
IBM WebSphere Application Server for z/OS, Version 8.0

Establishing highly available services
for applications

SA38-0664-01

���

Note
Before using this information, be sure to read the general information under “Notices” on page 41.

Compilation date: July 14, 2011

© Copyright IBM Corporation 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

How to send your comments . v

Changes to serve you more quickly . vii

Chapter 1. Establishing high availability for Data access resources 1
Changing the error detection model to use the Exception Checking Model 1
Configuring resource adapters . 2

Resource adapters collection . 3
Configuring Oracle Real Application Cluster (RAC) with the application server 7

Configuring a simple RAC configuration in an application server cluster 9
Configuring Oracle connection caching in the application server 10
Configuring two-phase commit distributed transactions with Oracle RAC 12

Configuring client reroute for applications that use DB2 databases 13
Configuring connection validation timeout . 15

Chapter 2. Establishing high availability for Service integration 17
High availability and workload sharing for service integration technologies 17

Configuring high availability and workload sharing of service integration 17
Administering high availability for service integration 25
Injecting failures into a high availability system . 29

Chapter 3. Establishing high availability for Transactions 31
Transactional high availability . 31

Deployment for transactional high availability . 34
High availability policies for the transaction service 37

Appendix. Directory conventions . 39

Notices . 41

Trademarks and service marks . 43

Index . 45

© Copyright IBM Corp. 2011 iii

iv Establishing highly available services for applications

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2011 v

vi Establishing highly available services for applications

Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book
delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF
format more frequently. During a temporary transition phase, you might experience broken links. During
the transition phase, expect the following link behavior:

v Links to Web addresses beginning with http:// work

v Links that refer to specific page numbers within the same PDF book work

v The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2011 vii

viii Establishing highly available services for applications

Chapter 1. Establishing high availability for Data access
resources

This page provides a starting point for finding information about data access. Various enterprise
information systems (EIS) use different methods for storing data. These backend data stores might be
relational databases, procedural transaction programs, or object-oriented databases.

The flexible IBM WebSphere® Application Server provides several options for accessing an information
system's backend data store:

v Programming directly to the database through the JDBC 4.0 API, JDBC 3.0 API, or JDBC 2.0 optional
package API.

v Programming to the procedural backend transaction through various J2EE Connector Architecture (JCA)
1.0 or 1.5 compliant connectors.

v Programming in the bean-managed persistence (BMP) bean or servlets indirectly accessing the
backend store through either the JDBC API or JCA compliant connectors.

v Using container-managed persistence (CMP) beans.

v Using the IBM data access beans, which also use the JDBC API, but give you a rich set of features and
function that hide much of the complexity associated with accessing relational databases.

Service Data Objects (SDO) simplify the programmer experience with a universal abstraction for messages
and data, whether the programmer thinks of data in terms of XML documents or Java objects. For
programmers, SDOs eliminate the complexity of the underlying data access technology (JDBC, RMI/IIOP,
JAX-RPC, JMS, and so on) and message transport technology (java.io.Serializable, DOM Ojbects, SOAP,
JMS, and so on).

Changing the error detection model to use the Exception Checking
Model
The error detection model has been expanded and the data source has a configuration option that you can
use to select the exception mapping model or the exception checking model for error detection. This
configuration option allows the Error Detection Model to comply with Java Database Connectivity (JDBC)
4.0.

About this task

By default, the exception mapping Error Detection Model configuration is selected. The exception mapping
Error Detection Model replaces some exceptions raised by the JDBC driver. Exception checking does not
do this. If you want to use this configuration, no changes are needed. If you want to use the exception
checking model, you need to configure the error detection model in the application server. If you previously
changed the Error Detection Model, you can also use these steps to change the configuration back to
using to the exception mapping model.

Procedure
1. Open the administrative console.

2. Go to the WebSphere Application Server Data Source properties panel for the data source.

a. Select Resources > JDBC > Data Sources > data_source

b. Select WebSphere Application Server Data Source properties.

3. In the Error Detection Model section, click Use the WebSphere Application Server Exception
Checking Model.

© IBM Corporation 2009 1

Configuring resource adapters
You can view a list of installed and configured resource adapters in the administrative console. Also, you
can use the administrative console to install new resource adapters, create additional configurations of
installed resource adapters, or delete resource adapter configurations.

Before you begin

A resource adapter is an implementation of the Java EE Connector Architecture (JCA) specification. The
JCA specification provides access for applications to resources outside of the server or provides access
for an enterprise information system (EIS) to applications on the server. It can provide application access
to resources such as DB2®, Customer Information Control System (CICS®), Information Management
Systems (IMS™), SAP, and PeopleSoft.

It can provide an EIS with the ability to communicate with message-driven beans that are configured on
the server. Some resource adapters are provided by IBM®; however, third-party vendors can provide their
own resource adapters. A resource adapter implementation is provided in a resource adapter archive
(RAR)file; this file has an extension,RAR. A resource adapter can be provided as a stand-alone adapter or
as part of an application, in which case it is called an embedded adapter.

The Java Connector Architecture (JCA) Version 1.6 specification adds support for Java annotations and
Bean Validation in RAR modules. For more information about annotation support and metadata, see the
topic, JCA 1.6 support for annotations in RAR modules.

About this task

Use this task to configure a stand-alone resource adapter archive file. Embedded adapters are installed as
part of the application installation. This panel can be used to work with either type adapter.

Procedure
1. Open the product administrative console.

2. Select Resources > Resource adapters > resource_adapter.

3. Set the scope setting. This field specifies the level to which this resource definition is visible. For
general information, see the topic, Administrative console scope settings, in the Related Reference
section. The Scope field is a read-only string field that shows where the particular definition for a
resource adapter is located. This field is set either when the resource adapter is installed, which can
only be at the node level, or when a new resource adapter definition is added.

4. Configure the description. This field specifies a text description of the resource adapter. Use a
free-form text string to describe the resource adapter and its purpose.

5. Set the archive path. Use this field to specify the path to the RAR file containing the module for this
resource adapter. This property is required.

6. Set the class path. The list of paths or JAR file names that together form the location for the resource
adapter classes is set here. This includes any additional libraries needed by the resource adapter. The
resource adapter code base is automatically added to the class path, but if anything outside the RAR
is needed it can be specified here.

7. Set the native path. The list of paths that form the location for the resource adapter native libraries is
set here. The resource adapter code base is automatically added to the class path, but if anything
outside the RAR is needed it can be specified here.

8. Set the ThreadPool alias. The name of a thread pool that is configured in the server that is used by
the resource adapter Work Manager is specified in this field. If there is no thread pool configured in the
server with this name, the default configured thread pool instance, named Default, is used. This
property is only necessary if this resource adapter uses Work Manager. This field does not apply for
the z/OS® platform.

2 Establishing highly available services for applications

Resource adapters collection
Use this panel to perform the following actions on stand-alone resource adapters: view the list of installed
resource adapters, install additional resource adapters, create additional configurations of already installed
resource adapters and delete resource adapter configurations.

A resource adapter can be provided as a stand-alone adapter or as part of an application, in which case
the resource adapter is referred to as an embedded adapter. Refer to related task, Installing resource
adapters within applications, for more information on embedded resource adapters. A resource adapter is
an implementation of the Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA)
specification. Enterprise applications can use a resource adapter to access resources outside of the
application server including relational databases like DB2, online transaction processing (OLTP) systems
like CICS, and enterprise information system (EIS) like SAP and PeopleSoft. A resource adapter can
provide an EIS with the ability to communicate with message-driven beans (MDB) that are configured on
the server. Resource adapters are provided by IBM or third party vendors. A resource adapter
implementation is provided in a resource adapter archive file; this file has an extension of .rar.

To view this administrative console page, click Resources > Resource Adapters > Resource adapters.

To display a list of all of the resource adapters that are defined for a specific scope, select that scope.

To view the stand-alone resource adapters that are provided with the application server, select the Show
built-in resources checkbox in the Preferences section.

To view additional information about, or to change the settings of a specific resource adapter, click the
resource adapter name.

To perform an action on a specific resource adapter, select the checkbox beside the resource adapter
name and click the appropriate button detailed below.

Install RAR
Install a resource archive (RAR).

You can upload a RAR file from the local file system, or specify a RAR file on a remote file system. The
RAR file must be installed at the node level.

New
Create a copy of the selected resource archive which is already installed on the application server.

If you want to create a copy of an installed resource adapter, specify a server for the scope, and click
New. You cannot create a copy of a resource adapter at the node scope. If you want to install a new
resource adapter, click Install RAR.

Delete
Delete the selected resource adapter.

Update RAR
Update the selected resource adapter. Update a resource adapter archive (RAR) file when you determine
that a resource adapter, or a set of resource adapters, needs to be updated with a different version or
implementation.

Different versions or implementations of resource adapters can include different settings, therefore,
updating your adapter might be beneficial if you require a specific set of configuration options. You can
update the resource adapter for all of the nodes in a cell or all the nodes in a cluster. If some of your
nodes are earlier than Version 7.0, the RAR update is not supported until those nodes are migrated to
Version 7.0 or later.

Chapter 1. Establishing high availability for Data access resources 3

Name
Specifies the name of the resource adapter.

Description
Specifies a text description of the resource adapter.

This description is a free-form text string to describe the resource adapter and its purpose.

Scope
Specifies the level at which this resource adapter is visible. For general information, read about
administrative console scope settings.

Some considerations that you should keep in mind for this particular panel are:

v Changing the scope enables you to see which resource adapter definitions exist at that level.

v Changing the scope does not have any effect on installation. Installations are always done under a
scope of node, no matter what you set the scope to.

v When you create a new resource adapter from this panel, you must change the scope to what you want
it to be before you click New.

Resource adapter settings
Use this page to specify settings for a resource adapter.

A resource adapter is an implementation of the Java Platform, Enterprise Edition (Java EE) Connector
Architecture (JCA) specification that provides access for applications to resources outside of the server,
provides access for applications to an enterprise information system (EIS), or provides access for an EIS
to applications on the server. Resource adapters provide applications access to resources such as DB2,
CICS, SAP and PeopleSoft. Resource adapters can provide an EIS with the ability to communicate with
message driven beans that are configured on the server. Some resource adapters are provided by IBM;
however, third party vendors can provide their own resource adapters. A resource adapter implementation
is provided in a resource adapter archive file (RAR); this file has an extension of .rar. A resource adapter
can be provided as a stand alone adapter or as part of an application, in which case the resource adapter
is referred to as an embedded adapter.

The JCA Version 1.6 specification adds support for Java annotations in RAR modules. For more
information on annotation support see the topic, JCA 1.6 support for annotations in RAR modules.

To view this administrative console page, click one of the following paths:

v Resources > Resource Adapters > Resource adapters > New.

v Resources > Resource Adapters > Resource adapters > resource_adapter.

v Applications > WebSphere enterprise applications > enterprise_application > Manage Modules >
connector_module > Resource Adapter.

v Install a new resource adapter archive:

1. Click Resources > Resource Adapters > Resource adapters > Install RAR.

2. Specify a full path for the local file system or remote file system, and click Next.

Scope:

Specifies the highest topological level at which application servers can use this adapter.

 The Scope field is a read-only string field that specifies where the particular definition for a resource
adapter is located. The Scope field is set when the resource adapter is installed, which can only be at the
node level, or when a new resource adapter definition is added.

Name:

4 Establishing highly available services for applications

Specifies the name of the resource adapter definition.

 This property is a required string containing no spaces that is a meaningful text identifier for the resource
adapter.

Description:

Specifies a text description of the resource adapter.

 This description is a free-form text string to describe the resource adapter and its purpose.

Archive path:

Specifies the path to the installed resource archive file that contains the module for this resource adapter.

 You can only select RAR files that are installed on the nodes within the selected scope, preventing you
from configuring a selection that might fail for some of your nodes.

Note: For resources at the cell scope, the RAR files that are available are those that are installed on each
individual node in the entire cell. For resources at a cluster scope, the RAR files that are available
are those that are installed on each individual node in that particular cluster.

This property is required.

 Data type String

Class path:

Specifies a list of paths or Java archive file (JAR) names that together form the location for the resource
adapter classes.

 Class path entries are separated by using the ENTER key and must not contain path separator characters
like ';' or ':'. Class paths can contain variable (symbolic) names that can be substituted using a variable
map. Check your driver installation notes for specific JAR file names that are required.

Native library path:

Specifies an optional path to any native libraries, which are .dll or .so files.

 Native path entries are separated by using the ENTER key and must not contain path separator
characters like ';' or ':'. Native paths can contain variable (symbolic) names that can be substituted using a
variable map.

Isolate this resource provider:

Specifies that this resource provider will be loaded in its own class loader. This allows different versions of
the same resource provider to be loaded in the same Java Virtual Machine. Give each version of the
resource provider a unique class path that is appropriate for that version.

 Ensure that all copies of a resource adapter have the same value for this option. For example, if you
create a resource adapter at the cluster scope, the value of this option will be taken from the resource
adapter archive (RAR) that you copy. When you create the copy, you cannot modify the value for any
instances of that RAR, which would be the copies at the node or cluster scope in this example. If you
need to modify the value, you have to delete the copies of the RAR until there is only one instance of that
particular RAR that is left.

Chapter 1. Establishing high availability for Data access resources 5

Note: You cannot isolate a resource provider if you specify a native library path.

Advanced resource adapter properties
Use this page to specify advanced settings for resource adapters that comply with the Version 1.5 and 1.6
Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) specification.

A resource adapter is an implementation of the JCA specification that provides access for applications to
an enterprise information system (EIS), like DB2, CICS, SAP and PeopleSoft, or provides access for an
EIS to applications on the server. A resource adapter can also provide an EIS with the ability to
communicate with message-driven beans that are configured on the server. Some resource adapters are
provided by IBM, but third party vendors can provide their own resource adapters.

A resource adapter implementation is provided in a resource adapter archive file; this file has an extension
of .rar. A resource adapter can be provided as a stand-alone adapter or as part of an application, in which
case it is referred to as an embedded adapter.

To view this administrative console page, click Resources > Resource Adapters > Resource adapters >
resource_adapter > Advanced resource adapter properties.

Restrict the JVM to allow only one instance of this resource adapter:

Prevents more than one instance of a resource adapter JavaBeans with a unique resource adapter
implementation class name from existing in the same Java Virtual Machine (JVM). This field is only
available on resource archives that allow definitions for activation specifications.

Note: Enabling this setting imposes a restrictive condition on the inbound communications. For example, if
two applications embed the same resource adapter, only the first application to start will be able to
access resources through its embedded resource adapter. If a stand-alone resource adapter is
configured for a single instance, no applications that embed that same resource adapter will be able
to access resources.

 Data type Boolean (checkbox)
Default False (disabled)

Register this resource adapter with the high availability manager:

Specifies that the high availability (HA) manager will manage the lifecycle of a JCA resource adapter in a
cluster. This option is only applicable to resource adapters with a version greater than JCA 1.0 and running
on the Network Deployment version of WebSphere. Do not select this option without first consulting the
product documentation for the resource adapter, because this option requires the resource adapter to
support high availability of inbound messaging. This field is only available on resource archives that allow
definitions for activation specifications.

Note: Enabling this setting imposes a restrictive condition on the inbound communications.

This setting can be implemented with:

v Endpoint failover: allows only one resource adapter in an HA group to receive messages across
multiple servers. The result is that only one resource adapter can have endpoints active at one time.

v Resource adapter instance failover: allows only one resource adapter in an HA group to be started
across multiple servers. Inbound or outbound communication is limited to one resource adapter in the
cluster.

 Data type Boolean (checkbox with implementation options)
Default False (disabled)

6 Establishing highly available services for applications

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations - z/OS

app_server_root
Refers to the top directory for a WebSphere Application Server node.

 The node may be of any type—application server, deployment manager, or unmanaged for
example. Each node has its own app_server_root. Corresponding product variables are
was.install.root and WAS_HOME.

The default varies based on node type. Common defaults are configuration_root/AppServer and
configuration_root/DeploymentManager.

configuration_root
Refers to the mount point for the configuration file system (formerly, the configuration HFS) in
WebSphere Application Server for z/OS.

 The configuration_root contains the various app_server_root directories and certain symbolic links
associated with them. Each different node type under the configuration_root requires its own
cataloged procedures under z/OS.

The default is /wasv8config/cell_name/node_name.

plug-ins_root
Refers to the installation root directory for Web Server Plug-ins.

profile_root
Refers to the home directory for a particular instantiated WebSphere Application Server profile.

 Corresponding product variables are server.root and user.install.root.

In general, this is the same as app_server_root/profiles/profile_name. On z/OS, this will always
be app_server_root/profiles/default because only the profile name "default" is used in
WebSphere Application Server for z/OS.

smpe_root
Refers to the root directory for product code installed with SMP/E or IBM Installation Manager.

 The corresponding product variable is smpe.install.root.

The default is /usr/lpp/zWebSphere/V8R0.

Configuring Oracle Real Application Cluster (RAC) with the application
server
Oracle Real Application Cluster (RAC) is a "share-everything" database architecture in which two or more
Oracle RAC nodes are clustered together and share the same storage. The RAC nodes are connected
together with a high-speed interconnect that enables fast communication between the Oracle nodes. The
nodes can exchange various categories of data block ownership information during startup, lock
information, exchange transaction information and data, and so on.

About this task

Using the Oracle JDBC driver, you can configure failover support, load balancing, or both, in an Oracle
Real Application Clusters (RAC) environment. Oracle RAC is an option of an Oracle database that brings
together two or more computers to form a clustered database that behaves as a single system. In a RAC
database, Oracle processes that are running in separate nodes access the same data from a shared disk
storage. First introduced in Oracle Version 9i, RAC provides both high availability and flexible scalability.

Chapter 1. Establishing high availability for Data access resources 7

A typical Oracle RAC cluster consists of the following:

v Cluster nodes – 2 to n nodes or hosts, running the Oracle database server.

v Network Interconnect – a private network used for cluster communications and cache fusion. This is
typically used for transferring database blocks between node instances.

v Shared Storage – used to hold the database system and data files. The shared storage is accessed by
the cluster nodes.

v Production network – used by clients and application servers to access the database.

The following figure depicts a typical configuration for Oracle RAC:

High speed
interconnect

WebSphere Application Server

.....
RAC node1 RAC node2 RAC node3 RAC node4

Shared cache with Oracle Cache Fusion

SAN
FabricStorage Area

Network

Shared
storage

Production
Network

.....
.....

.....
.....

Users

Here are two of the many features that Oracle RAC provides:

v Oracle Notification Service (ONS) allows for Oracle RAC to communicate the status for the nodes,
which are typically UP and DOWN events, to the Oracle JDBC driver and the driver's connection cache.
To take advantage of ONS, you must configure the application server to use Oracle's connection
caching instead of the application server's connection pooling feature. Read the topic Configuring
Oracle connection caching in the application server for more information on this process.

v Distributed Transaction Processing (DTP) is a feature that was introduced in Oracle 10gR2. When this
feature is enabled, Oracle will ensure that all in-flight prepared transactions that belong to a DTP
service for failed RAC instances are pushed to disk. Then, Oracle will restart the DTP service on any of
the RAC instances that are still operational.

For more information on Oracle RAC and how it works with the application server, refer to Building a high
availability database environment using WebSphere middleware: Part 3: Handling two-phase commit in
WebSphere Application Server using Oracle RAC on the developerWorks® website.

8 Establishing highly available services for applications

Procedure
v “Configuring a simple RAC configuration in an application server cluster.”

v “Configuring Oracle connection caching in the application server” on page 10.

v “Configuring two-phase commit distributed transactions with Oracle RAC” on page 12.

Configuring a simple RAC configuration in an application server
cluster
Oracle Real Application Cluster (RAC) is a "share-everything" database architecture that can provide high
availability and load balancing. A typical configuration for an Oracle RAC contains two or more Oracle RAC
nodes that are clustered together and share the same storage.

About this task

This figure depicts a typical RAC physical topology in a cluster environment for the application server, and
both the failover and load balancing are enabled:

Load balance = on
Failover = on

Router

WebSphere Application Server Cluster

cluster-member1 cluster-member1

rac-node1 rac-node2

Interconnect

Shared disk

P. Primary

In the figure above, the application server cluster consists of two members: cluster-member1 and
cluster-member2. The Oracle RAC physical configuration contains two nodes: rac-node1 and rac-node2.
The RAC nodes can be located in the same physical machine with the cluster members, or they could be
placed in entirely different machines. The actual placement does not impact the fundamental qualities of
the services provided by RAC. To achieve both high availability and load-balancing, you can specify the
Oracle data source URL for both cluster members in the application server with the required properties.

Chapter 1. Establishing high availability for Data access resources 9

Procedure
1. Navigate to the Oracle data source. Click Resources > JDBC > Data sources >

oracle_data_source. If you don't already have an Oracle data source, create a new data source by
clicking New and completing the wizard. For the URL, substitute the properties in the next step.

2. Set the URL for the Oracle database with the required configuration parameters.
jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=rac-node1)(port=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=rac-node2)(port=1521)))
 (FAILOVER=on)(LOAD_BALANCE=on)
 (CONNECT_DATA=(SERVER=DEDICATED)
 (SERVICE_NAME=<service_name>)))

Note: Be aware of these configuration options:

v If you are not using Oracle services, then service_name will be the database name in the
example. If you are using Oracle services, then service_name will be the name of the
services.

v The example has FAILOVER and LOAD_BALANCE turned on. To turn one or both of these
features off, change on to off in the above example.

3. Click Apply or OK.

Configuring Oracle connection caching in the application server
You can elect to configure an Oracle data source to use the Oracle connection caching feature instead of
using the application server connection pooling. Connection caching for Oracle databases is similar to
connection pooling in the application server.

About this task

Currently, Oracle supports connection caching only with data sources that use the
oracle.jdbc.pool.OracleDataSource implementation class, instead of the
oracle.jdbc.pool.OracleConnectionPoolDataSource or oracle.jdbc.xa.client.OracleXADataSource classes.
By default, the Oracle JDBC providers in the application server are configured to use the
oracle.jdbc.pool.OracleConnectionPoolDataSource for non-XA data sources, or
oracle.jdbc.xa.client.OracleXADataSource for XA data sources. To enable Oracle connection caching, you
must configure and use a new JDBC provider in the application server that implements the
oracle.jdbc.pool.OracleDataSource class.

Note: Oracle connection caching does not support XA.

Procedure
1. Create a data source and user-defined JDBC provider.

a. Click Resources > JDBC > Data sources

b. Select a server from the Scope drop-down list.

c. Click New.

d. Enter the name and JNDI name for the data source. Click Next.

e. Create a JDBC provider. Select Create new JDBC provider, and click Next.

f. Define the required properties for the JDBC provider. Use the following configuration settings:

v Database type: User-defined

v Implementation class name: oracle.jdbc.pool.OracleDataSource

Click Next.

g. Enter the class path for ojdbc6.jar, and click Next.

h. For Data store helper class name, enter
com.ibm.websphere.rsadapter.Oracle11gDataStoreHelper. Click Next.

10 Establishing highly available services for applications

i. Define the security aliases for this data source, and click Next.

j. Finish the wizard.

k. Save the configuration changes.

2. Configure the data source that you created.

a. Click the name of the data source. The configuration panel displays.

b. Select Custom properties, and create or modify the properties for this data source. Enter or
update the following custom properties:

 Name Value

disableWASConnectionPooling true
gotcha: You must also set the maximumPoolSize
attribute to 0 on WebSphere Application Server
connection pool settings to allow Oracle to control the
pool boundaries.

connectionCachingEnabled true

connectionCacheName your_cache_name

removeExistingOracleConnectionPoolIfExists true
Note: The removeExistingOracleConnectionPoolIfExists
property must be set to true so the application server
removes any existing Oracle connection pools with an
identical name. Otherwise, the Oracle data source fails
the getConnection method if the pool name that is
created has a name that is identical to an existing pool.

For example, if you run a test connection, the test
connection process creates an Oracle connection pool
that prevents the application server from working properly
at run time.

URL Oracle_URL

Note: The order in which the custom properties are set is important. The setting order can be an
issue because the application server passes the properties as a collection and the order is
not guaranteed. If you encounter this issue, contact Oracle and reference Oracle bug
#6638862.

3. Click Apply or OK.

4. Save the changes to the application server configuration.

5. Restart the application server.

Results

Oracle does not display a message if the pool creation fails, and a normal connection is returned instead.
You can confirm that the Oracle connection pool is created by using the administrative console test
connection function for the data source. First, turn on trace with the trace string, "RRA=all", for the server
that runs your application. Then, issue a test connection. Issue a second test connection. Both test
connections should work. Examine the trace log.

If the Oracle connection pool was created successfully, the trace shows that the second test connection
detected that the Oracle connection cache exists because of the first test connection, and was successful
in removing it so that it can be created again by the second test.

Chapter 1. Establishing high availability for Data access resources 11

Configuring two-phase commit distributed transactions with Oracle
RAC
Real Application Cluster (RAC) configurations for Oracle 10g have an inherent issue with the transaction
manager when Oracle attempts to recover two-phase commit distributed transactions that span over
multiple Oracle RAC nodes. A problem can occur when one node fails, and Oracle opens up the other
surviving nodes for business before the Oracle RAC completes the necessary recovery action for the node
that has failed. The application server's ability to maintain transaction affinity provides you the ability to
circumvent this issue.

About this task

Errors can occur when the recovery process attempts to commit or rollback a transaction branch through a
RAC node that was previously active but later failed. The transaction manager would receive the following
exception:
ORA- 24756: transaction does not exist

If this error is encountered, the Oracle database administrator might need to manually resolve the in-doubt
transaction by forcing a rollback or commit process. If you do not desire a manual intervention, however,
you might want to configure an automatic and transparent strategy for transaction recovery.

If the in-doubt transaction is not resolved, any subsequent transactions will receive the following exception:
ORA-01591 lock held by in-doubt distributed transaction

The result is that portions of the database will not be usable.

The key to a transparent recovery strategy is to eliminate the possibility of a global transaction spanning
more than one transaction branch over multiple RAC nodes. A transaction branch corresponds to a
database connection that is enlisted in a global transaction. If all connections in a global two-phase commit
transaction originate from the same node, transaction recovery problems should not arise. Configure an
Oracle RAC with the application server to prevent errors with two-phase transactions.

The application server maintains transaction affinity for incoming connections, and you can take advantage
of this feature to configure automatic recovery for Oracle RAC with two-phase commit transactions. If you
implement this configuration, all connections from a given application server will be received from the
same Oracle node, and the connections will finish on that same node. This configuration will avoid
situations in which transactions span multiple nodes, and you should not experience a recovery problem if
one or more Oracle nodes go down.

Procedure
v You can elect to manually resolve the in-doubt transaction.

1. Get the orphaned transaction ID. Issue the following command:
sql > select state, local_tran_ID, Global_tran_Id from dba_2pc_pending where state = "prepared"

2. Roll back all of the transaction IDs that are in the prepared phase.
sql > rollback force ’’;

v Configure an automatic strategy for transaction recovery.

1. Create an Oracle service that has only one primary node. Creating the service with one primary
node will ensure that load balancing is disabled. You can also specify one or more alternate nodes
with the -a parameter. Run this command to create the service:
srvctl add service -d <database_name> -s <service_name> -r <primary nodes> -a <alternate_nodes>

2. Enable Distributed Transaction Processing (DTP) on the Oracle service. DTP was first introduced in
Oracle 10gR2. Each DTP service is a singleton service that is available on only one Oracle RAC
instance. Run this command:
execute dbms_service.modify_service (service_name => ’<service_name>’ , dtp => true);

12 Establishing highly available services for applications

3. Configure each cluster member in the application server to use the Oracle DTP service.

Results

If you configured an automatic recovery strategy, the DTP service will start automatically on the preferred
instance. However, if the database is restarted, the DTP service will not start automatically. You can start
the DTP service using this command:
srvctl start service -d -s

If a RAC node stops working, Oracle will not failover the DTP service until the Oracle RAC cleanup and
recovery is complete. Even if the Oracle nodes come back up, the Oracle DTP service will not return to
the freshly restarted RAC node. Instead, you will have to manually move the service to the restarted RAC
node.

When you configure DTP on the Oracle service, you have transferred load balancing from the Oracle
JDBC provider to the application server. The workload will be distributed by the application server instead
of Oracle, which is why you created services that do not implement load balancing and only use one
primary node. This configuration prevents situations in which transaction processes span multiple RAC
nodes and alleviates recovery problems that can arise when one or more RAC nodes fail.

Configuring client reroute for applications that use DB2 databases
The client reroute feature enables you to configure your client applications for a DB2 universal database to
recover from a communication loss, and the applications can continue to work with minimal interruption.
Rerouting is central to the support of continuous operations, but rerouting is only possible when there is an
alternate location that is identified to the client connection.

Before you begin

This task assumes the following:

v You have a DB2 data source defined in the application server. See the topic, Configuring a data source
using the administrative console, for information about creating a data source.

v The DB2 data source to which your application connects is running one of the following:

– DB2 for z/OS Version 9.1 or later

– DB2 Database for Linux, UNIX, and Windows Version 9.5 or later

v You have implemented the DB2 database with a redundant setup or the ability to fail the DB2 server to
a standby node.

v You are connecting to the data source with a Type-4 connection.

About this task

Client reroute for DB2 allows you to provide an alternate server location, in case the connection to the
database server fails. If you decide to use client reroute with the persistence option, the alternate server
information persists across Java Virtual Machines (JVMs). In the event of an application server crash, the
alternate server information is not lost when the application server is restored and attempts to connect to
the database.

Without any configuration on the client side, a JDBC driver for DB2 supports the client reroute capability, if
it is enabled, when the driver makes an initial connection to the DB2 server. When the JDBC driver
connects to a DB2 server that has an alternate server configured, the primary server sends information
about the alternate server to the JDBC driver. If the connection to the primary server fails, the JDBC driver
is able to reroute connections to the alternate server. If the client process crashes, however, the alternate

Chapter 1. Establishing high availability for Data access resources 13

server information is lost, and the client needs to connect to the primary server again. If the client cannot
make an initial connection to the primary server, the client has no knowledge of the alternate server and
cannot reroute.

To overcome this problem, you can configure a DB2 data source in the application server with the
Alternate server name and Alternate port number fields, or with the clientRerouteAlternateServerName
and clientRerouteAlternatePortNumber data source custom properties, to support client reroute even on
the initial connection attempt. If the JDBC driver is not able to connect to the primary DB2 server, the
information that is necessary for a client reroute is already present, and the JDBC driver can reroute the
connection to an alternate server.

Attention: The data source custom property, enableClientAffinitiesList, changes the semantics of the
clientRerouteAlternateServerName and clientRerouteAlternatePortNumber properties.

To learn more about these properties, see the DB2 information center topic, Common IBM Data Server
Driver for JDBC and SQLJ properties for all supported database products. To learn more about client
affinity, see the topic, .Configuring client affinity for applications that use DB2 databases.

Additionally, if you have configured a DB2 data source as a Type 4 JDBC driver, you can use the Client
reroute server list JNDI name field, or the clientRerouteServerListJNDIName data source custom
property, to enable persistence of the client reroute state. Typically, when a connection is rerouted and the
JDBC driver has connected to the alternate DB2 server, the alternate server sends information about its
own alternate server to the JDBC driver. The JDBC driver will then have the information that is required to
reroute the connection again if the alternate DB2 server is not available. Effectively, the server that was
originally the alternate server is now the primary server, and a new alternate server has been established.
If you enable persistence for client reroute, this new state can be remembered. If the application server
crashes and is restarted, the JDBC driver can connect to the DB2 server that was considered the primary
server at the time of the crash. Without the persistence feature, the JDBC driver would have to start from
the original server configuration and attempt to connect to the server that was originally considered the
primary server.

You can use the automatic client rerouting feature within the following DB2 configurable environments:

v Enterprise Server Edition (ESE) with the data partitioning feature (DPF)

v Data Propagator (DPROPR)-style replication

v High availability cluster multiprocessor (HACMP™)

v High availability disaster recovery (HADR).

Procedure
1. In the administrative console, click Resources > JDBC > Data sources > data_source.

2. Click WebSphere Application Server data source properties.

3. In the DB2 automatic client reroute options section, fill in the fields to enable client rerouting.
Complete the following fields:

Alternate server names
Specifies the list of alternate server name or names for the DB2 server. If more than one
alternate server name is specified, the names must be separated by commas. For example:
 host1,host2

Alternate port numbers
Specifies the list of alternate server port or ports for the DB2 server. If more than one alternate
server port is specified, the ports must be separated by commas. For example:
5000,50001

Note: Ensure that an equal number of entries must be specified for both alternate ports and
hosts. Otherwise, a warning is displayed and client reroute is not enabled.

4. Optional: Enable client reroute with the persistence option.

14 Establishing highly available services for applications

a. Complete the field for Client reroute server list JNDI name. The field specifies the JNDI name
that is used to bind the DB2 client reroute server list into the JNDI name space. The DB2 database
server uses this name to look up the alternate server name list when the alternate server
information is not already in memory.

Note: Be aware of the following:

v This option is not supported for Type 2 data sources. If you use a DB2 data source that is
configured as a Type 2 JDBC driver, the JDBC driver uses a catalog to persist the client
reroute information. If this property is configured with a Type 2 driver, the application
server will issue a warning.

v Use different JNDI names among different data sources. Otherwise, when you delete a
data source, and the JNDI entry is removed from the name space, the other data sources
that share the JNDI entry will be affected.

5. Configure the retry count and interval for the client reroute function. Complete these two fields:

Retry interval for client reroute
Specifies the amount of time, in seconds, between retries for automatic client reroute.

Maximum retries for client reroute
Specifies the maximum number of connection retries that are attempted by the automatic client
reroute function if the primary connection to the server fails. The property is only used when
Retry interval for client reroute is set.

 Attention: If you do not specify a value for these properties, DB2 failover processing (client
rerouting) does not occur.

6. Click OK and save the changes.

7. Restart the application server.

What to do next

If you later want to remove the client reroute information that is bound in JNDI, you can do so by deleting
the data source. You can also use the unbind feature with the test connection service to delete the JNDI
binding for the client reroute function from the application server's JNDI name space without deleting the
data source.

To delete the JNDI binding for client reroute:

1. Select Unbind client reroute list from JNDI.

2. Click OK.

3. Save the configuration.

4. Click Test connection for the data source.

5. Deselect Unbind client reroute list from JNDI.

6. Click OK.

7. Save the configuration.

Configuring connection validation timeout
You can configure a timeout for connection validation by the Java Database Connectivity (JDBC) driver
through a data source custom property in the data source configuration panels.

About this task

You can choose between validating connections with the JDBC driver or by having the application server
run a SQL query. Select one or both of the following connection pretest attributes:

v Validate new connections

Chapter 1. Establishing high availability for Data access resources 15

v Validate existing pooled connections

By default, connection validation is disabled. When you save the configuration for the data source, the
administrative console supplies only the option that is selected. The administrative console will select
validation by timeout or validation by a query, but if validation is not enabled then the application server
will select neither option.

Procedure
1. Open the administrative console.

2. Go to the WebSphere Application Server Data Source properties panel for the data source.

a. Select Resources > JDBC > Data Sources > data_source

b. Select WebSphere Application Server Data Source properties.

3. Go to the Connection Validation Properties section.

4. Select the type of connections that the application server will validate.

v Select Validate new connections. This option specifies that the connection manager tests newly
created connections to the database.

v Select Validate existing pooled connections. This options specifies that the connection manager
tests the validity of pooled connections before returning them to applications.

v You can also select both options

Note: You must make a selection here. If you do not select one or both of these options, you will
not be able to select Validation by JDBC Driver. The Validation by JDBC Driver timeout
feature is only available for JDBC providers that comply with the JDBC 4.0 specification.

For an Oracle datasource, Validation by JDBC Driver appears on the administrative console
only after the validateNewConnectionTimeout property is added to the custom properties of
WebSphere Application Server datasource properties. The validateNewConnectionTimeout
property is used for JDBC 4.0 driver validation and can be specified using administrative
console.

.

5. Click Validation by JDBC Driver. The application server issues a warning if Validation by JDBC
driver is configured and the JDBC driver does not implement JDBC 4.0, or if the Connection.isValid
method raises an error.

Note: Connection validation by SQL query is deprecated. Use validation by JDBC Driver instead.

6. Enter the timeout value in the input box. The timeout value is in seconds.

Note: If retries are configured, meaning the retry interval is not set to 0, for Validate new
connections or Validate existing pooled connections, then the full value of the timeout
applies to each retry. For each retry, the application server waits for the retry interval. Then the
JDBC driver uses the full value of the timeout to validate the connection

7. Save the data source configuration.

What to do next

If you are modifying an existing data source, restart your server for this change to go into effect. If this is a
new data source, restarting the server is not necessary.

16 Establishing highly available services for applications

Chapter 2. Establishing high availability for Service
integration

This page provides a starting point for finding information about service integration.

Service integration provides asynchronous messaging services. In asynchronous messaging, producing
applications do not send messages directly to consuming applications. Instead, they send messages to
destinations. Consuming applications receive messages from these destinations. A producing application
can send a message and then continue processing without waiting until a consuming application receives
the message. If necessary, the destination stores the message until the consuming application is ready to
receive it.

High availability and workload sharing for service integration
technologies
These topics provide information about high availability and workload sharing for service integration
technologies.

About this task
v High availability and workload sharing
v “Configuring high availability and workload sharing of service integration”
v “Administering high availability for service integration” on page 25
v “Managing high availability when messaging engines fail to start” on page 26

Configuring high availability and workload sharing of service
integration
You can configure high availability and workload sharing of service integration without using messaging
engine policy assistance.

Before you begin

Ensure that you want to use the following procedure. As an alternative, you can configure high availability
and workload sharing of service integration by using messaging engine policy assistance when you add a
server cluster to a bus. You create messaging engines and their associated policies as part of the
procedure, by using the appropriate predefined messaging engine policy type. Alternatively, you can use a
custom policy type and configure the messaging engine policy as you require, and the relevant core group
policies and match criteria are created automatically.

About this task

When you set up a service integration environment, you create bus members, either servers or clusters,
that run messaging engines. For high availability, where the messaging engine can fail over, or workload
sharing, where multiple messaging engines share the load on a destination, you need to create a cluster
bus member and configure high availability and workload sharing characteristics of the messaging
engines.

If you do not require high availability or workload sharing, you can use a simple configuration and create a
server bus member. You do not need the steps described in this topic.

The high availability and workload sharing characteristics of the messaging engines in the cluster are set
by core group policies.

© IBM Corporation 2009 17

To see the policies that are configured in your system, you can use the administrative console to open the
Policies page. In the navigation pane, click Servers -> Core groups -> Core group settings ->
core_group_name -> [Additional Properties] Policies.

One of the available policies is the default service integration policy, "Default SIBus Policy", which is the
policy that a messaging engine uses unless you configure the system so that the engine uses another
policy. The default policy is sufficient for many purposes and you might not need to alter the policy
configuration. It is not advisable to alter the default service integration policy, because those changes will
affect all messaging engines that the policy manages. Therefore, it is better to create and configure one or
more new specific policies.

Procedure
1. Optional: Create a cluster, if it is not created already. See Creating clusters.

2. Add the cluster to the service integration bus. See Adding a cluster to a bus without using messaging
engine policy assistance.

A single messaging engine that uses the default service integration policy is created automatically.

For high availability without workload sharing, you can use this configuration and do not need to
change it further. If you want to configure the messaging engine behavior further, for example to
specify preferred servers for the messaging engine, or enable the messaging engine to fail back,
complete step 3.

3. Optional: For high availability when you want to configure the messaging engine behavior, create and
configure a policy for the messaging engine. Create a policy with the type “One of N” . See “Creating a
policy for messaging engines” on page 19 and “Configuring a core group policy for messaging
engines” on page 20.

4. Optional: For workload sharing without high availability, use the following steps:

a. Add as many messaging engines as you require to the cluster. Typically, a workload sharing
configuration has one messaging engine for each server in the cluster. See Adding a messaging
engine to a cluster.

b. Create and configure a policy for each messaging engine in the cluster. Create policies with the
type Static. See “Creating a policy for messaging engines” on page 19 and “Configuring a core
group policy for messaging engines” on page 20.

5. Optional: For workload sharing with high availability, use the following steps:

a. Add as many messaging engines as you require to the cluster. Typically, a workload sharing
configuration has one messaging engine for each server in the cluster. See Adding a messaging
engine to a cluster.

b. Create and configure a policy for each messaging engine in the cluster. Create policies with the
type “One of N”. See “Creating a policy for messaging engines” on page 19 and “Configuring a
core group policy for messaging engines” on page 20.

6. Optional: To use an external high availability (HA) framework to manage high availability or workload
sharing behavior, use the following steps:

a. If you require workload sharing, add as many messaging engines as you require to the cluster.
Typically, a workload sharing configuration has one messaging engine for each server in the
cluster. See Adding a messaging engine to a cluster.

b. Create and configure one policy for the messaging engines in the cluster. Create a policy with the
type “No operation”. See “Creating a policy for messaging engines” on page 19 and “Configuring a
core group policy for messaging engines” on page 20.

What to do next

If you created a high availability configuration for service integration, you might also want to configure high
availability for the transaction service.

18 Establishing highly available services for applications

If you created a workload sharing configuration, you might want to deploy a queue destination to the
cluster, so that the queue is partitioned across the set of messaging engines.

Creating a policy for messaging engines
You create one or more core group policies for service integration to control the behavior of the messaging
engine, or engines, in a server cluster. The policies support behavior such as high availability, workload
sharing or scalability in a server cluster.

Before you begin

Ensure that you want to use the following procedure. As an alternative, you can create a policy by using
messaging engine policy assistance when you add a server cluster to a bus. You create messaging
engines and their associated policies as part of the procedure, and use predefined messaging engine
policy types that support frequently-used cluster configurations. Alternatively, you can use a custom policy
type and configure the messaging engine policy as you require, and the relevant core group policies and
their match criteria are created automatically.

Continue with the following procedure to create a core group policy for messaging engines if you are
familiar with it. Otherwise, it is easier to create a policy by using messaging engine policy assistance when
you add a server cluster to a bus.

Decide what type of core group policy you need to create for the configuration you require. For service
integration, the following types of core group policy apply:

v Static. Use this type of policy for a workload sharing or scalability configuration without high availability.
Create one policy for each messaging engine in the cluster.

v One of N. Use this type of policy for a high availability configuration, or a workload sharing configuration
with high availability. You create one policy for each messaging engine in the cluster.

v No operation. Use this type of policy when you use an external high availability framework to manage
the messaging engines in the cluster. You create one policy for all the messaging engines in the cluster.
The configuration might be high availability, or workload sharing with high availability.

For further information, see Policies for service integration.

About this task

A policy is a component of a core group. A core group can have a number of different policies; each policy
applies to a particular high availability group and determines the high availability behavior of resources in
that group. For service integration, the resources that you want to control are the messaging engines.
Typically, you create one policy for each messaging engine in the cluster, unless you want the messaging
engines to be managed by external high availability framework.

To create a policy for a messaging engine, use the administrative console to complete the following steps.

Procedure
1. In the navigation pane, click Servers -> Core groups -> Core group settings -> core_group_name

-> [Additional Properties] Policies. A list of currently configured core group policies is displayed.

2. Click New.

3. Select one of the following options from the Policies list. Only the following policy types are applicable
to service integration:

Static A messaging engine cannot fail over in a WebSphere Application Server cluster.

One of N
A messaging engine can fail over in a WebSphere Application Server cluster.

Chapter 2. Establishing high availability for Service integration 19

No operation
A messaging engine is managed by an external high availability framework such as IBM
HACMP. This option is for use with an external high availability cluster.

Do not select any other policy type, because they because they are not supported for the service
integration bus component.

4. Click Next. The policies configuration page is displayed.

5. Enter a Name that is unique in the scope of the core group.

6. Click Apply or OK.

7. Configure the policy. See “Configuring a core group policy for messaging engines.”

8. Save your changes to the master configuration.

Configuring a core group policy for messaging engines
You can configure a core group policy for service integration to associate the policy with specific
messaging engines and to specify messaging engine behavior, such as which server a messaging engine
runs on, whether a messaging engine can fail over or fail back, and the frequency of messaging engine
monitoring.

Before you begin

The policy that you want to associate with the messaging engine must exist. It is possible to configure the
default service integration policy, "Default SIBus Policy", but it is not advisable, because those changes will
affect all messaging engines that the policy manages. Therefore, if you want to configure a policy, it is
advisable to create a new one, as described in “Creating a policy for messaging engines” on page 19.

About this task

Only the following types of core group policy apply to service integration and messaging engines:

v Static

v One of N

v No operation

You cannot use the “All active” or “M of N” policy types, because they are not supported for the service
integration bus component.

The default service integration policy is a “One of N” policy with a single match criterion that matches any
service integration messaging engine. The default policy has a monitoring interval of 120 seconds, no
preferences for particular servers and no automatic fail back. If you want to configure messaging engine
behavior, it is advisable to create additional, more specialized policies, and retain the default service
integration policy to apply to messaging engines that do not match any other policy.

To configure a core group policy for a messaging engine, or messaging engines, use the administrative
console to complete the following steps:

Procedure
1. Select the policy by clicking Servers -> Core groups -> Core group settings -> core_group_name

-> [Additional Properties] Policies -> policy_name.

2. Associate the policy with the messaging engine, or messaging engines, that you require. Typically, for
a policy of type Static or “One of N”, you associate the policy with a single messaging engine.
Typically, for a policy of type “No operation”, you associate the policy with all the messaging engines
(one or more) in a cluster. See “Using match criteria to associate a policy with a messaging engine” on
page 21.

3. Configure the policy further, by using the appropriate procedure for the policy type that you are
configuring:

20 Establishing highly available services for applications

v Configure a Static policy for service integration.

v Configure a “One of N” policy for service integration.

v Configure a “No operation” policy for service integration.

Using match criteria to associate a policy with a messaging engine:

Use this task to configure match criteria to associate a core group policy with a messaging engine.

 Before you begin

To complete this task, you must have created a policy to associate with the messaging engine.

About this task

Each messaging engine is managed by an HAGroup to which a policy is assigned at run time. The policy
assigned to an HAGroup is chosen by comparing the match criteria of the set of configured policies with
the properties of the HAGroup. The policy with the strongest match is assigned to the HAGroup. The
following table lists the names and values of the HAGroup properties for a messaging engine, and the set
of matching messaging engines if a property is used in the policy match criteria:

Name Value

The messaging engine or engines that
the policy matches

type WSAF_SIB Any messaging engine

WSAF_SIB_MESSAGING_ENGINE The name of the messaging engine. This
is in the form node.server-bus for a
messaging engine in a server, or
cluster.number-bus for a messaging
engine in a cluster, where number relates
to the order that messaging engines were
added to the bus (the first messaging
engine that is created when you add the
cluster to a bus has the number 000).

A particular messaging engine

WSAF_SIB_BUS The name of the bus All messaging engines in a particular bus

IBM_hc The name of the cluster All messaging engines in a particular
cluster

For more information about match criteria for messaging engines, see Match criteria for service integration.

Note: If you use messaging engine policy assistance to configure the messaging engine behavior for
messaging engines in a cluster, suitable match criteria are created automatically and you do not
have to specify any.

Procedure

1. Open the match criteria page for your policy by clicking Servers -> Core groups -> Core group
settings -> core_group_name -> [Additional Properties] Policies -> policy_name -> [Additional
Properties] Match criteria.

2. Click New to create a new match criterion.

3. Enter a suitable Name and Value to specify a messaging engine, or group of messaging engines, that
will match this policy. Use the information in the previous table to find the required name and value for
the selection you want.

For more description of the fields on this page, see Match criteria settings. For more information about
finding the correct names for match criteria, see Core group settings.

4. Click OK.

5. Repeat the previous three steps for each match criteria that you want to add to the policy. You add
match criteria to make the match stronger, and to progressively restrict the set of HAGroups that the

Chapter 2. Establishing high availability for Service integration 21

policy can match. You must specify at least two match criteria to ensure that the policy creates a
stronger match than the match that the “Default SIBus Policy” creates. For example, to associate a
policy with all the messaging engines in a cluster, you might specify the following match criteria:

 Name Value

type WSAF_SIB

WSAF_SIB_BUS bus_name

IBM_hc cluster_name

6. Save your changes to the master configuration.

Configuring a Static policy for service integration:

After you create a new Static core group policy for a messaging engine, you configure the policy to specify
which server the messaging engine runs on. Optionally, you can configure the frequency of messaging
engine monitoring.

 Before you begin

A core group policy with the policy type of Static must exist and you must have first completed the steps in
“Configuring a core group policy for messaging engines” on page 20.

About this task

You can use a Static policy to run a messaging engine in either a server or a cluster bus member. A Static
policy restricts the messaging engine to a particular server, even in a server cluster. This is useful for a
workload sharing configuration, where you want to spread messaging load across multiple servers and
failover is not required. You can have multiple messaging engines running in a cluster, with each one
restricted to a specific server. Although the Static policy can accept multiple servers, do not configure more
than one static group server for use with a messaging engine.

Procedure

1. Specify which server the messaging engine will run on:

a. Click Static group servers.

b. Select the server you require from the Core group servers list, then click Add.

c. Ensure that there is only one server in the Static group servers list, then click OK.

2. Optional: If required, enter a value in the Is alive timer field. This value specifies the interval of time,
in seconds, at which the high availability manager (HAManager) checks that a messaging engine is
running properly. When this value is 0 (zero), the default value of 120 seconds is used.

3. Click OK.

4. Save your changes to the master configuration.

Configuring a “One of N” policy for service integration:

After you create a new “One of N” core group policy for a messaging engine, you configure the policy to
specify the messaging engine behavior, such as which server the messaging engine runs on, and whether
the messaging engine can fail over or fail back. You can also configure the frequency of messaging engine
monitoring.

 Before you begin

A core group policy with the policy type of “One of N” must exist and you must have first completed the
steps in “Configuring a core group policy for messaging engines” on page 20.

22 Establishing highly available services for applications

About this task

You can use a “One of N” policy to run a messaging engine in a cluster to enable failover. One server in
the cluster server runs the messaging engine and other servers in the cluster act as standby servers,
ready to run the messaging engine if it cannot run in its current server.

You can use a “One of N” policy to run a messaging engine in a server bus member, but this is equivalent
to a cluster with only one server, that is, the value of N is 1, so the messaging engine cannot fail over.

You can configure a “One of N” policy for a messaging engine in a cluster to provide high availability, or
workload sharing with high availability, depending on how you set the configuration options. See Policies
for service integration.

Procedure

1. Open the Policies page for the policy you are configuring. Click Servers -> Core groups -> Core
group settings -> core_group_name -> [Additional Properties] Policies > policy_name.

2. Optional: If required, define which servers the messaging engine prefers to run on in a preferred
servers list:

a. Under Additional Properties, click Preferred servers.

b. Select the servers you require from the Core group servers list, then click Add to add them to the
Preferred servers list. Ensure that the servers you select are in the server cluster where the
messaging engine runs.

c. Use Move up and Move down to adjust the order of the list as required. The earlier a server is in
the preferred servers list, the stronger the preference for that server.

d. Click OK.

The messaging engine runs in the first available server in the preferred servers list and fails over to the
next available server in the preferred servers list. If no preferred server is available, the messaging
engine can fail over to any other server in the cluster.

You might use the preferred servers list if one server has more resources available to it or typically
performs less work than the others. You might use the preferred servers list to help spread workload
across the cluster by configuring multiple policies and specifying a different preferred server for each
messaging engine. If you do not define a preferred server list, the messaging engine runs on the first
available server in the cluster.

3. Optional: If you defined a preferred servers list, if required, restrict the messaging engine to run only
on preferred servers, by selecting the Preferred servers only check box. The messaging engine runs
in the first available server in the preferred servers list and fails over to the next available server in the
preferred servers list. The messaging engine cannot run on a server that is not in the preferred servers
list. If no preferred server is available, the messaging engine cannot fail over.

You can use this option together with a single server in the preferred servers list to restrict a
messaging engine to a specific server in a workload sharing configuration. You can use this option
together with a preferred servers list to create a configuration that provides workload sharing and
aspects of high availability, for example, one primary server and one failover server for each
messaging engine. If you require high availability, use this option with care, because you can reduce or
remove the high availability of the messaging engine.

4. Optional: If you defined a preferred servers list, if required, specify that the messaging engine
automatically fails back to a more preferred server by selecting the Fail back check box. If a
messaging engine is running on a server that is low in the preferred servers list, or in the cluster but
not in the preferred servers list (for example, the messaging engine has failed over), the messaging
engine automatically fails back to a more preferred server when one becomes available.

5. Ensure that the messaging engine can always reach its data store or file store. If the messaging
engine can fail over, that is, for any configuration with high availability characteristics, the data store or
file store must be accessible from any server in the cluster on which the messaging engine might run.

Chapter 2. Establishing high availability for Service integration 23

The set of possible servers depends on whether you defined a preferred servers list and whether you
selected the Preferred servers only option. For example, a configuration might have a cluster of three
servers, server1, server2, and server3, with a single messaging engine that uses a policy configured
so that the messaging engine can fail over to any of the servers in the cluster. The message store for
the messaging engine must be accessible from all three servers. However, if the configured policy
specified a preferred server list of server1 and server2, and the Preferred servers only option is
selected, only server1 and server2 would need access to the data store or file store for that messaging
engine.

6. Optional: If required, enter a value in the Is alive timer field. This value specifies the interval of time,
in seconds, at which the high availability manager (HAManager) checks that a messaging engine is
running properly. When this value is 0 (zero), the default value of 120 seconds is used.

7. Click OK.

8. Save your changes to the master configuration.

Configuring a “No operation” policy for service integration:

After you create a new “No operation” core group policy for a messaging engine, you can continue the
configuration for a messaging engine to be managed by an external high availability (HA) framework. You
can also configure the frequency of messaging engine monitoring.

 Before you begin

A core group policy with the policy type of “No operation” must exist and you must have first completed the
steps in “Configuring a core group policy for messaging engines” on page 20.

About this task

A “No operation” policy allows an external HA cluster to control when and where a messaging engine runs.

Procedure

1. Associate the messaging engine with an externally managed resource group by creating an HA cluster
resource for it. Refer to the documentation for your external HA product.

2. Write scripts for the external HA framework to enable it to use the HAManager to start or stop the
messaging engine. The scripts invoke operations on the HAManager MBean on the server that is
taking ownership of the resource that represents the messaging engine.

3. Ensure that the messaging engine can always reach its data store. If the messaging engine is
configured to fail over, its data store must be accessible from any server in the cluster on which it
might run. The set of possible servers depends on how you have configured the external HA resource
group. A typical configuration is to include the data store as an additional resource in the resource
group managed by the external HA cluster. The HA cluster will then ensure that the data store and the
messaging engine failover together and remain collocated after the failover. Whether this is the case,
or whether a network server is used to make the data store available, the data store must be
accessible from any server that might run the messaging engine.

4. If the messaging engine must always be accessible through the same IP address, for example
because it is the receiving end of a WebSphere MQ link, you must arrange for that IP address to
remain collocated with the messaging engine. You can do this by creating an IP address resource in
the same external HA resource group as the resource that represents the messaging engine.

5. If required, enter a value in the Is alive timer field. This value specifies the interval of time, in
seconds, at which the high availability manager (HAManager) checks that a messaging engine is
running properly. When this value is 0 (zero), the default value of 120 seconds is used.

The “No operation” policy is intended primarily for when you use an external high availability framework
such as IBM HACMP. In this situation, you might create a monitoring script that the external framework
calls periodically. If you set the value of Is alive timer greater than or equal to 0, the HAManager
performs health monitoring and the external monitoring script can retrieve the state from the

24 Establishing highly available services for applications

HAManager MBean. Alternatively, if you set the value of Is alive timer to -1, monitoring by the
HAManager is disabled, and the external monitoring script can retrieve the state from the messaging
engine MBean.

6. Click OK.

7. Save your changes to the master configuration.

Configuring messaging engine failover for mixed version clusters
A messaging engine that is hosted on a WebSphere Application Server Version 7.0 or later server cannot
fail over to a messaging engine that is hosted on a WebSphere Application Server Version 6 server. If you
have a cluster bus member that consists of a mixture of Version 6 and Version 7.0 or later servers, you
must make sure the high availability policy is configured to prevent this type of failover.

About this task

To prevent failover of a Version 7.0 or later messaging engine to a Version 6 server, configure the high
availability policy for the messaging engine so that the cluster is effectively divided into one set of servers
for Version 6 and another set of servers for Version 7.0 or later, and the Version 7.0 or later messaging
engine is restricted to the servers at Version 7.0 or later.

Procedure

Make sure that the high availability policy is configured to prevent Version 7.0 or later messaging engines
from failing over to messaging engines hosted on a Version 6 server. For information about configuring
messaging engines for high availability see “Configuring high availability and workload sharing of service
integration” on page 17.

Administering high availability for service integration
Use these tasks to administer high availability at run time.

About this task
v “Managing a messaging engine in a cluster”
v “Moving a messaging engine from one server to another by using the HAManager” on page 26
v “Modifying the failover capability of a messaging engine” on page 26
v “Managing high availability when messaging engines fail to start” on page 26

Managing a messaging engine in a cluster
During run time, you can stop or start a messaging engine in a WebSphere Application Server cluster,
independently of the server in which it is running.

About this task

You might want to stop and restart a messaging engine in this way if, for example, you want to take a
backup copy.

A stop or start action of a messaging engine applies to the server on which it is performed and is a
runtime alteration of the state of the messaging engine. It does not alter the configured “Initial state” of the
messaging engine.

If a failover occurs, the fact that you have stopped the messaging engine does not affect the behavior of
the newly-activated instance; the messaging engine instance behaves in accordance with the configuration
settings of the server in which it is activated.

Chapter 2. Establishing high availability for Service integration 25

Moving a messaging engine from one server to another by using the HAManager
You can move a messaging engine from one server to another by changing the policy that is bound to the
messaging engine HAGroup. This is the recommended way of moving the messaging engine. You must
not attempt to directly activate or deactivate the members of the HAGroup that relates to the messaging
engine.

Before you begin

You must stop the messaging engine before changing the policy. After the messaging engine has moved,
you have to restart it manually.

About this task

You might want to move a messaging engine if you are aware of a problem that causes the server on
which the messaging engine is currently running to fail. For more information, see Specifying a preferred
server for messaging requests.

Modifying the failover capability of a messaging engine
You can modify the failover capability of a messaging engine at run time. However, do not do this unless it
is absolutely necessary.

About this task

To modify the failover capability of messaging engines, you change the policy that applies to the
corresponding high availability group. The servers in the cluster receive the configuration update and the
changes take effect as soon as you save them. For example, if there is a “One of N” policy that has no
preferred servers, and you change it to add a preferred server and enable fail back, when you click Save,
the HAManager ensures that the messaging engine is running on the new preferred server; if the
messaging engine is running on a different server, the HAManager moves it to the preferred server.

Procedure
1. If you want to change the policy so that the messaging engine runs on a different server, or you want

to add new servers, ensure that the servers can access the messaging engine data store or file store.

2. Follow the steps in Selecting the policy for a high availability group to modify the policy.

What to do next

See also High availability manager.

Managing high availability when messaging engines fail to start
If an attempt to start a messaging engine on a server is unsuccessful, that server is disabled as a location
for that messaging engine to run. After you have resolved the problem that prevented the messaging
engine from starting, you must manually re-enable the server to maintain your high availability
environment.

About this task

In a high availability environment, a messaging engine can run on multiple application servers. If an
attempt to start a messaging engine on a server is unsuccessful, or the server hosting a running
messaging engine stops, the high availability manager restarts the messaging engine on another eligible
server. If the high availability manager cannot start the messaging engine on that server, the server
becomes disabled as a location for that messaging engine to run, and the following message is produced
in the JVM logs for that server:
CWSID0039E: HAManager-initiated activation has failed, messaging engine messaging_engine_name will be disabled

26 Establishing highly available services for applications

In some situations, the messaging engine can repeatedly fail to start. In the following example, a
messaging engine, hosted in a cluster of three servers, is configured to use a data store. The cluster is
started before the database that is hosting the data store. The messaging engine attempts to start on
server1, and tries to connect to the data store for up to 15 minutes by default.

Because the database has not been started, the messaging engine cannot connect to the data store. The
messaging engine fails to start and server1 is disabled for high availability. The messaging engine fails
over to server2, and again attempts to start and connect to the data store.

Chapter 2. Establishing high availability for Service integration 27

If the database is still not started, the messaging engine fails to start and server2 is disabled for high
availability. The messaging engine fails over to server3, and again attempts to start and connect to the
data store.

28 Establishing highly available services for applications

If the database is still not running, the messaging engine fails to start and server3 is disabled for high
availability. All servers in the cluster are now disabled for high availability, and the messaging engine
cannot start until you start the database and re-enable at least one server.

When you have fixed the cause of the messaging engine's failure to start, re-enable the servers for high
availability by either restarting the servers, or by following the steps in this task to enable them using the
administrative console.

Procedure
1. Navigate to the high availability groups panel in the administrative console, to display a list of high

availability groups. Refer to Viewing high availability group information for details.

2. Find and click the relevant high availability group in the list. To find the relevant group, look for your
bus and messaging engine names contained as name-value pairs within the group name. For example
the group with the following name contains messaging engine MyCluster.000-MyBus, running on bus
MyBus on cluster MyCluster:
IBM_hc=MyCluster, WSAF_SIB_BUS=MyBus,WSAF_SIB_MESSAGING_ENGINE=MyCluster.000-MyBus,type=WSAF_SIB

The panel for that group appears, showing the high availability state associated with each running
server in the messaging engine cluster. If a server is in the disabled state (indicated by a red square),
the high availability of your environment is compromised because the messaging engine cannot start
on that server. If all servers are in the disabled state, the messaging engine cannot start until you
enable at least one server.

3. Select any members that are in the disabled state, and click Enable.

What to do next

When a messaging engine that uses a data store fails over to another application server, it might attempt
to start before the database server has detected the loss of the network connection to the original
application server. Because the database server has not detected the loss of the connection, the data
store table locks are not released and the messaging engine cannot start. In this situation, the messaging
engine can fail to start on all servers in the cluster. To avoid this problem tune your system to detect the
loss of the connection more quickly.

Injecting failures into a high availability system
You can inject failures into the system to check that the high availability behavior functions as you expect.

Before you begin

Attention: This facility is provided to support acceptance testing of a highly available configuration and
should only be used for that purpose. Injecting a failure into the system will cause resources to be
disabled or failed over from one server to another and will disrupt the workload.

About this task

You can send a JMX command to a messaging engine MBean to simulate a failure in the high availability
system. Injecting failures provides a useful way to undertake advanced verification or preproduction
testing. You should not inject a failure into a production system.

There are two types of messaging engine failure that you can simulate: local error and global error. For
more information about error types, see Messaging engine recovery from exception conditions.

Procedure
1. Start the wsadmin client.

For more information about the wsadmin client, see wsadmin scripting tool.

Chapter 2. Establishing high availability for Service integration 29

2. Use a JMX command to create a variable and set its value to the messaging engine, or engines, that
you want to fail.

In Jython:
mbean_name = AdminControl.queryNames("type=SIBMessagingEngine,name=messaging_engine_name,*")

In Jacl:
set mbean_name [$AdminControl queryNames type=SIBMessagingEngine,name=messaging_engine_name,*]

3. Use a JMX command to inject the failure, by using the variable you created in the previous step.

To inject a local error in Jython:
AdminControl.invoke(mbean_name, "injectFault", "LocalError")

To inject a global error in Jython:
AdminControl.invoke(mbean_name, "injectFault", "GlobalError")

To inject a local error in Jacl:
$AdminControl invoke $mbean_name injectFault LocalError

To inject a global error in Jacl:
$AdminControl invoke $mbean_name injectFault GlobalError

Results

Use the administrative console to view the results. If you have configured the system for failover, a local
error should cause the messaging engine to be failed over to another server. A global error does not cause
a failover.

Example

For example, to inject a global error into a messaging engine named myNode01.server1-bus1, use the
following commands:

In Jython:
myMBean = AdminControl.queryNames("type=SIBMessagingEngine,name=myNode01.
server1-bus1,*")

$AdminControl invoke $myMBean injectFault GlobalError

In Jacl:
set myMBean [$AdminControl queryNames type=SIBMessagingEngine,name=myNode01.
server1-bus1,*]

AdminControl.invoke(myMBean, "injectFault", "GlobalError")

30 Establishing highly available services for applications

Chapter 3. Establishing high availability for Transactions

This page provides a starting point for finding information about Java Transaction API (JTA) support.
Applications running on the server can use transactions to coordinate multiple updates to resources as
one unit of work, such that all or none of the updates are made permanent.

The product provides advanced transactional capabilities to help application developers avoid custom
coding. It provides support for the many challenges related to integrating existing software assets with a
Java EE environment. More introduction...

Transactional high availability
The high availability of the transaction service enables any server in a cluster to recover the transactional
work for any other server in the same cluster. This facility forms part of the overall WebSphere Application
Server high availability (HA) strategy.

This feature is in addition to the support for peer restart and recovery, which enables you to restart on a
peer system in the sysplex.

As a vital part of providing recovery for transactions, the transaction service logs information about active
transactional work in the transaction recovery log. The transaction recovery log stores the information in a
persistent form, which means that any transactional work in progress at the time of a server failure can be
resolved when the server is restarted. This activity is known as transaction recovery processing. In
addition to completing outstanding transactions, this processing also ensures that any locks held in the
associated resource managers are released.

Peer recovery processing

The standard recovery process that is performed when an application server restarts is for the server to
retrieve and process the logged transaction information, recover transactional work and complete indoubt
transactions. Completion of the transactional work (and hence the release of any database locks held by
the transactions) takes place after the server successfully restarts and processes its transaction logs. If the
server is slow to recover or requires manual intervention, the transactional work cannot be completed and
access to associated databases is disrupted.

To minimize such disruption to transactional work and the associated databases, WebSphere Application
Server provides a high availability strategy known as transaction peer recovery.

Peer recovery is provided within a server cluster. A peer server (another cluster member) can process the
recovery logs of a failed server while the peer continues to manage its own transactional workload. You do
not have to wait for the failed server to restart, or start a new application server specifically to recover the
failed server.

© Copyright IBM Corp. 2011 31

The peer recovery process is the logical equivalent to restarting the failed server, but does not constitute a
complete restart of the failed server within the peer server. The peer recovery process provides an
opportunity to complete outstanding work; it cannot start new work beyond recovery processing. No
forward processing is possible for the failed server.

Peer recovery moves the high availability requirements away from individual servers and onto the server
cluster. After such failures, the management system of the cluster dispatches new work onto the remaining
servers; the only difference is the potential drop in overall system throughput. If a server fails, all that is
required is to complete work that was active on the failed server and redirect requests to an alternate
server.

By default, peer recovery is disabled until you enable failover of transaction log recovery in the cluster
configuration, and restart the cluster members. After you enable transaction log recovery, WebSphere
Application Server supports two styles for the initiation of transaction peer recovery: automated and
manual. You determine which style is more appropriate, based on your deployment, and specify that style
by configuring the appropriate high availability policy. This high availability policy is referred to elsewhere in
these topics as the policy for the transaction service.

Automated peer recovery
This style is the default for peer recovery initiation. If an application server fails, WebSphere
Application Server automatically selects a server to undertake peer recovery processing on its
behalf, and passes recovery back to the failed server when it restarts. To use this model, enable
transaction log recovery and configure the recovery log location for each cluster member.

Manual peer recovery
You must explicitly configure this style of peer recovery. If an application server fails, you use the
administrative console to select a server to perform recovery processing on its behalf.

In a HA environment, you must configure the compensation logs as well as the transaction logs. For each
server in the cluster, use the compensation service settings to configure a unique compensation log
location, and ensure that all cluster members can access those compensation logs.

Peer recovery example

The following diagrams illustrate the peer recovery process that takes place if a single server fails. Figure
2 shows three stable servers running in a WebSphere Application Server cluster. The workload is balanced
between these servers, which results in locks held by the back-end database on behalf of each server.

Figure 1. Peer recovery

32 Establishing highly available services for applications

Figure 3 shows the state of the system after server 1 fails without clearing locks from the database.
Servers 2 and 3 can run their existing transactions to completion and release existing locks in the
back-end database, but further access might be impaired because of the locks still held on behalf of server
1. In practice, some level of access by servers 2 and 3 is still possible, assuming appropriately configured
lock granularity, but for this example assume that servers 2 and 3 attempt to access locked records and
become blocked.

Figure 4 shows a peer recovery process for server 1 running inside server 3. The transaction service
portion of the recovery process retrieves the information that is stored by server 1, and uses that
information to complete any indoubt transactions. In this figure, the peer recovery process is partially
complete as some locks are still held by the database on behalf of server 1.

Figure 2. Server cluster up and running, just before server failure

Figure 3. Server 1 fails. Servers 2 and 3 become blocked as a result

Chapter 3. Establishing high availability for Transactions 33

Figure 5 shows the state of the server cluster when the peer recovery process is complete. The system is
in a stable state with just two servers, between which the workload is balanced. Server 1 can be restarted,
and will have no recovery processing of its own to perform.

Deployment for transactional high availability
Before you use the high availability (HA) function, you must consider deployment issues such as your file
system type, or where you plan to store the transaction recovery logs. In particular, your file system type
can have important consequences for your recovery configuration.

Common configuration

Transaction peer recovery requires a common configuration of the resource providers between the
participating server members to undertake peer recovery between servers. Therefore, peer recovery
processing can only take place between members of the same server cluster. Although a cluster can
contain servers that are at different versions of WebSphere Application Server, peer recovery can only be
performed between servers in the cluster that are at Version 6 or later.

Physical storage

For application servers to perform transaction peer recovery for each other, they must be able to access
the transaction recovery logs of all the other members in the cluster. Ensure that the log files are stored on
a medium that is accessible by all members of the cluster, and that each cluster member has a unique log
file location on this medium. This medium, and access to it, for example through a local area network

Figure 4. Peer recovery process started in server 3

Figure 5. Server cluster stable again with just two servers: server 2 and server 3

34 Establishing highly available services for applications

(LAN), must support the file-based force operation that is used by the recovery log service to force data to
disk. After the force operation is complete, information must be persistently stored on physical disk media.

In a HA environment, application servers must also be able to access the compensation logs. Ensure that
the compensation log files are stored on a medium that is accessible by all members of the cluster, and
that each cluster member has a unique log file location on this medium.

For example, you can use IBM Network attached storage (NAS) (http://www.ibm.com/servers/storage/nas/
index.html) mounted on each node, and shared SCSI drives, but not simple network share. All nodes must
have read and write access to the recovery logs.

In addition, configure the mechanism by which the remote log files are accessed, to exploit any fault
tolerance in the underlying file system. For example, by using the Network File System (NFS) and hard
mounting the remote directory containing the log files by using the -o hard option of the NFS mount
command, the NFS client will try a failed operation repeatedly until the NFS server becomes available
again.

Two types of potential server failure exist: software failure and hardware failure. Software failures generally
do not affect other application servers directly. Even servers on the same physical hardware can undertake
peer recovery processing. If a hardware failure occurs, all the servers that are deployed on the failed
hardware become unavailable. Servers on other hardware are required to handle peer recovery
processing. Any HA configuration requires that servers are deployed across multiple and discrete hardware
systems.

File system

The file system type is an important deployment consideration as it is the main factor in deciding whether
to use automated or manual peer recovery. For more information, see “How to choose between automated
and manual transaction peer recovery” on page 36.

Figure 6. Recovery logs on NAS storage are available to all servers

Chapter 3. Establishing high availability for Transactions 35

http://www.ibm.com/servers/storage/nas/index.html
http://www.ibm.com/servers/storage/nas/index.html

How to choose between automated and manual transaction peer recovery
Your type of file system is the dominant factor in deciding which kind of transaction peer recovery to use.
Different file systems have different behaviors, and the file locking behavior in particular is important when
choosing between automated and manual peer recovery.

WebSphere Application Server high availability (HA) support uses a heartbeat mechanism to determine
whether servers are still running. Servers are considered failed if they stop responding to heartbeat
requests. Some scenarios, such as system overloading and network partitioning (explained elsewhere in
this topic), can cause servers to stop responding to heartbeats, even though the servers are still running.
WebSphere Application Server uses file locking technology to prevent such events from causing
concurrent access to transaction recovery logs, because access to a recovery log by more than one server
can lead to loss of data integrity.

However, not all file systems provide the necessary file locking semantics, specifically that file locks are
released when a server fails. For example, Network File System Version 4 (NFSv4) provides this release
behavior, whereas Network File System Version 3 (NFSv3) does not.

NFSv4 releases locks held on behalf of a host in case that host fails. Peer recovery can occur
automatically without restarting the failed hardware. Therefore, this version of NFS is better suited for use
with automated peer recovery.

NFSv3 holds file locks on behalf of a failed host until that host can restart. In this context, the host is the
physical machine running the application server that requested the lock and it is the restart of the host, not
the application server, that eventually triggers the locks to release.

To illustrate file locking on NFSv3, consider the behavior when a cluster member fails:

 1. Server H is running on host H and holds an exclusive file lock for its own recovery log files.

 2. Server P is running on host P and holds an exclusive file lock for its own recovery log files.

 3. Host H fails, taking server H with it. The NFS lock manager on the file server holds the locks that are
granted to server H on its behalf.

 4. A peer recovery event is triggered in server P for server H by WebSphere Application Server.

 5. Server P attempts to gain an exclusive file lock for this peer recovery log, but is unable to do so as it
is held on behalf of server H. The peer recovery process is blocked.

 6. At an unspecified time, host H is restarted. The locks held on its behalf are released.

 7. The peer recovery process in server P is unblocked and granted the exclusive file locks that are
needed to undertake peer recovery.

 8. Peer recovery takes place in server P for server H.

 9. Server H is restarted.

10. If peer recovery is still in progress in server P, the recovery is halted.

11. Server P releases the exclusive lock on the recovery logs and returns ownership of the recovery logs
back to server H.

12. Server H obtains the exclusive lock and can now undertake standard transaction logging.

Because of this behavior, on NFSv3 you must disable file locking to use automated peer recovery.
Disabling file locking can lead to concurrent access to recovery logs so it is vital that you protect your
system from system overloading and network partitioning first. Alternatively, you can configure manual peer
recovery, where you prevent concurrent access by manually triggering peer recovery processing only for
servers that have failed.

System overloading
System overloading occurs when a machine becomes very heavily loaded such that response
times are extremely poor and requests begin to time out. Several potential causes exist for such
overloading, including:

36 Establishing highly available services for applications

v The server is underpowered and cannot handle the workload.

v The server received a temporary surge of requests.

v Insufficient physical memory is available. As a result, the operating system is too busy paging to
give the application server the required CPU time.

Network partitioning
Network partitioning occurs when a communications failure in a network results in two smaller
networks that are independent and cannot contact each other.

High availability policies for the transaction service
WebSphere Application Server provides integrated high availability (HA) support in which system
subcomponents, such as the transaction service, are made highly available. An HA policy provides the
logic that governs the manner in which each WebSphere Application Server HA component behaves within
the overall HA framework. For the transaction service, the transaction HA policy provides the logic to
determine which servers own a recovery log at any time.

During normal running, two servers on the network exchange heartbeats. During system overloading,
heartbeat operations time out, giving the appearance of a server failure. After network partitioning, each
server is in a separate network and heartbeats cannot pass between them, also giving the appearance of
a server failure.
Figure 7. Heartbeats in a system running normally, compared to heartbeats after the apparent server failures of system
overloading and network partitioning

Chapter 3. Establishing high availability for Transactions 37

Typically, transaction policies assign ownership of a recovery log to the server that originally created it (the
home server) and that server can then use the recovery log for both recovery and normal transactional
activity. In the event that the home server is unavailable or fails, ownership can pass to a peer server to
undertake recovery processing.

Conceptually, a policy can be thought of as consisting of two key components, a policy type and a policy
configuration.

Policy type

The policy type determines whether peer recovery initiation is manual or automated. The policy essentially
provides the logic for determining updated recovery log ownership in the event of a server failure. The
following WebSphere Application Server policy types are used for transaction peer recovery (other HA
policy types exist, but are not used by the transaction service):

Static Ownership of the recovery log is defined in the WebSphere Application Server configuration. At run
time, the static policy assigns ownership accordingly. Any changes to ownership require a change
to the static configuration and therefore this policy type is used for manually initiated peer
recovery.

One-of-N
Ownership of the recovery log is determined dynamically by the WebSphere Application Server HA
framework and assigned to exactly one of the N cluster members. This policy type is used for
automated peer recovery.

38 Establishing highly available services for applications

Appendix. Directory conventions

References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations - z/OS

app_server_root
Refers to the top directory for a WebSphere Application Server node.

 The node may be of any type—application server, deployment manager, or unmanaged for
example. Each node has its own app_server_root. Corresponding product variables are
was.install.root and WAS_HOME.

The default varies based on node type. Common defaults are configuration_root/AppServer and
configuration_root/DeploymentManager.

configuration_root
Refers to the mount point for the configuration file system (formerly, the configuration HFS) in
WebSphere Application Server for z/OS.

 The configuration_root contains the various app_server_root directories and certain symbolic links
associated with them. Each different node type under the configuration_root requires its own
cataloged procedures under z/OS.

The default is /wasv8config/cell_name/node_name.

plug-ins_root
Refers to the installation root directory for Web Server Plug-ins.

profile_root
Refers to the home directory for a particular instantiated WebSphere Application Server profile.

 Corresponding product variables are server.root and user.install.root.

In general, this is the same as app_server_root/profiles/profile_name. On z/OS, this will always
be app_server_root/profiles/default because only the profile name "default" is used in
WebSphere Application Server for z/OS.

smpe_root
Refers to the root directory for product code installed with SMP/E or IBM Installation Manager.

 The corresponding product variable is smpe.install.root.

The default is /usr/lpp/zWebSphere/V8R0.

© IBM Corporation 2005, 2009 39

40 Establishing highly available services for applications

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of IBM's intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by IBM, is the user's
responsibility.

APACHE INFORMATION. This information may include all or portions of information which IBM obtained
under the terms and conditions of the Apache License Version 2.0, January 2004. The information may
also consist of voluntary contributions made by many individuals to the Apache Software Foundation. For
more information on the Apache Software Foundation, please see http://www.apache.org. You may obtain
a copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

 IBM Director of Intellectual Property & Licensing
 IBM Corporation
 North Castle Drive
 Armonk, NY 10504-1785
 USA

 Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

 IBM Corporation
 Mail Station P300
 2455 South Road
 Poughkeepsie, NY 12601-5400
 USA
 Attention: Information Requests

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 2011 41

42 Establishing highly available services for applications

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. For
a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site
(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2011 43

http://www.ibm.com/legal/copytrade.shtml

44 Establishing highly available services for applications

Index

D
directory

installation
conventions 7, 39

R
resource adapters

configuration 2

© Copyright IBM Corp. 2011 45

	Contents
	How to send your comments
	Changes to serve you more quickly
	Chapter 1. Establishing high availability for Data access resources
	Changing the error detection model to use the Exception Checking Model
	Configuring resource adapters
	Resource adapters collection
	Install RAR
	New
	Delete
	Update RAR
	Name
	Description
	Scope
	Resource adapter settings
	Advanced resource adapter properties
	Directory conventions

	Configuring Oracle Real Application Cluster (RAC) with the application server
	Configuring a simple RAC configuration in an application server cluster
	Configuring Oracle connection caching in the application server
	Configuring two-phase commit distributed transactions with Oracle RAC

	Configuring client reroute for applications that use DB2 databases
	Configuring connection validation timeout

	Chapter 2. Establishing high availability for Service integration
	High availability and workload sharing for service integration technologies
	Configuring high availability and workload sharing of service integration
	Creating a policy for messaging engines
	Configuring a core group policy for messaging engines
	Configuring messaging engine failover for mixed version clusters

	Administering high availability for service integration
	Managing a messaging engine in a cluster
	Moving a messaging engine from one server to another by using the HAManager
	Modifying the failover capability of a messaging engine
	Managing high availability when messaging engines fail to start

	Injecting failures into a high availability system

	Chapter 3. Establishing high availability for Transactions
	Transactional high availability
	Deployment for transactional high availability
	How to choose between automated and manual transaction peer recovery

	High availability policies for the transaction service

	Appendix. Directory conventions
	Notices
	Trademarks and service marks
	Index
	D
	R

