IBM WebSphere Application Server for Distributed
Platforms, Version 8.0

Scripting the application serving
environment

..ll

Note
FBefore using this information, be sure to read the general information under ['Notices” on page 997

Compilation date: July 31, 2011

© Copyright IBM Corporation 2011.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents
How to send your comments.

Changes to serve you more quickly .

Chapter 1. How do | use wsadmin commands to administer applications and their environments?

Chapter 2. Using wsadmin scripting .

Chapter 3. Scripting concepts

Using wsadmin scripting with Java Management Exten3|ons (JMX)
WebSphere Application Server configuration model using wsadmin scripting .
Using wsadmin scripting with Jacl .

Using wsadmin scripting with Jython

Chapter 4. Getting started with wsadmin scripting .
What is new for scripted administration (wsadmin) .o
Overview and new features for scripting the application servmg enwronment

Chapter 5. Using the wsadmin scripting objects .
Help object for scripted administration using wsadmin scrlptmg

Chapter 6. Using the wsadmin scripting AdminApp object for scripted administration .
Listing applications using the wsadmin scripting tool.
Editing application configurations using the wsadmin scripting tooI

Chapter 7. Using the wsadmin scripting AdminControl object for scripted administration.

ObjectName, Attribute, and AttributeList classes using wsadmin scripting . .
Example: Collecting arguments for the AdminControl object using wsadmin scnptmg
Example: Identifying running objects using wsadmin scripting .

Specifying running objects using the wsadmin scripting tool . .
Identifying attributes and operations for running objects using the wsadmm scrlptlng tool .
Performing operations on running objects using the wsadmin scripting tool

Modifying attributes on running objects using the wsadmin scripting tool

Chapter 8. Using the wsadmin scripting AdminConfig object for scripted administration .

Creating configuration objects using the wsadmin scripting tool.

Interpreting the output of the AdminConfig attributes command using wsadmln scrlptlng
Specifying configuration objects using the wsadmin scripting tool . .
Listing attributes of configuration objects using the wsadmin scripting tool.

Modifying configuration objects using the wsadmin scripting tool .

Removing configuration objects with the wsadmin tool .

Removing the trust association interceptor class using scripting

Changing the application server configuration using the wsadmin tool .

Modifying nested attributes using the wsadmin scripting tool.

Saving configuration changes with the wsadmin tool

Chapter 9. Using the wsadmin scripting AdminTask object for scripted administration .

Obtaining online help using wsadmin scripting .

Invoking an administrative command in batch mode usmg wsadmln scrlptlng

Invoking an administrative command in interactive mode using wsadmin scripting .
Administrative command interactive mode environment using wsadmin scripting

Data types for the AdminTask object using wsadmin scripting

© Copyright IBM Corp. 2011

. 33
. 33
. 34

.37
.37
. 38
. 38
. 39
.4
. 42
. 44

. 47
. 47
. 49
. 51
. 53
. 55
. 57
. 58
. 59
. 60
. 62

. 65
. 66
. 70
. 75
. 80
. 83

Chapter 10. Starting the wsadmin scripting client using wsadmin scripting

Chapter 11. Using the script library to automate the application serving environment using
wsadmin scripting . .o Coe
Automating server administration usmg wsadmln scnptmg

Server settings configuration scripts.

Server configuration scripts

Server query scripts .

Server administration scripts . .
Automating administrative architecture setup usmg wsadmln scnptmg Ilbrary .
Automating application configurations using wsadmin scripting

Application installation and uninstallation scripts .

Application query scripts

Application update scripts .

Application export scripts . .

Application deployment configuration scrlpts .

Application administration scripts
Automating business-level application conf|gurat|ons usmg wsadmm scrlptlng

Business-level application configuration scripts .

Automating data access resource configuration using wsadmm scrlptlng

J2C query scripts . .o

J2C configuration scripts

JDBC configuration scripts.

JDBC query scripts .

Automating messaging resource conﬂgurahons usmg wsadmm scrlptmg

JMS configuration scripts . .o

JMS query scripts . .
Automating authorization group conflguratlons usmg wsadmln scnptmg .

Authorization group configuration scripts . .o
Automating resource configurations using wsadmin scrlptlng

Resource configuration scripts .

Displaying script library help information usmg the wsadmln scrlptlng tool
Saving changes to the script library
Directory conventions

Chapter 12. Administering applications using wsadmin scripting .
Installing enterprise applications using wsadmin scripting
Setting up business-level applications using wsadmin scripting
Example: Creating an SCA business-level application with scripting
Uninstalling enterprise applications using the wsadmin scripting tool
Deleting business-level applications using wsadmin scripting .
Pattern matching using the wsadmin scripting tool .
Managing administrative console applications using wsadmin scrlptmg
Managing JavaServer Faces implementations using wsadmin scripting .
BLAManagement command group for the AdminTask object using wsadmin scrlptlng
JSFCommands command group for the AdminTask object .
Application management command group for the AdminTask object

Chapter 13. Managing deployed applications using wsadmin scripting.
Starting applications using wsadmin scripting . .

Starting business-level applications using wsadmin scnptmg .

Stopping applications using wsadmin scripting

Stopping business-level applications using wsadmin scrlptmg

Updating installed applications using the wsadmin scripting tool .

Managing assets using wsadmin scripting . :

Managing composition units using wsadmin scnptmg

iv Scripting the application serving environment

. 85

. 90

. 93
. 109
.12
. 116
. 118
. 120
. 122
. 129
. 132
. 139
. 140
. 145
. 147
. 150
. 157
. 159
. 162
. 167
. 190
. 192
. 195
. 276
. 282
. 284
. 290
. 292
. 321
. 322
. 323

. 327
. 327
. 330
. 332
. 334
. 335
. 336
. 337
. 338
. 339
. 373
. 375

. 379
. 379
. 380
. 381
. 383
. 384
. 388
. 389

Viewing JMS bindings on references and services of SCA composites using scripting .
Editing JMS bindings on references and services of SCA composites using scripting .

Listing the modules in an installed application using wsadmin scripting
Example: Listing the modules in an application server

Querying the application state using wsadmin scripting . .

Disabling application loading in deployed targets using wsadmln scnptlng .

Exporting applications using wsadmin scripting . S

Exporting SCA composite definitions using scripting

Exporting SCA domain information using scripting .

Exporting WSDL and XSD documents using scripting.

Chapter 14. Configuring applications using scripting

Configuring applications for session management using scripting

Configuring applications for session management in web modules using scrlptlng
Configuring a shared library using scripting e
Configuring a shared library for an application using wsadmln scrlptlng .

Setting background applications using wsadmin scripting

Modifying WAR class loader policies for applications using wsadmln scnptmg
Modifying WAR class loader mode using wsadmin scripting

Modifying class loader modes for applications using wsadmin scnptmg

Modifying the starting weight of applications using wsadmin scripting .

Configuring namespace bindings using the wsadmin scripting tool .
WSScheduleCommands command group of the AdminTask object .
WSNotifierCommands command group for the AdminTask object
CoreGroupManagement command group for the AdminTask object.
CoreGroupBridgeManagement command group for the AdminTask object

Chapter 15. Configuring servers with scripting .
Creating a server using scripting

Configuring a unique HTTP session clone ID for each appllcatlon server usmg scrlptlng .

Configuring database session persistence using scripting

Configuring the Java virtual machine using scripting .

Configuring EJB containers using wsadmin

Configuring timer manager custom properties using the wsadmln tooI

Configuring work manager custom properties using the wsadmin tool .

Configuring the Performance Monitoring Infrastructure using scripting .

Logging Tivoli Performance Viewer data using scripting .

Limiting the growth of JVM log files using scripting .

ProxyManagement command group for the AdminTask object

Configuring an ORB service using scripting

Configuring processes using scripting .

Configuring the runtime transaction service usmg scrlptlng
Configuring the WS-Transaction specification level by using wsadmln scrlptmg

Setting port numbers to the serverindex.xml file using scripting .

Disabling components using scripting. G

Disabling the trace service using scripting . .

Configuring servlet caching using wsadmin scripting .

Modifying variables using wsadmin scripting . .o

Increasing the Java virtual machine heap size using scnptlng

PortManagement command group for the AdminTask object

DynamicCache command group for the AdminTask object .

VariableConfiguration command group for the AdminTask object.

Chapter 16. Setting up intermediary services using scripting
Regenerating the node plug-in configuration using scripting
Creating new virtual hosts using templates with scripting

. 392
. 393
. 397
. 401
. 405
. 406
. 407
. 408
. 410
. 412

. 415
. 415
. 418
. 423
. 426
. 430
. 431
. 432
. 434
. 436
. 437
. 439
. 440
. 442
. 447

. 453
. 454
. 455
. 456
. 457
. 459
. 463
. 465
. 466
. 468
. 469
. 472
. 476
. 478
. 480
. 481
. 482
. 488
. 489
. 490
. 491
. 492
. 493
. 495
. 496

. 501
. 501
. 503

Contents

\'}

Directory conventions

Chapter 17. Managing servers and nodes with scripting
Stopping a node using wsadmin scripting . .

Starting servers using scripting .

Stopping servers using scripting

Querying server state using scripting .

Listing running applications on running servers usmg wsadmm scrlptmg

Starting listener ports using scripting .

Managing generic servers using scripting . . .

Setting development mode for server objects using scrrptrng

Disabling parallel startup using scripting. o

Obtaining server version information with scripting .

NodeGroupCommands command group for the AdminTask object usmg wsadmm scrlptrng
Utility command group of the AdminTask object . e
ManagedObjectMetadata command group for the AdmmTask object

AdminSDKCmds command group for the AdminTask object

ServerManagement command group for the AdminTask object

UnmanagedNodeCommands command group for the AdminTask object usmg wsadmm scrrptrng
ConfigArchiveOperations command group for the AdminTask object using wsadmin scripting .
Directory conventions e

Chapter 18. Using properties files to manage system configuration . .
Managing environment configurations with properties files using wsadmin scripting .
Creating, modifying, and deleting configuration objects using one properties file .
Creating and deleting configuration objects using properties files and wsadmin scripting .
Creating server, cluster, application, or authorization group objects using properties files and
wsadmin scripting .
Deleting server, cluster, appllcatron or authonzatlon group objects usrng propertres f|Ies
Extracting properties files using wsadmin scripting .
Extracting or modifying WCCM object properties
Validating properties files using wsadmin scripting .
Applying properties files using wsadmin scripting .
Applying portable properties files across multiple enwronments .
Running administrative commands using properties files.
Properties file syntax.
PropertiesBasedConfiguration command group for the AdmmTask object usmg wsadmm scrlptlng
Managing specific configuration objects using properties files . Ce
Working with activity session service properties files .
Using application properties files to install, update, and delete enterprrse apphcatlon flles
Working with cache provider properties files .
Working with data replication domain properties files .
Working with J2C resource adapter properties files
Working with J2EEResourceProperty properties files .
Working with J2EEResourcePropertySet properties files.
Working with JDBC provider properties files . .o
Working with JVM properties files .
Working with JMS provider properties files .
Working with mail provider properties files .
Working with object pool properties files.
Working with scheduler provider properties files .
Working with security properties files .
Working with server properties files
Transport channel service .
Working with URL provider propert|es flles
Working with service integration properties files .

Vi Scripting the application serving environment

. 504

. 507
. 507
. 508
. 509
. 510
. 510
. 513
. 514
. 515
. 515
. 516
. 517
. 524
. 527
. 534
. 540

568

. 571
. 578

. 581
. 582
. 584
. 586

. 587
. 588
. 590
. 592
. 593
. 595
. 597
. 601
. 602

603

. 609
. 612
. 614
. 638
. 648
. 651
. 653
. 654
. 655
. 665
. 667
. 677
. 680
. 689
. 694
. 712
. 747
. 755
. 758

Working with timer manager provider properties files .

Working with variable map properties files .

Working with virtual host properties files.

Working with web server properties files

Working with work area service properties files .

Working with work manager provider properties files . .
Working with web services endpoint URL fragment property flles

Chapter 19. Directory conventions .

Chapter 20. Using the Administration Thin Client .

Compiling an administration application using the Thin Admlnlstratlon Cllent .
Running the wsadmin tool remotely in a Java 2 Platform, Standard Edition enwronment
Auditing invocations of the wsadmin tool using wsadmin scripting

Directory conventions e

Chapter 21. Troubleshooting with scripting

Tracing operations using the wsadmin scripting tool

Extracting properties files to troubleshoot your environment usmg wsadmm scrlptlng
Configuring traces using scripting . .

Turning traces on and off in servers processes usmg scrlptlng

Dumping threads in server processes using scripting . .

Setting up profile scripts to make tracing easier using wsadmin scnptmg

Enabling the Runtime Performance Advisor tool using scripting .

AdministrationReports command group for the AdminTask object using wsadmln scrlptlng
Configuring HPEL with wsadmin scripting . e

Chapter 22. Scripting and command line reference material using wsadmin scripting .

wsadmin scripting tool . S
wsadmin tool performance t|ps . .

Commands for the Help object using wsadmm scrlptlng

Commands for the AdminConfig object using wsadmin scripting .

Commands for the AdminControl object using wsadmin scripting

Commands for the AdminApp object using wsadmin scripting .
Options for the AdminApp object install, installinteractive, edit, edltlnteractlve update and

updatelnteractive commands using wsadmin scripting .

Example: Obtaining option information for AdminApp object commands usmg wsadmln scnptmg

Commands for the AdminTask object using wsadmin scripting
Administrative command invocation syntax using wsadmin scripting
Administrative properties for using wsadmin scripting .
com.ibm.ws.scripting.appendTrace.
com.ibm.ws.scripting.classpath .
com.ibm.ws.scripting.connectionType . .
com.ibm.ws.scripting. crossDocumentValldatlonEnabIed .
com.ibm.ws.scripting.defauliLang .
com.ibm.ws.scripting.echoparams .
com.ibm.ws.scripting. emltWarmngForCustomSecurltyPollcy
com.ibm.ws.scripting.host . .
com.ibm.ws.scripting.ipchost .
com.ibm.ws.scripting.port .
com.ibm.ws.scripting.profiles .
com.ibm.ws.scripting.traceFile
com.ibm.ws.scripting.traceString
com.ibm.ws.scripting.tempdir .
com.ibm.ws.scripting.validationLevel .
com.ibm.ws.scripting.validationOutput

Contents

. 769
. 773
. 775
. 780
. 793
. 798
. 803

. 807

. 811
. 813
. 814
. 818
. 818

. 823
. 823
. 824
. 825
. 826
. 827
. 828
. 829
. 831
. 832

. 835
. 835
. 842
. 843
. 854
. 883
. 908

. 928

978

. 979
. 985
. 986
. 987
. 987
. 987
. 987
. 987
. 987
. 987
. 987
. 987
. 987
. 987
. 988
. 988
. 988
. 988
. 988

Vii

Directory conventions .988
Appendix. Directory conventions .99
Notices L L Lo 997
Trademarks and servicemarks .99

Index Looo100t1

viii Scripting the application serving environment

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.
+ To send comments on articles in the WebSphere Application Server Information Center
1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

* To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2011 ix

X Scripting the application serving environment

Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book
delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF
format more frequently. During a temporary transition phase, you might experience broken links. During
the transition phase, expect the following link behavior:

» Links to Web addresses beginning with http:// work
» Links that refer to specific page numbers within the same PDF book work
* The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2011 Xi

xii Scripting the application serving environment

Chapter 1. How do | use wsadmin commands to administer
applications and their environments?

The wsadmin tool is a command-line interface that provides the ability to automate common tasks using
Jacl or Jython scripts. The AdminTask, AdminApp, AdminControl, AdminConfig, and Help objects provide
many commands and options that allow you to write and customize scripts to administer your applications,
environment, web services, resources, and security configurations. Follow these shortcuts to get started
quickly with popular tasks.

Use scripting to configure web services policy sets

Use scripting to create secure sessions between clients and services

|Use scripting to configure application serversl

|Use scripting to manage application servers|

[Use scripting to update applications]

|Use scripting to administer communication with web servers (plug-ins)|

[Use scripting to administer HTTP sessions|

Use scripting to provide access to relational databases (JDBC resources)
Use scripting to provide access to messaging resources (default messaging provider)

Use scripting to secure applications and their environments

© IBM Corporation 2003

2 Scripting the application serving environment

Chapter 2. Using wsadmin scripting

The WebSphere® administrative (wsadmin) scripting program is a powerful, non-graphical command
interpreter environment enabling you to run administrative operations in a scripting language.

About this task

The wsadmin tool is intended for production environments and unattended operations. You can use the
wsadmin tool to perform the same tasks that you can perform using the administrative console.

The following list highlights the topics and tasks available with scripting:

Procedure

. |Getting started with scripting| Provides an introduction to WebSphere Application Server scripting and
information about using the wsadmin tool. Topics include information about the scripting languages and
the scripting objects, and instructions for starting the wsadmin tool.

|Using the script library to automate the application serving environmend Provides a set of Jython script
procedures that automate the most common application server administration functions. For example,
you can use the script library to easily configure servers, applications, mail settings, resources, nodes,
business-level applications, clusters, authorization groups, and more. You can run each script procedure
individually, or combine several procedures to quickly develop new scripts.

. |Dep|oying applications| Provides instructions for deploying and uninstalling applications. For example,
stand-alone Java archive files and web archive files, the administrative console, remote Enterprise
Archive (EAR) files, file transfer applications, and so on.

[Managing deployed applications| Includes tasks that you perform after the application is deployed. For
example, starting and stopping applications, checking status, modifying listener address ports, querying
application state, configuring a shared library, and so on.

« |Configuring serverg Provides instructions for configuring servers, such as creating a server, modifying
and restarting the server, configuring the Java virtual machine, disabling a component, disabling a
service, and so on.

+ [Configuring connections to web servers| Includes topics such as regenerating the plug-in, creating new
virtual host templates, modifying virtual hosts, and so on.

+ [Managing servers| Includes tasks that you use to manage servers. For example, stopping nodes,
starting and stopping servers, querying a server state, starting a listener port, and so on.

» Configuring security Includes security tasks, for example, enabling and disabling administrative security,
enabling and disabling Java 2 security, and so on.

» Configuring data access Includes topics such as configuring a Java DataBase Connectivity (JDBC)
provider, defining a data source, configuring connection pools, and so on.

» Configuring messaging Includes topics about messaging, such as Java Message Service (JMS)
connection, JMS provider, WebSphere queue connection factory, MQ topics, and so on.

» Configuring mail, URLs, and resource environment entries Includes topics such as mail providers, mail
sessions, protocols, resource environment providers, referenceables, URL providers, URLs, and so on.

[Troubleshooting| Provides information about how to troubleshoot using scripting. For example, tracing,
thread dumps, profiles, and so on.
[Scripting reference materialf Includes all of the reference material related to scripting. Topics include the

syntax for the wsadmin tool and for the administrative command framework, explanations and examples
for all of the scripting object commands, the scripting properties, and so on.

© IBM Corporation 2004 3

4 Scripting the application serving environment

Chapter 3. Scripting concepts

Scripting provides a non-graphical alternative to the administrative console. Using the wsadmin tool, you
can run scripts to configure and manage the product. The wsadmin tool supports two scripting languages:
Jacl and Jython. Five objects are available with scripts: AdminControl, AdminConfig, AdminApp,
AdminTask, and Help. Scripts use these objects to communicate with MBeans that run in product
processes. MBeans are Java objects that represent Java Management Extensions (JMX) resources. JMX
is a technology that provides a simple and standard way to manage Java objects.

Using wsadmin scripting with Java Management Extensions (JMX)

Java Management Extensions (JMX) is a framework that provides a standard way of exposing Java
resources, for example, application servers, to a system management infrastructure. Using the JMX
framework, a provider can implement functions, such as listing the configuration settings, and editing the
settings. This framework also includes a notification layer that management applications can use to
monitor events such as the startup of an application server.

JMX key features

The key features of the WebSphere Application Server implementation of JMX include:
* All processes that run the JMX agent.
* All run-time administration that is performed through JMX operations.

» Connectors that are used to connect a JMX agent to a remote JMX-enabled management application.
The following connectors are supported:

SOAP JMX Connector

JMX Remote application programming interface (JSR 160) Remote Method Invocation over the
Internet Inter-ORB Protocol (RMI-IIOP) JMX Connector, (the JSR160RMI connector)

Remote Method Invocation over the Internet Inter-ORB Protocol (RMI-IIOP) JMX Connector
Inter-Process Communications (IPC)

» Protocol adapters that provide a management view of the JMX agent through a given protocol.
Management applications that connect to a protocol adapter are usually specific to a given protocol.

* The ability to query and update the configuration settings of a run-time object.

» The ability to load, initialize, change, and monitor application components and resources during run
time.

JMX architecture

The JMX architecture is structured into three layers:

* Instrumentation layer - Dictates how resources can be wrapped within special Java beans, called
managed beans (MBeans).

» Agent layer - Consists of the MBean server and agents, which provide a management infrastructure.
The services that are implemented include:

— Monitoring
— Event notification
— Timers

* Management layer - Defines how external management applications can interact with the underlying
layers in terms of protocols, APIs, and so on. This layer uses an implementation of the distributed
services specification (JSR-077), which is not yet part of the Java 2 platform, Enterprise Edition (J2EE)
specification.

The layered architecture of JMX is summarized in the following figure:

© Copyright IBM Corp. 2011

+ + Agent Layer
Y Y
Agent M Agent Services
services services | (55 MBeans)

Java virtual machine b Instrumentation Layer

Resource 1 Resource 2
MBean MBean

Manages Manages

ﬂﬂqﬂllmi 1 Resource 2 Managed Resources

JMX distributed administration

The following figure shows how the JMX architecture fits into the overall distributed administration topology
of a WebSphere Application Server, Network Deployment environment:

6 Scripting the application serving environment

Clients, Multi-cell,
management, & other EMS

(Tivoli, BMC)
Deployment Manager

Application Server

Figure 2: WebSphere Application Server distributed administration of JMX

The key points of this distributed administration architecture include:
* Internal MBeans that are local to the Java virtual machine (JVM) register with the local MBean server.

» External MBeans have a local proxy to their MBean server. The proxy registers with the local MBean
server.

JMX Mbeans

WebSphere Application Server provides a number of MBeans, each of which has different functions and
operations available. For example, an application server MBean can expose operations such as start and
stop. An application MBean can expose operations such as install and uninstall. Some JMX usage
scenarios that you can encounter include:

» External programs that are written to control the WebSphere Application Server, Network Deployment
run time and its WebSphere resources by programmatically accessing the JMX API.

» Third-party applications that include custom JMX MBeans as part of the deployed code, supporting the
JMX APl management of application components and resources.

The following example illustrates how to obtain the name of a particular MBean:

Using Jacl:
set am [$AdminControl queryNames type=ApplicationManager,process=serverl,x]

Chapter 3. Scripting concepts 7

Using Jython:

am = AdminControl.queryNames ('type=ApplicationManager,process=serverl,*")

Each WebSphere Application Server runtime MBean can have attributes, operations, and notifications. The
complete documentation for each MBean that is supplied with the product is available in this information
center at information_center > Reference > Programming interfaces > Mbean interfaces.

JMX benefits

The use of JMX for management functions in WebSphere Application Server provides the following
benefits:

» Enables the management of Java applications without significant investment.
* Relies on a core-managed object server that acts as a management agent.

» Java applications can embed a managed object server and make some of its functionality available as
one or several MBeans that are registered with the object server.

* Provides a scalable management architecture.
« Every JMX agent service is an independent module that can be plugged into the management agent.

* The API is extensible, allowing new WebSphere Application Server and custom application features to
be easily added and exposed through this management interface.

* Integrates existing management solutions.

» Each process is self-sufficient when it comes to the management of its resources. No central point of
control exists. In principle, a JMX-enabled management client can be connected to any managed
process and interact with the MBeans that are hosted by that process.

» JMX provides a single, flat, domain-wide approach to system management. Separate processes interact
through MBean proxies that support a single management client to seamlessly navigate through a
network of managed processes.

» Defines the interfaces that are necessary for management only.
* Provides a standard API for exposing application and administrative resources to management tools.

WebSphere Application Server configuration model using wsadmin
scripting

Understanding the relationship between the different configuration objects is essential when creating
wsadmin scripts that perform configuration function.

Configuration data is stored in several different XML files which the server run time reads when it starts
and responds to the component settings stored there. The configuration data includes the settings for the
run time, such as, Java virtual machine (JVM) options, thread pool sizes, container settings, and port
numbers the server will use. Other configuration files define Java 2 Platform, Enterprise Edition (J2EE)
resources to which the server connects in order to obtain data that is needed by the application logic.
Security settings are stored in a separate document from the server and resource configuration.
Application-specific configuration, such as, deployment target lists, session configuration, and cache
settings, are stored in files under the root directory of each application. When viewing the XML data in the
configuration files, you can discern relationship between the configuration objects.

For more information on the WebSphere Application Server configuration objects view the HTML tables in
the installroot/web/configDocs directory. There are several subdirectories, one for each configuration
package in the model. The index.html file ties all of the individual configuration packages together in a
top-level navigation tree. Each configuration package lists the supported configuration classes and the
configuration class lists all of the supported properties. The properties with names that end with the at (@)
character imply that property is a reference to a different configuration object within the configuration data.
The properties with names that end with an asterisk (*) character imply that the property is a list of other
configuration objects.

8 Scripting the application serving environment

Using wsadmin scripting with Jacl

Jacl is an alternate implementation of TCL, and is written entirely in Java code.
The wsadmin tool uses Jacl V1.3.2.
Stabilization of the Jacl syntax in the wsadmin tool

The Jacl language stabilized in Version 7 of the product. IBM® does not currently plan to deprecate or
remove this capability in a subsequent release of the product; but future investment will be focused on the
Jython language, which is the strategic alternative. You do not need to change any of your existing
applications and scripts that use Jacl; but you should consider using the strategic alternative for new
applications.

The Jython syntax for the wsadmin tool is the strategic direction for WebSphere Application Server
administrative automation. The product continues to provide enhanced administrative functions and tooling
that support product automation and the use of the Jython syntax. The following Jython scripting-related
enhancements are provided in the product:

» Administrative console command assist - A feature of the administrative console that displays the
wsadmin command that is equivalent to the action taken by the user that interacts with the console. The
output from the console command assist feature can be transferred directly to the WebSphere
Application Server Tool, which simplifies the development of Jython scripts that are based on
administrative console actions. You can also save the output after using the console command assist
feature in a plain text file for later use.

» Jacl-to-dython conversion utility - A program that converts Jacl syntax wsadmin scripts into equivalent
Jython syntax wsadmin scripts. Dozens of new wsadmin high-level commands that decouple the script
from the underlying administrative model through use of simple parameters and smart default logic.

Basic syntax

The basic syntax for a Jacl command is the following:

Command argl arg2 arg3 ...

The command is either the name of a built-in command or a Jacl procedure. For example:

puts stdout {Hello, world!}
=> Hello, world!

In this example, the command is puts which takes two arguments, an I/O stream identifier and a string.
The puts command writes the string to the 1/O stream along with a trailing new line character. The
arguments are interpreted by the command. In the example, stdout is used to identify the standard output
stream. The use of stdout as a name is a convention employed by the puts command and the other 1/O
commands. stderr identifies the standard error output, and stdin identifies the standard input.

Variables

The set command assigns a value to a variable. This command takes two arguments: the name of the
variable and the value. Variable names can be any length and are case sensitive. You do not have to
declare Jacl variables before you use them. The interpreter will create the variable when it is first assigned
a value. For example:

set a b

=> 5

set b $a
=> 5

The second example assigns the value of variable a to variable b. The use of dollar sign ($) indicates
variable substitution. You can delete a variable with the unset command, for example:

Chapter 3. Scripting concepts 9

unset varNamel varName?2 ...

You can pass any number of variables to the unset command. The unset command gives an error if a
variable is not already defined. You can delete an entire array or just a single array element with the unset
command. Using the unset command on an array is an easy way to clear out a big data structure. The
existence of a variable can be tested with the info exists command. You might need to test for the
existence of the variable because the incr parameter requires that a variable exist first, for example:

if ![info exists my_info] {set my_info 0} else {incr my_info}
Command substitution

The second form of substitution is command substitution. A nested command is delimited by square
brackets, []. The Jacl interpreter evaluates everything between the brackets and evaluates it as a
command. For example:

set Ten [string length my_string]
= f

In this example, the nested command is the following: string Tength my_string. The string command
performs various operations on strings. In this case, the command asks for the length of the string
my_string. If there are several cases of command substitution within a single command, the interpreter
processes them from left bracket to right bracket. For example:

set number "1 2 3 4"
=> 1234

set one [lindex $number 0]
= 1

set end [lindex $number end]
= /4

set another {123 456 789}
=> 123 456 789

set stringlen [string length [Tindex $another 1]]
= 3

set listlLen [1length [lindex $another 1]

= 1
Math expressions

The Jacl interpreter does not evaluate math expressions. Use the expr command to evaluate math
expressions. The implementation of the expr command takes all arguments, concatenates them into a
single string, and parses the string as a math expression. After the expr command computes the answer, it
is formatted into a string and returned. For example:

expr 7.2 / 3
=> 2.4

Backslash substitution

The final type of substitution done by the Jacl interpreter is backslash substitution. Use backslashes to add
quotation characters that have special meaning to the interpreter. For example, you can specify a literal
dollar sign, brace, or bracket by quoting it with a backslash. If you are using lots of backslashes, instead
you can group things with curly braces to turn off all interpretation of special characters. There are cases
where backslashes are required. For example:

set dollar "This is a string \$contain dollar char"
=> This is a string $contain dollar char

set x $dollar
=> This is a string $contain dollar char

set group {$ {} [1 { [}]}
=${30{[}]

10 Scripting the application serving environment

You can also use backslashes to continue long commands on multiple lines. A new line without the
backslash terminates a command. A backslash that is the last character on a line convert into a space. For
example:

set totallLength [expr [string length "first string"] + \
[string 1length "second string"]]
=> 25

Grouping with braces and double quotation marks

Use double quotation marks and curly braces to group words together. Quotation marks enable
substitutions to occur in the group and curly braces prevent substitution. This rule applies to command,
variable, and backslash substitutions. For example:

set s Hello

=> Hello

puts stdout "The length of $s is [string length $s]."
=> The length of Hello is 5.

puts stdout {The length of $s is [string 1length $s].}
=> The length of $s is [string length $s].

In the second example, the Jacl interpreter performs variable and command substitution on the second
argument from the puts command. In the third command, substitutions are prevented so the string is
printed as it is.

Special care must also be taken with path descriptions because the Jacl language uses the backslash
character (\) as an escape character. To fix this, either replace each backslash with a forward slash, or use
double backslashes in distributed path statements. For example: C:/ or C:\\

Procedures and scope

Jacl uses the proc command to define procedures. The basic syntax to define a procedure is the following:
proc name arglist body

The first argument is the name of the procedure being defined. The name is case sensitive, and in fact it
can contain any characters. Procedure names and variable names do not conflict with each other. The
second argument is a list of parameters to the procedures. The third argument is a command, or more
typically a group of commands that form the procedure body. Once defined, a Jacl procedure is used just
like any of the built-in commands. For example:

proc divide {x y} {

set result [expr $x/$y]
puts $result

}

Inside the script, this is how to call divide procedure:
divide 20 5

And it gives a result resembling the following:
4

It is not necessary to use the variable c in this example. The procedure body might also written as:
return [expr sqrt($a * $a + $b = $b)]

The return command is optional in this example because the Jacl interpreter returns the value of the last
command in the body as the value of the procedure. So, the procedure body might be reduced to:

expr sqrt(fa * $a + $b x $b)

Chapter 3. Scripting concepts 11

The result of the procedure is the result returned by the last command in the body. The return command
can be used to return a specific value.

There is a single, global scope for procedure names. You can define a procedure inside another
procedure, but it is visible everywhere. There is a different name space for variables and procedures
therefore you might have a procedure and a variable with the same name without a conflict. Each
procedure has a local scope for variables. Variables introduced in the procedures exist only for the
duration of the procedure call. After the procedure returns, those variables are undefined. If the same
variable name exists in an outer scope, it is unaffected by the use of that variable name inside a
procedure. Variables defined outside the procedure are not visible to a procedure, unless the global scope
commands are used.

The global scope is the top-level scope. This scope is outside of any procedure. You must make variables
defined at the global scope accessible to the commands inside procedure by using the global command.
The syntax for the global command is the following:

global varNamel varName2 ...

Comments

Use the pound character (#) to make comments.
Command-line arguments

The Jacl shells pass the command-line arguments to the script as the value of the argv variable. The
number of command-line arguments is given by argc variable. The name of the program, or script, is not
part of argv nor is it counted by argc. The argv variable is a list. Use the lindex command to extract items
from the argument list, for example:

set first [lindex $argv 0]
set second [lindex $argv 1]

Strings and pattern matching

Strings are the basic data item in the Jacl language. There are multiple commands that you can use to
manipulate strings. The general syntax of the string command is the following:

string operation stringvalue otherargs

The operation argument determines the action of the string. The second argument is a string value. There
might be additional arguments depending on the operation.

The following table includes a summary of the string command:

Table 1. string command syntax descriptions. Run the string command with one or more arguments.

Command Description

string compare stri str2 Compares strings lexicographically. Returns 0 if equal, -1 if str1 sorts before str2,
elset.

string first str1 str2 Returns the index in str2 of the first occurrence of str1, or -1 if str1 is not found.

string index string1 index1 Returns the character at the specified index.

string last str1 str2 Returns the index in str2 of the last occurrence of str1, or -1 if str1 is not found.

string length string Returns the number of characters in the string.

string match pattern str Returns 1 if str matches the pattern, else 0.

string range strij Returns the range of characters in str from i to j

string tolower string Returns string in lowercase.

string toupper string Returns string in uppercase.

12 Scripting the application serving environment

Table 1. string command syntax descriptions (continued). Run the string command with one or more arguments.

Command Description

string trim string ?chars? Trims the characters in chars from both ends of string. chars defaults to white
space.

string trimleft string ?chars? Trims the characters in chars from the beginning of string. chars defaults to white
space.

string trimright string ?chars? Trims the characters in chars from the end of string. chars defaults to white space.

string wordend str ix Returns the index in str of the character after the word containing the character at
index ix.

string wordstart str ix Returns the index in str of the first character in the word containing the character
at index ix.

The append command

The first argument of the append command is a variable name. It concatenates the remaining arguments
onto the current value of the named variable. For example:

set my_item z
:>Z

append my_item a b c
=> zabc

The regexp command

The regexp command provides direct access to the regular expression matcher. The syntax is the
following:

regexp ?flags? pattern string ?match subl sub2 ...?

The return value is 1 if some part of the string matches the pattern. Otherwise, the return value is 0. The
pattern does not have to match the whole string. If you need more control than this, you can anchor the
pattern to the beginning of the string by starting the pattern with ~, or to the end of the string by ending the
pattern with dollar sign, $. You can force the pattern to match the whole string by using both characters.
For example:

set textl "This is the first string"
=> This is the first string

regexp "first string" $textl

= 1

regexp "second string" $textl
=> ()

Jacl data structures

The basic data structure in the Jacl language is a string. There are two higher level data structures: lists
and arrays. Lists are implemented as strings and the structure is defined by the syntax of the string. The
syntax rules are the same as for commands. Commands are particular instances of lists. Arrays are
variables that have an index. The index is a string value so you can think of arrays as maps from one
string (the index) to another string (the value of the array element).

Jacl lists
The lists of the Jacl language are strings with a special interpretation. In the Jacl language, a list has the

same structure as a command. A list is a string with list elements separated by white space. You can use
braces or quotation marks to group together words with white space into a single list element.

Chapter 3. Scripting concepts 13

The following table includes commands that are related to lists:

Table 2. list command syntax descriptions. Run the list command with one or more arguments.

Command Description

list arg1 arg2 Creates a list out of all its arguments.

lindex list i Returns the i'th element from list.

llength list Returns the number of elements in list.

Irange list i j Returns the i'th through j'th elements from list.

lappend listVar arg arg ... Appends elements to the value of listVar

linsert list index arg arg ... Inserts elements into list before the element at position index. Returns a new list.

Ireplace listij arg arg ... Replaces elements i through j of list with the args. Return a new list.

Isearch mode list value Returns the index of the element in list that matches the value according to the
mode, which is -exact, -glob, or -regexp, -glob is the default. Return -1 if not found.

Isort switches list Sorts elements of the list according to the switches: -ascii, -integer, -real,
-increasing, -decreasing, -command command. Return a new list.

concat arg arg arg ... Joins multiple lists together into one list.

join list joinString Merges the elements of a list together by separating them with joinString.

split string splitChars Splits a string up into list elements, using the characters in splitChars as

boundaries between list elements.

Arrays

Arrays are the other primary data structure in the Jacl language. An array is a variable with a string-valued
index, so you can think of an array as a mapping from strings to strings. Internally an array is implemented
with a hash table. The cost of accessing each element is about the same. The index of an array is
delimited by parentheses. The index can have any string value, and it can be the result of variable or
command substitution. Array elements are defined with the set command, for example:

set arr(index) value

Substitute the dollar sign ($) to obtain the value of an array element, for example:

set my_item $arr(index)

For example:

set fruit(best) kiwi
=> kiwi

set fruit(worst) peach
=> peach

set fruit(ok) banana
=> banana

array get fruit
=> ok banana worst peach best kiwi

array exists fruit
=> 1

The following table includes array commands:

Table 3. array command syntax descriptions. Run the array command with an argument.

Command Description

array exists arr Returns 1 if arr is an array variable.

14 Scripting the application serving environment

Table 3. array command syntax descriptions (continued). Run the array command with an argument.

Command Description

array get arr Returns a list that alternates between an index and the corresponding array value.

array names arr ?pattern? Return the list of all indexes defined for arr, or those that match the string match
pattern.

array set arr list Initializes the array arr from list, which need the same form as the list returned by
get.

array size arr Returns the number of indexes defined for arr.

array startsearch arr Returns a search token for a search through arr.

array nextelement arr id Returns the value of the next element in array in the search identified by the token
id. Returns an empty string if no more elements remain in the search.

array anymore arr id Returns 1 if more elements remain in the search.

array donesearch arr id Ends the search identified by id.

Control flow commands

The following looping commands exist:
* while

e foreach

» for

The following are conditional commands:
o if
* switch

The following is an error handling command:
e catch

The following commands fine-tune control flow:

* break

* continue
* return

* error

if then else

The if command is the basic conditional command. It says that if an expression is true, then run the
second line of code, otherwise run a different line of code. The second command body (the else clause) is

optional. The syntax of the command is the following:

if boolean then bodyl else body2

The then and else keywords are optional. For example:

if {$x == 0} {

puts stderr "Divide by zero!"
} else {

set slope [expr $y/$x]

}

Chapter 3. Scripting concepts

15

switch

Use the switch command to branch to one of many commands depending on the value of an expression.
You can choose based on pattern matching as well as simple comparisons. Any number of pattern-body
pairs can be specified. If multiple patterns match, only the code body of the first matching pattern is
evaluated. The general form of the command is the following:

switch flags value patl bodyl pat2 body2

You can also group all the pattern-body pairs into one argument:
switch flags value {patl bodyl pat2 body2 ...}

There are four possible flags that determine how value is matched.

* -exact Matches the value exactly to one of the patterns.

* -glob Uses glob-style pattern matching.

* -regexp Uses regular expression pattern matching.

* -- No flag (or end of flags). Useful when value can begin with a dash (-).

For example:

switch -exact -- $value {

foo {doFoo; 1incr count(foo)}
bar {doBar; return $count(foo)}
default {incr count(other)}

}

If the pattern that is associated with the last body is default, then the command body is started if no other
patterns match. The default keyword works only on the last pattern-body pair. If you use the default
pattern on an earlier body, it is treated as a pattern to match the literal string default.

foreach

The foreach command loops over a command body and assigns a loop variable to each of the values in a
list. The syntax is the following:

foreach loopVar valuelist commandBody

The first argument is the name of a variable. The command body runs one time for each element in the
loop with the loop variable having successive values in the list. For example:

set numbers {1 3 57 11 13}

foreach num $numbers {

puts $num

}

The result from the previous example is the following output, assuming that only one server exists in the
environment. If there is more than one server, the information for all servers returns:

1
3
5
7
11
13

while

The while command takes two arguments; a test and a command body, for example:
while booleanExpr body

The while command repeatedly tests the boolean expression and runs the body if the expression is true
(non-zero). For example:

16 Scripting the application serving environment

set 1 0

while {$i < 5} {
puts "i is $i"
incr i}

The result from the previous example resembles the following output, assuming that there is only one
server. If there is more than one server, it prints all of the servers:

is 0

is 1
is 2
is 3
is 4

—_ e e e

for

The for command is similar to the C language for statement. It takes four arguments, for example:
for initial test final body

The first argument is a command to initialize the loop. The second argument is a boolean expression
which determines if the loop body runs. The third argument is a command that runs after the loop body:
For example:

set numbers {1 3 57 11 13}
for {set i 0} {$i < [11ength $numbers]} {incr i 1} {
puts "i is $i"

}

The result from previous example resembles the following output, assuming that there is only one server in

the environment. If there is more than one server, it prints all of the server names:
is 1

is 3

is 5

is 7

is 11

is 13

e e e e

break and continue

You can control loop execution with the break and continue commands. The break command causes an
immediate exit from a loop. The continue command causes the loop to continue with the next iteration.

catch

An error occurs if you call a command with the wrong number of arguments or if the command detects
some error condition particular to its implementation. An uncaught error prevents a script from running.
Use the catch command trap such errors. The catch command takes two arguments, for example:

catch command ?resultVar?

The first argument is a command body. The second argument is the name of a variable that contains the
result of the command or an error message if the command raises an error. The catch command returns a
value of zero if no error was caught or a value of one if the command catches an error. For example:

catch {expr 20 / 5} result

==> 0

puts $result

catch {expr text / 5} result

==>]

puts $result

==> syntax error in expression "text / 5"

Chapter 3. Scripting concepts 17

return

Use the return command to return a value before the end of the procedure body or if a contrast value
must be returned.

Namespaces

Jacl tracks named entities such as variables, in namespaces. The wsadmin tool also adds entries to the
global namespace for the scripting objects, such as, the AdminApp object

When you run a proc command, a local namespace is created and initialized with the names and the
values of the parameters in the proc command. Variables are held in the local namespace while you run
the proc command. When you stop the proc command, the local namespace is erased. The local
namespace of the proc command implements the semantics of the automatic variables in languages such
as C and Java.

While variables in the global namespace are visible to the top-level code, they are not visible by default
from within a proc command. To make them visible, declare the variables globally using the global
command. For the variable names that you provide, the global command creates entries in the local
namespace that point to the global namespace entries that actually define the variables.

If you use a scripting object provided by the wsadmin tool in a proc, you must declare it globally before
you can use it, for example:

proc { ... } {
global AdminConfig
... [$AdminConfig ...]

}

Calling scripts using another script
Use the source command to call a Jacl script from another Jacl script. For example:

Create a script called testl.jacl.

source c:/temp/script/testProcedure.jacl
printName Cathy Smith

Create a script called testProcedure.jac]l.

proc printName {first last} {
puts "My name is $first §last"

Pass the following path as a script argument.
wsadmin -lang jacl -f c:/temp/script/testl.jacl

You must use forward slashes (/) as your path separator. Backward slashes (\) do not work.
Redirection using the exec command

The following Jacl exec command for redirection does not work on Linux platforms:
eval exec 1s -1 > /tmp/out

The exec command of the Jacl scripting language does not fully support redirection therefore it might
cause problems on some platforms.

Do not use redirection when using the exec command of the Jacl language. Instead, you can save the
exec command for redirection in a variable and write it to a file, for example:

open /tmp/out w puts $fileld $result close $fileld

18 Scripting the application serving environment

In some cases, you can also perform a redirection using shell and a .sh command redirection, not a
redirection issued by Tcl.

Using wsadmin scripting with Jython

Jython is an alternate implementation of Python, and is written entirely in Java.

The wsadmin tool uses Jython V2.1. The following information is a basic summary of the Jython syntax. In
all sample code, the => notation at the beginning of a line represents command or function output.

Limitation: T On the Microsoft Windows 2003, Windows 2008, Windows Vista, and Windows 7
operating systems, the os.system() funct