profile_root/profiles/AppSrvXX/properties/sib.client.ssl.properties Specifies passwords for:
v com.ibm.ssl.keyStorePassword
v com.ibm.ssl.trustStorePassword

profile_root/UDDIReg/scripts/UDDIUtilityTools.properties Specifies passwords for:
v trustStore.password

To encode a password again in one of the previous files, complete the following steps:

Procedure
1. Access the file using a text editor and type over the encoded password. The new password is shown

is no longer encoded and must be re-encoded.

2. Use the PropFilePasswordEncoder.bat or the PropFilePasswordEncode.sh file in the profile_root/bin
directory to encode the password again.

If you are encoding files that are not SAS properties files, type PropFilePasswordEncoder "file_name"
password_properties_list

Important: When you use the PropFilePasswordEncoder utility, a prompt asks whether a backup
version of the original file is required. If a backup version is required, a backup file (.bak),
is created with the clear text password. Examine the results and then delete this backup
file. It contains the unencrypted password. If you do not want to see this prompt, edit the
PropFilePasswordEncoder utility and add the following Java system property as a
parameter: -Dcom.ibm.websphere.security.util.createBackup=true or
-Dcom.ibm.websphere.security.util.createBackup=false

Chapter 14. Tuning security 81

A true value for the Java system property creates a backup file and a false value
disables the backup file.

where:

"file_name" is the name of the z/SAS properties file, and password_properties_list is the name of the
properties to encode within the file.

Note: Only the password should be encoded in this file using the PropFilePasswordEncoder tool.

Use the PropFilePasswordEncoder utility to encode WebSphere Application Server password files
only. The utility cannot encode passwords that are contained in XML files or other files that contain
open and close tags. To change passwords in these files, use the administrative console or an
assembly tool such as the Rational Application Developer.

Results

If you reopen the affected files, the passwords are encoded. WebSphere Application Server does not
provide a utility for decoding the passwords.

Example

The following example shows how to use the PropFilePasswordEncoder tool:
PropFilePasswordEncoder C:\WASV8\WebSphere\AppServer\profiles\AppSrv\properties
\sas.client.props com.ibm.ssl.keyStorePassword,com.ibm.ssl.trustStorePassword

where:

PropFilePasswordEncoder is the name of the utility that you are running from the profile_root/profiles/
profile_name/bin directory.

C:\WASV6\WebSphere\AppServer\profiles\AppSrv\properties\sas.client.props is the name of the file
that contains the passwords to encode.

com.ibm.ssl.keyStorePassword is a password to encode in the file.

com.ibm.ssl.trustStorePassword is a second password to encode in the file.

PropFilePasswordEncoder command reference:

The PropFilePasswordEncoder command encodes passwords that are located in plain text property files.
This command encodes both Secure Authentication Server (SAS) property files and non-SAS property
files. After you encode the passwords, a decoding command does not exist.

 To encode passwords, you must run this command from the directory:

v app_server_root/bin

Note: If you need to custom encode passwords in property files, manually edit the
PropFilePasswordEncoder.sh or PropFilePasswordEncoder.bat file before issuing this command.
See the topic Implementing custom password encryption for a description of the lines that need to
be added to this file.

Syntax

The command syntax is as follows:
PropFilePasswordEncoder "file_name" { passwordPropertiesList | -SAS } { -noBackup | -Backup }
 [-profileName profile] [-help | -?]

82 Tuning various types of applications

Parameters

The following option is available for the PropFilePasswordEncoder command:

file_name
This required parameter specifies the name of the file in which passwords are encoded.

passwordPropertiesList
This parameter is required if you are encoding passwords in property files other than the
sas.client.props file. Specify one or more password properties that you want to encode. The
password properties list should be delimited by commas.

-SAS
This parameter is required if you are encoding passwords in the sas.client.props file.

-noBackup
This parameter is optional and the default. The script does not create a backup file. The default value
can be altered by adding following Java System Property:
"-Dcom.ibm.websphere.security.util.createBackup=true".

-Backup
This parameter is optional. The script creates a backup file, <file_name>.bak, which contains
passwords in clear text.

-profileName
This parameter is optional. The profile value specifies an application server profile name. The script
uses the password encoding algorithm that it retrieves from the specified profile. If you do not specify
this parameter, the script uses the default profile.

-help or -?
If you specify this parameter, the script ignores all other parameters and displays usage text.

The following examples demonstrate correct uses of the syntax:

PropFilePasswordEncoder "file_name" password_properties_list
PropFilePasswordEncoder "file_name" -SAS

Enabling custom password encryption
You need to protect passwords that are contained in your WebSphere Application Server configuration.
After creating your server profile, you can added protection by creating a custom class for encrypting the
passwords.

Before you begin

Create your custom class for encrypting passwords. For more information, see Plug point for custom
password encryption.

About this task

Complete the following steps to enable custom password encryption.

Procedure
1. Add the following system properties for every server and client process. For server processes, update

the server.xml file for each process. Add these properties as a genericJvmArgument argument
preceded by a -D prefix.

com.ibm.wsspi.security.crypto.customPasswordEncryptionClass=
 com.acme.myPasswordEncryptionClass
com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=true

Chapter 14. Tuning security 83

Tip: If the custom encryption class name is
com.ibm.wsspi.security.crypto.CustomPasswordEncryptionImpl, it is automatically enabled when
this class is present in the classpath. Do not define the system properties that are listed
previously when the custom implementation has this package and class name. To disable
encryption for this class, you must specify
com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=false as a system property.

2. Choose one of the following methods to configure the WebSphere Application Server runtime to load
the custom encryption implementation class:

v Place the custom encryption class in a Java archive (JAR) file that resides in the
${WAS_INSTALL_ROOT}/classes directory, which you have created.

gotcha: WebSphere Application Server does not create the ${WAS_INSTALL_ROOT}/classes directory.
For more information on the classes directory, see the topic, "Creating a classes
subdirectory in your profile for custom classes".

v Place the custom encryption class in a Java archive (JAR) file that resides in the
${WAS_HOME}/lib/ext directory.

3. Restart all server processes.

4. Edit each configuration document that contains a password and save the configuration. All password
fields are then run through the WSEncoderDecoder utility, which calls the plug point when it is
enabled. The {custom:alias} tags are displayed in the configuration documents. The passwords, even
though they are encrypted, are still Base64-encoded. They seem similar to encoded passwords, except
for the tags difference.

5. Encrypt any passwords that are in client-side property files using the PropsFilePasswordEncoder
(.bat or .sh) utility. This utility requires that the properties listed previously are defined as system
properties in the script to encrypt new passwords instead of encoding them.

6. To decrypt passwords from client Java virtual machines (JVMs), add the properties listed previously as
system properties for each client utility.

7. Ensure that all nodes have the custom encryption classes in their class paths prior to enabling this
function.

Results

Custom password encryption is enabled.

What to do next

If custom password encryption fails or is no longer required, see “Disabling custom password encryption.”

Disabling custom password encryption:

If custom password encryption fails or is no longer required, perform this task to disable custom password
encryption.

 Before you begin

Enable custom password encryption.

About this task

Complete the following steps to disable custom password encryption.

84 Tuning various types of applications

Procedure

1. Change the com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled property to be false in
the security.xml file, but leave the com.ibm.wsspi.security.crypto.customPasswordEncryptionClass
property configured. Any passwords in the model that still have the {custom:alias} tag are decrypted
by using the customer password encryption class.

2. If an encryption key is lost, any passwords that are encrypted with that key cannot be retrieved. To
recover a password, retype the password in the password field in plaintext and save the document.
The new password must be written out using encoding with the {xor} tag with scripting or from the
administrative console.

com.ibm.wsspi.security.crypto.customPasswordEncryptionClass=
 com.acme.myPasswordEncryptionClass
com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=false

3. Restart all processes to make the changes effective.

4. Edit each configuration document that contains an encrypted password and save the configuration. All
password fields are then run through the WSEncoderDecoder utility, which calls the plug point in the
presence of the {custom:alias} tag. The {xor} tags display in the configuration documents again after
the documents are saved.

5. Decrypt and encode any passwords that are in client-side property files using the
PropsFilePasswordEncoder (.bat or .sh) utility. If the encryption class is specified, but custom
encryption is disabled, running this utility converts the encryption to encoding and causes the {xor}
tags to display again.

6. Disable custom password encryption from the client Java virtual machines (JVMs) by adding the
system properties listed previously to all client scripts. This action enables the code to decrypt
passwords, but this action is not used to encrypt them again. The {xor} algorithm becomes the default
for encoding. Leave the custom password encryption class defined for a time in case any encrypted
passwords still exist in the configuration.

Results

Custom password encryption is disabled.

Chapter 14. Tuning security 85

86 Tuning various types of applications

Chapter 15. Tuning Session Initiation Protocol (SIP)
applications

This page provides a starting point for finding information about SIP applications, which are Java programs
that use at least one Session Initiation Protocol (SIP) servlet written to the JSR 116 specification.

SIP is used to establish, modify, and terminate multimedia IP sessions including IP telephony, presence,
and instant messaging.

Tuning SIP servlets for Linux
This page describes preliminary SIP servlet tuning for Linux 2.6 kernel.

Before you begin

A Session Initiation Protocol (SIP) servlet under load might retransmit messages or drop calls. The UDP
socket queues might fill. A review of the verbose garbage collection output might show that there are fairly
long garbage collection times, for example, 0.5 to 1.5 seconds. The cause of this problem is that the
Ethernet driver, Linux® operating system, WebSphere® Application Server, or any combination of the items
are not tuned for SIP applications. You can apply the following levels of tuning.

Note: The following recommendations have been tested on Red Hat Enterprise Linux 4 only and are
provided as is without any implied warranty.

About this task

Linux Ethernet driver

Linux Ethernet driver tuning begins by selecting the best Ethernet driver. For example, the HS20 blades
recommended driver is the tg3-3.43b driver (or later), which can be found at the website for Broadcom
Ethernet NIC Driver Downloads. The following shell commands have been used to tune the Linux kernel
Ethernet driver:
/sbin/ifconfig eth0 txqueuelen 2000
/sbin/ifconfig eth1 txqueuelen 2000
ethtool -s eth0 autoneg off speed 1000 duplex full
ethtool -A eth0 autoneg off rx on tx on
ethtool -C eth0 adaptive-rx off adaptive-tx off rx-
usecs 20 rx-frames 5 tx-usecs 60 tx-frames 11
ethtool -G eth0 rx 511 rx-jumbo 255 tx 511

Depending upon the Ethernet driver that is installed, some of these options might need to change.

Linux kernel

Linux kernel tuning uses the following commands:
echo 16777216 > /proc/sys/net/core/rmem_max
echo 2097152 > /proc/sys/net/core/rmem_default
echo 16777216 > /proc/sys/net/core/wmem_max
echo 2097152 > /proc/sys/net/core/wmem_default
echo 10000000 > /proc/sys/net/core/optmem_max
echo 4096 87380 16777216 > /proc/sys/net/ipv4/tcp_rmem
echo 4096 87380 16777216 > /proc/sys/net/ipv4/tcp_wmem
echo 8388608 8388608 8388608 > /proc/sys/net/ipv4/tcp_mem
echo 400 > /proc/sys/net/unix/max_dgram_qlen
echo 400 > /proc/sys/net/core/message_burst
echo 2800 > /proc/sys/net/core/mod_cong

© IBM Corporation 2009 87

http://www.broadcom.com/support/ethernet_nic/downloaddrivers.php
http://www.broadcom.com/support/ethernet_nic/downloaddrivers.php

echo 1000 > /proc/sys/net/core/lo_cong
echo 200 > /proc/sys/net/core/no_cong
echo 2900 > /proc/sys/net/core/no_cong_thresh
echo 3000 > /proc/sys/net/core/netdev_max_backlog

This configuration might not be optimum for a given application and you might need to adjust the
configuration to achieve the best performance. However, you might use these values as a starting point.

SIP for WebSphere Application Server

SIP tuning for WebSphere Application Server is completed using the following steps:

1. Create a separate thread pool for the SIP servlet container. Follow this path in the administrative
console:

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Under Additional properties, click Thread Pools > New.

c. In the Name field, enter SipContainer.

d. In the Minimum Size and Maximum Size fields, enter 15. These values should be adequate for
most applications.

e. Click OK.

2. Create custom properties for the SIP Servlet container. Follow this path in the administrative console:

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Click SIP container.

c. Under Additional properties, click Custom Properties > New.

d. In the Name field, enter javax.sip.max.object.pool.size.

e. In the Value field, enter 1000.

f. Click OK.

g. In the Name field, enter max.tu.pool.size.

h. In the Value field, enter 1000.

i. Click OK.

j. In the Name field, enter com.ibm.sip.sm.lnm.size.

k. In the Value field, enter 8.

l. Click OK.

3. Create custom properties for the SIPUDP channel if User Datagram Protocol (UDP) is the primary
transport for SIP traffic. Follow this path in the administrative console:

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Click SIP container > Transport Chain > SIPCInboundDefaultUDP > UDP Inbound channel
(UDP1).

c. Under Additonal Properties, click Custom Properties > New.

d. In the Name field, enter receiveBufferSizeSocket.

e. In the Value field, enter 3000000.

f. Click OK.

g. In the Name field, enter sendBufferSizeSocket.

h. In the Value field, enter 3000000.

4. Specify the SIP servlet container general properties. Follow this path in the administrative console:

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Enter the Maximum application sessions value. The Maximum application sessions value can be
calculated as: Maximum call hold time or session timeout x Call rate x Safety factor.

88 Tuning various types of applications

c. Enter the Maximum messages per averaging period value. The Maximum messages per averaging
period value can be calculated as: Maximum call hold time or session timeout x Maximum rate of
SIP messages x Safety factor.

d. Enter the Maximum dispatch queue size value. The Maximum dispatch queue size value can be
calculated as: Maximum rate of SIP messages x Maximum latency in SIP processing x Safety
factor.

e. Set the thread pool to the newly created SIP container thread pool (to the drop down name
"SipContainer").

5. Tune the Java virtual machine (JVM) garbage collection policy. Follow this path in the administrative
console:

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Under Server Infrastructure, click Java and Process Management > Process Definition.

c. Under Additional Properties, click Java Virtual Machine.

d. In the Generic JVM arguments field, enter the following value as one continuous line: "-Xmn150m
-Xgcpolicy:gencon
-Xgc:scvNoAdaptiveTenure,scvTenureAge=1,stdGlobalCompactToSatisfyAllocate
-Xcompactexplicitgc -XX:MaxDirectMemorySize=256000000".

Note:

v You might add a value of 1500 MB to the Initial heap size and Maximum heap size fields.

v It is recommended that you enable the Verbose garbage collection option during performance
testing or tuning operations.

v If your application allocates objects greater than 64 KB in size, it might be beneficial to reserve a
large object area (LOA) in the heap. This is done by adding the JVM argument
-Xloaminimum0.xy, where xy indicates the percentage of the heap to reserve for large objects.
For more information about the JVM arguments, refer to the Java Diagnostics Guide 6.

Chapter 15. Tuning Session Initiation Protocol (SIP) applications 89

90 Tuning various types of applications

Chapter 16. Tuning Transactions

This page provides a starting point for finding information about Java Transaction API (JTA) support.
Applications running on the server can use transactions to coordinate multiple updates to resources as
one unit of work, such that all or none of the updates are made permanent.

The product provides advanced transactional capabilities to help application developers avoid custom
coding. It provides support for the many challenges related to integrating existing software assets with a
Java EE environment.

© Copyright IBM Corp. 2011 91

92 Tuning various types of applications

Chapter 17. Tuning web applications

This page provides a starting point for finding information about web applications, which are comprised of
one or more related files that you can manage as a unit, including:

v HTML files

v Servlets can support dynamic web page content, provide database access, serve multiple clients at one
time, and filter data.

v Java ServerPages (JSP) files enable the separation of the HTML code from the business logic in web
pages.

IBM extensions to the JSP specification make it easy for HTML authors to add the power of Java
technology to web pages, without being experts in Java programming. More introduction...

Tuning URL cache

Tuning URL invocation cache
The URL invocation cache holds information for mapping request URLs to servlet resources. This cache is
Web container-based, and shared for all Web container threads. A cache of the requested size is created
for each Web container thread that is available to process a request. The default size of the invocation
cache is 50. If more than 50 unique URLs are actively being used (each JavaServer Page is a unique
URL), you should increase the size of the invocation cache.

Before you begin

A larger cache uses more of the Java heap, so you might also need to increase the maximum Java heap
size. For example, if each cache entry requires 2KB, maximum thread size is set to 25, and the URL
invocation cache size is 100; then 5MB of Java heap are required.

About this task

To change the size of the invocation cache:

Procedure
1. In the administrative console, click Servers > Server Types > WebSphere application servers and

select the application server that you are tuning.

2. Click Java and Process Management.

3. Click Process Definition under Additional Properties.

4. Click Java Virtual Machine under Additional Properties.

5. Click Custom Properties under Additional Properties.

6. Specify invocationCacheSize in the Name field and the size of the cache in the Value field. The
default size for the invocation cache is 500 entries. Since the invocation cache is no longer
thread-based, the invocation cache size specified by the user is multiplied by ten to provide similar
function from previous releases. For example, if you specify an invocation cache size of 50, the web
container will create a cache size of 500.

7. Click Apply and then Save to save your changes.

8. Stop and restart the application server.

Results

The new cache size is used for the URL invocation cache.

© IBM Corporation 2009 93

Tuning sessions

Session management tuning
WebSphere Application Server session support has features for tuning session performance and operating
characteristics, particularly when sessions are configured in a distributed environment. These options
support the administrator flexibility in determining the performance and failover characteristics for their
environment.

 Table 12. Summary of tuning features. The following table summarizes the tuning features, including whether they
apply to sessions tracked in memory, in a database, with memory-to-memory replication, or all. Some features are
easily manipulated using administrative settings; others require code or database changes.

Feature or option Goal Applies to sessions in memory,
database, or memory-to-memory

Write frequency Minimize database write operations. Database

Session affinity Access the session in the same
application server instance.

All

Multirow schema Fully utilize database capacities. Database

Base in-memory session pool size Fully utilize system capacity without
overburdening system.

All

Write contents Allow flexibility in determining what
session data to write

Database

Scheduled invalidation Minimize contention between session
requests and invalidation of sessions
by the Session Management facility.
Minimize write operations to database
for updates to last access time only.

Database

Tablespace and row size Increase efficiency of write operations
to database.

Database (DB2 only)

Tuning parameter settings
Use this page to set tuning parameters for distributed sessions.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Session management > Distributed environment settings > Custom tuning
parameters.

Tuning level
Specifies that the session management facility provides certain predefined settings that affect
performance.

Select one of these predefined settings or customize a setting. To customize a setting, select one of the
predefined settings that comes closest to the setting desired, click Custom settings, make your changes,
and then click OK.

Very high (optimize for performance)

 Write frequency Time based
Write interval 300 seconds
Write contents Only updated attributes
Schedule sessions cleanup true
First time of day default 0
Second time of day default 2

94 Tuning various types of applications

High

 Write frequency Time based
Write interval 300 seconds
Write contents All session attributes
Schedule sessions cleanup false

Medium

 Write frequency End of servlet service
Write contents Only updated attributes
Schedule sessions cleanup false

Low (optimize for failover)

 Write frequency End of servlet service
Write contents All session attributes
Schedule sessions cleanup false

Custom settings

 Write frequency default Time based
Write interval default 10 seconds
Write contents default All session attributes
Schedule sessions cleanup default false

Tuning parameter custom settings
Use this page to customize tuning parameters for distributed sessions.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Session management > Distributed environment settings > Custom tuning
parameters > Custom settings.

Write frequency
Specifies when the session is written to the persistent store.

 End of servlet service A session writes to a database or another WebSphere
Application Server instance after the servlet completes
execution.

Manual update A programmatic sync on the IBMSession object is required
to write the session data to the database or another
WebSphere Application Server instance.

Time based Session data writes to the database or another
WebSphere Application Server instance based on the
specified Write interval value. Default: 10 seconds

Write contents
Specifies whether updated attributes are only written to the external location or all of the session attributes
are written to the external location, regardless of whether or not they changed. The external location can
be either a database or another application server instance.

Chapter 17. Tuning web applications 95

Only updated attributes Only updated attributes are written to the persistent store.
All session attribute All attributes are written to the persistent store.

Schedule sessions cleanup
Specifies when to clean the invalid sessions from a database or another application server instance.

 Specify distributed sessions cleanup schedule Enables the scheduled invalidation process for cleaning
up the invalidated HTTP sessions from the external
location. Enable this option to reduce the number of
updates to a database or another application server
instance required to keep the HTTP sessions alive. When
this option is not enabled, the invalidator process runs
every few minutes to remove invalidated HTTP sessions.

When this option is enabled, specify the two hours of a
day for the process to clean up the invalidated sessions in
the external location. Specify the times when there is the
least activity in the application servers. An external
location can be either a database or another application
server instance.

First Time of Day (0 - 23) Indicates the first hour during which the invalidated
sessions are cleared from the external location. Specify
this value as a positive integer between 0 and 23. This
value is valid only when schedule invalidation is enabled.

Second Time of Day (0 - 23) Indicates the second hour during which the invalidated
sessions are cleared from the external location. Specify
this value as a positive integer between 0 and 23. This
value is valid only when schedule invalidation is enabled.

Best practices for using HTTP sessions
This topic presents best practices for the implementation of HTTP sessions.

best-practices: Browse the following recommendations for implementing HTTP sessions.
v Enable Security integration for securing HTTP sessions

HTTP sessions are identified by session IDs. A session ID is a pseudo-random number generated at the
runtime. Session hijacking is a known attack HTTP sessions and can be prevented if all the requests
going over the network are enforced to be over a secure connection (meaning, HTTPS). But not every
configuration in a customer environment enforces this constraint because of the performance impact of
SSL connections. Due to this relaxed mode, HTTP session is vulnerable to hijacking and because of
this vulnerability, WebSphere Application Server has the option to tightly integrate HTTP sessions and
WebSphere Application Server security. Enable security in WebSphere Application Server so that the
sessions are protected in a manner that only users who created the sessions are allowed to access
them.

v Release HttpSession objects using javax.servlet.http.HttpSession.invalidate() when finished.

HttpSession objects live inside the web container until:
– The application explicitly and programmatically releases it using the

javax.servlet.http.HttpSession.invalidate method; quite often, programmatic invalidation is part of an
application logout function.

– WebSphere Application Server destroys the allocated HttpSession when it expires (default = 1800
seconds or 30 minutes). The WebSphere Application Server can only maintain a certain number of
HTTP sessions in memory based on session management settings. In case of distributed sessions,
when maximum cache limit is reached in memory, the session management facility removes the
least recently used (LRU) one from cache to make room for a session.

.
v Avoid trying to save and reuse the HttpSession object outside of each servlet or JSP file.

96 Tuning various types of applications

The HttpSession object is a function of the HttpRequest (you can get it only through the req.getSession
method), and a copy of it is valid only for the life of the service method of the servlet or JSP file. You
cannot cache the HttpSession object and refer to it outside the scope of a servlet or JSP file.

v Implement the java.io.Serializable interface when developing new objects to be stored in the
HTTP session.

Serializability of a class is enabled by the class implementing the java.io.Serializable interface.
Implementing the java.io.Serializable interface allows the object to properly serialize when using
distributed sessions. Classes that do not implement this interface will not have their states serialized or
deserialized. Therefore, if a class does not implement the Serializable interface, the JVM cannot persist
its state into a database or into another JVM. All subtypes of a serializable class are serializable. An
example of this follows:
 public class MyObject implements java.io.Serializable {...}

Make sure all instance variable objects that are not marked transient are serializable. You cannot cache
a non-serializable object.

In compliance with the Java Servlet specification, the distributed servlet container must create an
IllegalArgumentException for objects when the container cannot support the mechanism necessary for
migration of the session storing them. An exception is created only when you have selected
distributable.

v The HTTPSession API does not dictate transactional behavior for sessions.

Distributed HTTPSession support does not guarantee transactional integrity of an attribute in a failover
scenario or when session affinity is broken. Use transactional aware resources like enterprise Java
beans to guarantee the transaction integrity required by your application.

v Ensure the Java objects you add to a session are in the correct class path.

If you add Java objects to a session, place the class files for those objects in the correct class path (the
application class path if utilizing sharing across web modules in an enterprise application, or the web
module class path if using the Servlet 2.2-complaint session sharing) or in the directory containing other
servlets used in WebSphere Application Server.

Because the HttpSession object is shared among servlets that the user might access, consider adopting
a site-wide naming convention to avoid conflicts.

v Avoid storing large object graphs in the HttpSession object.

In most applications each servlet only requires a fraction of the total session data. However, by storing
the data in the HttpSession object as one large object, an application forces WebSphere Application
Server to process all of it each time.

v Utilize Session Affinity to help achieve higher cache hits in the WebSphere Application Server.

WebSphere Application Server has functionality in the HTTP Server plug-in to help with session affinity.
The plug-in reads the cookie data (or encoded URL) from the browser and helps direct the request to
the appropriate application or clone based on the assigned session key. This functionality increases use
of the in-memory cache and reduces hits to the database or another WebSphere Application Server
instance

v Maximize use of session affinity and avoid breaking affinity.

Using session affinity properly can enhance the performance of the WebSphere Application Server.
Session affinity in the WebSphere Application Server environment is a way to maximize the in-memory
cache of session objects and reduce the amount of reads to the database or another WebSphere
Application Server instance. Session affinity works by caching the session objects in the server instance
of the application with which a user is interacting. If the application is deployed in multiple servers of a
server group, the application can direct the user to any one of the servers. If the users starts on server1
and then comes in on server2 a little later, the server must write all of the session information to the
external location so that the server instance in which server2 is running can read the database. You can
avoid this database read using session affinity. With session affinity, the user starts on server1 for the
first request; then for every successive request, the user is directed back to server1. Server1 has to
look only at the cache to get the session information; server1 never has to make a call to the session
database to get the information.

Chapter 17. Tuning web applications 97

You can improve performance by not breaking session affinity. Some suggestions to help avoid breaking
session affinity are:
– Combine all web applications into a single application server instance, if possible, and use modeling

or cloning to provide failover support.
– Create the session for the frame page, but do not create sessions for the pages within the frame

when using multi-frame JSP files. (See discussion later in this topic.)
v When using multi-framed pages, follow these guidelines:

– Create a session in only one frame or before accessing any frame sets. For example, assuming
there is no session already associated with the browser and a user accesses a multi-framed JSP file,
the browser issues concurrent requests for the JSP files. Because the requests are not part of any
session, the JSP files end up creating multiple sessions and all of the cookies are sent back to the
browser. The browser honors only the last cookie that arrives. Therefore, only the client can retrieve
the session associated with the last cookie. Creating a session before accessing multi-framed pages
that utilize JSP files is recommended.

– By default, JSP files get a HTTPSession using request.getSession(true) method. So by default
JSP files create a new session if none exists for the client. Each JSP page in the browser is
requesting a new session, but only one session is used per browser instance. A developer can use
<% @ page session="false" %> to turn off the automatic session creation from the JSP files that do
not access the session. Then if the page needs access to the session information, the developer can
use <%HttpSession session = javax.servlet.http.HttpServletRequest.getSession(false); %> to
get the already existing session that was created by the original session creating JSP file. This
action helps prevent breaking session affinity on the initial loading of the frame pages.

– Update session data using only one frame. When using framesets, requests come into the HTTP
server concurrently. Modifying session data within only one frame so that session changes are not
overwritten by session changes in concurrent frameset is recommended.

– Avoid using multi-framed JSP files where the frames point to different web applications. This action
results in losing the session created by another web application because the JSESSIONID cookie
from the first web application gets overwritten by the JSESSIONID created by the second web
application.

v Secure all of the pages (not just some) when applying security to servlets or JSP files that use
sessions with security integration enabled, .

When it comes to security and sessions, it is all or nothing. It does not make sense to protect access to
session state only part of the time. When security integration is enabled in the session management
facility, all resources from which a session is created or accessed must be either secured or unsecured.
You cannot mix secured and unsecured resources.

The problem with securing only a couple of pages is that sessions created in secured pages are
created under the identity of the authenticated user. Only the same user can access sessions in other
secured pages. To protect these sessions from use by unauthorized users, you cannot access these
sessions from an unsecured page. When a request from an unsecured page occurs, access is denied
and an UnauthorizedSessionRequestException error is created. (UnauthorizedSessionRequestException
is a runtime exception; it is logged for you.)

v Use manual update and either the sync() method or time-based write in applications that read
session data, and update infrequently.

With END_OF_SERVICE as write frequency, when an application uses sessions and anytime data is
read from or written to that session, the LastAccess time field updates. If database sessions are used, a
new write to the database is produced. This activity is a performance hit that you can avoid using the
Manual Update option and having the record written back to the database only when data values
update, not on every read or write of the record.

To use manual update, turn it on in the session management service. (See the tables above for location
information.) Additionally, the application code must use the
com.ibm.websphere.servlet.session.IBMSession class instead of the generic HttpSession. Within the
IBMSession object there is a sync method. This method tells the WebSphere Application Server to write
the data in the session object to the database. This activity helps the developer to improve overall
performance by having the session information persist only when necessary.

98 Tuning various types of applications

Note: An alternative to using the manual updates is to utilize the timed updates to persist data at
different time intervals. This action provides similar results as the manual update scheme.

v Implement the following suggestions to achieve high performance:
– If your applications do not change the session data frequently, use Manual Update and the sync

function (or timed interval update) to efficiently persist session information.
– Keep the amount of data stored in the session as small as possible. With the ease of using sessions

to hold data, sometimes too much data is stored in the session objects. Determine a proper balance
of data storage and performance to effectively use sessions.

– If using database sessions, use a dedicated database for the session database. Avoid using the
application database. This helps to avoid contention for JDBC connections and allows for better
database performance.

– Verify that you have the latest fix packs for the WebSphere Application Server.
v Utilize the following tools to help monitor session performance.

– Run the com.ibm.servlet.personalization.sessiontracking.IBMTrackerDebug servlet. - To run this
servlet, you must have the servlet invoker running in the web application you want to run this from.
Or, you can explicitly configure this servlet in the application you want to run.

– Use the WebSphere Application Server Resource Analyzer which comes with WebSphere Application
Server to monitor active sessions and statistics for the WebSphere Application Server environment.

– Use database tracking tools such as "Monitoring" in DB2. (See the respective documentation for the
database system used.)

Chapter 17. Tuning web applications 99

100 Tuning various types of applications

Chapter 18. Tuning web services

This page provides a starting point for finding information about web services.

Web services are self-contained, modular applications that can be described, published, located, and
invoked over a network. They implement a services oriented architecture (SOA), which supports the
connecting or sharing of resources and data in a very flexible and standardized manner. Services are
described and organized to support their dynamic, automated discovery and reuse.

Tuning Web Services Security
When using Web Services Security for message-level protection of SOAP message in WebSphere
Application Server, the choice of configuration options can affect the performance of the application.

Tuning Web Services Security for Version 8.0 applications
The Java Cryptography Extension (JCE) is integrated into the software development kit (SDK) Version
1.4.x and later. This is no longer an optional package. However, the default JCE jurisdiction policy file
shipped with the SDK enables you to use cryptography to enforce this default policy. In addition, you can
modify the web services security configuration options to achieve the best performance for web services
security protected applications.

About this task

Using the unrestricted JCE policy files

Due to export and import regulations, the default JCE jurisdiction policy file shipped with the SDK enables
you to use strong, but limited, cryptography only. To enforce this default policy, WebSphere Application
Server uses a JCE jurisdiction policy file that might introduce a performance impact. The default JCE
jurisdiction policy might have a performance impact on the cryptographic functions that are supported by
Web Services Security. If you have web services applications that use transport level security for XML
encryption or digital signatures, you might encounter performance degradation over previous releases of
WebSphere Application Server. However, IBM and Sun Microsystems provide versions of these jurisdiction
policy files that do not have restrictions on cryptographic strengths. If you are permitted by your
governmental import and export regulations, download one of these jurisdiction policy files. After
downloading one of these files, the performance of JCE and Web Services Security might improve.

Attention: Fix packs that include updates to the Software Development Kit (SDK) might overwrite
unrestricted policy files. Back up unrestricted policy files before you apply a fix pack and reapply these
files after the fix pack is applied.

Important: Your country of origin might have restrictions on the import, possession, use, or re-export to
another country, of encryption software. Before downloading or using the unrestricted policy
files, you must check the laws of your country, its regulations, and its policies concerning the
import, possession, use, and re-export of encryption software, to determine if it is permitted.

For WebSphere Application Server platforms using IBM Developer Kit, Java Technology Edition Version 6,
you can obtain unlimited jurisdiction policy files by completing the following steps:

1. Go to the following website: http://www.ibm.com/developerworks/java/jdk/security/index.html

2. Click Java SE 6

3. Scroll down and click IBM SDK Policy files.

The Unrestricted JCE Policy files for the SDK website is displayed.

4. Click Sign in and provide your IBM intranet ID and password or register with IBM to download the
files.

© Copyright IBM Corp. 2011 101

http://www.ibm.com/developerworks/java/jdk/security/index.html

5. Select the appropriate Unrestricted JCE Policy files and then click Continue.

6. View the license agreement and then click I Agree.

7. Click Download Now.

Results

After following these steps, two Java Archive (JAR) files are placed in the JVM jre/lib/security/
directory.

Example

Using configuration options to tune WebSphere Application Server

When using WS-Security for message-level protection of SOAP message in WebSphere Application
Server, the choice of configuration options can affect the performance of the application. The following
guidelines will help you achieve the best performance for your WS-Security protected applications.

1. Use WS-SecureConversation when appropriate for JAX-WS applications. The use of symmetric keys
with a Secure Conversation typically performs better than asymmetric keys used with X.509.

Note: The use of WS-SecureConversation is supported for JAX-WS applications only, not JAX-RPC
applications.

2. Use the standard token types provided by WebSphere Application Server. Use of custom tokens is
supported, but higher performance is achieved with the use of the provided token types.

3. For signatures, use only the exclusive canonicalization transform algorithm. See the W3
Recommendation web page (http://www.w3.org/2001/10/xml-exc-c14n#) for more information.

4. Whenever possible, avoid the use of the XPath expression to select which SOAP message parts to
protect. The WS-Security policies shipped with WebSphere Application Server for JAX-WS applications
use XPath expressions to specify the protection of some elements in the security header, such as
Timestamp, SignatureConfirmation, and UsernameToken. The use of these XPath expressions is
optimized, but other uses are not.

5. Although there are Websphere Application Server extensions to WS-Security that can be used to insert
nonce and timestamp elements into SOAP message parts before signing or encrypting the message
parts, you should avoid the use of these extensions for improved performance.

6. There is an option to send the base-64 encoded CipherValue of WS-Security encrypted elements as
MTOM attachments. For small encrypted elements, the best performance is achieved by avoiding this
option. For larger encrypted elements, the best performance is achieved by using this option.

7. When signing and encrypting elements in the SOAP message, specify the order as sign first, then
encrypt.

8. When adding a timestamp element to a message, the timestamp should be added to the security
header before the signature element. This is accomplished by using the Strict or LaxTimestampFirst
security header layout option in the WS-Security policy configuration.

9. For JAX-WS applications, use the policy-based configuration rather than WSS API-based configuration.

What to do next

In IBM WebSphere Application Server Version 6.1 and later, Web Services Security supports the use of
cryptographic hardware devices. There are two ways in which to use hardware cryptographic devices with
Web Services Security. See Hardware cryptographic device support for Web Services Security for more
information.

102 Tuning various types of applications

http://www.w3.org/2001/10/xml-exc-c14n#
http://www.w3.org/2001/10/xml-exc-c14n#

Tuning Web Services Security for Version 5.x applications
The Java Cryptography Extension (JCE) policy is integrated into the IBM Software Development Kit (SDK)
Version 1.4.x and is no longer an optional package. However, due to export and import regulations, the
default JCE jurisdiction policy file shipped with the SDK enables you to use strong, but limited,
cryptography only.

About this task

To enforce this default policy, WebSphere Application Server uses a JCE jurisdiction policy file that might
introduce a performance impact. The default JCE jurisdiction policy might have a performance impact on
the cryptographic functions that are supported by Web Services Security. If you have web services
applications that use transport level security for XML encryption or digital signatures, you might encounter
performance degradation over previous releases of WebSphere Application Server. However, IBM and Sun
Microsystems provide versions of these jurisdiction policy files that do not have restrictions on
cryptographic strengths. If you are permitted by your governmental import and export regulations,
download one of these jurisdiction policy files. After downloading one of these files, the performance of
JCE and Web Services Security might improve.

Procedure
1.

For WebSphere Application Server platforms using IBM Developer

Kit, Java Technology Edition Version 1.4.2, including the AIX, Linux, and Windows platforms, you can
obtain unlimited jurisdiction policy files by completing the following steps:

a. Go to the following website: http://www.ibm.com/developerworks/java/jdk/security/index.html.

b. Click Java 1.4.2.

c. Click IBM SDK Policy files. The Unrestricted JCE Policy files for SDK 1.4 website is displayed.

d. Enter your user ID and password or register with IBM to download the policy files. The policy files
are downloaded onto your machine.

2.

For WebSphere Application Server platforms using the Sun-based Java SE
Development Kit 6 (JDK 6) Version 1.4.2, including the Solaris environments and the HP-UX platform,
you can obtain unlimited jurisdiction policy files by completing the following steps:

a. Go to the following website: http://java.sun.com/j2se/1.4.2/download.html.

b. Click Other Downloads.

c. Locate the JCE Unlimited Strength Jurisdiction Policy Files 1.4.2 information and click Download.
The policy files are downloaded onto your machine.

Results

After following either of these sets of steps, two Java Archive (JAR) files are placed in the JVM directory.
jre/lib/security/
C:\Program Files\ibm\jre\lib\security

Tuning web services reliable messaging applications
Modifying certain settings, such as heap size, can help to improve the performance of your system.

Procedure
1. Tune the heap size of the JVM. Increasing the heap size, for example to 1536, can avoid

out-of-memory errors, especially in the following situations:

v When you are composing WS-ReliableMessaging with WS-Notification.

v When you are using a Reliable Asynchronous Message Profile (WS-I RSP) policy set.

v When you are using WS-ReliableMessaging in situations where a lot of recovery is required.

For more information about tuning the JVM, refer to Tuning the IBM virtual machine for Java.

Chapter 18. Tuning web services 103

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://java.sun.com/j2se/1.4.2/download.html

2. If your application uses a managed quality of service, tune the sib.wsrm.tokenLockTimeout property of
the messaging engine that is specified in the policy binding for the application. See the service
integration custom properties information to learn more about this property, and why you might want to
change its value.

Tuning bus-enabled web services
You can use the administrative console or a Jacl script to tune performance settings for service integration
bus-enabled web services.

About this task

Bus-enabled web services dynamically use a fast-path route through the bus where possible. This
fast-path route is used if the following criteria are met:

v The inbound port and outbound port for the service are on the same server.

v There are no mediations on the path from the inbound port to the outbound port.

Further optimizations can be made, if your configuration also meets the following criteria:

v The inbound template WSDL URI is the same location as the Outbound Target Service WSDL location
URI.

v The inbound service template WSDL service name matches the outbound WSDL service name.

v The inbound service template port name matches the outbound WSDL port name.

v The mapping of the namespaces is disabled (that is, you have set the inbound service property
com.ibm.websphere.wsgw.mapSoapBodyNamespace to false).

v Operation-level security is not enabled on the outbound service.

If your web services use the fast-path route, you need not tune mediations or the service integration bus.
However it is good practise to do so, because a typical environment will have at least one non-fast-path
(for example, mediated) service.

To improve the performance of bus-enabled web services you can tune the following parameters:

v The Java virtual machine heap size. This helps ensure there is enough memory available to process
large messages, or messages with large attachments.

v The maximum number of instances of a message-driven bean that are permitted by the activation
specification for the service integration technologies resource adapter. This throttles the number of
concurrent clients serviced.

v The maximum batch size for batches of messages to be delivered to a client. By default, only a single
message is delivered to a message-driven bean instance at one time; you can improve performance by
allowing messages to be sent in batches to a message-driven bean.

v The number of threads available to service requests for each client. That is, the number of threads
available in the default thread pool, the web container thread pool and the mediation thread pool for a
given application server.

v The number of threads available in the mediation thread pool. This assumes that your mediations use
concurrent support where appropriate, as explained in Concurrent mediations.

If you have mediations that act on SOAP headers, you can improve performance by inserting the
associated header schemas (.xsd files) into the SDO repository.

To tune bus-enabled web services, complete one of the following two steps:

v Use the administrative console to tune bus-enabled web services, or

v Use a Jacl script to tune bus-enabled web services.

If you have mediations that act on SOAP headers, also complete the following step:

104 Tuning various types of applications

v Insert the header schemas into the SDO repository.

Procedure
v Optional: To use the administrative console to tune bus-enabled web services, complete the following

steps:

1. Use the topic Tuning the IBM virtual machine for Java to set the JVM heap size to a larger value
than the default value (256 megabytes). The value should generally be as large as possible without
incurring paging.

2. Use the topic Tuning service integration messaging to tune the maximum number of instances of a
message-driven bean, the maximum batch size for batches of messages for a bean, and the
number of threads available to service requests for a bean.

3. Use the topic Tuning the application serving environment to tune the general application serving
environment, in particular the size of the web container thread pool. In a server that is exclusively
serving requests to bus-enabled web services, the default thread pool and the web container thread
pool should be the same size.

4. Use the topic Configuring the mediation thread pool to configure the number of threads available to
concurrent mediations.

v Optional: If you have mediations that act on SOAP headers, insert the associated schemas (.xsd files)
into the SDO repository as described in “Including SOAP header schemas in the SDO repository.”

Including SOAP header schemas in the SDO repository
Use this task to improve mediation performance by inserting the SOAP header schema into the SDO
repository.

About this task

Mediations accessing SOAP headers should ensure that the SOAP header schema is made available to
the SDO repository. This simplifies access to the header fields (see Web Services code example) and can
provide a significant performance benefit. Usually the schema (.xsd file) for a SOAP header is already
available to the application developer.

Here is an example of a header (used for routing) that is passed in the SOAP message:
<soapenv:Header>
<hns0:myClientToken xmlns:hns0="http://www.ibm.com/wbc">
 <UseRoutingId>true</ UseRoutingId >
 <RoutingID>5</ RoutingID >
 </hns0: myClientToken >
</soapenv:Header>

Here is an example of an associated header schema:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.ibm.com/wbc"
 elementFormDefault="unqualified">
<xs:element name=" myClientToken">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="UseRoutingId" type="xs:string"/>
 <xs:element name="RoutingID" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

To insert the schema into the SDO repository, complete the following steps:

Chapter 18. Tuning web services 105

Procedure
1. Create a script that contains the following code:

v For Jython, create a script called sdoXSDImport.py:

xsdFile=sys.argv[0]
xsdKey=sys.argv[1]
sdoRep=AdminControl.queryNames("*,type=SdoRepository,node=%s" % AdminControl.
getNode)
print AdminControl.invoke(sdoRep , importResource([xsdKey , xsdFile]))

v For Jacl, create a script called sdoXSDImport.jacl:

set xsdFile [lindex $argv 0]
set xsdKey [lindex $argv 1]
set sdoRep [$AdminControl queryNames *,type=SdoRepository,node=[$AdminControl
 getNode]]
puts [$AdminControl invoke $sdoRep importResource [list $xsdKey $xsdFile]]

Note: To create an equivalent script for removing a resource from the SDO repository, take a copy of
this script and modify the final line as follows:

v Using Jython:
AdminControl.invoke(sdoRep , "removeResource" , [[xsdKey , "false"]])

v Using Jacl:
$AdminControl invoke $sdoRep removeResource [list $xsdKey false]

2. Use the wsadmin scripting client to insert the schema into the SDO repository by entering the following
command.

v To use the Jython script:
wsadmin -lang jython -f sdoXSDImport.py your_header.xsd your_header_namespace

v To use the Jacl script:
wsadmin -f sdoXSDImport.jacl your_header.xsd your_header_namespace

where

v your_header.xsd is the name of the file that contains your header schema.

v your_header_namespace is the target namespace for the header. For example http://
yourCompany.com/yourNamespace.

106 Tuning various types of applications

Chapter 19. Tuning Work area

This page provides a starting point for finding information about work areas, a WebSphere extension for
improving developer productivity.

Work areas provide a capability much like that of global variables. They enable efficient sharing of
information across a distributed application.

For example, you might want to add profile information as each customer enters your application. By
placing this information in a work area, it is available throughout your application, eliminating the need to
hand-code a solution or to read and write information to a database.

Work area service performance considerations

Work area service performance considerations
The work area service is designed to address complex data passing patterns that can quickly grow beyond
convenient maintenance. A work area is a note pad that is accessible to any client that is capable of
looking up Java Naming Directory Interface (JNDI). After a work area is established, data can be placed
there for future use in any subsequent method calls to both remote and local resources.

You can utilize a work area when a large number of methods require common information or if information
is only needed by a method that is significantly further down the call graph. The former avoids the need for
complex parameter passing models where the number of arguments passed becomes excessive and hard
to maintain. You can improve application function by placing the information in a work area and
subsequently accessing it independently in each method, eliminating the need to pass these parameters
from method to method. The latter case also avoids unnecessary parameter passing and helps to improve
performance by reducing the cost of marshalling and de-marshalling these parameters over the Object
Request Broker (ORB) when they are only needed occasionally throughout the call graph.

When attempting to maximize performance by using a work area, cache the UserWorkArea partition that is
retrieved from JNDI wherever it is accessed. You can reduce the time spent looking up information in JNDI
by retrieving it once and keeping a reference for the future. JNDI lookup takes time and can be costly.

Additional caching mechanisms available to a user-defined partition are defined by the configuration
property, "Deferred Attribute Serialization". This mechanism attempts to minimize the number of
serialization and deserialization calls. Refer to the Work area partition service article for further explanation
of this configuration attribute.

The maxSendSize and maxReceiveSize configuration parameters can affect the performance of the work
area. Setting these two values to 0 (zero) effectively turns off the policing of the size of context that can be
sent in a work area. This action can enhance performance, depending on the number of nested work
areas an application uses. In applications that use only one work area, the performance enhancement
might be negligible. In applications that have a large number of nested work areas, there might be a
performance enhancement. However, a user must note that by turning off this policing it is possible that an
extremely large amount of data might be sent to a server.

Performance is degraded if you use a work area as a direct replacement to passing a single parameter
over a single method call. The reason is that you incur more overhead than just passing that parameter
between method calls. Although the degradation is usually within acceptable tolerances and scales
similarly to passing parameters with regard to object size, consider degradation a potential problem before
utilizing the service. As with most functional services, intelligent use of the work areas yields the best
results.

© Copyright IBM Corp. 2011 107

The work area service is a tool to simplify the job of passing information from resource to resource, and in
some cases can improve performance by reducing the overhead that is associated with a parameter
passing when the information is only sparsely accessed within the call graph. Caching the instance
retrieved from JNDI is important to effectively maximize performance during runtime.

108 Tuning various types of applications

Appendix. Directory conventions

References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server - Express products or components require multiple locations. Default values for installation actions
by root and nonroot users are given. If no nonroot values are specified, then the default directory values
are applicable to both root and nonroot users.

app_client_root

 Table 13. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root

/usr/IBM/WebSphere/AppClient (Java EE Application client
only)

/opt/IBM/WebSphere/

AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot

user_home/IBM/WebSphere/AppClient (Java EE Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

 Table 14. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server - Express.
User Directory

Root

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/

AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot

user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this topic.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside

© IBM Corporation 2005, 2009 109

the installing product's directory structure and is no longer installed in a global location on the
target system. The following list shows the default installation root directory for Version 8 of the
GSKit, where product_root is the root directory of the product that is installing GSKit, for example
IBM HTTP Server or the web server plug-in.

product_root/gsk8

product_root\gsk8

profile_root

 Table 15. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/

AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\

profile_name

Nonroot

user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

 Table 16. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root

/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/

Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot

user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

 Table 17. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root

/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/

Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

110 Tuning various types of applications

Table 17. Default installation root directories for the WebSphere Customization Toolbox (continued).

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Nonroot

user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

 Table 18. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root

/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot

user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Appendix. WebSphere Application Server default directories 111

112 Tuning various types of applications

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of IBM's intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by IBM, is the user's
responsibility.

APACHE INFORMATION. This information may include all or portions of information which IBM obtained
under the terms and conditions of the Apache License Version 2.0, January 2004. The information may
also consist of voluntary contributions made by many individuals to the Apache Software Foundation. For
more information on the Apache Software Foundation, please see http://www.apache.org. You may obtain
a copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

 IBM Director of Intellectual Property & Licensing
 IBM Corporation
 North Castle Drive
 Armonk, NY 10504-1785
 USA

© Copyright IBM Corp. 2011 113

114 Tuning various types of applications

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. For
a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site
(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2011 115

http://www.ibm.com/legal/copytrade.shtml

116 Tuning various types of applications

Index

C
commands

command reference
PropFilePasswordEncoder 82

D
data sources

tuning 7
directory

installation
conventions 16, 109

E
Enterprise JavaBeans (EJB)

tuning 24

H
HTTP session management

tuning 94
HTTP sessions

best practices 96
tuning 94

J
JPA

tuning 28

O
ORB

tuning 45

P
password encoding 80

password encryption
disablement 84
enablement 83

passwords
securing passwords 80

S
security

configuration tuning 71
performance tuning 76

security configurations
hardening considerations 71
maintenance considerations 71
tuning considerations 71

security hardening
configurations 77
enablement 78
migration 78

SIP
tuning 87

SSL
performance tips 74

U
URL cache

tuning 93
URL invocation cahe

tuning 93

W
web services security

tuning 101
Version 5.x applications 103

© Copyright IBM Corp. 2011 117

	Contents
	How to send your comments
	Changes to serve you more quickly
	Chapter 1. Tuning Application profiling
	Application profiling performance considerations

	Chapter 2. Tuning Client applications
	Adding tracing and logging for stand-alone clients

	Chapter 3. Tuning Data access resources
	Tuning data
	Tuning connection pools
	Connection pool custom properties

	Throttling inbound message flow for JCA 1.5 message-driven beans
	Database performance tuning
	DB2 tuning parameters

	Data access tuning parameters
	Directory conventions

	Chapter 4. Tuning EJB applications
	EJB 2.1 container tuning
	EJB container tuning
	EJB cache size
	EJB stateful session bean tuning
	Dcom.ibm.websphere.ejbcontainer.poolSize
	Dcom.ibm.websphere.ejbcontainer.noPrimaryKeyMutation
	Dcom.ibm.ws.pm.deferredcreate
	Dcom.ibm.ws.pm.batch
	com.ibm.ws.pm.useLegacyCache
	com.ibm.ws.pm.grouppartialupdate and com.ibm.ws.pm.batch

	Tuning Enterprise JavaBeans applications
	Tuning EJB cache with trace service
	EJB method Invocation Queuing

	Tuning applications that use the Java Persistence API
	Configuring OpenJPA caching to improve performance
	Configuring the WSJPA Object Cache to improve performance

	Chapter 5. Tuning Messaging resources
	Tuning messaging
	Tuning messaging performance with service integration technologies
	Configuring MDB throttling for the default messaging provider

	Chapter 6. Tuning messaging destinations for the WebSphere MQ or V5 default messaging providers
	Performance for WebSphere MQ queues
	Performance for Version 5 default messaging queues

	Chapter 7. Throttling inbound message flow for JCA 1.5 message-driven beans
	Chapter 8. Monitoring server session pools for listener ports
	Chapter 9. Tuning Object Request Broker (ORB)
	Tuning Object Request Brokers
	Object Request Broker tuning guidelines
	Thread pool adjustments
	Thread pool timeout
	Fragment size
	Interceptors
	Connection Cache Adjustments
	JNI Reader Threads

	Chapter 10. Tuning Service integration
	Tuning messaging engines
	Setting tuning properties of a messaging engine
	Controlling the memory buffers used by a messaging engine
	Tuning the JDBC data source of a messaging engine
	Setting tuning properties by editing the sib.properties file

	Tuning messaging performance with service integration technologies
	Configuring MDB throttling for the default messaging provider

	Chapter 11. Tuning messaging engine data stores
	Tuning the JDBC data source of a messaging engine
	Controlling the memory buffers used by a messaging engine
	Increasing the number of data store tables to relieve concurrency bottleneck
	Increasing the number of item tables for a messaging engine when tables are not automatically created
	Increasing the number of item tables for a messaging engine when tables are automatically created

	Tuning one-phase commit optimization
	Tuning the detection of database connection loss

	Chapter 12. Setting tuning properties for a mediation
	Chapter 13. Enabling CMP entity beans and messaging engine data stores to share database connections
	Chapter 14. Tuning security
	Tuning, hardening, and maintaining security configurations
	Tuning security configurations
	Secure Sockets Layer performance tips
	Tuning security performance

	Hardening security configurations
	Enablement and migration considerations of Security hardening features
	Securing passwords in files
	Encoding passwords in files
	Enabling custom password encryption

	Chapter 15. Tuning Session Initiation Protocol (SIP) applications
	Tuning SIP servlets for Linux

	Chapter 16. Tuning Transactions
	Chapter 17. Tuning web applications
	Tuning URL cache
	Tuning URL invocation cache

	Tuning sessions
	Session management tuning
	Tuning parameter settings
	Tuning level

	Tuning parameter custom settings
	Write frequency
	Write contents
	Schedule sessions cleanup

	Best practices for using HTTP sessions

	Chapter 18. Tuning web services
	Tuning Web Services Security
	Tuning Web Services Security for Version 8.0 applications
	Tuning Web Services Security for Version 5.x applications

	Tuning web services reliable messaging applications
	Tuning bus-enabled web services
	Including SOAP header schemas in the SDO repository

	Chapter 19. Tuning Work area
	Work area service performance considerations
	Work area service performance considerations

	Appendix. Directory conventions
	Notices
	Trademarks and service marks
	Index
	C
	D
	E
	H
	J
	O
	P
	S
	U
	W

