
IBM WebSphere Application Server for z/OS, Version 8.0

Troubleshooting and support

GA32-0900-01

���

Note
Before using this information, be sure to read the general information under “Notices” on page 309.

Compilation date: July 26, 2011

© Copyright IBM Corporation 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

How to send your comments. ix

Changes to serve you more quickly . xi

Chapter 1. How do I troubleshoot?. 1

Chapter 2. Debugging applications. 3
Attaching a Rational tool to a remote debug session . 4
Unit testing with DB2 . 4
Debugging Service details. 5

Enable service at server startup . 5
JVM debug port . 5
JVM debug arguments . 5
Debug class filters . 5

Chapter 3. Adding logging and tracing to your application 7
Using Java logging in an application . 8

Using a logger . 9
Java logging . 18
Configuring the logger hierarchy . 19
Creating log resource bundles and message files. 20
Logger.properties file for configuring logger settings 22

Configuring applications to use Jakarta Commons Logging 23
Jakarta Commons Logging . 24
Configurations for the WebSphere Application Server logger. 27

Programming with the JRas framework . 29
JRas logging toolkit. 30
JRas Extensions . 32
JRas messages and trace event types. 40
Instrumenting an application with JRas extensions 43

Logging messages and trace data for Java server applications. 49
Message location best practices . 49
System performance when logging messages and trace data 52
Issuing application messages in the MVS master console 52

Logging Common Base Events in WebSphere Application Server 53
The Common Base Event in WebSphere Application Server. 53
Logging with Common Base Event API and the Java logging API 66
java.util.logging -- Java logging programming interface 75
Logger.properties file . 77
Logging Common Base Events in WebSphere Application Server 77
Showlog commands for Common Base Events . 78

Chapter 4. Configuring Java logging using the administrative console 79
Log streams and expected output . 80
Log level settings . 84
Changing the message IDs used in log files. 86

Converting log files to use IBM unique Message IDs 88
convertlog command . 88
MessageConverter class . 88

HTTP error, FRCA, and NCSA access log settings . 89
Enable logging service at server start-up . 89
Enable FRCA access logging . 90
FRCA log file path . 90

© Copyright IBM Corp. 2011 iii

FRCA log maximum size . 90
Maximum number of historical files . 90
FRCA log format . 90
Enable NCSA access logging . 90
NCSA access log file path . 90
NCSA access log maximum size . 91
Maximum number of historical files . 91
NCSA access log format . 91
Enable error logging . 91
Error log file path . 91
Error log maximum size . 91
Maximum number of historical files . 91
Error log level . 91

Chapter 5. Using HPEL to troubleshoot applications 93
High Performance Extensible Logging (HPEL) . 93

Basic mode and HPEL mode . 98
Changing from basic mode to HPEL logging and tracing. 100
Changing from HPEL to basic mode logging and tracing. 101
Configuring HPEL . 103

Configuring HPEL with wsadmin scripting . 103
HPEL logging and trace settings . 105
HPEL log configuration settings . 106
HPEL trace configuration settings . 107
HPEL text log configuration settings . 109

Log viewer settings . 111
Log view table . 111
Content and filtering details . 112
Server instance . 112
View contents . 112
System Out . 112
System Error. 113
Logs and trace . 113
Filtering. 113
Include loggers . 113
Exclude loggers. 113
Message contents . 113
Event timing . 113
From. 113
On (first occurrence) . 114
Until . 114
On (second occurrence) . 114

LogViewer command-line tool . 114
Developing log and trace reading applications . 117

Determining which of basic mode and HPEL mode is enabled 117

Chapter 6. Using sensitive log and trace guard . 119
Sensitive log and trace guard. 119
Enabling and disabling sensitive log and trace guard 120
Maintaining sensitive log and trace guard lists . 120

Chapter 7. Diagnosing problems (using diagnosis tools) 123

Chapter 8. Diagnosing problems with message logs 125
Viewing JVM logs . 126
JVM log interpretation . 127

iv Troubleshooting and support

Monitoring application logging using JMX notifications 127
Setting up the error log . 129
Viewing the service log . 130

Generating messages in Common Base Event format 131
Logstream size considerations . 132

Chapter 9. Working with trace. 133
Enabling trace on client and stand-alone applications 133
Tracing and logging configuration . 134
Enabling trace at server startup . 138
Enabling trace on a running server . 139
Diagnostic trace service settings . 139

Trace Output. 140
Runtime tab . 140
Trace Output. 140

Select a server to configure logging and tracing . 141
Server . 141
Node . 141
Host name . 141
Version . 141
Type . 141
Status . 141

Log and trace settings . 142
Switch to HPEL Mode button . 142
Diagnostic Trace . 142
Change Log Level Details . 142
NCSA access and HTTP error logging . 142

Setting up component trace (CTRACE) . 142
Preparing CTRACE controls and resources . 143
Starting CTRACE as part of WebSphere Application Server for z/OS initialization 144
Starting CTRACE while WebSphere Application Server for z/OS servers are active 145
CTRACE to collect trace data for Java server applications 146

Chapter 10. Troubleshooting class loaders . 147
Class loading exceptions . 149
Class loader viewer service settings . 154

Enable service at server startup. 154
Enterprise application topology . 154

Enterprise applications topology. 155
Class loader viewer settings . 155

Class Loader . 155
Search settings . 156

Search type . 156
Search terms . 157

Chapter 11. Choosing and using diagnosis tools and controls on z/OS 159
Troubleshooting using WebSphere variables . 160

Types of configuration variables. 161
Run-time environment: Best practices for maintaining the runtime environment 175
System controls: Best practices for using system controls 175
Performance diagnosis information . 176
Updating the CFRM policy. 176
Error Dump and Cleanup interface. 178
Displaying information about current application server work 179

Chapter 12. Using RMF . 185

Contents v

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 187
Enabling SMF recording . 189

Using the administrative console to enable properties for specific SMF record types 190
Editing the SMFPRMxx parmlib member . 190
Writing records to DASD . 191

Formatting the output data set . 191
Viewing the output data set . 192
Disabling SMF recording for WebSphere Application Server 192
Disabling SMF recording for the entire MVS system 193
Using SMF type 80 - preparing for audit support . 193

Audit support . 194
SMF settings. 194
SMF record type 120: overview . 195

SMF record type 120 (78) - WebSphere Application Server performance statistics 196

Chapter 14. Choosing diagnostic information sources 233
CEEDUMPs in the job log . 233
SVC dumps . 233
Formatting CTRACE data with an IPCS dialog . 234

Formatting CTRACE data in batch mode with IPCS 235
ICPS CTRACE command . 238
IPCS CTRACE subname query . 238

Viewing error log contents through the Log Browse Utility (BBORBLOG). 238
Using the log browse utility (BBORBLOG) . 239
Error log stream record output . 241

z/OS display command . 243
Hexadecimal conversion of Java error codes . 244
Managing operator message routing . 244

Chapter 15. Configuring the hang detection policy 247
Hung threads in Java Platform, Enterprise Edition applications 248
Example: Adjusting the thread monitor to affect server hang detection. 249

Chapter 16. Automation and recovery scenarios and guidelines 251
APPC automation and recovery scenarios . 251
WLM automation and recovery scenarios . 252
RACF automation and recovery scenarios . 252
RRS automation and recovery scenarios . 253
UNIX System Services automation and recovery scenarios. 254
TCP/IP automation and recovery scenarios . 255
DB2 automation and recovery scenarios . 256
CICS automation and recovery scenarios . 256
IMS automation and recovery scenarios. 257
WebSphere Application Server for z/OS (Daemon) automation and recovery scenarios 258
Web server (servlet) automation and recovery scenarios 259

Chapter 17. Working with troubleshooting tools 261
First failure data capture (FFDC) . 261
Configuring first failure data capture log file purges 262

Chapter 18. Working with Diagnostic Providers . 265
Diagnostic Providers . 265

Diagnostic Provider IDs . 266
Diagnostic Provider configuration dumps, state dumps, and self tests 267
Diagnostic Provider registered attributes and registered tests 268
Diagnostic Provider names . 270

vi Troubleshooting and support

The simpler interfaces provided by the Diagnostic Service MBean 270
Creating a Diagnostic Provider . 270

Diagnostic Provider Extensible Markup Language 271
Choosing a Diagnostic Provider name . 272
Implementing a Diagnostic Provider . 273
Creating a Diagnostic Provider registration XML file 279

Associating a Diagnostic Provider ID with a logger . 279
Static Assignment . 279
Dynamic Assignment . 280

Using Diagnostic Providers from wsadmin scripts . 280
Viewing the run time configuration of a component using Diagnostic Providers 282

Configuration data quick link or server selection . 282
Diagnostic Providers (selection) . 282
Configuration data. 283

Viewing the run time state data or configuring the state data collection specifications for a Diagnostic
Provider . 283
Diagnostic Provider State Collection Specification 284
State Data Quick Link or Server Selection . 285
State data. 285
Detailed state specification . 286
Change state specification. 286
Modifying the State Collection Specification from wsadmin scripts 287

Running a self diagnostic on a Diagnostic Provider 287
Tests Quick Link or Server Selection . 288
Test selection . 288
Test Results . 288
Test result details . 289

Chapter 19. Troubleshooting help from IBM . 291
Problem determination skills . 291
Diagnosing and fixing problems: Resources for learning 292
Using IBM Support Assistant . 293
Diagnosing problems using IBM Support Assistant tooling 294
IBM service call preparation . 295

IPCS VERBEXIT subcommand to display diagnostic data 296
Trace controls for IBM Support . 298
Dump controls for IBM service . 300

Chapter 20. Collecting Java dumps and core files using the administrative console 303
Java dump and core collection . 303

Chapter 21. Directory conventions . 305

Appendix. Directory conventions . 307

Notices . 309

Trademarks and service marks . 311

Index . 313

Contents vii

viii Troubleshooting and support

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2011 ix

x Troubleshooting and support

Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book
delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF
format more frequently. During a temporary transition phase, you might experience broken links. During
the transition phase, expect the following link behavior:

v Links to Web addresses beginning with http:// work

v Links that refer to specific page numbers within the same PDF book work

v The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2011 xi

xii Troubleshooting and support

Chapter 1. How do I troubleshoot?

Follow these shortcuts to get started quickly with popular tasks.

When you visit a task in the information center, look for the IBM® Suggests feature at the bottom of the
page. Use it to find available tutorials, demonstrations, presentations, developerWorks® articles,
Redbooks®, support documents, and more.

Add tracing and logging to your applications

* For more detailed information on enabling traces by using scripting, see the Troubleshooting with
scripting chapter in the Administering applications and their environment PDF book.

Collect details for IBM Support

Creating Common Base Events

Debug WebSphere® applications during development

Detect hung threads

Detect product configuration file problems

Set traces and logs with the console

Set traces and logs with scripting*

Work with message logs

Using Common Base Events for logging

Using IBM Support Assistant

Using HPEL to troubleshoot applications

Using JSR47 for logging

Using JSR47 for logging: Configuring access logs

© IBM Corporation 2003 1

2 Troubleshooting and support

Chapter 2. Debugging applications

To debug your application, you must use a development environment like the IBM Rational® Application
Developer for WebSphere to create a Java project. You must then import the program that you want to
debug into the project.

About this task

By following the steps below, you can import the WebSphere Application Server examples into a Java
project. Two debugging styles are available:
v Step-by-step debugging mode prompts you whenever the server calls a method on a web object. A

dialog lets you step into the method or skip it. In the dialog, you can turn off step-by-step mode when
you are finished using it.

v Breakpoints debugging mode lets you debug specific parts of programs. Add breakpoints to the part of
the code that you must debug and run the program until one of the breakpoints is encountered.

Breakpoints actually work with both styles of debugging. Step-by-step mode just lets you see which web
objects are being called without having to set up breakpoints ahead of time.

You do not need to import an entire program into your project. However, if you do not import all of your
program into the project, some of the source might not compile. You can still debug the project. Most
features of the debugger work, including breakpoints, stepping, and viewing and modifying variables. You
must import any source that you want to set breakpoints in.

The inspect and display features in the source view do not work if the source has build errors. These
features let you select an expression in the source view and evaluate it.

Procedure
1. Create a Java Project by opening the New Project dialog.

2. Select Java from the left side of the dialog and Java Project in the right side of the dialog.

3. Click Next and specify a name for the project, for example, WASExamples.

4. Click Finish to create the project.

5. Select the new project, choose File > Import > File System, then Next to open the import file
system dialog.

6. Browse the directory for files.

Go to the following directory: profile_root/installedApps/node_name/DefaultApplication.ear/
DefaultWebApplication.war.

7. Select DefaultWebApplication.war in the left side of the Import dialog and then click Finish. This
imports the JavaServer Pages files and Java source for the examples into your project.

8. Add any JAR files needed to build to the Java Build Path.

Select Properties from the right-click menu. Choose the Java Build Path node and then select the
Libraries tab. Click Add External JARs to add the following JAR files:
v profile_root/installedApps/node_name/DefaultApplication.ear/Increment.jar.

When you have added this JAR file, select it and use the Attach Source function to attach the
Increment.jar file because it contains both the source and class files.

v app_server_root/dev/JavaEE/j2ee.jar
v app_server_root/plugins/com.ibm.ws.runtime.jar
v app_server_root/plugins/com.ibm.ws.webcontainer.jar

Click OK when you have added all of the JARs.

9. You can set some breakpoints in the source at this time if you like, however, it is not necessary as
step-by-step mode will prompt you whenever the server calls a method on a web object. Step-by-step
mode is explained in more detail below.

© IBM Corporation 2004, 2008 3

10. To start debugging, you need to start the WebSphere Application Server in debug mode and make
note of the JVM debug port. The default value of the JVM debug port is 7777.

11. When the server is started, switch to the debug perspective by selecting Window > Open
Perspective > Debug. You can also enable the debug launch in the Java Perspective by choosing
Window > Customize Perspective and selecting the Debug and Launch checkboxes in the Other
category.

12. Select the workbench toolbar Debug pushbutton and then select WebSphere Application Server
Debug from the list of launch configurations. Click the New pushbutton to create a new configuration.

13. Give your configuration a name and select the project to debug (your new WASExamples project).
Change the port number if you did not start the server on the default port (7777).

14. Click Debug to start debugging.

15. Load one of the examples in your browser. For example: http://your.server.name:9080/hitcount

Attaching a Rational tool to a remote debug session
The steps below describe how to attach an IBM Rational Application Developer for WebSphere Software
product to a remote debug session on WebSphere Application Server for z/OS®.

About this task

Remote debugging can prove useful when the program you are debugging behaves differently on a z/OS
system than on your local system.

Procedure
1. Enable the debug engine on WebSphere Application Server for z/OS using the administrative console.

See debugging service details.

2. Import the Java source code that you want to debug into a Rational Application Developer product and
set breakpoints. See topics on setting breakpoints in the Rational Application Developer
documentation.

3. In the Rational Application Developer product, open a debug perspective and create a debug session
configuration.

4. Attach the Rational Application Developer product to the WebSphere Application Server for z/OS
debug runtime. See topics on remote debugging in the Rational Application Developer documentation.

5. Run the Java code in WebSphere Application Server for z/OS to hit the breakpoints set in the Rational
Application Developer product.

6. Use the debugger controls and features to debug the application.

Unit testing with DB2
These steps describe how to setup a unit test environment that would allow you to develop and unit test
code with DB2® z/OS to support Container Managed Persistence (CMP) development and access DB2
test data that resides on z/OS.

About this task

When using DB2 z/OS to support Container Managed Persistence (CMP) development and access DB2
test data that resides on z/OS, you should establish a testing environment to develop and unit test the
code. Perform the steps below to setup a test environment:

Procedure
1. Configure DB2 Distributed Data Facility (DDF) on z/OS to allow remote TCP/IP connections from your

WebSphere Studio Application Developer workstation. See the DB2 Information Center for information
on DDF.

4 Troubleshooting and support

|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

2. Install the DB2 Client Configuration Assistant on the workstation where WebSphere Studio Application
Developer is installed. The DB2 Client Configuration Assistant is shipped with DB2.

3. Use the DB2 Client Configuration Assistant to define a DB2 alias.

4. Use the DB2 alias you defined to access the DB2 subsystem on z/OS using the DB2 Distributed Data
Facility (DDF).

Debugging Service details
Use this page to view and modify the settings used by the Debugging Service.

To view this administrative console page, click Servers > Servers Types>WebSphere application
servers > server name > Debugging Service.

The steps below describe how to enable a debug session on WebSphere Application Server. Debugging
can prove useful when your program behaves differently on the application server than on your local
system.

Enable service at server startup
Specifies whether the server will attempt to start the Debug service when the server starts.

JVM debug port
Specifies the port that the Java virtual machine will listen on for debug connections.

JVM debug arguments
Specifies the debugging argument string used to start the JVM in debug mode.

Debug class filters
Specifies an array of classes to ignore during debugging. When running in step-by-step mode, the
debugger will not stop in classes that match a filter entry.

Chapter 2. Debugging applications 5

6 Troubleshooting and support

Chapter 3. Adding logging and tracing to your application

You can add logging and tracing to applications to help analyze performance and diagnose problems in
WebSphere Application Server.

About this task

Deprecation: The JRas framework that is described in this information center is deprecated. However, you
can achieve the same results using Java logging.

Designers and developers of applications that run with or under WebSphere Application Server, such as
servlets, JavaServer Pages (JSP) files, enterprise beans, client applications, and their supporting classes,
might find it useful to use Java logging for generating their application logging.

This approach has advantages over adding System.out.println statements to your code:
v Your messages are displayed in the WebSphere Application Server standard log files, using a standard

message format with additional data, such as a date and time stamp that are added automatically.
v You can more easily correlate problems and events in your own application to problems and events that

are associated with WebSphere Application Server components.
v You can take advantage of the WebSphere Application Server log file management features.

Procedure
1. Enable and configure any of the supported types of logging as needed. Use one of the following

methods:

v Configuring Java logging using the administrative console

v Configuring applications to use Jakarta Commons Logging

2. Customize the properties to meet your logging needs. For example, enable or disable a particular log,
specify the number of logs to be kept, and specify a format for log output.

v Configuring Java logging using the administrative console

© Copyright IBM Corp. 2011 7

3. If you do not want log and trace from Jakarta Commons Logging to use the WebSphere log and trace
infrastructure, reconfigure the Jakarta Commons Logging.

v “Configuring applications to use Jakarta Commons Logging” on page 23

Note: Use the WebSphere log and trace infrastructure for all of your log content to make problem
source identification simpler.

4. Restart the application server after making static configuration changes.

Example

The sample security policy that follows grants access to the file system and runtime classes. Include this
security policy, with the entry permission java.util.logging.LoggingPermission "control", in the
META-INF directory of your application if you want your applications to programmatically alter controlled
properties of loggers and handlers. The META-INF file is located in the following locations for the different
module types:

EJB projects ejbModule/META-INF/MANIFEST.MF

Application client projects appClientModule/META-INF/MANIFEST.MF

Dynamic web projects WebContent/META-INF/MANIFEST.MF

Connector projects connectorModule/META-INF/MANIFEST.MF

Below is a sample security policy that grants permission to modify logging properties:
//
//
// WebSphere Application Server Security Policy
//
//

//
// Allow all access to the file system and runtime classes
//
grant codeBase "file:${application}" {

permission java.util.logging.LoggingPermission "control";
};

Using Java logging in an application
This topic describes how to use Java logging within an application.

About this task

To create an application using Java logging, perform the following steps:

Procedure
1. Optional: Create the necessary handler, formatter, and filter classes if you need your own log files.

Note: Use the WebSphere log and trace infrastructure to make problem source identification simpler,
rather than creating separate log files.

2. Optional: If localized messages are used by the application, create a resource bundle, as described in
“Creating log resource bundles and message files” on page 20.

3. In the application code, get a reference to a logger instance, as described in “Using a logger” on page
9.

4. Insert the appropriate message and trace logging statements in the application, as described in “Using
a logger” on page 9.

8 Troubleshooting and support

Using a logger
You can use Java logging to log messages and add tracing.

About this task

Java provides a log and trace package, java.util.logging, that you can use to instrument your applications.
This topic provides recommendations about how to use the log and trace package.

Procedure
1. Use WsLevel.DETAIL level and above for messages, and lower levels for trace. The WebSphere

Application Server Extension API (the com.ibm.websphere.logging package) contains the WsLevel
class.

For messages use:
WsLevel.FATAL
Level.SEVERE
Level.WARNING
WsLevel.AUDIT
Level.INFO
Level.CONFIG
WsLevel.DETAIL

For trace use:
Level.FINE
Level.FINER
Level.FINEST

2. Use the logp method instead of the log or the logrb method. The logp method accepts parameters for
class name and method name. The log and logrb methods will generally try to infer this information,
but the performance penalty is prohibitive. In general, the logp method has less performance impact
than the log or the logrb method.

3. Avoid using the logrb method. This method leads to inefficient caching of resource bundles and poor
performance.

4. Use the isLoggable method to avoid creating data for a logging call that does not get logged. For
example:

if (logger.isLoggable(Level.FINEST)) {
String s = dumpComponentState(); // some expensive to compute method
logger.logp(Level.FINEST, className, methodName, "componentX state

dump:\n{0}", s);
}

Example

The following sample applies to localized messages:
// note - generally avoid use of FINE, FINER, FINEST levels for messages to be consistent with
// WebSphere Application Server

String componentName = "com.ibm.websphere.componentX";
String resourceBundleName = "com.ibm.websphere.componentX.Messages";
Logger logger = Logger.getLogger(componentName, resourceBundleName);

// "Convenience" methods - not generally recommended due to lack of class
/ method names
// - cannot specify message substitution parameters
// - cannot specify class and method names
if (logger.isLoggable(Level.SEVERE))
logger.severe("MSG_KEY_01");

if (logger.isLoggable(Level.WARNING))
logger.warning("MSG_KEY_01");

if (logger.isLoggable(Level.INFO))
logger.info("MSG_KEY_01");

if (logger.isLoggable(Level.CONFIG))
logger.config("MSG_KEY_01");

Chapter 3. Adding logging and tracing to your application 9

// log methods are not generally used due to lack of class and method
names
// - enable use of WebSphere Application Server-specific levels
// - enable use of message substitution parameters
// - cannot specify class and method names
if (logger.isLoggable(WsLevel.FATAL))
logger.log(WsLevel.FATAL, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.SEVERE))
logger.log(Level.SEVERE, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.WARNING))
logger.log(Level.WARNING, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.AUDIT))
logger.log(WsLevel.AUDIT, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.INFO))
logger.log(Level.INFO, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.CONFIG))
logger.log(Level.CONFIG, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))
logger.log(WsLevel.DETAIL, "MSG_KEY_01", "parameter 1");

// logp methods are the way to log
// - enable use of WebSphere Application Server-specific levels
// - enable use of message substitution parameters
// - enable use of class and method names
if (logger.isLoggable(WsLevel.FATAL))
logger.logp(WsLevel.FATAL, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(Level.SEVERE))
logger.logp(Level.SEVERE, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(Level.WARNING))
logger.logp(Level.WARNING, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(WsLevel.AUDIT))
logger.logp(WsLevel.AUDIT, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(Level.INFO))
logger.logp(Level.INFO, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(Level.CONFIG))
logger.logp(Level.CONFIG, className, methodName, "MSG_KEY_01",
"parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))
logger.logp(WsLevel.DETAIL, className, methodName, "MSG_KEY_01",
"parameter 1");

// logrb methods are not generally used due to diminished performance
of switching resource bundles dynamically
// - enable use of WebSphere Application Server-specific levels
// - enable use of message substitution parameters
// - enable use of class and method names
String resourceBundleNameSpecial =
"com.ibm.websphere.componentX.MessagesSpecial";

if (logger.isLoggable(WsLevel.FATAL))
logger.logrb(WsLevel.FATAL, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.SEVERE))
logger.logrb(Level.SEVERE, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.WARNING))
logger.logrb(Level.WARNING, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.AUDIT))
logger.logrb(WsLevel.AUDIT, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.INFO))
logger.logrb(Level.INFO, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.CONFIG))
logger.logrb(Level.CONFIG, className, methodName, resourceBundleNameSpecial,

10 Troubleshooting and support

"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))
logger.logrb(WsLevel.DETAIL, className, methodName, resourceBundleNameSpecial,
"MSG_KEY_01", "parameter 1");

For trace, or content that is not localized, the following sample applies:
// note - generally avoid use of FATAL, SEVERE, WARNING, AUDIT,
// INFO, CONFIG, DETAIL levels for trace
// to be consistent with WebSphere Application Server

String componentName = "com.ibm.websphere.componentX";
Logger logger = Logger.getLogger(componentName);

// Entering / Exiting methods are used for non trivial methods
if (logger.isLoggable(Level.FINER))
logger.entering(className, methodName);

if (logger.isLoggable(Level.FINER))
logger.entering(className, methodName, "method param1");

if (logger.isLoggable(Level.FINER))
logger.exiting(className, methodName);

if (logger.isLoggable(Level.FINER))
logger.exiting(className, methodName, "method result");

// Throwing method is not generally used due to lack of message - use
logp with a throwable parameter instead
if (logger.isLoggable(Level.FINER))
logger.throwing(className, methodName, throwable);

// Convenience methods are not generally used due to lack of class
/ method names
// - cannot specify message substitution parameters
// - cannot specify class and method names
if (logger.isLoggable(Level.FINE))
logger.fine("This is my trace");

if (logger.isLoggable(Level.FINER))
logger.finer("This is my trace");

if (logger.isLoggable(Level.FINEST))
logger.finest("This is my trace");

// log methods are not generally used due to lack of class and
method names
// - enable use of WebSphere Application Server-specific levels
// - enable use of message substitution parameters
// - cannot specify class and method names
if (logger.isLoggable(Level.FINE))
logger.log(Level.FINE, "This is my trace", "parameter 1");

if (logger.isLoggable(Level.FINER))
logger.log(Level.FINER, "This is my trace", "parameter 1");

if (logger.isLoggable(Level.FINEST))
logger.log(Level.FINEST, "This is my trace", "parameter 1");

// logp methods are the recommended way to log
// - enable use of WebSphere Application Server-specific levels
// - enable use of message substitution parameters
// - enable use of class and method names
if (logger.isLoggable(Level.FINE))
logger.logp(Level.FINE, className, methodName, "This is my trace",
"parameter 1");

if (logger.isLoggable(Level.FINER))
logger.logp(Level.FINER, className, methodName, "This is my trace",
"parameter 1");

if (logger.isLoggable(Level.FINEST))
logger.logp(Level.FINEST, className, methodName, "This is my trace",
"parameter 1");

// logrb methods are not applicable for trace logging because no localization
is involved

Example: Creating custom log handlers with java.util.logging. There may be occasions when you
want to propagate log records to your own log handlers rather than participate in integrated logging. To
use a stand-alone log handler, set the useParentHandlers flag to false in your application.The mechanism

Chapter 3. Adding logging and tracing to your application 11

for creating a customer handler is the Handler class support that is provided by the IBM Developer Kit,
Java Technology Edition. If you are not familiar with handlers, as implemented by the Developer Kit, you
can get more information from various texts, or by reading the API documentation for the java.util.logging
API. The following sample shows a custom handler:
import java.io.FileOutputStream;
import java.io.PrintWriter;
import java.util.logging.Handler;
import java.util.logging.LogRecord;

/**
* MyCustomHandler outputs contents to a specified file
*/

public class MyCustomHandler extends Handler {

FileOutputStream fileOutputStream;
PrintWriter printWriter;

public MyCustomHandler(String filename) {
super();

// check input parameter
if (filename == null || filename == "")
filename = "mylogfile.txt";

try {
// initialize the file
fileOutputStream = new FileOutputStream(filename);
printWriter = new PrintWriter(fileOutputStream);
setFormatter(new SimpleFormatter());

}
catch (Exception e) {
// implement exception handling...
}
}

/* (non-API documentation)
* @see java.util.logging.Handler#publish(java.util.logging.LogRecord)
*/
public void publish(LogRecord record) {
// ensure that this log record should be logged by this Handler
if (!isLoggable(record))
return;

// Output the formatted data to the file
printWriter.println(getFormatter().format(record));
}

/* (non-API documentation)
* @see java.util.logging.Handler#flush()
*/
public void flush() {
printWriter.flush();
}

/* (non-API documentation)
* @see java.util.logging.Handler#close()
*/
public void close() throws SecurityException {
printWriter.close();
}

}

Example: Creating a custom filter. A custom filter provides optional, secondary control over what is
logged, beyond the control that is provided by the level. The mechanism for creating a custom filter is the
Filter interface support that is provided by the IBM Developer Kit, Java Technology Edition. If you are not

12 Troubleshooting and support

familiar with filters, as implemented by the Developer Kit, you can get more information from various texts,
or by reading the API documentation the for the java.util.logging API.

The following example shows a custom filter:
/**
* This class filters out all log messages starting with SECJ022E, SECJ0373E, or SECJ0350E.
*/
import java.util.logging.Filter;
import java.util.logging.Handler;
import java.util.logging.Logger;
import java.util.logging.LogRecord;

public class MyFilter implements Filter {
public boolean isLoggable(LogRecord lr) {
String msg = lr.getMessage();
if (msg.startsWith("SECJ0222E") || msg.startsWith("SECJ0373E") || msg.startsWith("SECJ0350E")) {
return false;
}
return true;
}
}

//This code will register the above log filter with the root Logger’s handlers (including the WAS system logs):
...
Logger rootLogger = Logger.getLogger("");
rootLogger.setFilter(new MyFilter());

Example: Creating a custom formatter. A formatter formats events. Handlers are associated with one or
more formatters. The mechanism for creating a custom formatter is the Formatter class support that is
provided by the IBM Developer Kit, Java Technology Edition. If you are not familiar with formatters, as
implemented by the Developer Kit, you can get more information from various texts, or by reading the API
documentation for the java.util.logging API.

The following example shows a custom formatter:
import java.util.Date;
import java.util.logging.Formatter;
import java.util.logging.LogRecord;

/**
* MyCustomFormatter formats the LogRecord as follows:
* date level localized message with parameters
*/
public class MyCustomFormatter extends Formatter {

public MyCustomFormatter() {
super();
}

public String format(LogRecord record) {

// Create a StringBuffer to contain the formatted record
// start with the date.
StringBuffer sb = new StringBuffer();

// Get the date from the LogRecord and add it to the buffer
Date date = new Date(record.getMillis());
sb.append(date.toString());
sb.append(" ");

// Get the level name and add it to the buffer
sb.append(record.getLevel().getName());
sb.append(" ");

// Get the formatted message (includes localization
// and substitution of paramters) and add it to the buffer
sb.append(formatMessage(record));
sb.append("\n");

Chapter 3. Adding logging and tracing to your application 13

return sb.toString();
}

}

Example: Creating custom log files. Adding custom handlers, filters, and formatters enables you to
customize your logging environment beyond what can be achieved by the configuration of the default
WebSphere Application Server logging infrastructure. The following example demonstrates how to add a
new handler to process requests to the com.myCompany subtree of loggers (see “Configuring the logger
hierarchy” on page 19). The main method in this sample gives an example of how to use the newly
configured logger.
import java.util.Vector;
import java.util.logging.Filter;
import java.util.logging.Formatter;
import java.util.logging.Handler;
import java.util.logging.Level;
import java.util.logging.Logger;

public class MyCustomLogging {

public MyCustomLogging() {
super();
}

public static void initializeLogging() {

// Get the logger that you want to attach a custom Handler to
String defaultResourceBundleName = "com.myCompany.Messages";
Logger logger = Logger.getLogger("com.myCompany", defaultResourceBundleName);

// Set up a custom Handler (see MyCustomHandler example)
Handler handler = new MyCustomHandler("MyOutputFile.log");

// Set up a custom Filter (see MyCustomFilter example)
Vector acceptableLevels = new Vector();
acceptableLevels.add(Level.INFO);
acceptableLevels.add(Level.SEVERE);
Filter filter = new MyCustomFilter(acceptableLevels);

// Set up a custom Formatter (see MyCustomFormatter example)
Formatter formatter = new MyCustomFormatter();

// Connect the filter and formatter to the handler
handler.setFilter(filter);
handler.setFormatter(formatter);

// Connect the handler to the logger
logger.addHandler(handler);

// avoid sending events logged to com.myCompany showing up in WebSphere
// Application Server logs
logger.setUseParentHandlers(false);

}

public static void main(String[] args) {
initializeLogging();

Logger logger = Logger.getLogger("com.myCompany");

logger.info("This is a test INFO message");
logger.warning("This is a test WARNING message");
logger.logp(Level.SEVERE, "MyCustomLogging", "main", "This is a test SEVERE message");
}

}

14 Troubleshooting and support

When the above program is run, the output of the program is written to the MyOutputFile.log file. The
content of the log is in the expected log file, as controlled by the custom handler, and is formatted as
defined by the custom formatter. The warning message is filtered out, as specified by the configuration of
the custom filter. The output is as follows:
C:\>type MyOutputFile.log
Sat Sep 04 11:21:19 EDT 2004 INFO This is a test INFO message
Sat Sep 04 11:21:19 EDT 2004 SEVERE This is a test SEVERE message

Loggers
Loggers are used by applications and runtime components to capture message and trace events.

When situations occur that are significant either due to a change in state, for example when a server
completes startup or because a potential problem is detected, such as a timeout waiting for a resource, a
message is written to the logs. Trace events are logged in debugging scenarios, where a developer needs
a clear view of what is occurring in each component to understand what might be going wrong. Logged
events are often the only events available when a problem is first detected, and are used during both
problem recovery and problem resolution.

Loggers are organized hierarchically. Each logger can have zero or more child loggers.

Loggers can be associated with a resource bundle. If specified, the resource bundle is used by the logger
to localize messages that are logged to the logger. If the resource bundle is not specified, a logger uses
the same resource bundle as its parent.

You can configure loggers with a level. If specified, the level is compared by the logger to incoming
events. The events that are less severe than the level set for the logger are ignored by the logger. If the
level is not specified, a logger takes on the level that is used by its parent. The default level for loggers is
Level.INFO.

Loggers can have zero or more attached handlers. If supplied, all events that are logged to the logger are
passed to the attached handlers. Handlers write events to output destinations such as log files or network
sockets. When a logger finishes passing a logged event to all of the handlers that are attached to that
logger, the logger passes the event to the handlers that are attached to the parents of the logger. This
process stops if a parent logger is configured not to use its parent handlers. Handlers in WebSphere
Application Server are attached to the root logger. Set the useParentHandlers logger property to false to
prevent the logger from writing events to handlers that are higher in the hierarchy.

Loggers can have a filter. If supplied, the filter is invoked for each incoming event to tell the logger whether
or not to ignore it.

Applications interact directly with loggers to log events. To obtain or create a logger, a call is made to the
Logger.getLogger method with a name for the logger. Typically, the logger name is either the package
qualified class name or the name of the package that the logger is used by. The hierarchical logger
namespace is automatically created by using the dots in the logger name. For example, the
com.ibm.websphere.ras logger has a com.ibm.websphere parent logger, which has a com.ibm parent. The
parent at the top of the hierarchy is referred to as the root logger. This root logger is created during
initialization. The root logger is the parent of the com logger.

Loggers are structured in a hierarchy. Every logger, except the root logger, has one parent. Each logger
can also have 0 or more children. A logger inherits log handlers, resource bundle names, and event
filtering settings from its parent in the hierarchy. The logger hierarchy is managed by the LogManager
function.

Loggers create log records. A log record is the container object for the data of an event. This object is
used by filters, handlers, and formatters in the logging infrastructure.

Chapter 3. Adding logging and tracing to your application 15

The logger provides several sets of methods for generating log messages. Some log methods take only a
level and enough information to construct a message. Other, more complex logp (log precise) methods
support the caller in passing class name and method name attributes, in addition to the level and message
information. The logrb (log with resource bundle) methods add the capability of specifying a resource
bundle as well as the level, message information, class name, and method name. Using methods such as
severe, warning, fine, finer, and finest you can log a message at a particular level. For more information on
logging and how to use it in your applications read “Using Java logging in an application” on page 8. For a
complete list of methods, see the java.util.logging documentation at http://java.sun.com/javase/.

Log handlers
Log handlers write log record objects to output devices like log files, sockets, and notification mechanisms.

Loggers can have zero or more attached handlers. All objects that are logged to the logger are passed to
the attached handlers, if handlers are supplied.

You can configure handlers with a level. The handler compares the level that is specified in the logged
object to the level that is specified for the handler. If the level of the logged object is less severe than the
level set in the handler, the object is ignored by the handler. The default level for handlers is ALL.

Handlers can have a filter. If a filter is supplied, the filter is invoked for each incoming object to tell the
handler whether or not to ignore it.

Handlers can have a formatter. If a formatter is supplied, the formatter controls how the logged objects are
formatted. For example, the formatter can decide to first include the time stamp, followed by a string
representation of the level, followed by the message that is included in the logged object. The handler
writes this formatted representation to the output device.

Both loggers and handlers can have levels and filters, and a logged object must pass all of these elements
to be output. For example, you can set the logger level to FINE, but if the handler level is set at
WARNING, only WARNING level messages are displayed in the output for that handler. Conversely, if your
log handler is set to output all messages (level=All), but the logger level is set to WARNING, the logger
never sends messages lower than WARNING to the log handler.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Log levels
Levels control which events are processed by Java logging. WebSphere Application Server controls the
levels of all loggers in the system.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

The level value is set from configuration data when the logger is created and can be changed at run time
from the administrative console. If a level is not set in the configuration data, a level is obtained by
proceeding up the hierarchy until a parent with a level value is found. You can also set a level for each

16 Troubleshooting and support

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

handler to indicate which events are published to an output device. When you change the level for a
logger in the administrative console, the change is propagated to the children of the logger.

Levels are cumulative; a logger can process logged objects at the level that is set for the logger, and at all
levels above the set level.

Table 1. Valid log levels. This table lists valid logging levels.

Level Content / Significance

Off No events are logged.

Fatal Task cannot continue and component cannot function.

Severe Task cannot continue, but component can still function

Warning Potential error or impending error

Audit Significant event affecting server state or resources

Info General information outlining overall task progress

Config Configuration change or status

Detail General information detailing subtask progress

Fine Trace information - General trace

Finer Trace information - Detailed trace + method entry / exit / return values

Finest Trace information - A more detailed trace - Includes all the detail that is needed to debug
problems

All All events are logged. If you create custom levels, All includes your custom levels, and can
provide a more detailed trace than Finest.

For instructions on how to set logging levels, read the topic about configuring Java logging using the
administrative console.

Note: Trace information, which includes events at the Fine, Finer and Finest levels, can be written only to
the trace log. Therefore, if you do not enable diagnostic trace, setting the log detail level to Fine,
Finer, or Finest does not effect the logged data.

Log filters
Log filters help control more detailed logging settings that are not handled by usual log level settings.

A filter provides an optional, secondary control over what is logged, beyond the control that is provided by
setting the level. Applications can apply a filter mechanism to control logging output through the logging
APIs. An example of filter usage is to suppress all the events with a particular message key.

A filter is attached to a logger or log handler using the appropriate setFilter method. For a complete list of
filter methods, see the java.util.logging documentation at http://java.sun.com/javase/

Log formatters
Log formatters format log messages so they can be used by various log handlers.

Handlers can be configured with a log formatter that knows how to format log records. The event, which is
represented by the log record object, is passed to the appropriate formatter by the handler. The formatter
returns formatted output to the handler, which writes the output to the output device.

The formatter is responsible for rendering the event for output. This formatter uses the resource bundle
that is specified in the event to look up the message in the appropriate language.

Formatters are attached to handlers using the setFormatter method.

Chapter 3. Adding logging and tracing to your application 17

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

You can find the java.util.logging documentation at http://java.sun.com/javase/.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Java logging
Java logging is the logging toolkit that is provided by the java.util.logging package. Java logging provides a
standard logging API for your applications.

Message logging (messages) and diagnostic trace (trace) are conceptually similar, but do have important
differences. These differences are important for application developers to understand to use these tools
properly. The following operational definitions of messages and trace are provided.
Message

A message entry is an informational record that is intended for end users, systems administrators,
and support personnel to view. The text of the message must be clear, concise, and interpretable
by an end user. Messages are typically localized and displayed in the national language of the end
user. Although the destination and lifetime of messages might be configurable, enable some level
of message logging in normal system operation. Use message logging judiciously because of
performance considerations and the size of the message repository.

Trace A trace entry is an information record that is intended for service engineers or developers to use.
As such, a trace record might be considerably more complex, verbose, and detailed than a
message entry. Localization support is typically not used for trace entries. Trace entries can be
fairly inscrutable, understandable only by the appropriate developer or service personnel. It is
assumed that trace entries are not written during normal runtime operation, but can be enabled as
needed to gather diagnostic information.

The application server redirects the system streams at the server startup. There is no way to allow the
application to output logging to the console because the system streams can not be obtained by the
application. If you would like to use console to monitor the application without using the console handler,
you can either monitor theSystemOut.log file, or monitor a file created by another file handler.

Note: The application server uses Java logging internally and therefore certain restrictions apply for using
system streams with this logging API by applications. During server startup, the standard output and
error streams are replaced with special streams that write to the logging infrastructure, in order to
include the output of the system streams in the log files. Because of this, applications can not use
java.util.logging.ConsoleHandler, or any handler writing to System.err or System.out streams,
attached to the root logger. If the user does attach the handler to the root logger, an infinite loop is
created within the logging infrastructure, leading to stack overflow and server crash.

If the use of a handler that writes to system streams is necessary, attach it to a non-root logger so
that it does not publish log records to parent handlers. The data written to the system streams is
then formatted and written to the corresponding system stream log file. To monitor what is being
written system streams, the configured log files (SystemOut.log and SystemErr.log by default) can
be monitored.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using

18 Troubleshooting and support

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Note: The SystemOut.log and STDOUT streams are redirected to the SYSPRINT ddname under z/OS. The
System.err and STDERR streams are redirected to the SYSOUT ddname under z/OS. By default, the
WebSphere Application Server for z/OS cataloged procedures associate these ddnames with print
(SYSOUT=*) data sets, causing message logs to go into WebSphere Application Server job output.
Job output can be viewed with the Spool Display and Search Facility (SDSF) or equivalent
software.

Configuring the logger hierarchy
WebSphere Application Server handlers are attached to the Java root logger, which is at the top of the
logger hierarchy. As a result, any request from anywhere in the logger tree can be processed by
WebSphere Application Server handlers.

About this task

You can configure your application server to handle logs in many different ways. Configure your log
settings based upon your configuration and the logging structure that best suits your needs.

Procedure
v Forward all application logging requests to the WebSphere Application Server handlers. This behavior is

the default.

v Forward all application logging requests to your own custom handlers. Set the useParentHandlers
option to false on one of your custom loggers, and then attach your handlers to that logger.

v Forward all application logging requests to both WebSphere Application Server handlers, and your
custom handlers, but do not forward WebSphere Application Server logging requests to your custom
handlers. Set the useParentHandlers option to true on one of your non-root custom loggers, and then
attach your handlers to that logger.True is the default setting.

v Forward all WebSphere Application Server logging requests to both WebSphere Application Server
handlers, and your custom handlers. Logging requests are always forwarded to WebSphere Application
Server handlers. To forward WebSphere Application Server requests to your custom handlers, attach
your custom handlers to the Java root logger, so that they are at the same level in the hierarchy as the
WebSphere Application Server handlers.

Chapter 3. Adding logging and tracing to your application 19

Example

The following example shows how these requirements can be met using the Java logging infrastructure:

Creating log resource bundles and message files
You can forward messages that are written to the internal WebSphere Application Server logs to other
processes for display. Messages that are displayed on the administrative console, which can be running in
a different location than the server process, can be localized using the late binding process. Late binding
means that WebSphere Application Server does not localize messages when they are logged, but defers
localization to the process that displays the message.

About this task

Every method that accepts messages localizes those messages. The mechanism for providing localized
messages is the resource bundle support provided by the IBM Developer Kit, Java Technology Edition. If
you are not familiar with resource bundles as implemented by the Developer Kit, you can get more
information from various texts, or by reading the API documentation for the java.util.ResourceBundle,
java.util.ListResourceBundle and java.util.PropertyResourceBundle classes, as well as the
java.text.MessageFormat class.

The PropertyResourceBundle class is the preferred mechanism to use.

To properly localize the message, the displaying process must have access to the resource bundle where
the message text is stored. You must package the resource bundle separately from the application, and
install it in a location where the viewing process can access it.

By default, the WebSphere Application Server runtime localizes all the messages when they are logged.
This localization eliminates the need to pass a .jar file to the application, unless you need to localize in a
different location. However, you can use the early binding technique to localize messages as they log. An
application that uses early binding must localize the message before logging it. The application looks up

20 Troubleshooting and support

the localized text in the resource bundle and formats the message. Use the early binding technique to
package the application resource bundles with the application.

To create a resource bundle, perform the following steps.

Procedure
1. Create a text properties file that lists message keys and the corresponding messages. The properties

file must have the following characteristics:
v Each property in the file is terminated with a line-termination character.
v If a line contains white space only, or if the first non-white space character of the line is the pound

sign symbol (#) or exclamation mark (!), the line is ignored. The # and ! characters can therefore be
used to put comments into the file.

v Each line in the file, unless it is a comment or consists of white space only, denotes a single
property. A backslash (\) is treated as the line-continuation character.

v The syntax for a property file consists of a key, a separator, and an element. Valid separators
include the equal sign (=), colon (:), and white space ().

v The key consists of all characters on the line from the first non-white space character to the first
separator. Separator characters can be included in the key by escaping them with a backslash (\),
but doing this process is not recommended, because escaping characters is error prone and
confusing. Instead, use a valid separator character that does not display in any keys in the
properties file.

v White space after the key and separator is ignored until the first non-white space character is
encountered. All characters remaining before the line-termination character define the element.

See the Java documentation for the java.util.Properties class for a full description of the syntax and the
construction of properties files.

2. Translate the file into localized versions of the file with language-specific file names. For example, a
file named DefaultMessages.properties can be translated into DefaultMessages_de.properties for
German and DefaultMessages_ja.properties for Japanese.

3. When the translated resource bundles are available, put the bundle in a directory that is part of the
application class path.

4. When a message logger is obtained from the log manager, configure it to use a particular resource
bundle. Messages logged with the Logger API use this resource bundle when message localization is
performed. At run time, the user locale setting determines the properties file from which to extract the
message that is specified by a message key, ensuring that the message is delivered in the correct
language.

5. If the message loggers msg method is called, a resource bundle name must be explicitly provided.

Example

You can create resource bundles in several ways. The best and easiest way is to create a properties file
that supports a properties resource bundle. This example shows how to create such a properties file.

For this sample, four localizable messages are provided. The properties file is created and the key-value
pairs are inserted. All the normal properties file conventions and rules apply to this file. In addition, the
creator must be aware of other restrictions that are imposed on the values by the Java MessageFormat
class. For example, apostrophes must be escaped or they cause a problem. Avoid the use of non-portable
characters. WebSphere Application Server does not support the use of extended formatting conventions
that the MessageFormat class supports, such as {1, date} or {0,number, integer}.

Assume that the base directory for the application that uses this resource bundle is baseDir and that this
directory is in the class path. Assume that the properties file is stored in the subdirectory baseDir that is
not in the class path (for example, baseDir/subDir1/subDir2/resources). To allow the messages file to
resolve, the subDir1.subDir2.resources.DefaultMessage name is used to identify the property resource
bundle and is passed to the message logger.

Chapter 3. Adding logging and tracing to your application 21

For this sample, the properties file is named DefaultMessages.properties.
Contents of the DefaultMessages.properties file
MSG_KEY_00=A message with no substitution parameters.
MSG_KEY_01=A message with one substitution parameter: parm1={0}
MSG_KEY_02=A message with two substitution parameters: parm1={0}, parm2 = {1}
MSG_KEY_03=A message with three parameter: parm1={0}, parm2 = {1}, parm3={2}

When the DefaultMessages.properties file is created, the file can be sent to a translation center where
the localized versions are generated.

What to do next

The application locates the resource bundle based on the file location relative to any directory in the class
path. For instance, if the DefaultMessages.properties property resource bundle is located in the
baseDir/subDir1/subDir2/resources directory and baseDir is in the class path, the name
subdir1.subdir2.resources.DefaultMessage is passed to the message logger to identify the resource
bundle.

Logger.properties file for configuring logger settings
Use the Logger.properties file to set logger attributes for specific loggers.

The properties file is loaded the first time that the Logger.getLogger(logger_name) method is called within
an application.

Important: The name of the Logger.properties file is case sensitive. Use a capital "L" in the file name.

When an application calls the Logger.getLogger method for the first time, all the available logger properties
files are loaded. Applications can provide Logger.properties files in:

v the META-INF directory of the Java archive (JAR) file for the application

v directories included in the class path of an application module

v directories included in the application class path

The properties file contains two categories of parameters, logger control and logger data:

v Logger control information

– Minimum localization level: The minimum LogRecord level for which localization is attempted

– Group: The logical group that this component belongs to

– Event factory: The Common Base Event template file to use with the event factory. The naming
convention for this template is the fully qualified component name, with a file extension of
.event.xml. For example, a template that applies to the com.ibm.compXYZ package is called
com.ibm.compXYZ.event.xml.

v Logger data information

– Product name

– Organization name

– Component name

– Extensions and additional properties

Syntax of the Logger.properties file

Use the following syntax to set logger properties:

<logger base name>.<property>=value

where:

22 Troubleshooting and support

logger base name is the starting part of the logger name to which the property applies. All loggers with
names starting with this string have the property applied.

property is one of the following properties:

v organization

v product

v component

v minimum_localization_level

v group

v eventfactory

v handler_preference=operator (This property writes anything that is logged to the console WTO,
write-to-operator. Without this property the AUDIT level is written only to hardcopy WTO.)

Sample Logger.properties file

In the following sample, the com.ibm.xyz.MyEventFactory event factory is used by any loggers in the
com.ibm.websphere.abc package or any sub packages that do not override this value in their configuration
file.
com.ibm.websphere.abc.eventfactory=com.ibm.xyz.MyEventFactory

Group Logger.properties file

In the following example, the group is MyTraceGroup and the components are com.ibm.stuff and
com.ibm.morestuff:
com.ibm.stuff.group=MyTraceGroup
com.ibm.morestuff.group=MyTraceGroup

Configuring applications to use Jakarta Commons Logging
Jakarta Commons Logging provides a simple logging interface and thin wrappers for several logging
systems. WebSphere Application Server supports Jakarta Commons Logging by providing a logger. The
support does not change interfaces defined by Jakarta Commons Logging.

Before you begin

The WebSphere Application Server logger is a thin wrapper for the WebSphere Application Server logging
facility. The logger name is com.ibm.websphere.commons.logging.WsJDK14Logger. The logger can handle
logging objects defined by either of the following:

v Java Logging found in Java Specification Request 47: Logging API Specification

v Common Base Event

A logging object is an object that holds logging entry information.

To better understand Jakarta Commons Logging, read Jakarta Commons and the specifications for Java
Logging and for Common Base Event. To better understand use of the WebSphere Application Server
logger, read “Jakarta Commons Logging” on page 24.

About this task

WebSphere Application Server provides the Jakarta Commons Logging binary distribution in its libraries
directory. By default, the product uses the Jakarta Commons Logging LogFactory implementation and
JDK14Logger.

Chapter 3. Adding logging and tracing to your application 23

http://jcp.org/en/jsr/detail?id=47
http://www-128.ibm.com/developerworks/webservices/library/ws-cbe/
http://jakarta.apache.org/commons/

best-practices: The default configuration of Jakarta Commons Logging is stored in the
commons-logging.properties file. To specify the factory class to use with Jakarta
Commons Logging in an application, provide a file named
org.apache.commons.logging.LogFactory, located in META-INF/services directory, that
contains the name of the factory class on the first line. This is the configuration
mechanism for the JAR file service provider, as defined in JDK 1.3 and above.

For an application to use the WebSphere Application Server logger, the application must provide its own
configuration for the logger. To configure an application to use the WebSphere Application Server logger,
complete the steps that follow.

Procedure
1. Examine “Configurations for the WebSphere Application Server logger” on page 27 and determine

which configuration best suits your application.

2. Change your application configuration as needed to enable use of the WebSphere Application Server
logger.

Results

After the application starts, Jakarta Commons Logging routes the application's logging output to the
WebSphere Application Server logger.

Jakarta Commons Logging
Jakarta Commons Logging provides a simple logging interface and thin wrappers for several logging
systems. The logging interface enables application logging to be simple and independent of the logging
system that the application uses. You can change the logging implementation for a deployed application
without having to change the application logging code. However, the simplicity of the logging interface
prevents the application from leveraging all the functionality of the logging systems.

This topic provides the following information about Jakarta Commons Logging in WebSphere Application
Server:
v “Support for Jakarta Commons Logging”
v “Benefits of support for Jakarta Commons Logging”
v “Overview of the process for using Jakarta Commons Logging” on page 25
v “Classes used to obtain a logger factory and logger” on page 25
v “Logger level configuration and mapping” on page 26

Support for Jakarta Commons Logging

The product supports Jakarta Commons Logging by providing a logger, a thin wrapper for the WebSphere
Application Server logging facility. The logger can handle both Java Logging (JSR-47) and Common Base
Event logging objects. A logging object is an object that holds logging entry information.

The product support for Jakarta Commons Logging does not change interfaces defined by Jakarta
Commons Logging.

Benefits of support for Jakarta Commons Logging

The WebSphere Application Server support for Jakarta Commons Logging provides the following benefits:

v WebSphere Application Server is pre-configured to use Jakarta Commons Logging.

All of the functionality of Jakarta Commons Logging is provided for any application or WebSphere
Application Server component. Logging calls are routed by default to the underlying WebSphere
Application Server logging facility.

v A logger that uses the WebSphere Application Server logging facility.

24 Troubleshooting and support

http://jakarta.apache.org/commons/
http://jcp.org/en/jsr/detail?id=47
http://www.ibm.com/developerworks/library/specification/ws-cbe/
http://www.ibm.com/developerworks/library/specification/ws-cbe/

Applications and components can pass both Java Logging and Common Base Event logging objects to
the WebSphere Application Server logger without conversion to strings, providing applications with
enhanced logging. Further, Jakarta Commons Logging Logger levels are integrated into WebSphere
Application Server administrative facilities.

Overview of the process for using Jakarta Commons Logging

Logging with Jakarta Commons Logging consists of the steps that follow. “Configurations for the
WebSphere Application Server logger” on page 27 provides details on configuring your application to use
the WebSphere Application Server logger.

1. Obtain an instance of a logger factory.

To obtain a logger factory, use Jakarta Commons Logging code. You can configure the code to meet
your needs. In WebSphere Application Server, Jakarta Commons Logging is configured by default to
instantiate the Jakarta Commons Logging default logger factory. Applications or WebSphere Application
Server components can provide their own configuration if they use a different logger factory
implementation. Applications can use more than one factory.

2. Obtain an instance of a logger.

To obtain a logger, use code implemented by a logger factory. Configuration of the code is
implementation specific.

The WebSphere Application Server logger implements the methods defined in the logging interface.
The logging methods take at least one argument, which can be any Java object. The WebSphere
Application Server logger, the WsJDK14Logger logger described in “Classes used to obtain a logger
factory and logger,” handles the following objects passed into the following logging methods:
CommonBaseEvent

Wrapped into CommonBaseEventLogRecord
CommonBaseEventLogRecord

Passed without change
LogRecord

Passed without change
Other objects

Converted to String

Applications or WebSphere Application Server components can provide their own configuration if they
use an implementation of a logger that is not specific to WebSphere Application Server. An application
must know what factory is being used in order to configure it.

3. Start your application. Jakarta Commons Logging routes the application's logging output to the
designated logger

Classes used to obtain a logger factory and logger

Table 2. Jakarta Commons Logging class descriptions. Use the classes for a logger factory instance and logger.

Class name Description

LogFactory LogFactory is a Jakarta Commons Logging class that implements initialization logic. LogFactory
is an abstract class that every logger factory implementation has to extend. It provides static
methods for obtaining:
v An instance of a factory class
v Instances of a logger, using an instance of the factory class

LogFactory provides methods for obtaining instances of loggers, although these methods
delegate the logger instantiation and configuration to an instance of a logger factory class.

Logger factories, once instantiated, are cached on a per context class loader basis. The
instances in a cache can be released. This functionality is designed for platform container
implementations rather than for applications.

Chapter 3. Adding logging and tracing to your application 25

Table 2. Jakarta Commons Logging class descriptions (continued). Use the classes for a logger factory instance
and logger.

Class name Description

LogFactoryImpl LogFactoryImpl is a Jakarta Commons Logging concrete class that implements the default
logger factory using methods in LogFactory. To use Java Logging, there must always be at least
one instance of a logger factory class, even if the application has not explicitly obtained one. If
the configuration does not name a logger factory class, LogFactoryImpl is used as the default.

Log Log is a Jakarta Commons Logging interface for loggers. Commons logging loggers have to
implement the Log interface. Because the goal of Jakarta Commons Logging is to wrapper any
logging system, the Log interface defines a small set of common logging methods. In
WebSphere Application Server, WsJDK14Logger implements the Log interface.

Logger instantiation and configuration is specific to every logger factory. Logging in WebSphere
Application Server uses the default logger factory provided in Jakarta Commons Logging, which
keeps instantiated loggers in cache, on a per context class loader basis.

WsJDK14Logger WsJDK14Logger is a WebSphere Application Server class that provides a Jakarta Commons
Logging logger by implementing the Log interface. The WsJDK14Logger logger differs from the
Java Logging logger in that the WsJDK14Logger logger enables Java Logging or Common Base
Event objects to be passed over without converting them into String objects. This prevents any
information loss the conversion to String might cause as well as allows the logging output to be
more descriptive and precise. In contrast, the Java Logginglogger that is provided in Jakarta
Commons Logging converts objects passed into the logging calls to String objects before
passing them over to the underlying Java Logging.

Logger level configuration and mapping

Because Jakarta Commons Logging loggers are thin wrappers for specific logging systems, the loggers do
not have their own level, but use the level of the logger from the underlying logging system. Although the
underlying system can provide methods for changing level, there are no methods for changing level
defined on the Log interface, which all Jakarta Commons Logging loggers must implement.
WsJDK14Logger uses the level of its underlying Java Logging logger.

Following table shows, on the left, the mapping of Jakarta Commons Logging levels within
WsJDK14Logger to levels in the WebSphere Application Server implementation of Java Logging. On the
right, it shows the levels defined in Java Logging and the level mapping in the Jakarta Commons Logging
JDK14Logger to the Java Logging levels.

Table 3. Mapping of WsJDK14Logger levels to Java Logging levels. Compare the logging levels.

WsJDK14Logger
Java Logging in WebSphere
Application Server Java Logging JDK14Logger

Fatal Fatal

Error Severe Severe Fatal, Error

Warning Warning Warning Warning

Audit

Info Info Info Info

Config Config

Detail

Debug Fine Fine Debug

Finer Finer

Trace Finest Finest Trace

26 Troubleshooting and support

The WsJDK14Logger level is synchronized with the underlying Java Logging logger level. WebSphere
Application Server administration controls the WsJDK14Logger level.

Configurations for the WebSphere Application Server logger
This topic describes several ways to configure an application to use the WebSphere Application Server
logger.

The type of configuration that best suits an application depends upon the following:

v Whether the class loader order setting for the application is Classes loaded with parent class loader
first (Parent First) or Classes loaded with application class loader first (Parent Last), you can
set the class loader delegation mode on a console page. For more details about class load order and
delegation, consult the class loading chapter in the Developing and deploying applications PDF book

v Whether Jakarta Commons Logging is bundled with the application configuration

v Whether Jakarta Commons Logging is provided within the application

The following tables describe the conditions required to enable an application to use the WebSphere
Application Server logger.

Class loader mode is Parent First and Jakarta Commons Logging is bundled with the application

Table 4. Conditions required to use logger. When Parent First and Jakarta Commons Logging is bundled with an
application.

Jakarta Commons Logging
configuration

LogFactory
instance Log instance Comments

The application provides the
configuration by either of the
following:

v The properties file
commons-logging.properties in
the application classpath is not
read by the LogFactory
because the parent class
loader finds the WebSphere
properties file first.

v The class name is read from
the file

META-INF/services/
org.apache.commons
.logging.LogFactory

The log factory
used is the
LogFactory
implementation
specified in the
WebSphere
Application Server
default
configuration,
unless the
configuration is
provided in a
META-INF file of
the application or
module.

The log used is either
of the following:

v The Log
implementation
specified in the
WebSphere
Application Server
default configuration

v An application-
specific
Log implementation if
an application-specific
LogFactory that
instantiates a different
Log implementation is
used.

The application parent class loader
is the first class loader to load the
Jakarta Commons Logging code. The
WebSphere bundle that supports
Jakarta Commons Logging provides
the LogFactory static code that looks
up the LogFactory configuration
attributes.

For the static LogFactory code to
instantiate the LogFactory instance
specified in the application
configuration, the LogFactory instance
must be on the classpath of the parent
class loader.

Not provided by the application The log factory
used is the
LogFactory
implementation
specified in the
WebSphere default
configuration.

The log used is the
Log implementation
specified in the
WebSphere default
configuration.

The Jakarta Commons Logging
bundled with the application is not
used.

Class loader mode is Parent First and Jakarta Commons Logging is not bundled with the
application

Chapter 3. Adding logging and tracing to your application 27

Table 5. Conditions required to use logger. When Parent First and Jakarta Commons Logging is not bundled with an
application.

Jakarta Commons Logging
configuration

LogFactory
instance Log instance Comments

The application provides the
configuration by either of the
following:

v The properties file
commons-logging.properties in
the application classpath is not
read by the LogFactory
because the parent class
loader finds the WebSphere
Application Server properties
file first.

v The class name is read from
the file

META-INF/services/
org.apache.commons
.logging.LogFactory

The log factory
used is the
LogFactory
implementation
specified in the
WebSphere
Application Server
default
configuration,
unless the
configuration is
provided in a
META-INF file of
the application or
module.

The log used is either
of the following:

v The Log
implementation
specified in the
WebSphere
Application Server
default configuration

v An
application-specific
Log implementation if
an application-specific
LogFactory that
instantiates a different
Log implementation is
used.

The application parent class loader
is the first class loader to load the
Jakarta Commons Logging code. The
WebSphere bundle that supports
Jakarta Commons Logging provides
the LogFactory static code that looks
up the LogFactory configuration
attributes.

For the static LogFactory code to
instantiate the LogFactory instance
specified in the application
configuration, the LogFactory instance
must be on the classpath of the parent
class loader.

Not provided by the application The log factory
used is the
LogFactory
implementation
specified in the
WebSphere
Application Server
default
configuration.

The log used is the
Log implementation
specified in the
WebSphere
Application Server
default configuration.

Same as in the previous row

Class loader mode is Parent Last and Jakarta Commons Logging is bundled with the application

Table 6. Conditions required to use logger. When Parent Last and Jakarta Commons Logging is bundled with an
application.

Jakarta Commons Logging
configuration

LogFactory
instance Log instance Comments

The application provides the
configuration by either of the
following:

v The properties file
commons-logging.properties in
the application classpath is
read by the LogFactory
because the class loader finds
the application properties file
first.

v The class name is read from
the file

META-INF/services/
org.apache.commons
.logging.LogFactory

The log factory
used is either of
the following:

v The default
Jakarta Commons
Logging
LogFactory

v The LogFactory
specified in the
application
configuration

The log used is the
Log implementation
specified in the
application
configuration.

If the log factory used
is the default Jakarta
Commons Logging
LogFactory, the Log
implementation must
be on the classpath
of the application
class loader.

The application class loader is the
first class loader to load the Jakarta
Commons Logging code. The
application bundle that supports
Jakarta Commons Logging provides
the LogFactory static code that looks
up the LogFactory configuration
attributes.

For the static LogFactory code to
instantiate the LogFactory instance
specified in the application
configuration, the LogFactory instance
must be on the classpath of the
application class loader.

28 Troubleshooting and support

Table 6. Conditions required to use logger (continued). When Parent Last and Jakarta Commons Logging is
bundled with an application.

Jakarta Commons Logging
configuration

LogFactory
instance Log instance Comments

Not provided by the application The log factory
used is the
LogFactory
implementation
specified in the
WebSphere
Application Server
default
configuration.

The log used is the
Log implementation
specified in the
WebSphere
Application Server
default configuration.

Class loader mode is Parent Last and Jakarta Commons Logging is not bundled with the
application

Table 7. Conditions required to use logger. When Parent Last and Jakarta Commons Logging is not bundled with an
application.

Jakarta Commons Logging
configuration

LogFactory
instance Log instance Comments

The application provides the
configuration by either of the
following:

v The properties file
commons-logging.properties in
the application classpath is
read by the LogFactory
because the class loader finds
the application properties file
first.

v The class name is read from
the file

META-INF/services/
org.apache.commons
.logging.LogFactory

The log factory
used is either of
the following:

v The default
Jakarta Commons
Logging
LogFactory

v The LogFactory
specified in the
application
configuration

The log used is the
Log implementation
specified in the
application
configuration.

If the log factory used
is the default Jakarta
Commons Logging
LogFactory, the Log
implementation must
be on the classpath
of the application
class loader.

There is no Jakarta Commons Logging
code at the application class loader.
Thus, the WebSphere bundle that
supports Jakarta Commons Logging
provides the LogFactory static code
that looks up the LogFactory
configuration attributes.

For the static LogFactory code to
instantiate the LogFactory instance
specified in the application
configuration, the LogFactory instance
must be on the classpath of the parent
class loader.

Not provided by the application The log factory
used is the
LogFactory
implementation
specified in the
WebSphere
Application Server
default
configuration.

The log used is the
Log implementation
specified in the
WebSphere
Application Server
default configuration.

Programming with the JRas framework
Use the JRas extensions to incorporate message logging and diagnostic trace into WebSphere Application
Server applications.

Chapter 3. Adding logging and tracing to your application 29

Before you begin

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can
achieve similar results using Java logging.

About this task

The JRas extensions allow message logging and diagnostic trace to work with WebSphere Application
Server applications. They are based on the stand-alone JRas logging toolkit.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Procedure
1. Retrieve a reference to the JRas manager.

2. Retrieve message and trace loggers by using methods on the returned manager.

3. Call the appropriate methods on the returned message and trace loggers to create message and trace
entries, as appropriate.

JRas logging toolkit
The JRas logging toolkit provides diagnostic information to help the administrator diagnose problems or
tune application performance.

Note: The JRas framework that is described in this task and its sub-tasks is deprecated. However, you
can achieve similar results using Java logging.

Developing, deploying, and maintaining applications are complex tasks. For example, when a running
application encounters an unexpected condition, it might not be able to complete a requested operation. In
such a case, you might want the application to inform the administrator that the operation failed and
provide information. This action enables the administrator to take the proper corrective action. Those who
develop or maintain applications might need to gather detailed information relating to the path of a running
application to determine the root cause of a failure that is due to a code bug. The facilities that are used
for these purposes are typically referred to as message logging and diagnostic trace.

Message logging (messages) and diagnostic trace (trace) are conceptually quite similar, but do have
important differences. It is important for application developers to understand these differences to use
these tools properly. To start with, the following operational definitions of messages and trace are provided.
Message

A message entry is an informational record that is intended for end users, systems administrators
and support personnel to view. The text of the message must be clear, concise, and interpretable.
Messages are typically localized, meaning that they display in the national language of the end
user. Although the destination and lifetime of messages might be configurable, some level of
message logging is always enabled in normal system operation. Message logging must be used
judiciously due to both performance considerations and the size of the message repository.

Trace A trace entry is an information record that is intended for service engineers or developers to use.
This trace record might be considerably more complex, verbose, and detailed than a message
entry. Localization support is typically not used for trace entries. Trace entries can be fairly
inscrutable, understandable only by the appropriate developer or service personnel. It is assumed
that trace entries are not written during normal runtime operation, but might be enabled as needed
to gather diagnostic information.

30 Troubleshooting and support

WebSphere Application Server provides a message logging and diagnostic trace API that applications can
use. This API is based on the stand-alone JRas logging toolkit, which was developed by IBM. The
stand-alone JRas logging toolkit is a collection of interfaces and classes that provide message logging and
diagnostic trace primitives. These primitives are not tied to any particular product or platform. The
stand-alone JRas logging toolkit provides a limited amount of support, which is typically referred to as
systems management support, including log file configuration support based on property files.

As designed, the stand-alone JRas logging toolkit does not contain the support that is required for
integration into the WebSphere Application Server run time or for use in a Java 2 Platform, Enterprise
Edition (J2EE) environment. To overcome these limitations, WebSphere Application Server provides a set
of extension classes to address these shortcomings. This collection of extension classes is referred to as
the JRas extensions. The JRas extensions do not modify the interfaces that are introduced by the
stand-alone JRas logging toolkit, but provide the appropriate implementation classes. The conceptual
structure that is introduced by the stand-alone JRas logging toolkit is described in the following section. It
is equally applicable to the JRas extensions.

JRas concepts

The section contains a basic overview of important concepts and constructs that are introduced by the
stand-alone JRas logging toolkit. This information is not an exhaustive overview of the capabilities of this
logging toolkit, nor is it intended as a detailed discussion of usage or programming paradigms. More
detailed information, including code examples, is available in JRas extensions and its subtopics, including
in the API documentation for the various interfaces and classes that make up the logging toolkit.
Event types

The stand-alone JRas logging toolkit defines a set of event types for messages and a set of event
types for trace. Examples of message types include informational, warning, and error. Examples of
trace types include entry, exit, and trace.

Event classes
The stand-alone JRas logging toolkit defines both message and trace event classes.

Loggers
A logger is the primary object with which the user code interacts. Two types of loggers are defined:
message loggers and trace loggers. The set of methods on message loggers and trace loggers
are different because they provide different functionality. Message loggers create message records
only and trace loggers create trace records only. Both types of loggers contain masks that indicate
which categories of events the logger processes and which to ignore. Although every JRas logger
is defined to contain both a message and trace mask, the message logger uses only the message
mask and the trace logger uses the trace mask only. For example, by setting a message logger
message mask to the appropriate state, it can be configured to process only error messages and
ignore informational and warning messages. Changing the trace mask state of a message logger
has no effect.

A logger contains one or more handlers to which it forwards events for further processing. When
the user calls a method on the logger, the logger compares the event type that is specified by the
caller to its current mask value. If the specified type passes the mask check, the logger creates an
event object to capture the information relating to the event that passed to the logger method. This
information can include information, such as the names of the class and method which logs the
event, a message, and parameters to log, among others. When the logger creates the event
object, it forwards the event to all handlers currently registered with the logger.

Methods that are used within the logging infrastructure do not make calls to the logger method.
When an application uses an object that extends a thread class, implements the hashCode
method, and makes a call to the logging infrastructure from that method, the result is a recursive
loop.

Handlers
A handler provides an abstraction over an output device or event consumer. An example is a file
handler, which knows how to write an event to a file. The handler also contains a mask that is
used to further restrict the categories of events the handler processes. For example, a message

Chapter 3. Adding logging and tracing to your application 31

logger might be configured to pass both warning and error events, but a handler attached to the
message logger might be configured to pass error events only. Handlers also include formatters,
which the handler invokes to format the data in the passed event before it is written to the output
device.

Formatters
Handlers are configured with formatters, which know how to format events of certain types. A
handler can contain multiple formatters, each of which knows how to format a specific class of
event. The event object is passed to the appropriate formatter by the handler. The formatter
returns formatted output to the handler, which then writes it to the output device.

JRas Extensions
JRas extensions are the collection of implementation classes that support JRas integration into the
WebSphere Application Server environment.

JRas extensions

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

The stand-alone JRas logging toolkit defines interfaces and provides a variety of concrete classes that
implement these interfaces. Because the stand-alone JRas logging toolkit is developed as a general
purpose toolkit, the implementation classes do not contain the configuration interfaces and methods that
are necessary for use in the WebSphere Application Server product. In addition, many of the
implementation classes are not written appropriately for use in a Java 2 Platform, Enterprise Edition
(J2EE) environment. To overcome these shortcomings, WebSphere Application Server provides the
appropriate implementation classes that support integration into the WebSphere Application Server
environment. The collection of these implementation classes is referred to as the JRas extensions.

Usage model

You can use the JRas extensions in three distinct operational modes:
Integrated

In this mode, message and trace records are written only to logs that are defined and maintained
by the WebSphere Application Server run time. This mode is the default mode of operation and is
equivalent to the WebSphere Application Server V4.0 mode of operation.

Stand-alone
In this mode, message and trace records are written solely to stand-alone logs that are defined
and maintained by the user. You control which categories of events are written to which logs, and
the format in which entries are written. You are responsible for configuration and maintenance of
the logs. Message and trace entries are not written to WebSphere Application Server runtime logs.

Combined
In this mode, message and trace records are written to both WebSphere Application Server
runtime logs and to stand-alone logs that you must define, control, and maintain. You can use
filtering controls to determine which categories of messages and trace are written to which logs.

The JRas extensions are specifically targeted to an integrated mode of operation. The integrated mode of
operation can be appropriate for some usage scenarios, but many scenarios are not adequately addressed
by these extensions. Many usage scenarios require a stand-alone or combined mode of operation instead.
A set of user extension points are defined that support JRas extensions in either a stand-alone or
combined mode of operations.

JRas extension classes
WebSphere Application Server provides a base set of implementation classes that are collectively referred
to as the JRas extensions. Many of these classes provide the appropriate implementations of loggers,
handlers, and formatters for use in a WebSphere Application Server environment.

32 Troubleshooting and support

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

The collection of JRas classes is targeted at an integrated mode of operation. If you choose to use the
JRas extensions in either stand-alone or combined mode, you can reuse the logger and manager class
that are provided by the extensions, but you must provide your own implementations of handlers and
formatters.

WebSphere Application Server message and trace loggers

The message and trace loggers that are provided by the stand-alone JRas logging toolkit cannot be
directly used in the WebSphere Application Server environment. The JRas extensions provide the
appropriate logger implementation classes. Instances of these message and trace logger classes are
obtained directly and exclusively from the WebSphere Application Server Manager class. You cannot
directly instantiate message and trace loggers. Obtaining loggers in any manner other than directly from
the Manager class is not allowed and directly violates the programming model.

The message and trace logger instances that are obtained from the WebSphere Application Server
Manager class are subclasses of the RASMessageLogger and RASTraceLogger classes that are provided
by the stand-alone JRas logging toolkit. The RASMessageLogger and RASTraceLogger classes define the
set of methods that are directly available. Public methods that are introduced by the JRas extensions
logger subclasses cannot be called directly by user code because it is a violation of the programming
model.

Loggers are named objects and are identified by name. When the Manager class is called to obtain a
logger, the caller is required to specify a name for the logger. The Manager class maintains a
name-to-logger instance mapping. Only one instance of a named logger is ever created within the lifetime
of a process. The first call to the Manager class with a particular name results in the logger, which is
configured by the Manager class. The Manager class caches a reference to the instance, then returns it to
the caller. Subsequent calls to the Manager class that specify the same name result in a returned
reference to the cached logger. Separate namespaces are maintained for message and trace loggers. You
can use a single name obtain both a message logger and a trace logger from the Manager, without
ambiguity, and without causing a namespace collision.

In general, loggers have no predefined granularity or scope. A single logger can be used to instrument an
entire application. You might determine that having a logger per class is more effective, or the appropriate
granularity might be somewhere in between. Partitioning an application into logging domains is determined
by the application writer.

The WebSphere Application Server logger classes that are obtained from the Manager class are
thread-safe. Although the loggers provided as part of the stand-alone JRas logging toolkit implement the
serializable interface, loggers are not serializable. Loggers are stateful objects, tied to a Java virtual
machine instance and are not serializable. Attempting to serialize a logger is a violation of the
programming model.

Personal or individual logger subclasses are not supported in a WebSphere Application Server
environment.

WebSphere Application Server handlers

WebSphere Application Server provides the appropriate handler class that is used to write message and
trace events to the WebSphere Application Server run time logs. You cannot configure the WebSphere
Application Server handler to write to any other destination. The creation of a WebSphere Application
Server handler is a restricted operation and is not available to user code. Every logger that is obtained
from the Manager comes preconfigured with an instance of this handler already installed. You can remove
the WebSphere Application Server handler from a logger when you want to run in stand-alone mode.

Chapter 3. Adding logging and tracing to your application 33

When you remove it, you cannot add the WebSphere Application Server handler again to the logger from
which it is removed or any other logger. Also, you cannot directly call any method on the WebSphere
Application Server handler. Attempting to create an instance of the WebSphere Application Server handler,
to call methods on the WebSphere Application Server handler or to add a WebSphere Application Server
handler to a logger by user code is a violation of the programming model.

WebSphere Application Server formatters

The WebSphere Application Server handler comes preconfigured with the appropriate formatter for data
that is written to WebSphere Application Server logs. The creation of a WebSphere Application Server
formatter is a restricted operation and not available to user code. No mechanism exists that allows the
user to obtain a reference to a formatter installed in a WebSphere Application Server handler, or to change
the formatter a WebSphere Application Server handler is configured to use.

WebSphere Application Server manager

WebSphere Application Server provides a Manager class in the com.ibm.websphere.ras package. All
message and trace loggers must be obtained from this Manager class. A reference to the Manager class is
obtained by calling the static Manager.getManager method. Message loggers are obtained by calling the
createRASMessageLogger method on the Manager class. Trace loggers are obtained by calling the
createRASTraceLogger method on the Manager class.

The manager also supports a group abstraction that is useful when dealing with trace loggers. The group
abstraction supports multiple, unrelated trace loggers to register as part of a named entity called a group.
WebSphere Application Server provides the appropriate systems management facilities to manipulate the
trace setting of a group, similar to the way the trace settings of an individual trace logger work.

For example, suppose component A consists of 10 classes. Suppose each class is configured to use a
separate trace logger. All 10 trace loggers in the component are registered as members of the same
group, for example, Component_A_Group. You can turn on trace for a single class, or you can turn on
trace for all 10 classes in a single operation using the group name, if you want a component trace. Group
names are maintained within the namespace for trace loggers.

JRas framework (deprecated)
Because the JRas extensions classes do not provide the flexibility and behavior that are required for many
scenarios, a variety of extension points are defined. You can write your own implementation classes to
obtain the required behavior.

Deprecated: The JRas framework described in this topic is deprecated. However, you can achieve similar
results using Java logging.

In general, the JRas extensions require you to call the Manager class to obtain a message logger or trace
logger. No provision is made for you to provide your own message or trace logger subclasses. In general,
user-provided extensions cannot be used to affect the integrated mode of operation. The behavior of the
integrated mode of operation is solely determined by the WebSphere Application Server run time and the
JRas extensions classes.

Handlers

The stand-alone JRas logging toolkit defines the RASIHandler interface. All handlers must implement this
interface. You can write your own handler classes that implement the RASIHandler interface. Directly
create instances of user-defined handlers and add them to the loggers that are obtained from the Manager
class.

The stand-alone JRas logging toolkit provides several handler implementation classes. These handler
classes are inappropriate for use in the Java 2 Platform, Enterprise Edition (J2EE) environment. You

34 Troubleshooting and support

cannot directly use or subclass any of the Handler classes that are provided by the stand-alone JRas
logging toolkit. Doing so is a violation of the programming model.

Formatters

The stand-alone JRas logging toolkit defines the RASIFormatter interface. All formatters must implement
this interface. You can write your own formatter classes that implement the RASIFormatter interface. You
can add these classes to a user-defined handler only. WebSphere Application Server handlers cannot be
configured to use user-defined formatters. Instead, directly create instances of your formatters and add
them to the your handlers appropriately.

As with handlers, the stand-alone JRas logging toolkit provides several formatter implementation classes.
Direct use of these formatter classes is not supported.

Message event types

The stand-alone JRas toolkit defines message event types in the RASIMessageEvent interface. In
addition, the WebSphere Application Server reserves a range of message event types for future use. The
RASIMessageEvent interface defines three types, with values of 0x01, 0x02, and 0x04. The values 0x08
through 0x8000 are reserved for future use. You can provide your own message event types by extending
this interface appropriately. User-defined message types must have a value of 0x1000 or greater.

Message loggers that are retrieved from the Manager class have their message masks set to pass or
process all message event types defined in the RASIMessageEvent interface. To process user-defined
message types, you must manually set the message logger mask to the appropriate state by user code
after the message logger is obtained from the Manager class. WebSphere Application Server does not
provide any built-in systems management support for managing message types.

Message event objects

The stand-alone JRas toolkit provides a RASMessageEvent implementation class. When a message
logging method is called on the message logger, and the message type is currently enabled, the logger
creates and distributes an event of this class to all handlers that are currently registered with that logger.

You can provide your own message event classes, but they must implement the RASIEvent interface. You
must directly create instances of such user-defined message event classes. When it is created, pass your
message event to the message logger by calling the message logger's fireRASEvent method directly.
WebSphere Application Server message loggers cannot directly create instances of user-defined types in
response to calling a logging method (msg.message) on the logger. In addition, instances of user-defined
message types are never processed by the WebSphere Application Server handler. You cannot create
instances of the RASMessageEvent class directly.

Trace event types

The stand-alone JRas toolkit defines trace event types in the RASITraceEvent interface. You can provide
your own trace event types by extending this interface appropriately. In such a case, you must ensure that
the values for the user-defined trace event types do not collide with the values of the types that are
defined in the RASITraceEvent interface.

Trace loggers that are retrieved from the Manager class typically have their trace masks set to reject all
types. A different starting state can be specified by using WebSphere Application Server systems
management facilities. In addition, you can change the state of the trace mask for a logger at run-time,
using WebSphere Application Server systems management facilities.

To process user-defined trace types, the trace logger mask must be manually set to the appropriate state
by user code. WebSphere Application Server systems management facilities cannot be used to manage

Chapter 3. Adding logging and tracing to your application 35

user-defined trace types, either at start time or run time.

Trace event objects

The stand-alone JRas toolkit provides a RASTraceEvent implementation class. When a trace logging
method is called on the WebSphere Application Server trace logger and the type is currently enabled, the
logger creates and distributes an event of this class to all the handlers that are currently registered with
that logger.

You can provide your own trace event classes. Such trace event classes must implement the RASIEvent
interface. You must create instances of such user-defined event classes directly. When it is created, pass
the trace event to the trace logger by calling the trace logger's fireRASEvent method directly. WebSphere
Application Server trace loggers cannot directly create instances of user-defined types in response to
calling a trace method (entry, exit, trace) on the trace logger. In addition, instances of user-defined trace
types are never processed by the WebSphere Application Server handler. You cannot create instances of
the RASTraceEvent class directly.

User defined types, user defined events and WebSphere Application Server

By definition, the WebSphere Application Server handler processed user-defined message or trace types,
or user-defined message or trace event classes. Message and trace entries of either a user-defined type
or user-defined event class cannot be written to the WebSphere Application Server run-time logs.

JRas programming interfaces for logging (deprecated):

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

General considerations

You can configure the WebSphere Application Server to use Java 2 security to restrict access to protected
resources such as the file system and sockets. Because user-written extensions typically access such
protected resources, user-written extensions must contain the appropriate security checking calls, using
AccessController doPrivileged calls. In addition, the user-written extensions must contain the appropriate
policy file. In general, locating user-written extensions in a separate package is a good practice. It is your
responsibility to restrict access to the user-written extensions appropriately.

Writing a handler

User-written handlers must implement the RASIHandler interface. The RASIHandler interface extends the
RASIMaskChangeGenerator interface, which extends the RASIObject interface. A short discussion of the
methods that are introduced by each of these interfaces follows, along with implementation pointers. For
more in-depth information on any of the particular interfaces or methods, see the corresponding product
API documentation.

RASIObject interface

The RASIObject interface is the base interface for stand-alone JRas logging toolkit classes that are
stateful or configurable, such as loggers, handlers, and formatters.
v The stand-alone JRas logging tookit supports rudimentary properties-file based configuration. To

implement this configuration support, the configuration state is stored as a set of key-value pairs in a
properties file. The public Hashtable getConfig and public void setConfig(Hashtable ht) methods are
used to get and set the configuration state. The JRas extensions do not support properties-based
configuration. Implement these methods as no-operations. You can implement your own
properties-based configuration using these methods.

36 Troubleshooting and support

v Loggers, handlers, and formatters can be named objects. For example, the JRas extensions require the
user to provide a name for the loggers that are retrieved from the manager. You can name your
handlers. The public String getName and public void setName(String name) methods are provided to
get or set the name field. The JRas extensions currently do not call these methods on user handlers.
You can implement these methods as you want, including as no operations.

v Loggers, handlers, and formatters can also contain a description field. The public String getDescription
and public void setDescription(String desc) methods can be used to get or set the description field. The
JRas extensions currently do not use the description field. You can implement these methods as you
want, including as no operations.

v The public String getGroup method is provided for use by the RASManager interface. Since the JRas
extensions provide their own Manager class, this method is never called. Implement this as a
no-operation.

RASIMaskChangeGenerator interface

The RASIMaskChangeGenerator interface is the interface that defines the implementation methods for
filtering of events based on a mask state. It is currently implemented by both loggers and handlers. By
definition, an object that implements this interface contains both a message mask and a trace mask,
although both need not be used. For example, message loggers contain a trace mask, but the trace mask
is never used because the message logger never generates trace events. Handlers, however, can actively
use both mask values. For example, a single handler can handle both message and trace events.
v The public long getMessageMask and public void setMessageMask(long mask) methods are used to

get or set the value of the message mask. The public long getTraceMask and public void
setTraceMask(long mask) methods are used to get or set the value of the trace mask.

In addition, this interface introduces the concept of calling back to interested parties when a mask changes
state. The callback object must implement the RASIMaskChangeListener interface.
v The public void addMaskChangeListener(RASIMaskChangeListener listener) and public void

removeMaskChangeListener(RASIMaskChangeListener listener) methods are used to add or remove
listeners to the handler. The public Enumeration getMaskChangeListeners method returns an
enumeration over the list of currently registered listeners. The public void
fireMaskChangedEvent(RASMaskChangeEvent mc) method is used to call back all the registered
listeners to inform them of a mask change event.

For efficiency reasons, the JRas extensions message and trace loggers implement the
RASIMaskChangeListener interface. The logger implementations maintain a composite mask in addition to
the logger mask. The logger composite mask is formed by logically or'ing the appropriate masks of all
handlers that are registered to that logger, then and'ing the result with the logger mask. For example, the
message logger composite mask is formed by or'ing the message masks of all handlers that are registered
with that logger, then and'ing the result with the logger message mask.

All handlers are required to properly implement these methods. In addition, when a user handler is
instantiated, the logger that is added must be registered with the handler; use the addMaskChangeListener
method. When either the message mask or trace mask of the handler is changed, the logger must be
called back to inform it of the mask change. With this process, the logger can dynamically maintain the
composite mask.

The RASMaskChangedEvent class is defined by the stand-alone JRas logging toolkit. Direct use of that
class by user code is supported in this context.

In addition, the RASIMaskChangeGenerator interface introduces the concept of caching the names of all
message and trace event classes that the implementing object process. The intent of these methods is to
support a management program such as a graphical user interface to retrieve the list of names, introspect
the classes to determine the event types that they might possibly process and display the results. The
JRas extensions do not ever call these methods, so they can be implemented as no operations.

Chapter 3. Adding logging and tracing to your application 37

v The public void addMessageEventClass(String name) and public void
removeMessageEventClass(String name) methodscan be called to add or remove a message event
class name from the list. The method public Enumeration getMessageEventClasses returns an
enumeration over the list of message event class names. Similarly, the public void
addTraceEventClass(String name) and public void removeTraceEventClass(String name) methods can
be called to add or remove a trace event class name from the list. The public Enumeration
getTraceEventClasses method returns an enumeration over the list of trace event class names.

RASIHandler interface

The RASIHandler interface introduces the methods that are specific to the behavior of a handler.

The RASIHandler interface, as provided by the stand-alone JRas logging toolkit, supports handlers that
run in either a synchronous or asynchronous mode. In asynchronous mode, events are typically queued by
the calling thread and then written by a worker thread. Because spawning of threads is not supported in
the WebSphere Application Server environment, it is expected that handlers do not queue or batch events,
although this activity is not expressly prohibited.
v The public int getMaximumQueueSize() and public void setMaximumQueueSize(int size) methods

create IllegalStateException exceptions to manage the maximum queue size. The public int
getQueueSize method is provided to query the actual queue size.

v The public int getRetryInterval and public void setRetryInterval(int interval) methods support the notion
of error retry, which implies some type of queueing.

v The public void addFormatter(RASIFormatter formatter), public void removeFormatter(RASIFormatter
formatter) and public Enumeration getFormatters methods are provided to manage the list of formatters
that the handler can be configured with. Different formatters can be provided for different event classes,
if appropriate.

v The public void openDevice, public void closeDevice and public void stop methods are provided to
manage the underlying device that the handler abstracts.

v The public void logEvent(RASIEvent event) and public void writeEvent(RASIEvent event) methods are
provided to pass events to the handler for processing.

Writing a formatter

User-written formatters must implement the RASIFormatter interface. The RASIFormatter interface extends
the RASIObject interface. The implementation of the RASIObject interface is the same for both handlers
and formatters. A short discussion of the methods that are introduced by the RASIFormatter interface
follows. For more in-depth information on the methods introduced by this interface, see the corresponding
product API documentation.

RASIFormatter interface
v The public void setDefault(boolean flag) and public boolean isDefault methods are used by the concrete

RASHandler classes that are provided by the stand-alone JRas logging toolkit to determine if a
particular formatter is the default formatter. Because these RASHandler classes must never be used in
a WebSphere Application Server environment, the semantic significance of these methods can be
determined by the user.

v The public void addEventClass(String name), public void removeEventClass(String name) and public
Enumeration getEventClasses methods are provided to determine which event classes a formatter can
use to format. You can provide the appropriate implementations.

v The public String format(RASIEvent event) method is called by handler objects and returns a formatted
String representation of the event.

Programming model summary
The programming model that is described in this section builds upon and summarizes some of the
concepts already introduced. This section also formalizes usage requirements and restrictions. Use of the
WebSphere Application Server JRas extensions in a manner that does not conform to the following
programming guidelines is prohibited.

38 Troubleshooting and support

Deprecated: The JRas framework described in this task and its sub-tasks is deprecated. However, you
can achieve similar results using Java logging.

You can use the WebSphere Application Server JRas extensions in three distinct operational modes. The
programming models concepts and restrictions apply equally across all modes of operation.
v You must not use implementation classes that are provided by the stand-alone JRas logging toolkit

directly, unless specifically noted otherwise. Direct usage of those classes is not supported. IBM
Support provides no diagnostic aid or bug fixes relating to the direct use of classes that are provided by
the stand-alone JRas logging toolkit.

v You must obtain message and trace loggers directly from the Manager class. You cannot directly
instantiate loggers.

v You cannot replace the WebSphere Application Server message and trace logger classes.
v You must guarantee that the logger names that are passed to the Manager class are unique, and follow

the documented naming constraints. When a logger is obtained from the Manager class, you must not
attempt to change the name of the logger by calling the setName method.

v Named loggers can be used more than once. For any given name, the first call to the Manager class
results in the Manager class creating a logger that is associated with that name. Subsequent calls to the
Manager class that specify the same name result in a returned reference to the existing logger.

v The Manager class maintains a hierarchical namespace for loggers. Use a dot-separated, fully qualified
class name to identify any logger. Other than dots or periods, logger names cannot contain any
punctuation characters, such as an asterisk (*), a comma (.), an equals sign (=), a colon (:), or quotes.

v Group names must comply with the same naming restrictions as logger names.
v The loggers returned from the Manager class are subclasses of the RASMessageLogger and the

RASTraceLogger classes that are provided by the stand-alone JRas logging toolkit. You can call any
public method that is defined by the RASMessageLogger and RASTraceLogger classes. You cannot call
any public method that is introduced by the provided subclasses.

v If you want to operate in either stand-alone or combined mode, you must provide your own Handler
and Formatter subclasses. You cannot use the Handler and Formatter classes that are provided by the
stand-alone JRas logging toolkit. User written handlers and formatters must conform to the documented
guidelines.

v Loggers that are obtained from the Manager class come with a WebSphere Application Server handler
installed. This handler writes message and trace records to logs that are defined by the WebSphere
Application Server run time. Manage these logs using the provided systems management interfaces.

v You can programmatically add and remove user-defined handlers from a logger at any time. Multiple
additions and removals of user defined handlers are supported. You are responsible for creating an
instance of the handler to add, configuring the handler by setting the handler mask value and formatter
appropriately, then adding the handler to the logger using the addHandler method. You are responsible
for programmatically updating the masks of user-defined handlers, as appropriate.

v You might get a reference to the handler that is installed within a logger by calling the getHandlers
method on the logger and processing the results. You must not call any methods on the handler that are
obtained in this way. You can remove the WebSphere Application Server handler from the logger by
calling the logger removeHandler method, passing in the reference to the WebSphere Application
Server handler. When removed, the WebSphere Application Server handler cannot be added again to
the logger.

v You can define your own message type. The behavior of user-defined message types and restrictions
on their definitions is discussed in Extending the JRas framework.

v You can define your own message event classes. The use of user-defined message event classes is
discussed in Extending the JRas framework.

v You can define your own trace types. The behavior of user-defined trace types and restrictions on your
definitions is discussed in Extending the JRas framework.

v You can define your own trace event classes. The use of user-defined trace event classes is discussed
in Extending the JRas framework.

v You must programmatically maintain the bits in the message and trace logger masks that correspond to
any user-defined types. If WebSphere Application Server facilities are used to manage the predefined

Chapter 3. Adding logging and tracing to your application 39

types, these updates must not modify the state of any of the bits that correspond to those types. If you
are assuming ownership responsibility for the predefined types, then you can change all bits of the
masks.

JRas messages and trace event types
The basic JRas message and event types are not the same as those natively recognized by WebSphere
Application Server, so the JRas types are mapped onto the types that are native to the runtime
environment. You can control the way JRas message and trace events are processed using custom filters
and message controls.

Event types

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

The base message and trace event types that are defined by the stand-alone JRas logging toolkit are not
the same as the native types that are recognized by the WebSphere Application Server run-time. Instead,
the basic JRas types are mapped onto the native types. This mapping can vary by platform or edition. The
mapping is discussed in the following section.

Platform message event types

The message event types that are recognized and processed by the WebSphere Application Server
runtime are defined in the RASIMessageEvent interface that is provided by the stand-alone JRas logging
toolkit.

Table 8. Platform message event types. These message types are mapped onto the native message types, as
follows.

WebSphere Application Server native type JRas RASIMessageEvent type

Audit TYPE_INFO, TYPE_INFORMATION

Warning TYPE_WARN, TYPE_WARNING

Error TYPE_ERR, TYPE_ERROR

Application developers can use JRas to issue an MVS™ WTO (write to operator) message by using a
JRas RASIMessageEvent type of TYPE_INFO or TYPE_INFORMATION to issue a WebSphere Application
Server for z/OS Audit trace. A WebSphere Application Server for z/OS Audit trace maps to an MVS route
code 11 WTO (hardcopy WTO).

Platform trace event types

The trace event types that are recognized and processed by the WebSphere Application Server run time
are defined in the RASITraceEvent interface that is provided by the stand-alone JRas logging toolkit. The
RASITraceEvent interface provides a rich and complex set of types. This interface defines both a simple
set of levels, as well as a set of enumerated types.
v For a user who prefers a simple set of levels, the RASITraceEvent interface provides TYPE_LEVEL1,

TYPE_LEVEL2, and TYPE_LEVEL3. The implementations provide support for this set of levels. The levels
are hierarchical, enabling level 2 also enables level 1, enabling level 3 also enables levels 1 and 2.

v For users who prefer a more complex set of values that can be OR'd together, the RASITraceEvent
interface provides TYPE_API, TYPE_CALLBACK, TYPE_ENTRY_EXIT, TYPE_ERROR_EXC, TYPE_MISC_DATA,
TYPE_OBJ_CREATE, TYPE_OBJ_DELETE, TYPE_PRIVATE, TYPE_PUBLIC, TYPE_STATIC, and TYPE_SVC.

The trace event types are mapped onto the native trace types as follows:

40 Troubleshooting and support

Table 9. WebSphere Application Server native types and JRas RASITraceEvent level types. Mapping WebSphere
Application Server trace types to the JRas RASITraceEvent level types.

WebSphere Application Server native type JRas RASITraceEvent level type

Event TYPE_LEVEL1

EntryExit TYPE_LEVEL2

Debug TYPE_LEVEL3

Table 10. WebSphere Application Server native types and JRas RASITraceEvent enumerated types. Mapping
WebSphere Application Server trace types to the JRas RASITraceEvent enumerated types.

WebSphere Application Server native type JRas RASITraceEvent enumerated types

Event TYPE_ERROR_EXC, TYPE_SVC, TYPE_OBJ_CREATE,
TYPE_OBJ_DELETE

EntryExit TYPE_ENTRY_EXIT, TYPE_API, TYPE_CALLBACK,
TYPE_PRIVATE, TYPE_PUBLIC, TYPE_STATIC

Debug TYPE_MISC_DATA

For simplicity, it is recommended that one or the other of the tracing type methodologies is used
consistently throughout the application. If you decide to use the non-level types, choose one type from
each category and use those types consistently throughout the application, to avoid confusion.

Message and trace parameters

The various message logging and trace method signatures accept the Object, Object[] and Throwable
parameter types. WebSphere Application Server processes and formats the various parameter types as
follows:
Primitives

Primitives, such as int and long are not recognized as subclasses of Object type and cannot be
directly passed to one of these methods. A primitive value must be transformed to a proper Object
type (Integer, Long) before passing as a parameter.

Object
The toString method is called on the object and the resulting String is displayed. Implement the
toString method appropriately for any object that is passed to a message logging or trace method.
It is the responsibility of the caller to guarantee that the toString method does not display
confidential data such as passwords in clear text, and does not cause infinite recursion.

Object[]
The Object[] type is provided for the case when more than one parameter is passed to a message
logging or trace method. The toString method is called on each Object in the array. Nested arrays
are not handled, that is none of the elements in the Object array belong in an array.

Throwable
The stack trace of the Throwable type is retrieved and displayed.

Array of primitives
An array of primitive, for example, byte[], int[], is recognized as an Object, but is loosely
associated by Java code. In general, avoid arrays of primitives, if possible. If arrays of primitives
are passed, the results are indeterminate and can change, depending on the type of array passed,
the API used to pass the array, and the release of the product. For consistent results, user code
needs to preprocess and format the primitive array into some type of String form before passing it
to the method. If such preprocessing is not performed, the following problems can result:
v [B@924586a0b - This message is deciphered as a byte array at location X. This message is

typically returned when an array is passed as a member of an Object[] type and results from
calling the toString method on the byte[] type.

v Illegal trace argument : array of long. This response is typically returned when an array of
primitives is passed to a method taking an Object.

Chapter 3. Adding logging and tracing to your application 41

v 01040703: The hex representation of an array of bytes. Typically this problem can occur when a
byte array is passed to a method taking a single Object. This behavior is subject to change and
cannot be relied on.

v "1" "2": The String representation of the members of an int[] type formed by converting each
element to an integer and calling the toString method on the integers. This behavior is subject
to change and cannot be relied on.

v [Ljava.lang.Object;@9136fa0b : An array of objects. Typically this response is seen when an
array containing nested arrays is passed.

Controlling message logging

Writing a message to a WebSphere Application Server log requires that the message type passes three
levels of filtering or screening:
1. The message event type must be one of the message event types that is defined in the

RASIMessageEvent interface.
2. Logging of that message event type must be enabled by the state of the message logger mask.
3. The message event type must pass any filtering criteria that is established by the WebSphere

Application Server run-time.

When a WebSphere Application Server logger is obtained from the Manager class, the initial setting of the
mask forwards all native message event types to the WebSphere Application Server handler. It is possible
to control what messages get logged by programmatically setting the state of the message logger mask.

Some editions of the product support user specified message filter levels for a server process. When such
a filter level is set, only messages at the specified severity levels are written to WebSphere Application
Server. Message types that pass the mask check of the message logger can be filtered out by WebSphere
Application Server.

Control tracing

Each edition of the product provides a mechanism for enabling or disabling trace. The various editions can
support static trace enablement (trace settings are specified before the server is started), dynamic trace
enablement (trace settings for a running server process can be dynamically modified), or both.

Writing a trace record to a WebSphere Application Server requires that the trace type passes three levels
of filtering or screening:
1. The trace event type must be one of the trace event types that is defined in the RASITraceEvent

interface.
2. Logging of that trace event type must be enabled by the state of the trace logger mask.
3. The trace event type must pass any filtering criteria that is established by the WebSphere Application

Server run-time.

When a logger is obtained from the Manager class, the initial setting of the mask is to suppress all trace
types. The exception to this rule is the case where the WebSphere Application Server run time supports
static trace enablement and a non-default startup trace state for that trace logger is specified. Unlike
message loggers, the WebSphere Application Server can dynamically modify the trace mask state of a
trace logger. WebSphere Application Server only modifies the portion of the trace logger mask that
corresponds to the values that are defined in the RASITraceEvent interface. WebSphere Application
Server does not modify undefined bits of the mask that might be in use for user-defined types.

When the dynamic trace enablement feature that is available on some platforms is used, the trace state
change is reflected both in the application server run time and the trace mask of the trace logger. If user
code programmatically changes the bits in the trace mask corresponding to the values that are defined by
in the RASITraceEvent interface, the mask state of the trace logger and the run time state become
unsynchronized and unexpected results occur. Therefore, programmatically changing the bits of the mask
corresponding to the values that are defined in the RASITraceEvent interface is not supported.

42 Troubleshooting and support

Instrumenting an application with JRas extensions
You can create an application using JRas extensions.

Before you begin

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can
achieve similar results using Java logging.

About this task

To create an application using the WebSphere Application Server JRas extensions, perform the following
steps:

Procedure
1. Determine the mode for the extensions: integrated, stand-alone, or combined.

2. If the extensions are used in either stand-alone or combined mode, create the necessary handler and
formatter classes.

3. If localized messages are used by the application, create a resource bundle.

4. In the application code, get a reference to the Manager class and create the manager and logger
instances.

5. Insert the appropriate message and trace logging statements in the application.

Creating JRas resource bundles and message files
The WebSphere Application Server message logger provides the message and msg methods so the user
can log localized messages. In addition, the message logger provides the textMessage method to log
messages that are not localized. Applications can use either or both, as appropriate.

Before you begin

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can
achieve similar results using Java logging.

About this task

The mechanism for providing localized messages is the resource bundle support that is provided by the
IBM Developer Kit, Java Technology Edition. If you are not familiar with resource bundles as implemented
by the Developer Kit, you can get more information from various texts, or by reading the API
documentation for the java.util.ResourceBundle, java.util.ListResourceBundle and
java.util.PropertyResourceBundle classes, as well as the java.text.MessageFormat class.

The PropertyResourceBundle class is the preferred mechanism to use. In addition, note that the JRas
extensions do not support the extended formatting options such as {1, date} or {0, number, integer} that
are provided by the MessageFormat class.

You can forward messages that are written to the internal WebSphere Application Server logs to other
processes for display. For example, messages that are displayed on the administrative console, which can
be running in a different location than the server process, can be localized using the late binding process.
Late binding means that WebSphere Application Server does not localize messages when they are logged,
but defers localization to the process that displays the message.

To properly localize the message, the displaying process must have access to the resource bundle where
the message text is stored. You must package the resource bundle separately from the application, and
install it in a location where the viewing process can access it. If you do not want to take these steps, you
can use the early binding technique to localize messages as they are logged.

Chapter 3. Adding logging and tracing to your application 43

The two techniques are described as follows:
Early binding

The application must localize the message before logging it. The application looks up the localized
text in the resource bundle and formats the message. When formatting is complete, the application
logs the message using the textMessage method. Use this technique to package the application
resource bundles with the application.

Late binding
The application can choose to have the WebSphere Application Server run time localize the
message in the process where it displays. Using this technique, the resource bundles are
packaged in a stand-alone .jar file, separately from the application. You must then install the
resource bundle .jar file on every machine in the installation from which an administrative console
or log viewing program might be run. You must install the .jar file in a directory that is part of the
extensions class path. In addition, if you forward logs to IBM service, you must also forward the
.jar file that contains the resource bundles.

To create a resource bundle, perform the following steps.

Procedure
1. Create a text properties file that lists message keys and the corresponding messages. The properties

file must have the following characteristics:
v Each property in the file is terminated with a line-termination character.
v If a line contains only white space, or if the first non-white space character of the line is the number

sign symbol (#) or exclamation mark (!), the line is ignored. The # and ! characters can therefore be
used to put comments into the file.

v Each line in the file, unless it is a comment or consists only of white space, denotes a single
property. A backslash (\) is treated as the line-continuation character.

v The syntax for a property file consists of a key, a separator, and an element. Valid separators
include the equal sign (=), colon (:), and white space ().

v The key consists of all characters on the line from the first non-white space character to the first
separator. Separator characters can be included in the key by escaping them with a backslash (\),
but using this approach is not recommended because escaping characters is error prone and
confusing. Instead, use a valid separator character that does not display in any keys in the
properties file.

v White space after the key and separator is ignored until the first non-white space character is
encountered. All characters that remain before the line-termination character define the element.

See the Java documentation for the java.util.Properties class for a full description of the syntax and
construction of properties files.

2. Translate the file into localized versions of the file with language-specific file names for example, the
DefaultMessages.properties file can be translated into DefaultMessages_de.properties for German
and DefaultMessages_ja.properties for Japanese.

3. When the translated resource bundles are available, write them to a system-managed persistent
storage medium. Resource bundles are used to convert the messages into the requested national
language and locale.

4. When a message logger is obtained from the JRas manager, configure the logger to use a particular
resource bundle. Messages logged through the message API use this resource bundle when message
localization is performed. At run time, the user's locale setting is used to determine the properties file
from which to extract the message that is specified by a message key, ensuring that the message is
delivered in the correct language.

5. If the message loggers msg method is called, explicitly identify a resource bundle name.

What to do next

The application locates the resource bundle based on the file location relative to any directory in the class
path. For instance, if the DefaultMessages.properties property resource bundle is in the

44 Troubleshooting and support

baseDir/subDir1/subDir2/resources directory and baseDir is in the class path, the name
subdir1.subdir2.resources.DefaultMessage is passed to the message logger to identify the resource
bundle.

JRas resource bundles:

You can create resource bundles in several ways. The best and easiest way is to create a properties file
that supports a PropertiesResourceBundle resource bundle. This sample shows how to create such a
properties file.

Resource bundle sample

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

For this sample, four localizable messages are provided. The properties file is created and the key-value
pairs are inserted into it. All the normal properties files conventions and rules apply to this file. In addition,
the creator must be aware of other restrictions that are imposed on the values by the Java
MessageFormat class. For example, apostrophes must be escaped or they cause a problem. Avoid the
use of non-portable characters. WebSphere Application Server does not support the use of extended
formatting conventions that the MessageFormat class supports, such as {1, date} or {0, number, integer}.

Assume that the base directory for the application that uses this resource bundle is baseDir and that this
directory is in the class path. Assume that the properties file is stored in the subdirectory baseDir that is
not in the class path (baseDir/subDir1/subDir2/resources). To allow the messages file to resolve, the
subDir1.subDir2.resources.DefaultMessage name is used to identify the PropertyResourceBundle resource
bundle and is passed to the message logger.

For this sample, the properties file is named DefaultMessages.properties:
Contents of the DefaultMessages.properties file
MSG_KEY_00=A message with no substitution parameters.
MSG_KEY_01=A message with one substitution parameter: parm1={0}
MSG_KEY_02=A message with two substitution parameters: parm1={0}, parm2 = {1}
MSG_KEY_03=A message with three substitution parameters: parm1={0}, parm2 = {1}, parm3={2}

When the DefaultMessages.properties file is created, the file can be sent to a translation center where
the localized versions are generated.

JRas manager and logger instances
You can use the JRas extensions in integrated, stand-alone, or combined mode. Configuration of the
application varies depending on the mode of operation, but use of the loggers to log message or trace
entries is identical in all modes of operation.

Deprecated: The JRas framework described in this task and its sub-tasks is deprecated. However, you
can achieve similar results using Java logging.

Integrated mode is the default mode of operation. In this mode, message and trace events are sent to the
WebSphere Application Server logs.

In the combined mode, message and trace events are logged to both WebSphere Application Server and
user-defined logs.

In the stand-alone mode, message and trace events are logged only to user-defined logs.

Using the message and trace loggers

Regardless of the mode of operation, the use of message and trace loggers is the same.

Chapter 3. Adding logging and tracing to your application 45

Using a message logger

The message logger is configured to use the DefaultMessages resource bundle. Message keys must be
passed to the message loggers if the loggers are using the message API.
msgLogger.message(RASIMessageEvent.TYPE_WARNING, this,

methodName, "MSG_KEY_00");
... msgLogger.message(RASIMessageEvent.TYPE_WARN, this,

methodName, "MSG_KEY_01", "some string");

If message loggers use the msg API, you can specify a new resource bundle name.
msgLogger.msg(RASIMessageEvent.TYPE_ERR, this, methodName,

"ALT_MSG_KEY_00", "alternateMessageFile");

You can also log a text message. If you are using the textMessage API, no message formatting is done.
msgLogger.textMessage(RASIMessageEvent.TYPE_INFO, this, methodName,"String and Integer",
"A String", new Integer(5));

Using a trace logger

Because trace is normally disabled, guard trace methods for performance reasons.
private void methodX(int x, String y, Foo z)
{

// trace an entry point. Use the guard to make sure tracing is enabled.
Do this checking before you gather parameters to trace.

if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT) {
// I want to trace three parameters, package them up in an Object[]
Object[] parms = {new Integer(x), y, z};
trcLogger.entry(RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX", parms);

}
... logic

// a debug or verbose trace point
if (trcLogger.isLoggable(RASITraceEvent.TYPE_MISC_DATA) {

trcLogger.trace(RASITraceEvent.TYPE_MISC_DATA, this, "methodX" "reached here");
}
...
// Another classification of trace event. An important state change is
detected, so a different trace type is used.
if (trcLogger.isLoggable(RASITraceEvent.TYPE_SVC) {

trcLogger.trace(RASITraceEvent.TYPE_SVC, this, "methodX", "an important event");
}
...
// ready to exit method, trace. No return value to trace

if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT)) {
trcLogger.exit(RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX");

}
}

Setting up for integrated JRas operation
Use JRas operations in integrated mode to send trace events and logging messages to only WebSphere
Application Server logs.

Before you begin

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

About this task

In the integrated mode of operation, message and trace events are sent to WebSphere Application Server
logs. This approach is the default mode of operation.

46 Troubleshooting and support

Procedure
1. Import the requisite JRas extensions classes:

import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

2. Declare logger references:
private RASMessageLogger msgLogger = null;
private RASTraceLogger trcLogger = null;

3. Obtain a reference to the Manager class and create the loggers. Because loggers are named
singletons, you can do this activity in a variety of places. One logical candidate for enterprise beans is
the ejbCreate method. For example, for the myTestBean enterprise bean, place the following code in
the ejbCreate method:
com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();
msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",

myTestBean.class.getName());

// Configure the message logger to use the message file that is created
// for this application.
msgLogger.setMessageFile("acme.widgets.DefaultMessages");
trcLogger = mgr.createRASTraceLogger("Acme", "Widgets", "RasTest",

myTestBean.class.getName());
mgr.addLoggerToGroup(trcLogger, groupName);

Setting up for combined JRas operation
Use JRas operation in combined mode to output trace data and logging messages to both WebSphere
Application Server and user-defined logs.

Before you begin

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

About this task

In combined mode, messages and trace are logged to both WebSphere Application Server logs and
user-defined logs. The following sample assumes that:

v You wrote a user-defined handler named SimpleFileHandler and a user-defined formatter named
SimpleFormatter.

v You are not using user-defined types or events.

Procedure
1. Import the requisite JRas extensions classes:

import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

2. Import the user handler and formatter:
import com.ibm.ws.ras.test.user.*;

3. Declare the logger references:
private RASMessageLogger msgLogger = null;

private RASTraceLogger trcLogger = null;

4. Obtain a reference to the Manager class, create the loggers, and add the user handlers. Because
loggers are named singletons, you can obtain a reference to the loggers in a number of places. One
logical candidate for enterprise beans is the ejbCreate method. Make sure that multiple instances of
the same user handler are not accidentally inserted into the same logger. Your initialization code must
support this approach. The following sample is a message logger sample. The procedure for a trace
logger is similar.

Chapter 3. Adding logging and tracing to your application 47

com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();
msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",

myTestBean.class.getName());
// Configure the message logger to use the message file defined
// in the ResourceBundle sample.
msgLogger.setMessageFile("acme.widgets.DefaultMessages");

// Create the user handler and formatter. Configure the formatter,
// then add it to the handler.
RASIHandler handler = new SimpleFileHandler("myHandler", "FileName");
RASIFormatter formatter = new SimpleFormatter("simple formatter");
formatter.addEventClass("com.ibm.ras.RASMessageEvent");
handler.addFormatter(formatter);

// Add the Handler to the logger. Add the logger to the list of the
//handlers listeners, then set the handlers
// mask, which updates the loggers composite mask appropriately.
// WARNING - there is an order dependency here that must be followed.
msgLogger.addHandler(handler);
handler.addMaskChangeListener(msgLogger);
handler.setMessageMask(RASIMessageEvent.DEFAULT_MESSAGE_MASK);

Setting up for stand-alone JRas operation
You can configure JRas operations to output trace data and logging messages to only user-defined
locations.

Before you begin

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

About this task

In stand-alone mode, messages and traces are logged only to user-defined logs. The following sample
assumes that:

v You have a user-defined handler named SimpleFileHandler and a user-defined formatter named
SimpleFormatter.

v You are not using user-defined types of events.

Procedure
1. Import the requisite JRas extensions classes:

import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

2. Import the user handler and formatter:
import com.ibm.ws.ras.test.user.*;

3. Declare the logger references:
private RASMessageLogger msgLogger = null;

private RASTraceLogger trcLogger = null;

4. Obtain a reference to the Manager class, create the loggers, and add the user handlers. Because
loggers are named singletons, you can obtain a reference to the loggers in a number of places. One
logical candidate for enterprise beans is the ejbCreate method. Make sure that multiple instances of
the same user handler are not accidentally inserted into the same logger. Your initialization code must
support this approach. The following sample is a message logger sample. The procedure for a trace
logger is similar.
com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();

msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",
myTestBean.class.getName());

// Configure the message logger to use the message file that is defined in

48 Troubleshooting and support

//the ResourceBundle sample.
msgLogger.setMessageFile("acme.widgets.DefaultMessages");

// Get a reference to the Handler and remove it from the logger.
RASIHandler aHandler = null;
Enumeration enum = msgLogger.getHandlers();
while (enum.hasMoreElements()) {

aHandler = (RASIHandler)enum.nextElement();
if (aHandler instanceof WsHandler)

msgLogger.removeHandler(wsHandler);
}

// Create the user handler and formatter. Configure the formatter,
// then add it to the handler.
RASIHandler handler = new SimpleFileHandler("myHandler", "FileName");
RASIFormatter formatter = new SimpleFormatter("simple formatter");
formatter.addEventClass("com.ibm.ras.RASMessageEvent");
handler.addFormatter(formatter);

// Add the Handler to the logger. Add the logger to the list of the
// handlers listeners, then set the handlers
// mask, which will update the loggers composite mask appropriately.
// WARNING - there is an order dependency here that must be followed.
msgLogger.addHandler(handler);
handler.addMaskChangeListener(msgLogger);
handler.setMessageMask(RASIMessageEvent.DEFAULT_MESSAGE_MASK);

Logging messages and trace data for Java server applications
By using the WebSphere Application Server for z/OS support for logging application messages and trace
data, you can improve the reliability, availability, and serviceability of any Java application that runs in a
WebSphere Application Server for z/OS server.

About this task

Through this support, your Java application's messages can appear on the MVS master console, in the
error log stream, or in the component trace (CTRACE) data set for WebSphere Application Server for
z/OS. Your application's trace entries can appear in the same CTRACE data set.

Procedure
1. Determine where to issue the log messages. Read “Message location best practices” for tips on which

tools to use.

2. Configure logging in the MVS master console, the error log stream, or the CTRACE data set.

Message location best practices
Use this information for configuring messaging locations.

You might want to issue messages to the MVS master console to report serious error conditions for
mission-critical applications. Through the master console, an operator can receive and, if necessary, take
action in response to a message that indicates the status of an application. In addition, by directing
messages to the master console, you can trigger automation packages to take action for specific
conditions or events related to your application's processing.

Any messages that your application issues to the console also appear in either the error log stream or the
CTRACE data set for WebSphere Application Server for z/OS, depending on the message type. Logging
the messages in these system resources can help you more easily diagnose errors related to your
application's processing. Similarly, issuing requests to log trace data in the CTRACE data set is another
method of recording error conditions or collecting application data for diagnostic purposes.

Chapter 3. Adding logging and tracing to your application 49

Automation-geared messages

Table 11. Messages that can help with automation. The table lists the messages that can help with automation.

Message ID Message text

BBOO0001I WEBSPHERE FOR Z/OS CONTROL PROCESS %s/%s/%s/%s IS STARTING.

BBOO0002I WEBSPHERE FOR Z/OS CONTROL PROCESS %s ENDED NORMALLY. .

BBOO0003E WEBSPHERE FOR Z/OS CONTROL PROCESS %s ENDED ABNORMALLY,
REASON=%X.

BBOO0004I WEBSPHERE FOR Z/OS SERVANT PROCESS %s/%s/%s/%s IS STARTING.

BBOO0005I WEBSPHERE FOR Z/OS SERVANT PROCESS %s ENDED NORMALLY.

BBOO0006E WEBSPHERE FOR Z/OS PROCESS %s ENDED ABNORMALLY, REASON=%X.

BBOO0007I WEBSPHERE FOR Z/OS DAEMON %s/%s/%s/%s IS STARTING.

BBOO0008I WEBSPHERE FOR Z/OS DAEMON %s ENDED NORMALLY.

BBOO0009E WEBSPHERE FOR Z/OS DAEMON %s ENDED ABNORMALLY, REASON=%X.

BBOO0015I INITIALIZATION COMPLETE FOR DAEMON %s.

BBOO0019I INITIALIZATION COMPLETE FOR WEBSPHERE FOR Z/OS CONTROL PROCESS %s.

BBOO0020I INITIALIZATION COMPLETE FOR WEBSPHERE FOR Z/OS SERVANT PROCESS %s.

BBOO0035W TERMINATING THE CURRENT PROCESS, REASON=%08X.

BBOO0048W WEBSPHERE FOR Z/OS COMPONENT TRACE MAY HAVE LOST ENTRIES.

BBOO0057W AUTOMATIC RESTART MANAGER (IXCARM) SERVICE '%s' WARNING/FAILURE,
RC=%X REASON=%X.

BBOO0093E WEBSPHERE FOR Z/OS DAEMON NOT FOUND BY SERVER %s.

BBOO0095E WEBSPHERE FOR Z/OS DAEMON FAILED TO INITIALIZE BECAUSE ANOTHER
DAEMON WAS STARTING.

BBOO0100E WEBSPHERE FOR Z/OS CONTROL PROCESS %s FAILED TO INITIALIZE BECAUSE
ANOTHER CONTROL PROCESS OF THE SAME NAME WAS STARTING

BBOO0101E WEBSPHERE FOR Z/OS CONTROL PROCESS %s FAILED TO INITIALIZE BECAUSE
ANOTHER CONTROL PROCESS OF THE SAME NAME WAS ACTIVE.

BBOO0102W WEBSPHERE FOR Z/OS UNEXPECTED DELAY WAITING FOR START OF SERVER %s.

BBOO0103W WEBSPHERE FOR Z/OS WAITING FOR START OF SERVER %s, SECOND WARNING.

BBOO0104E WEBSPHERE FOR Z/OS WAITING FOR START OF SERVER %s HAS TIMED OUT.

BBOO0128E WEBSPHERE FOR Z/OS UNABLE TO LOCATE RRS BBOO0131W ERROR
ENCOUNTERED DURING DAEMON ATTEMPT TO STOP SERVER %s.

BBOO0136E UNABLE TO START SERVER %s BECAUSE WEBSPHERE FOR Z/OS DAEMON IS
STOPPING

BBOO0138W WEBSPHERE FOR Z/OS UNEXPECTED DELAY WAITING FOR STOP OF SERVER %s.

BBOO0139W WEBSPHERE FOR Z/OS WAITING FOR STOP OF SERVER %s, SECOND WARNING.

BBOO0140E WEBSPHERE FOR Z/OS WAITING FOR STOP OF SERVER %s HAS TIMED OUT.

BBOO0144I ARM DETECTED A FAILURE AND IS RESTARTING THIS SERVER

BBOO0145E . ARM REGISTRATION FAILED - ARM COUPLE DATASET FULL

BBOO0146I ARM REGISTRATION FAILED - ARM DETECTED A DUPLICATE NAME

BBOO0147I ARM READY FAILED - ARM TIMEOUT EXCEEDED

BBOO0150E COMMAND IGNORED, STOP COMMAND ALREADY ISSUED FOR SERVER %s

BBOO0151E COMMAND IGNORED, MODIFY CANCEL COMMAND ALREADY ISSUED FOR SERVER
%s

50 Troubleshooting and support

Table 11. Messages that can help with automation (continued). The table lists the messages that can help with
automation.

Message ID Message text

BBOO0165E ARM REGISTRATION FAILED - TIMEOUT

BBOO0172I WEBSPHERE FOR Z/OS SERVANT PROCESS %s NOT STARTING ON CONFIGURED
SYSTEM %s

BBOO0173I SERVER %s/%s ACTIVE ON %s AT LEVEL %s%s

BBOO0228E WEBSPHERE FOR Z/OS SERVER FAILED BECAUSE DAEMON GROUP %s IS NOT
ACTIVE.

BBOO0236I UNIX SYSTEM SERVICES SHUTDOWN INITIATED. ISSUING STOP TO DAEMON %s.

BBOO0237I WEBSPHERE FOR Z/OS DAEMON %s/%s/%s IS STARTING.

BBOO0238I WEBSPHERE FOR Z/OS CONTROL PROCESS %s/%s/%s IS STARTING

BBOO0239I WEBSPHERE FOR Z/OS SERVANT PROCESS %s/%s/%s IS STARTING.

BBOO0242E %s STARTUP IS DELAYED, WAITING FOR INFORMATION FROM GRS.

BBOO0246I INITIALIZATION COMPLETE FOR DAEMON %s/%s/%s/%s.

BBOO0247I INITIALIZATION COMPLETE FOR WEBSPHERE FOR Z/OS CONTROL PROCESS
%s/%s/%s/%s.

BBOO0248I INITIALIZATION COMPLETE FOR WEBSPHERE FOR Z/OS SERVANT PROCESS
%s/%s/%s/%s.

BBOO0277I WEBSPHERE FOR Z/OS MULTI-PRODUCT PTF POST INSTALLER STARTING.

BBOO0278I WEBSPHERE FOR Z/OS MULTI-PRODUCT PTF POST INSTALLER ENDED NORMALLY.

BBOO0279W POST INSTALLER ENCOUNTERED WARNING(S) WHILE APPLYING SERVICE. REPLY
'CONTINUE' OR 'CANCEL' '

BBOO0285A CONFIGURED ROOT SERVICE LEVEL CHECK FAILED REPLY 'CONTINUE' OR
'CANCEL'

BBOO0286A BACKWARDS INCOMPATIBLE POST INSTALL ACTION(S) PENDING. NOTE FOR
UNINSTALL. REPLY 'CONTINUE' OR 'CANCEL

BBOO0287A SERVER IS STARTING OUT OF PLACE AT MIXED PTF LEVELS. REPLY 'CONTINUE' OR
'CANCEL'

BBOO0288I WEBSPHERE FOR Z/OS ADJUNCT PROCESS %s/%s/%s/%s IS STARTING.

BBOO0289I WEBSPHERE FOR Z/OS ADJUNCT PROCESS %s ENDED NORMALLY.

BBOO0290E WEBSPHERE FOR Z/OS ADJUNCT PROCESS %s ENDED ABNORMALLY, REASON=%X.

BBOO0291I INITIALIZATION COMPLETE FOR WEBSPHERE FOR Z/OS ADJUNCT PROCESS %s.

BBOO0292I INITIALIZATION COMPLETE FOR WEBSPHERE FOR Z/OS ADJUNCT PROCESS
%s/%s/%s/%s.

BBOO0293I WEBSPHERE FOR Z/OS ADJUNCT PROCESS %s/%s/%s IS STARTING.

BBOO0294I WEBSPHERE FOR Z/OS CONTROL PROCESS %s RESTART ISSUED, RC =%X.

BBOO0297A SERVER %s/%s/%s HAD NO SERVANTS AND IS REJECTING WORK. REPLY
'CONTINUE' TO ACCEPT WORK.

BBOO0298E SERVER %s/%s/%s IS CURRENTLY MODIFYING COMMUNICATION LISTENERS. THE
%s MODIFY OPTION IS NOT ALLOWED AT THIS TIME.

BBOO0299I SERVER %s/%s/%s HAS NO SERVANTS. WORK IS BEING REJECTED.

BBOO0300I SERVER %s/%s/%s HAS DETECTED SERVANT(S). WORK IS NO LONGER BEING
REJECTED.

BBOO0301E SERVER %s/%s/%s HAS NO SERVANTS. SERVER HAS FAILED A NUMBER OF
ATTEMPTS TO MODIFY ITSELF TO REJECT WORK.

Chapter 3. Adding logging and tracing to your application 51

Table 11. Messages that can help with automation (continued). The table lists the messages that can help with
automation.

Message ID Message text

BBOO0323I MAXIMUM CONFIGURED NUMBER OF CONNECTIONS %d FOR HOSTNAME/IP: %s
PORT: %d REACHED. NEW CONNECTIONS MAY NOT BE ACCEPTED.

System performance when logging messages and trace data
Using message logging and trace data can affect system performance depending on your system
configuration.

You can select the amount and types of trace data to be collected, which provides you with the ability to
either run your application with minimal tracing when performance is a priority, or run your application with
detailed tracing when you need to recreate a problem and collect additional diagnostic information.

The error log stream, the CTRACE data set for WebSphere Application Server for z/OS, and the master
console are primarily intended for monitoring or recording diagnostic data for system components and
critical applications. Depending on your installation's configuration, directing application messages and
data to these resources might have an adverse affect on system performance. For example, if you send
application data to the CTRACE data set, trace entries in that data set might wrap more quickly, which
means you might lose some critical diagnostic data because the system writes new entries over existing
ones when wrapping occurs. Use this logging support judiciously.

Note: You can only use WebSphere Application Server for z/OS support for logging messages and trace
data for Java applications, not for Java applets.

Issuing application messages in the MVS master console
With the WebSphere Application Server for z/OS reliability, availability, and serviceability support for Java
(JRas) framework, you can issue messages from your Java application to the MVS master console. You
might want to issue messages to the master console to report serious error conditions for mission-critical
applications, or to trigger automation packages.

Before you begin

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve
similar results using Java logging.

The messages your application issues also appear in either the error log stream or the component trace
(CTRACE) data set that WebSphere Application Server for z/OS uses.

Logging the messages is another method of recording error conditions or collecting application data for
diagnostic purposes.

About this task

WebSphere Application Server for z/OS provides code that creates and manages a message logger, which
processes your application's messages. WebSphere Application Server for z/OS creates only one
message logger for each unique organization, product, or component, so that you can more easily identify
the messages recorded in the error log stream or CTRACE data set for a specific application. The
message logger runs in the Java virtual machine (JVM) for the WebSphere Application Server for z/OS
server in which your Java application will run.

To use a message logger, in your Java application:

52 Troubleshooting and support

Procedure
1. Log messages and trace data for Java server applications.

2. Drive the method to instruct WebSphere Application Server for z/OS to create the message logger.

3. Code messages at appropriate points in your application.

Logging Common Base Events in WebSphere Application Server
WebSphere Application Server uses Common Base Events within its basic logging framework. Common
Base Events can be created explicitly and then logged through the Java logging API, or can be created
implicitly by using the Java logging API directly.

About this task

Attention: Logging Common Base Events is not supported with the High Performance Extensible
Logging (HPEL) log and trace mode.

An event is a notification from an application or the application server that reports information that is
related to a specific problem or situation. Common Base Events provide you with a standard structure for
these event notifications, which allow you to correlate events that are received from different applications.
Log Common Base Events to capture events from different sources to help you fix a problem within an
application environment or to tune system performance.

For Common Base Event creation, the application server environment provides a Common Base Event
factory with a content handler that provides both runtime data and template data for Common Base
Events.

Procedure
1. Optional: Read about the Common Base Event types and how they are implemented within an

application server. Refer to “The Common Base Event in WebSphere Application Server.”

2. Read “Logging Common Base Events in WebSphere Application Server” on page 77.

3. Configure the Common Base Event framework for your application server using one of the following
methods:

v “Logging with Common Base Event API and the Java logging API” on page 66

v “Generate Common Base Event content with the default event factory” on page 68.

Results

Common Base Events will now be logged according to your configuration. Use these event logs to
determine the source of application problems.

The Common Base Event in WebSphere Application Server
The Common Base Event is an XML document that defines a common representation of events that is
intended for use by enterprise management and business applications. The Common Base Event defines
common fields, the values they can take, and the exact meanings of these values.

An application creates an event object whenever something happens that either needs to be recorded for
later analysis or which might require the trigger of additional work. An event is a structured notification that
reports information that is related to a situation. An event reports three kinds of information:
v The situation: What happened
v The identity of the affected component: For example, the server that shut down
v The identity of the component that is reporting the situation, which might be the same as the affected

component

Chapter 3. Adding logging and tracing to your application 53

The application that creates the event object is called the event source. Event sources can use a common
structure for the event. The accepted standard for such a structure is called the Common Base Event. The
Common Base Event is an XML document that is defined as part of the autonomic computing initiative.

The Common Base Event model is a standard that defines a common representation of events that is
intended for use by enterprise management and business applications. This standard, which is developed
by the IBM Autonomic Computing Architecture Board, supports encoding of logging, tracing, management,
and business events using a common XML-based format. This format makes it possible to correlate
different types of events that originate from different applications. For more information about the Common
Base Event model, see the Common Base Event specification (Canonical Situation Data Format: The
Common Base Event V1.0.1). The common event infrastructure currently supports Version 1.0.1 of the
specification.

Note:

For WebSphere Application Server Version 8.0, if you delete an application server that was
previously deployed with the Common Event Infrastructure (CEI) enabled and you did not uninstall
CEI before deleting the server, you must use a different name when creating an application server
that you want to deploy with CEI. If you deploy CEI on an application server that was created with
the exact same server name as the server that was previously deleted and CEI was not uninstalled,
the following error occurs:
com.ibm.websphere.management.exception.AdminException: ADMA5026E: No valid target is specified in ObjectName
WebSphere:cell=targetCell,node=targetNode,server=targetServer for module EventServerMdb.jar+META-INF/ejb-jar.xml

If you did not uninstall CEI before deleting the application server, you must ensure that you use a
name for the new application server that is different from the name of the server that was
previously deployed with the common event infrastructure.

The basic concept behind the Common Base Event model is the situation. A situation can be anything that
happens anywhere in the computing infrastructure, such as a server shutdown, a disk-drive failure, or a
failed user login. The Common Base Event model defines a set of standard situation types that
accommodate most of the situations that might arise (for example, StartSituation and CreateSituation).

The Common Base Event contains all of the information that is needed by the consumers to understand
the event. This information includes data about the runtime environment, the business environment, and
the instance of the application object that created the event.

For complete details on the Common Base Event format, see the XML schema that is included in the
Common Base Event specification document, at http://www.ibm.com/developerworks/autonomic/books/
fpy0mst.htm#HDRCBEDESC .

Types of problem determination events
Problem determination involves multiple types of data, including at least two different classes of event
data, log events, and diagnostic events.

Log events, which are also referred to as message events, are typically emitted by components of a
business application during normal deployment and operations. Log events might identify problems, but
these events are also normally available and emitted while an application and its components are in
production mode. The target audience for log and message events is users and administrators of the
application and the components that make up the application. Log events are normally the only events
available when a problem is first detected, and are typically used during both problem recovery and
problem resolution.

Diagnostic events, which are commonly referred to as trace events, are used to capture internal diagnostic
information about a component, and are usually not emitted or available during normal deployment and
operation. The target audience for diagnostic events is the developers of the components that make up the

54 Troubleshooting and support

http://www.ibm.com/developerworks/autonomic/books/fpy0mst.htm#HDRCBEDESC
http://www.ibm.com/developerworks/autonomic/books/fpy0mst.htm#HDRCBEDESC

business application. Diagnostic events are typically used when trying to resolve problems within a
component, such as a software failure, but are sometimes used to diagnose other problems, especially
when the information provided by the log events is not sufficient to resolve the problem. Diagnostic events
are typically used when trying to resolve a problem.

A Common Base Event is a common structure for an event. It defines common fields, the values that
these fields can take, and the exact meanings of these values for an event. Common Base Events are
primarily used to represent log events.

Common Base Event structure
A Common Base Event is a common structure for an event. It defines common fields, the values that
these fields can take, and the exact meanings of these values for an event.

The Common Base Event contains several structural elements. These elements include:

v Common header information

v Component identification, both source and reporter

v Situation information

v Message data

v Extended data

v Context data

v Associated events and association engine

Each of these structural elements has its own embedded elements and attributes.

The following table presents a summary of all the fields in the Common Base Event and their usage
requirements for problem determination events.

Table 12. Field name, log events, and base specification. This table shows whether a particular element or attribute
is required, recommended, optional, prohibited, or discouraged for log events, and the base specification.

Field name Log events Base specification

Version Required Required

creationTime Required Required

severity Required Optional

Msg Required Optional

sourceComponentId* Required Required

sourceComponentId.location Required Required

sourceComponentId.locationType Required Required

sourceComponentId.component Required Required

sourceComponentId.subComponent Required Required

sourceComponentId.componentIdType Required Required

sourceComponentId.componentType Required Required

sourceComponentId.application Recommended Optional

sourceComponentId.instanceId Recommended Optional

sourceComponentId.processId Recommended Optional

sourceComponentId.threadId Recommended Optional

sourceComponentId.executionEnvironment Optional Optional

situation* Required Required

situation.categoryName Required Required

Chapter 3. Adding logging and tracing to your application 55

Table 12. Field name, log events, and base specification (continued). This table shows whether a particular element
or attribute is required, recommended, optional, prohibited, or discouraged for log events, and the base specification.

situation.situationType* Required Required

situation.situationType.reasoningScope Required Required

situation.situationType.(specific Situation Type elements) Required Required

msgDataElement* Recommended Optional

msgDataElement .msgId Recommended Optional

msgDataElement .msgIdType Recommended Optional

msgDataElement .msgCatalogId Recommended Optional

msgDataElement .msgCatalogTokens Recommended Optional

msgDataElement .msgCatalog Recommended Optional

msgDataElement .msgCatalogType Recommended Optional

msgDataElement .msgLocale Recommended Optional

extensionName Recommended Optional

localInstanceId Optional Optional

globalInstanceId Optional Optional

priority Discouraged Optional

repeatCount Optional Optional

elapsedTime Optional Optional

sequenceNumber Optional Optional

reporterComponentId* Optional Optional

reporterComponentId.location Required (2) Required (2)

reporterComponentId.locationType Required (2) Required (2)

reporterComponentId.component Required (2) Required (2)

reporterComponentId.subComponent Required (2) Required (2)

reporterComponentId.componentIdType Required (2) Required (2)

reporterComponentId.componentType Required (2) Required (2)

reporterComponentId.instanceId Optional Optional

reporterComponentId.processId Optional Optional

reporterComponentId.threadId Optional Optional

reporterComponentId.application Optional Optional

reporterComponentId.executionEnvironment Optional Optional

extendedDataElements* Note 3 Optional

contextDataElements* Note 4 Optional

associatedEvents* Note 5 Optional

Notes:
v Items followed by an asterisk (*) are elements that consist of sub elements and attributes. The fields in

those elements are listed in the table directly following the parent element name.

v Some of the elements are optional, but when included, they include sub elements and attributes that are
required. For example, the reporterComponentId element has a ComponentIdentification type. The
component attribute in ComponentIdentification is required. Therefore, the
reporterComponentId.component attribute is required, but only when the reporterComponentId parent
element is included.

56 Troubleshooting and support

v The extendedDataElements element can be included multiple times to supply extended data
information. See the Extended data section for more information on required and recommended
extended data element values.

v The contextDataElements element can be included multiple times to supply context data information.

v The associatedEvents element can be included multiple times to supply correlation data. No
recommended uses of this element exist for the producers of problem determination data, and the use
of this element is discouraged.

Common header information:

This topic provides additional information about how to format and use these fields for problem
determination events, which can be used to clarify and extend the information provided in the other
documents.

The Common Base Event specification [CBE101] provides information on the required format of these
fields and the Common Base Event Developer's Guide [CBEBASE] provides general usage guidelines.

The common header information in the Common Base Event includes the following information about an
event:

v Version: The version of this Common Base Event

v creationTime: The date and time when the event generated

v Severity and priority: The severity of the condition (situation) that is identified by the event

v extensionName: The type of event that was captured

v localInstanceId and globalInstanceId: Identifiers that can be used to quickly identify a specific event
within a set of events

v repeatCount and elapsedTime: Information that supports a system to efficiently report multiple events of
the same type, by consolidating those events into a single event

v sequenceNumber: Sequence information that supports a system to order a set of events in other ways
than time of capture

severity
All problem determination events must provide an indication as to the relative severity of the condition
(situation) being reported by providing appropriate values for the severity field in the Common Base
Event. The severity field is required for problem determination events. This field is more restrictive than
the base specification for the Common Base Event, which lists this field as optional because effective
and efficient problem determination requires the ability to quickly identify the information that is needed
to resolve a problem as well as prioritize the problems that need addressing.

Table 13. Severity values. The following values are used for problem determination events:

10 Information Log information events, normal
conditions, and events that are
supplied to clarify operations, for
example, state transitions, operational
changes. These events typically do
not require administrator action or
intervention.

20 Harmless Similar to information events, but are
used to capture audit items, such as
state transitions or operational
changes. These events typically do
not require administrator action or
intervention.

Chapter 3. Adding logging and tracing to your application 57

Table 13. Severity values (continued). The following values are used for problem determination events:

30 Warning Warnings typically represent
recoverable errors, for example a
failure that the system can correct.
These events can require
administrator action or intervention.

40 Minor Minor errors describe events that
represent an unrecoverable error
within a component. The failure
affects the component ability to
service some requests. The business
application can continue to perform its
normal functions, but its overall
operation might be degraded. These
events require administrator action or
intervention to address the condition.

50 Critical Critical errors describe events that
represent an unrecoverable error
within a component. The failure
significantly affects the component
ability to service most requests. The
business application can continue
most, but not all of its normal
functions and its overall operation
might be degraded. These events
require administrator action or
intervention to address the condition.

60 Fatal Fatal errors describe events that
represent an unrecoverable error
within a component. The failure
usually results in the complete failure
of the component. The business
application can continue some normal
functions, but its overall operation
might be degraded. These events
require administrator action or
intervention to address the condition.

msg
Refer to “Message data” on page 62 for information on this attribute.

priority
The use of the priority field is discouraged for problem determination events. The severity field is
typically used to communicate and evaluate the importance of problem determination events. Use the
priority field to enhance the information that is provided in the severity field, that is. prioritize events of
the same severity.

extensionName
The extensionName field is used to communicate the type of event that is reported, for example, what
general class of events is being reported. In many cases this field provides an indication of what
additional data you can expect with the event, for example, optional data values.

repeatCount
The repeatCount field is valid for problem determination events, but is not typically used or supplied by
the event producers. This field is used for data reduction and consolidation by event management and
analysis systems.

58 Troubleshooting and support

elapsedTime
The elapsedTime field is valid for problem determination events, but is not typically used or supplied
by the event producers. This field is used for data reduction and consolidation by event management
and analysis systems.

sequenceNumber
The sequenceNumber field is valid for problem determination events. It is typically used only by event
producers when the granularity of the event time stamp (the creationTime field) is not sufficient in
ordering events. The sequenceNumber field is typically used to sequence events that have the same
time stamp value.

Event management and analysis systems can use the sequenceNumber field for a number of reasons,
including providing alternative sequencing, not necessarily based on a time stamp. The
recommendations here are provided primarily for event producers.

Component identification for source and reporter:

The component identification fields in the Common Base Event are used to indicate which component in
the system is experiencing the condition that is described by the event (the sourceComponentID) and
which component emitted the event (the reporterComponentID).

Typically, these components are the same, in which case only the sourceComponentID is supplied. Some
notes and scenarios on when to use these two elements in the Common Base Event:

v The sourceComponentID is always used to identify the component experiencing the condition that is
described by the event.

v The reporterComponentID is used to identify the component that actually produced and emitted the
event. This element is typically used only within events that are emitted by a component that is
monitoring another component and providing operational information regarding that component. The
monitoring component (for example, a Tivoli® agent or hardware device driver) is identified by the
reporterComponentID and the component being monitored (for example, a monitored server or
hardware device) is identified by the sourceComponentID.

A potential misuse of the reporterComponentID is to identify a component that provides event
conversion or management services for a component, for example, identifying an adapter that
transforms the events that are captured by a component into Common Base Event format. The event
conversion function is considered an extension of the component and not identified separately.

The information that is used to identify a component in the system is the same, regardless of whether it is
the source component or reporter component.

Table 14. Component identification for source and reporter. The information that is used to identify a component in
the system is the same, regardless of whether it is the source component or reporter component.

location locationType Component location Identifies the location of the
component.

component componentIdType Component name Identifies the asset name of the
component, as well as the type of
component.

subcomponent Subcomponent name Identifies a specific part or
subcomponent of a component, for
example a software module or
hardware part.

application Business application name Identifies the business application or
process the component is a part of
and provides services for.

instanceId Operational instance Identifies the operational instance of a
component, that is the actual running
instance of the component.

Chapter 3. Adding logging and tracing to your application 59

Table 14. Component identification for source and reporter (continued). The information that is used to identify a
component in the system is the same, regardless of whether it is the source component or reporter component.

processId threadId Operational instance Identifies the operational instance of a
component within the context of a
software operating system, that is he
operating system process and thread
running when the event was
produced.

executionEnvironment Operational instance Component
location

Provides additional information about
the operational instance of a
component or its location by
identifying the name of the
environment hosting the operational
instance of the component, for
example the operating system name
for a software application, the
application server name for a Java 2
Platform, Enterprise Edition (J2EE)
application, or the hardware server
type for a hardware part.

The Common Base Event specification [CBE101] provides information on the required format of these
fields and the Common Base Event Developer's Guide [CBEBASE] provides general usage guidelines.
This section provides additional information about how to format and use some of these fields for problem
determination events, which can be used to clarify and extend the information that is provided in the other
documents.

Component
The Component field in a problem determination event is used to identify the manageable asset that is
associated with the event. A manageable asset is open for interpretation, but a good working definition
is a manageable asset represents a hardware or software component that can be separately obtained
or developed, deployed, managed, and serviced. Examples of typical component names are:

v IBM eServer™ xSeries® model x330

v IBM WebSphere Application Server version 5.1 (5.1 is the version number)

v The name of an internally developed software application for a component

subComponent
The Subcomponent field in a problem determination event identifies the specific part of a component
that is associated with the event. The subcomponent name is typically not a manageable asset, but
provides internal diagnostic information when diagnosing an internal defect within a component, that is
What part failed? Examples of typical subcomponents and their names are:

v Intel Pentium processor within a server system (Intel Pentium IV Processor)

v the enterprise bean container within a web application server (enterprise bean container)

v the task manager within an operating system (Linux Kernel Task Manager)

v the name of a Java class and method (myclass.mycompany.com or
myclass.mycompany.com.methodname).

The format of a subcomponent name is determined by the component, but use the convention shown
previously for naming a Java class or the combination of a Java class and method is followed. The
subcomponent field is required in the Common Base Event.

componentIdType
The componentIdType field is required by the Common Base Event specification, but provides minimal
value for problem determination events. For most problem determination events, it is encouraged to
use the value provided in the application field instead of the componentIdType. The componentIdType
field identifies the type of component; the application is identified by the application field.

60 Troubleshooting and support

application
The application field is listed as an optional value within the Common Base Event specification, but
provide it within problem determination events whenever it this value is available. The only reason this
field is not required for problem determination events is that instances exist where the issuing
component might not be aware of the overall business application.

instanceId
The instanceId field is listed as an optional value within the Common Base Event specification, but
provide this value within problem determination events whenever it is available.

Always provide the instanceID when a software component is identified and identify the operational
instance of the component (for example, which operation instance of an installed software image is
actually associated with the event). Provide this value for hardware components when these
components support the concept of operational instances.

The format of the supplied value is defined by the component, but must be a value that an analysis
system can use (either human or programmatic) to identify the specific running instance of the
identified component. Examples include:

v cell, node, server name for the IBM WebSphere Application Server

v deployed EAR file name for a Java enterprise bean

v serial number for a hardware processor

processId
The processId field is listed as an optional value within the Common Base Event specification, but
provide this value for problem determination events whenever it is available and applicable. Always
provide this value for software-generated events, and identify the operating system process that is
associated with the component that is identified in the event. Match the format of the thread ID with
the format of the operating system (or other running environment, such as a Java virtual machine).
This field is typically not applicable or used for events that are emitted by hardware (for example,
firmware).

threadId
The threadId field is listed as an optional value within the Common Base Event specification, but
provide this value for problem determination events whenever it is available and applicable. Always
provide for software-generated events, and identify the active operating system thread when the event
was detected or issued. A notable exception to this recommendation is some operating systems or
running environments do not support threads. Match the format of the thread ID with the format of the
operating system (or other running environment, such as a Java virtual machine). This field is typically
not applicable or used for events that are emitted by hardware (for example, firmware).

executionEnvironment

The executionEnvironment field, when used, identifies the immediate running environment that is used by
the component being identified. Some examples are:

v the operating system name when the component is a native software application.

v the operating system/Java virtual machine name when the component is a Java 2 Platform, Standard
Edition (J2SE) application.

v the web server name when the component is a servlet.

v the portal server name when the component is a portlet.

v the application server name when the component is an enterprise bean.

The Common Base Event specification [CBE101] provides information on the required format of these
fields and the Common Base Event Developer's Guide [CBEBASE] provides general usage guidelines.

Situation information:

The situation information is used to classify the condition that is reported by an event into a common set of
situations.

Chapter 3. Adding logging and tracing to your application 61

The Common Base Event specification [CBE101] provides information on the set of situations defined for
the Common Base Event, with the values and formats that are used to describe these situations. The
Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines.

Consider the following points regarding situation information for problem determination events:

v Whenever possible, use the situation categorizations and qualifiers that are described in the base
Common Base Event specification. Avoid using your own situation definitions as much as possible.

v Not all messages and logs can be classified using the situation definitions that are supplied in the base
Common Base Event specification. You can use the OtherSituation categorization to provide your own
situation information, but the recommended course of action for problem determination events is to use
the ReportSituation categorization, with reportCategory=Log.

v Warning events can be confusing. A warning event (that is an event with severity=warning) typically
indicates a recoverable failure, but the situation settings can be interpreted as unrecoverable failures
(for example ConnectSituation, successDisposition=UNSUCCESSFUL). Use the appropriate situation
categorization so the severity setting indicates the severity of the situation, that is whether the
component recovered from the failure.

v The recommended setting for the reasoningScope value is EXTERNAL for all message events.

Message data:

All problem determination Common Base Events must provide human readable text that describes the
specific reported event within the msg field of the Common Base Event.

The text that is associated with events representing actual messages or log entries is expected to be
translated and localized. Include the msgDataElement element in the Common Base Event whenever
internationalized text is provided in the event. This element provides information about how the message
text is created and how to interpret it. This information is particularly invaluable when trying to interpret the
event programmatically or when trying to interpret the message independent of the locale or language that
is used to format the message text.

Prerequisite: Understand the concepts that are associated with creating internationalized messages. A
good source of education on these concepts is provided by the documentation that is associated with
internationalization of Java information and the usage of resource bundles within the Java language.

The msgDataElement element in the Common Base Event includes the following information about the
value of the msg field that is provided with an event:

v The locale of the supplied message text, which identifies how the locale-independent fields within the
message are formatted, as well as the language of the message (msgLocale).

v A locale-independent identifier that is associated with the message that can be used to interpret the
message independent of the message language, message locale, and message format (msgId and
msgIdType).

v Information on how a translated message is created, including:

– The identifier that is used to retrieve the message template (msgCatalogId).

– The name and type of message catalog that are used to retrieve the message template (msgCatalog
and msgCatalogType).

– Any locale-independent information that is inserted into the message template to create the final
message (msgCatalogTokens).

The Common Base Event specification [CBE101] provides information on the required format of these
fields and the Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines.
This section provides additional information about how to format and use these fields for problem
determination events.

msg
All message, log, and trace events must provide a human-readable message in the msg field of the

62 Troubleshooting and support

Common Base Event. The msg field is required for problem determination events, both log events and
diagnostic events. This field is more restrictive than the base specification for the Common Base
Event, which lists this field as optional; effective and efficient problem determination requires the ability
to quickly identify the reported condition. The format and usage of this message is component-specific,
but use the following general guidelines:

v Expect the message text that is supplied with messages and log events to be internationalized.

v Provide the locale of the supplied message text with the msgLocale field in the msgDataElement
element of the Common Base Event.

v Provide additional information regarding the format and construction of internationalized messages
whenever possible, using the msgDataElement element of the Common Base Event.

msgLocale
Provide the message locale whenever message text is provided within the Common Base Event, as is
the case with all problem determination events. The msgLocale field is listed as an optional value
within the Common Base Event specification, but provide this information within problem determination
events whenever possible. The reason this field is not required for problem determination events is
that instances exist where the locale information is not provided or available when formatting the
Common Base Event.

msgId and msgIdType
Several companies include a locale-independent identifier within internationalized message text that
you can use to interpret the described condition by the message text, independent of the message.
For example, most messages issued by IBM software look like IEE890I WTO Buffers in console
backup storage = 1024, where a unique, locale-independent identifier IEE890I precedes the translated
message text. This identifier provides a way to uniquely detect and identify a message independent of
location and language. This detection is invaluable for locale-independent and programmatic analysis.

The msgId field is listed as an optional value within the Common Base Event specification, but it must
be provided within problem determination events whenever this identifier is included in the message
text. Likewise, the msgIdType field is listed as an optional value within the Common Base Event
specification, but it must be provided within problem determination events whenever a value is
supplied for msgId. Do not supply these fields when the message text is not translated or localized, for
example, for trace events.

msgCatalogId
The msgCatalogId field is listed as an optional value within the Common Base Event specification, but
provide this value whenever the Common Base Event includes localized or translated message text,
for example when providing problem determination events that represent issued messages or log
events. This field is not required for problem determination events because not all problem
determination events include translated message text Some cases exist where the value is not
provided or available when formatting the Common Base Event. Do not supply this field when the
message text is not translated or localized, for example, for trace events.

msgCatalogTokens
The msgCatalogTokens field is listed as an optional value within the Common Base Event
specification, but provide this value whenever the Common Base Event includes localized or translated
message text, for example when providing problem determination events that represent issued
messages or log events. This field is not required for problem determination events because not all
problem determination events include translated message text, and cases exist where the value is not
provided or available when formatting the Common Base Event. This value contains the list of
locale-independent values or message tokens that are inserted into the localized message text when
creating a translated message.

These values are difficult to extract from a translated message without knowing the translated
message template that is used to create the message. Do not supply this field when the message text
is not translated or localized

The Common Base Event provides several mechanisms for providing additional data about an event,
including this field, extended data elements, and extensions to the schema. Always use the

Chapter 3. Adding logging and tracing to your application 63

msgCatalogTokens field to supply the list of message tokens that is included in the message text
associated with an event. These values can also be supplied in other parts of the Common Base
Event, but they must be included in this field.

msgCatalog and msgCatalogType
The msgCatalog and msgCatalogType fields are listed as optional values within the Common Base
Event specification, but provide this value whenever the Common Base Event includes localized or
translated message text, for example when providing problem determination events that represent
issued messages or log events. These fields are not required for problem determination events
because not all problem determination events include translated message text, and cases exist where
the values are not provided or available when formatting the Common Base Event. Do not complete
these fields when the message text has is not translated or localized, for example, for trace events.

Extended data:

The Common Base Event provides several methods for including this additional data, including extending
the Common Base Event schema or supplying one or more ExtendedDataElement elements within the
Common Base Event, which is the preferred approach.

The base information that is included in a Common Base Event might not be sufficient to represent all of
the information captured by a component when creating a problem determination event.

Use an ExtendedDataElement element to represent a single data item. A Common Base Event can
contain more than one of these elements, essentially one for each additional data item. A hint to the
number and type of ExtendedDataElement elements is supplied by the extensionName value, but this
information is only a hint. The usage of the attributes in the ExtendedDataElement element for problem
determination events is the same as those for any other Common Base Event.

Sample Common Base Event instance
This XML document is an example of a Common Base Event instance that is generated by a WebSphere
Application Server application.

Use the following example for reference:
<CommonBaseEvent creationTime="2004-09-18T04:03:28.484Z"

globalInstanceId="myhost:1095479647062:1899"
msg="WSVR0024I: Server server1 stopped"
severity="10"
version="1.0.1">

... several extendedDataElements for WebSphere Application Server internal use only ...

<sourceComponentId component="com.ibm.ws.runtime.component.ServerCollaborator"
componentIdType="Unknown"
executionEnvironment="Windows Vista[x86]#5.0"
instanceId="myhost\myhost\server1"
location="myhost"
locationType="Hostname"
processId="1095479647062"
subComponent="Unknown"
threadId="Alarm : 0"
componentType="http://www.ibm.com/namespaces/autonomic/WebSphere Application Server"/>

<msgDataElement msgLocale="en_US">
<msgCatalogTokens value="server1"/>
<msgId>WSVR0024I< /msgId>
<msgCatalogId>WSVR0024I< /msgCatalogId>
<msgCatalog>com.ibm.ws.runtime.runtime< /msgCatalog>
</msgDataElement>

<situation categoryName="ReportSituation">

64 Troubleshooting and support

<situationType xsi:type="ReportSituation" reasoningScope="EXTERNAL" reportCategory="LOG"/>
</situation>

</CommonBaseEvent>

A number of extendedDataElement elements in the XML are used by WebSphere Application Server, but
are not for application use because these elements might change.

The CommonBaseEvent element defines the Common Base Event instance. This element has a set of
attributes that are common for all Common Base Events. This set includes the extensionName attribute,
which defines the type or class of the Common Base Event instance, the creation time, severity, and
priority.

Nested within the CommonBaseEvent element are elements giving more detail about the situation. The
first of these elements is the situation element. This classification is standardized.

The CommonBaseEvent element also includes the sourceComponentId and the (optional)
reporterComponentId elements. The sourceComponentId element describes where the situation occurred;
the reporterComponentId describes where the situation is detected. If the sourceComponentId and the
reporterComponentId elements are the same, the reporterComponentId element is omitted.

The attributes of both the sourceComponentId and the reporterComponentId elements are the same. They
identify the component type, name, operating system, and network location. The content of these attributes
provides vertical correlation of the stack of IT resources that are active when the Common Base Event is
created.

Also included in the CommonBaseEvent element are contextDataElements elements that describe the
context in which the situation occurred. This context correlates Common Base Event instances that are
part of the same work. This correlation is called horizontal correlation because an instance of a particular
context type correlates events at the same level of abstraction, for example at the business level, the
application level, or at the middleware level.

FExtended data elements contain additional data that is used to describe a situation. In this example, an
extended data element is added by WebSphere Application Server to describe the Java 2 Platform,
Enterprise Edition (J2EE) component that generated the Common Base Event instance and some
application data.

Sample Common Base Event template
The content handler uses template information to fill in blanks in the Common Base Event when the
Common Base Event complete method is called.

Components that use the WebSphere Application Server event factory home can include a Common Base
Event template XML file to provide data to populate Common Base Events. Information that is already
supplied in the event is not overridden if the same field is supplied in the template.

The following example illustrates a Common Base Event template:
<?xml version="1.0" encoding="UTF-8"?>

<TemplateEvent
version="1.0.1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="templateEvent.xsd">

<CommonBaseEvent
<sourceComponentId application="My Application" component="com.ibm.componentX"/>
<extendedDataElements name="Sample ExtendedDataElement name" type="string">
<values>Sample ExtendedDataElement value</values>

Chapter 3. Adding logging and tracing to your application 65

</extendedDataElements>
</CommonBaseEvent>

</TemplateEvent>

Component identification for problem determination
This topic describes types of problem determination events.

A business application is made up of multiple components. A component can be made up of several
internal subcomponents. Consistent application of these concepts is critical for effective problem
determination of a business application; all of the parts of the application must use the same concepts and
assumptions when creating and formatting events. Use the following definitions and examples when
creating Common Base Events for problem determination.

Business application
A business application is the business logic and business data that is used to address a set of specific
business requirements. A business application consists of several components of multiple types,
combined in a unique manner by an enterprise, to provide the functions and resources that are
needed to address those requirements. The primary creator and manager of a business application is
the enterprise, and each enterprise or company creates unique business applications. Examples of
business applications are the Payroll Application for the ACME Corporation and the Inventory
Application for Spacely Sprockets.

Components
A business application is created and managed by the enterprise as a set of components.
Components are deployable assets, which are developed either by the enterprise or a vendor, and
managed by the enterprise. A component might be created by the enterprise, typically for use within a
specific business application. For example, the ACME Corporation might create a set of enterprise
beans to represent the business logic that is required by their Payroll Application. A component might
also be an asset that is produced by a vendor and acquired by an enterprise. Examples of these
components are hardware products, such as IBM eServers or Sun Solaris systems, or software
products, such as IBM WebSphere Application Server, Oracle Database Servers.

Subcomponents
A specific component, depending on its complexity, might consist of several subcomponents. For
example, the IBM WebSphere Application Server consists of many subcomponents, such as the
enterprise bean container and the servlet engine. Subcomponent information is typically used only by
the creator of the component to service the component, and as such are not separately deployable or
manageable resources in the enterprise. The enterprise might deploy a change or update to a
subcomponent, but only upon guidance from the component vendor and as part of the vendor’s
component. For example, a software fix for the enterprise bean container of the IBM WebSphere
Application Server is packaged and deployed as a software update to the IBM WebSphere Application
Server. Replacement of the processor in an IBM eServer is deployed as a physical part, but only as a
part of the original deployed component, the IBM eServer.

Logging with Common Base Event API and the Java logging API
In cases where the events that are generated by the Java logging API are insufficient to describe the
event that needs capturing, you can create Common Base Events with the Common Base Event factory
APIs.

Before you begin

When you create a Common Base Event, you can add data to the Common Base Event before it is
logged. The following diagram illustrates how application code can create and log Common Base Events:

66 Troubleshooting and support

About this task

WebSphere Application Server is configured to use an event factory that automatically populates
WebSphere Application Server-specific information into the Common Base Events that it generates. In
general, it is good practice to create events using the WebSphere Application Server default Common
Base Event factory because this approach ensures consistency of Common Base Event content across
events. However, you can create and use other Common Base Event factories.

Common Base Events are initiated and logged in the following sequence:

1. Application code invokes the createCommonBaseEvent method on the EventFactory class to create a
CommonBaseEvent.

2. Application code wraps CommonBaseEvent event in a CommonBaseEventLogRecord record, and
adds event-specific data.

3. Application code calls the CommonBaseEvent event complete method.

4. The CommonBaseEvent event invokes the ContentHandler completeEvent method.

5. The ContentHandler handler adds XML template data to the CommonBaseEvent event. Not all
ContentHandler handlers support templates.

6. The ContentHandler handler adds runtime data to the CommonBaseEvent event.

7. Application code passes the CommonBaseEventLogRecord record to the logger using the Logger.log
method.

8. Logger passes CommonBaseEventLogRecord record to Handlers.

9. Handlers format data and write to the output device.

Procedure
v You can use the default Common Base Event factory to generate content. Read “Generate Common

Base Event content with the default event factory” on page 68 for more information.

v If you do not wish to use the default event factory, you can create custom content handlers and event
factories.

1. Create a custom factory home. Read “Creating custom Common Base Event factory homes” on
page 72.

Chapter 3. Adding logging and tracing to your application 67

2. Create a custom content handler. Read “Creating custom Common Base Event content handlers” on
page 71.

Results

After completing all the above steps you will have a Common Base event based on your configuration
settings.

Generate Common Base Event content with the default event factory
A default Common Base Event content handler populates Common Base Events with WebSphere
Application Server runtime information. This content handler can also use a Common Base Event template
to populate Common Base Events.

The default content handler is used when the server creates CommonBaseEventLogRecords as would be
the case in the following example:
// Get a named logger
Logger logger = Logger.getLogger("com.ibm.someLogger");
// Log to the logger -- implicitly the default content handler
// will be associated with the CommonBaseEvent contained in the
// CommonBaseEventLogRecord.
logger.warning("MSG_KEY_001");

To specify a Common Base Event template in the above case, a Logger.properties file would need to be
provided with an eventfactory entry for com.ibm.someLogger. If a valid template is found on the classpath,
then the Logger's event factory will use the specified template's content in addition to the WebSphere
Application Server runtime information when populating Common Base Events. If the template is not found
on the classpath, or is invalid, then the Logger's event factory will only use the WebSphere Application
Server runtime information when populating Common Base Events.

The default content handler is also associated with the event factory home supplied in the global event
factory context. This is convenient for creating Common Base Events that need to be populated with
content similar to that generated from the WebSphere Application Server:
// Request the event factory from the global event factory home
EventFactory eventFactory =

EventFactoryContext.getInstance().getEventFactoryHome().getEventFactory(templateName);

// Create a Common Base Event
CommonBaseEvent commonBaseEvent = eventFactory.createCommonBaseEvent();

// Complete the Common Base Event using content from the template (if specified above)
// and the server runtime information.
eventFactory.getContentHandler().completeEvent(commonBaseEvent);

In the above example, if the template referenced by templateName is found on the classpath, and the
template is valid, then the event factory home will return an event factory which uses a content handler
that combines the template's content with the WebSphere Application Server runtime information when
populating Common Base Events. If the template is not found on the classpath, or is invalid, then the
event factory home will return an event factory which uses a content handler that uses only the
WebSphere Application Server runtime information when populating Common Base Events.

The default content handler populates Common Base Events in the server environment with the following
runtime information:

CommonBaseEvent.globalInstanceId
Value: The unique_record_id

Set this value only if the CommonBaseEvent.globalInstanceId value is null before the
completeEvent method is called.

68 Troubleshooting and support

CommonBaseEvent.msg
Value: A localized message that is based on the MsgDataElement element.

Set this value only if the CommonBaseEvent.msg message is null before the completeEvent
method is called.

CommonBaseEvent.severity
Value: Set based on the value of level set on the CommonBaseEventLogRecord record, if level >=
Level.SEVERE, set to 50; if level >= Level.WARNING, set to 30; the default is set to 10.

Set this value only if the CommonBaseEvent.severity value is null before the completeEvent
method is called.

CommonBaseEvent.ComponentIdentification.component
Value:Set based on the LoggerName value that is set on the CommonBaseEventLogRecord
record.

Set this value only if the CommonBaseEvent.ComponentIdentification.component is null before the
completeEvent method is called.

CommonBaseEvent.ComponentIdentification.componentIdType
Value: "Unknown"

Set this value only if the CommonBaseEvent.ComponentIdentification.componentIdType value is
null before the completeEvent method is called.

CommonBaseEvent.ComponentIdentification.executionEnvironment
Value: OSname[OSarch]#OSversion

Set this value only if the CommonBaseEvent.ComponentIdentification.executionEnvironment value
is null before the completeEvent method is called.

CommonBaseEvent.ComponentIdentification.instanceId
Value: cellName\nodeName\serverName

Set this value only if the CommonBaseEvent.ComponentIdentification.instanceId value is null
before the completeEvent method is called. Set only in a server environment because this value is
ignored in a client application.

CommonBaseEvent.ComponentIdentification.location
Value:The host name

Set this value only if both the CommonBaseEvent.ComponentIdentification.location and the
CommonBaseEvent.ComponentIdentification.locationType values are null before the
completeEvent method is called.

CommonBaseEvent.ComponentIdentification.locationType
Value: The host name

Set this value only if both the CommonBaseEvent.ComponentIdentification.location and the
CommonBaseEvent.ComponentIdentification.locationType values are null before the
completeEvent method is called.

CommonBaseEvent.ComponentIdentification.processId
Value: An internally generated representation of the process number.

Set this value only if the CommonBaseEvent.ComponentIdentification.processId value is null
before the completeEvent method is called

CommonBaseEvent.ComponentIdentification.subComponent
Value: Set based on values of the sourceClassName and the sourceMethodName names that are
set on the sourceClassName.sourceMethodName name of the CommonBaseEventLogRecord
record.

Chapter 3. Adding logging and tracing to your application 69

Set this value only if the CommonBaseEvent.ComponentIdentification.subComponent values is null
before the completeEvent method is called and both the sourceClassName and the
sourceMethodName names are set.

CommonBaseEvent.ComponentIdentification.threadId
Value: Set to the value of the Java Virtual Machine (JVM) thread name.

Set this value only if the CommonBaseEvent.ComponentIdentification.threadId values is null before
the completeEvent value is called.

CommonBaseEvent.ComponentIdentification.componentType
Value: http://www.ibm.com/namespaces/autonomic/WebSphereApplicationServer

Set this value only if the CommonBaseEvent.ComponentIdentification.componentType values is
null before the completeEvent method is called.

CommonBaseEvent.MsgDataElement.msgLocale
Value: Set based on the default locale of the JVM.

Set this value only if the CommonBaseEvent.msg value is null before the completeEvent method
is called.

CommonBaseEvent.Situation.categoryName
Value: ReportSituation

Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent
method is called.

CommonBaseEvent.Situation.situationType.type
Value: ReportSituation

Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent
method is called.

CommonBaseEvent.Situation.situationType.reasoningScope
Value: EXTERNAL

Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent
method is called.

CommonBaseEvent.Situation.situationType.reportCategory
Value: LOG

Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent
method is called.

The sourceComponentIdentification value is populated if no reporterComponentIdentification ID exists
when the completeEvent method is invoked on the content handler. Otherwise, the
reporterComponentIdentification ID is populated instead.

Common Base Event content handler
Content handlers populate data into Common Base Events when the Common Base Event complete
method is invoked. You can associate content handlers with Common Base Event templates, which
provide default information to transfer into each Common Base Event.

Content handlers might also provide any other information that is relevant to completing the population of
the Common Base Event, such as appropriate runtime defaults. The use of content handlers ensures
consistency of field use in the Common Base Event within a component or within a set of components that
share the same runtime. For example, some content handlers support the specification of a template. If
used consistently across a component, this template ensures that all events for that component have the
same template information filled in. Similarly, some content handlers can also supply runtime information to
their associated Common Base Events. If consistently used throughout the entire runtime, runtime
information ensures that all events use runtime data in a similar way.

70 Troubleshooting and support

The event factory home that is used in the WebSphere Application Server runtime is associated with a
content handler that both reads from a template, and supplies runtime data. Have components use Event
Factories that are obtained from this event factory home with their own templates, to produce consistency
between application events and server events.

More details can be found in“Creating custom Common Base Event content handlers” or the API
documentation for org.eclipse.hyades.logging.events.cbe.ContentHandler at www.eclipse.org/hyades.

Creating custom Common Base Event content handlers
Create a custom Common Base Event content handler or template to automate configuration or values for
specific events.

Before you begin

A content handler is an object that automatically sets the property values of each event based on any
arbitrary policies that you want to use.

The following content handler classes were added to WebSphere Application Server to facilitate the use of
the Common Base Event infrastructure:

Class Name Description

WsContentHandlerImpl This provides an implementation of
org.eclipse.hyades.logging.events.cbe.ContentHandler specifically for use in
the WebSphere Application Server environment. This content handler
completes Common Base Events using information from the WebSphere
Application Server runtime, and it uses the same content handler as is used
internally by the WebSphere Application Server when completing Common
Base Events for logging.

WsTemplateContentHandlerImpl This provides the same function as WsContentHandlerImpl, but it extends
the org.eclipse.hyades.logging.events.cbe.impl.TemplateContentHandlerImpl
class to enable the use of a Common Base Event template. Template
content takes precedence in cases where the template data specifies values
for the same Common Base Event fields as does the
WsContentHandlerImpl.

About this task

In some situations, you might want some event property data set automatically for every event that you
create. This automation is a way to fill in certain standard values that do not change, such as the
application name, or to set some properties based on information that is available from the runtime
environment, like creation time or thread information. You can set property data automatically by creating a
content handler.

Procedure
v Use the following code sample to implement the CustomContentHandler class:

public class CustomContentHandler extends WsContentHandlerImpl {

public CustomContentHandler() {
super();
// TODO Custom initialization code goes here
}

public void completeEvent(CommonBaseEvent cbe) throws CompletionException {
// following code will add WAS content to the Content Base Event

Chapter 3. Adding logging and tracing to your application 71

http://www.eclipse.org/hyades

super.completeEvent(cbe);
// TODO Custom content can be added to the Content Base Event here
}
}

v The following shows how to implement the CustomTemplateContentHandler class:
public class CustomTemplateContentHandler extends WsTemplateContentHandlerImpl {

public CustomTemplateContentHandler() {
super();
// TODO Custom initialization code goes here
}

public void completeEvent(CommonBaseEvent cbe) throws CompletionException {
// following code will add WAS content to the Content Base Event
super.completeEvent(cbe);
// TODO Custom content can be added to the Content Base Event here
}
}

Results

You now have a content handler or a custom content handler template based on the settings that you
specified.

Common Base Event factory home
Event Factory homes provide Event Factory instantiation that is based on a unique factory name.

Event factory home implementations are tightly coupled with content handlers that are used to populate
Common Base Events with template or default data. Event factory instances are maintained by the
associated event factory home, based on their unique name. For example, when application code requests
a named event factory, the newly created Event Factory instance is returned and persisted for future
requests for that named event factory. An abstract event factory home class provides the implementation
for the APIs in the event factory home interface. Implementers extend the abstract event factory home
class and implement the createContentHandler API to create a typed content handler that is based on the
type of event factory home implementation.

In WebSphere Application Server, the default event factory home that is obtained with a call to
EventFactoryContext.getInstance.getEventFactoryHome method is associated with a ContentHandler
handler capable of supplying both event template information, as well as WebSphere Application Server
runtime default information.

More details can be found in the API documentation for
org.eclipse.hyades.logging.events.cbe.EventFactoryHome at www.eclipse.org/hyades.

Creating custom Common Base Event factory homes
Use custom Common Base Event factory homes to control configuration and implementation of unique
event factories.

Before you begin

Event factory homes create and provide homes for Event Factory instances. Each event factory home has
a content handler. This content handler is assigned to every event factory the event factory home creates.
In turn, when a Common Base Event is created, the content handler from the event factory is assigned to
it. Event factory instances are maintained by the associated event factory home, based on their unique
name. For example, when application code requests a named event factory, the newly created event
factory instance is returned and persisted for future requests for that named event factory.

72 Troubleshooting and support

The following classes were added to facilitate the use of event eactory homes for logging Common Base
Events:

Class Name Description

WsEventFactoryHomeImpl This class extends the
org.eclipse.hyades.logging.events.cbe.impl.AbstractEventFactoryHome class.
This event factory home returns event factory instances associated with the
WsContentHandlerImpl content handler. The WsContentHandlerImpl is the
content handler used by the WebSphere Application Server by default when no
event factory template is in use.

WsTemplateEventFactory
HomeImpl

This class extends the
org.eclipse.hyades.logging.events.cbe.impl.EventXMLFileEventFactoryHomeImpl
class. This event factory home returns event factory instances associated with
the WsTemplateContentHandlerImpl Content Handler. The
WsTemplateContentHandlerImpl is the content handler used by the WebSphere
Application Server when an Event Factory template is required.

About this task

Custom event factory homes support the use of Common Base Event for logging in WebSphere
Application Server and make logging easy and consistent between the WebSphere Application Server
runtime and the exploiters of this API. The CustomEventFactoryHome and
CustomTemplateEventFactoryHome classes will be used to obtain an event factory. These classes are
there to make sure the correct content handler is being used with a particular event factory. The
CustomEventFactoryHelper class is an example of how the infrastructure provider can hide the factory
selection details from infrastructure users, using their own set of parameters to decide which the
appropriate event factory is.

Procedure
v The following code samples provide examples of how to implement and use the

CustomEventFactoryHome class.

1. Implementation of the CustomEventFactoryHome class is as follows:
public class CustomEventFactoryHome extends AbstractEventFactoryHome {

public CustomEventFactoryHome() {
super();
// TODO Custom intialization code goes here
}

public ContentHandler createContentHandler(String arg0) {
// Always use custom content handler
return resolveContentHandler();
}

public ContentHandler resolveContentHandler() {
// Always use custom content handler
return new CustomContentHandler();
}
}

2. The following is an example of how to use the CustomEventFactoryHome class:
// get the event factory

EventFactory eventFactory=(new CustomEventFactoryHome()).getEventFactory("XYZ");
// create an event - call appropriate method
eventFactory.createCommonBaseEvent();
// log event ...

v For the CustomTemplateEventFactoryHome class you can use the following code for implementation
and use:

Chapter 3. Adding logging and tracing to your application 73

1. Implement the CustomTemplateEventFactoryHome class by using this code:
public class CustomTemplateEventFactoryHome extends

EventXMLFileEventFactoryHomeImpl {

public CustomTemplateEventFactoryHome() {
super();
// TODO Custom intialization code goes here
}

public ContentHandler createContentHandler(String arg0) {
// Always use custom content handler
return resolveContentHandler();
}

public ContentHandler resolveContentHandler() {
// Always use custom content handler
return new CustomTemplateContentHandler();
}
}

2. Use the CustomTemplateEventFactoryHome class by following this sample code:
// get the event factory

EventFactory eventFactory=(new
CustomTemplateEventFactoryHome()).getEventFactory("XYZ");

// create an event - call appropriate method
eventFactory.createCommonBaseEvent();
// log event ...

v The CustomEventFactoryHelper class can be implemented and used by following the code below:

1. Implement the custom CustomEventFactoryHelper class using this code:
public class CustomTemplateEventFactoryHome extends

EventXMLFileEventFactoryHomeImpl {

public CustomTemplateEventFactoryHome() {
super();
// TODO Custom intialization code goes here
}

public ContentHandler createContentHandler(String arg0) {
// Always use custom content handler
return resolveContentHandler();
}

public ContentHandler resolveContentHandler() {
// Always use custom content handler
return new CustomTemplateContentHandler();
}
}
Figure 4 CustomTemplateEventFactoryHome class
public class CustomEventFactoryHelper {
// name of the event factory to use
public static final String FACTORY_NAME="XYZ";

public static EventFactory getEventFactory(String param1, String param2) {
EventFactory factory=null;
switch (resolveFactory(param1,param2)) {
case 1:
factory=(new CustomEventFactoryHome()).getEventFactory(FACTORY_NAME);
break;
case 2:
factory=(new
CustomTemplateEventFactoryHome()).getEventFactory(FACTORY_NAME);
break;

default:
// Add default for event factory

74 Troubleshooting and support

break;
}
return factory;
}

private static int resolveFactory(String param1, String param2) {
int factory=0;
// Add code here to resolve which factory to use
return factory;
}
}

2. To use the CustomEventFactoryHelper class, use the following code:
// get the event factory

EventFactory eventFactory=
CustomEventFactoryHelper.getEventFactory("param1","param2","param3");
// create an event - call appropriate method
eventFactory.createCommonBaseEvent();
// log event ...

Results

Use the information provided here to implement a custom content factory home and the associated
classes based on the settings that you specify.

Common Base Event factory context
The event factory context provides a service to look up event factory homes. Retrieve the event factory
context using a call to the EventFactoryContext.getInstance method.

Using this class, you can look up the event factory homes by name, and avoid the need to include the
typed home in code. The EventFactoryHome name must be located on the class path to be found. The
EventFactoryContext context also stores an EventFactoryHome name as a default, which can be obtained
with a call to the EventFactoryContext.getInstance.getEventFactoryHome method.

In WebSphere Application Server, the EventFactoryContext context is configured with a default
EventFactoryHome name which is associated to a ContentHandler handler that is capable of supplying
both event template information, as well as WebSphere Application Server runtime default information.

More details can be found in the API documentation for
org.eclipse.hyades.logging.events.cbe.EventFactory at www.eclipse.org/hyades.

Common Base Event factory
Use event factories to create Common Base Events and complete event properties with associated
content handlers.

Content handlers populate data into Common Base Events when the Common Base Event invokes the
complete method. All event properties set by the application code have priority over all properties that are
specified by the content handler. Event factory implementations are tightly coupled with the content
handler instance, which is associated with the event factory when the event factory is instantiated. Factory
instances can be retrieved only from their associated event factory home. Event factory instances are
retrieved and maintained based on unique names. Event factory names are hierarchical; they are
represented using the standard Java dot-delimited, name-space naming conventions.

More details can be found in the API documentation for
org.eclipse.hyades.logging.events.cbe.EventFactory at www.eclipse.org/hyades.

java.util.logging -- Java logging programming interface
The java.util.logging.Logger class provides a variety of methods with which data can be logged.

Chapter 3. Adding logging and tracing to your application 75

In the WebSphere Application Server, the Java logging API (java.util.logging) automatically creates
Common Base Events for events that are logged at the WsLevel.DETAIL level or above (including
WsLevel.DETAIL, Level.CONFIG, Level.INFO, WsLevel.AUDIT, Level.WARNING, Level.SEVERE, and
WsLevel.FATAL). These Common Base Events are created using the event factory that is associated with
the logger to which the message is logged. If no event factory is specified, WebSphere Application Server
uses a default event factory which automatically fills in WebSphere Application Server-specific information.

The WebSphere Application Server uses a special implementation of the java.util.logging.Logger class that
automatically creates Common Base Events for the following methods:

v config

v info

v warning

v severe

v log: All variants except log(LogRecord) when used with the WsLevel.DETAIL level or more severe levels

v logp: When used with the WsLevel.DETAIL level or more severe levels

v logrb: When used with the WsLevel.DETAIL level or more severe levels

The WebSphere Application Server logger implementation is used only for named loggers for example,
loggers that are instantiated with calls, such as Logger.getLogger("com.xyz.SomeLoggerName"). Loggers
instantiated with calls to the Logger.getAnonymousLogger and Logger.getLogger, or Logger.global
methods do not use the WebSphere Application Server implementation, and do not automatically create
Common Base Events for logging requests made to them. Log records that are logged directly with the
Logger.log(LogRecord) method are not automatically converted by WebSphere Application Server loggers
into Common Base Events.

The following diagram illustrates how application code can log Common Base Events:

The Java logging API processing of named loggers and message-level events proceeds as follows:

1. Application code invokes the named logger (WsLevel.DETAIL or above) with event-specific data.

2. The logger creates a Common Base Event using the createCommonBaseEvent method on the event
factory that is associated with the logger.

3. The logger creates a Common Base Event using the event factory associated to the logger.

76 Troubleshooting and support

4. The logger wraps the common base event in a CommonBaseEventLogRecord record, and adds
event-specific data.

5. The logger calls the Common Base Event complete method.

6. The Common Base Event invokes the ContentHandler completeEvent method.

7. The content handler adds XML template data to the Common Base Event (including for example, the
component name). Not all content handlers support templates.

8. The content handler adds runtime data to the Common Base Event (including for example, the
current thread name).

9. The logger passes the CommonBaseEventLogRecord record to the handlers.

10. The handlers format data and write to the output device.

Logger.properties file
Use the Logger.properties file to set logger attributes for your component.

The properties file is loaded the first time the Logger.getLogger(loggername) method is called within an
application. The Logger.properties file must be either on the WebSphere Application Server class path, or
the context class path.

The logging subsystem uses Common Base Events to represent all the messages in the WebSphere
Application Server activity.log file. You can specify your own event factory template to be used with your
loggers. Use the eventfactory property in your Logger.properties file. See “Sample Common Base Event
template” on page 65 for details on the Common Base Event template.

By convention, the name of the event factory template file should be the fully qualified package name of
the package using the template. The name of the file must end with the .event.xml extension. For
example, a valid event factory template file name for the com.abc.somepackage package is:
com.abc.somepackage.event.xml

When you specify the property value for the eventfactory property in the Logger.properties file, include
the full path name with no leading slash relative to the root of your class path entry. Do not include the
.event.xml extension.

For example, if the template files from the example above are located in the com/abc/templates directory,
the valid value for the eventfactory property is:
com/abc/templates/com.abc.somepackage

Finally, if this event factory template file is used by the com.abc.somepackage.SomeClass logger, then the
following entry will appear in the Logger.properties file:
com.abc.somepackage.SomeClass.eventfactory=com/abc/templates/com.abc.somepackage

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Logging Common Base Events in WebSphere Application Server
The following practices ensure consistent use of Common Base Events within your components, and
between your components and WebSphere Application Server components.

Follow these guidelines:

Chapter 3. Adding logging and tracing to your application 77

v Use a different logger for each component. Sharing loggers across components gets in the way of
associating loggers with component-specific information.

v Associate loggers with event templates that specify source component identification. This association
ensures that the source of all events created with the logger is properly identified.

v Use the same template for directly created Common Base Events (events created using the Common
Base Event factories) and indirectly created Common Base Events (events created using the Java
logging API) within the same component.

v Avoid calling the complete method on Common Base Events until you are finished adding data to the
Common Base Event and are ready to log it. This approach ensures that any decisions made by the
content handler based on data already in the event are made using the final data.

The following sample Logger.properties file entry demonstrates how to associate the
com.ibm.componentX logger with the com.ibm.componentX event factory:
com.ibm.componentX.eventfactory=com.ibm.componentX

The following sample code demonstrates the use of the same event factory setting for direct (Part 1) and
indirect (Part 2) Common Base Event logging:
<?xml version="1.0" encoding="UTF-8"?>

<TemplateEvent>
version="1.0.1"
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:noNamespaceSchemaLocation="templateEvent.xsd">

<CommonBaseEvent>
<sourceComponentId application="My application" component="com.ibm.componentX"/>
<extendedDataElements CommonBaseEventname="Sample ExtendedDataElement name" type="string">
<values>Sample ExtendedDataElement value</values>
</extendedDataElements>
< /CommonBaseEvent>

< /TemplateEvent>

Showlog commands for Common Base Events
The showlog command converts the service log from binary format into plain text.

Purpose

These showlog commands to produce output in Common Base Event XML format.

v showlog -start startDateTime -format CBE-XML-1.0.1 logStreamName

where:

startDateTime
Specifies the start date and time, in yyyy-MM-ddTHH:mm:ss.SSSZ format. Milliseconds and time
zone are optional.

logStreamName
Is the name of the configured error log stream.

For examples of showlog scripts, see Viewing the service log.

78 Troubleshooting and support

Chapter 4. Configuring Java logging using the administrative
console

Java logging provides a standard logging API for your applications. Before applications can log diagnostic
information, you need to specify how you want the server to handle log output and what level of logging
you require.

About this task

Developing, deploying and maintaining applications are complex tasks. When an application encounters an
unexpected condition, it might not be able to complete a requested operation. You might want the
application to inform the administrator that the operation failed and tell the administrator why the operation
failed. This information enables the administrator to take the proper corrective action. Application
developers might need to gather detailed information that relates to the path of a running application to
determine the root cause of a failure that is due to a code bug. The facilities that are used for these
purposes are typically referred to as logging and tracing. For more information read “Java logging” on
page 18.

Using the administrative console, you can:

v Enable or disable a particular log, specify where log files are stored and how many log files are kept.

v Specify the level of detail in a log, and specify a format for log output.

v Set a log level for each logger.

You can change the log configuration statically or dynamically. Static configuration changes affect
applications when you start or restart the application server. Dynamic or run time configuration changes
apply immediately.

When a logger is created, the level value for that logger is set from the configuration data. If no
configuration data is available for a particular logger name, the level for that logger is obtained from the
parent of the logger. If no configuration data exists for the parent logger, the parent of that logger is
checked, and so on up the tree, until a logger with a non-null level value is found. When you change the
level of a logger, the change is propagated to the children of the logger, which recursively propagates the
change to their children, as necessary.

Procedure
1. Set the logging levels for your logs:

a. In the navigation pane, click Servers > Application Servers.

b. Click the name of the server that you want to work with.

c. Under Troubleshooting, click Logs and Trace.

d. Click Change Log Detail levels.

e. To make a static change to the configuration, click the Configuration tab. A list of well-known
components, packages, and groups is displayed. To change the configuration dynamically, click the
Runtime tab. The list of components, packages, and groups displays all the components that are
currently registered on the running server.

f. Select a component, package, or group to set a logging level.

g. [High Performance Extensible Logging] Select whether or not you want to disable the logging and
tracing of potentially sensitive data.

h. Click Apply.

i. Click OK.

2. To have static configuration changes take effect, stop then restart the application server.

© IBM Corporation 2002 79

Log streams and expected output
Investigating the logging and tracing output for the application server is an excellent way to observe
performance, diagnose problems, and gain a general understanding of how the application server is
working within your environment. The expected output locations for logging and trace information can be
different depending on the operating system on which the application server is running.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Distributed and IBM i - Basic log and trace mode

Java Trace

Java Logs

System.out

System.err

cout

cerr

Native stdout

Native stderr

Trace.log

Activity.log
Showlog

SystemOut.log

SystemErr.log

Distributed and IBM i - HPEL log and trace mode

80 Troubleshooting and support

Java Trace

Java Logs

System.out

System.err

cout

cerr

Text log

Native stdout

Native stderr

LogData

TraceData

LogViewer

HPEL

Table 15. Log and trace output for z/OS. This table lists the expected output for logging and tracing output streams
when the application server is installed on z/OS.

Log or trace stream
Expected output - traditional log and
trace mode

Expected output - HPEL log and trace
mode

Java trace SYSPRINT
Note: Trace information, which includes
events at the Fine, Finer and Finest levels,
is written only to this output. If you do not
enable diagnostic trace, setting the log
detail level to Fine, Finer, or Finest does
not affect the logged data.

v HPEL trace repository

v HPEL TextLog*.log, when you enable
this log

Java logs (Audit level) Transformed into write-to-operator (WTO)
output to the hard copy logging stream

Same outputs as traditional log and trace
mode, plus the following:

v HPEL log repository

v HPEL TextLog*.log, when you enable
this log

Java logs (other levels) SYSOUT or your configured error stream Same outputs as traditional log and trace
mod, plus the following:

v HPEL log repository

v HPEL TextLog*.log, when you enable
this log

System.out SYSPRINT
v HPEL log repository

v HPEL TextLog*.log, when you enable
this log

System.err SYSOUT
v HPEL log repository

v HPEL TextLog*.log, when you enable
this log

cout (the C or C++ output stream) SYSPRINT SYSPRINT

cerr (the C or C++ error stream) SYSOUT SYSOUT

Chapter 4. Configuring Java logging using the administrative console 81

Table 15. Log and trace output for z/OS (continued). This table lists the expected output for logging and tracing
output streams when the application server is installed on z/OS.

Log or trace stream
Expected output - traditional log and
trace mode

Expected output - HPEL log and trace
mode

Native trace SYSPRINT
Note: Trace information, which includes
events at the Fine, Finer and Finest levels,
is written only to this output. If you do not
enable diagnostic trace, setting the log
detail level to Fine, Finer, or Finest does
not affect the logged data.

SYSPRINT
Note: Trace information, which includes
events at the Fine, Finer and Finest levels,
is written only to this output. If you do not
enable diagnostic trace, setting the log
detail level to Fine, Finer, or Finest does
not affect the logged data.

Native Message logs SYSOUT or your configured error stream SYSOUT or your configured error stream

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

When considering the direction of log and trace streams, keep in mind the following acronyms and
abbreviations:

cerr C or C++ error steam

cout C or C++ output steam

DD Data Description statements

HFS HTTP File Server

JCL Java Control Language

JES Java error stream

MVS Multiple Virtual Storage

WTO Write-to-operator

WTOR
Write-to-operator with reply

z/OS - Traditional log and trace mode

82 Troubleshooting and support

Java Trace

z/OS Trace

z/OS

z/OS Logging

Java Logs

System.out

z/OS DD
(specified in
proc JCL)

zNative
Trace

Runtime

System.err

cout

cerr

zNative
Message
Runtime

CTRACE

z/OS SYSPRINT
DD

LogStream
(plain text)

z/OS SYSOUT
DD

Operator
Console

(WTO / WTOR)

File in HFS
or MVS

JES

z/OS - HPEL log and trace mode

Chapter 4. Configuring Java logging using the administrative console 83

Java Trace

z/OS Trace

z/OS

z/OS Logging

Java Logs

System.out

Text log

LogData

TraceData

LogViewer

HPEL

zNative
Trace

Runtime

System.err

cout

cerr

zNative
Message
Runtime

CTRACE

z/OS SYSPRINT
DD

LogStream
(plain text)

z/OS SYSOUT
DD

Operator
Console

(WTO / WTOR)

Log level settings
Use this topic to configure and manage log level settings.

Using log levels you can control which events are processed by Java logging. When you change the level
for a logger, the change is propagated to the children of the logger.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Disable logging and tracing of potentially sensitive data
The application server has a list of loggers which are known to potentially write sensitive
information to the log and trace when enabled. For example, enabling certain HTTP related
loggers at FINEST level may result in confidential user-specified information from HTTP requests
being stored in the trace files. If you want the server to avoid enabling these loggers at levels
which are known to be used for potentially sensitive information, check the "Disable logging and
tracing of potentially sensitive data" checkbox. When the server is started, or when the log detail
level specification is modified at runtime, the server will compare the list of loggers and levels
specified in the log detail level specification to the list of loggers and levels in the sensitive logger
list, and will update the log detail level specification as needed.

84 Troubleshooting and support

Change Log Detail Levels

Enter a log detail level that specifies the components, packages, or groups to trace. The log detail
level string must conform to the specific grammar described in this topic. You can enter the log
detail level string directly, or generate it using the graphical trace interface.

If you select the Configuration tab, a static list of well-known components, packages, and groups is
displayed. This list might not be exhaustive.

If you select the Runtime tab, the list of components, packages, and group are displayed with all
the components that are registered on the running application server and in the static list.

The format of the log detail level specification is:
<component> = <level>

where <component> is the component for which to set a log detail level, and <level> is one of the
valid logger levels (off, fatal, severe, warning, audit, info, config, detail, fine, finer, finest, all).
Separate multiple log detail level specifications with colons (:).

Components correspond to Java packages and classes, or to collections of Java packages. Use
an asterisk (*) as a wildcard to indicate components that include all the classes in all the packages
that are contained by the specified component. For example:

* Specifies all traceable code running in the application server, including the product system
code and customer code.

com.ibm.ws.*
Specifies all classes with the package name beginning with com.ibm.ws.

com.ibm.ws.classloader.JarClassLoader
Specifies the JarClassLoader class only.

An error can occur when setting a log detail level specification from the administrative console if
selections are made from both the Groups and Components lists. In some cases, the selection
made from one list is lost when adding a selection from the other list. To work around this
problem, enter the log detail level specification directly into the log detail level entry field.

Select a component or group to set a log detail level. The table following lists the valid levels for
application servers at WebSphere Application Server Version 6 and later, and the valid logging and trace
levels for earlier versions.

Note: Logging level values are case-sensitive and begin with a lower-case letter.

Table 16. Valid logging levels. The following table lists the valid levels for application servers at WebSphere
Application Server Version 6 and later, and the valid logging and trace levels for earlier versions.

Version 6 logging level Logging level before
Version 6

Trace level before Version
6

Content / Significance

off off All disabled* Logging is turned off.

* In Version 6, a trace level
of All disabled turns off
trace, but does not turn off
logging. Logging is enabled
from the Info level.

fatal fatal - Task cannot continue and
component, application, and
server cannot function.

Chapter 4. Configuring Java logging using the administrative console 85

Table 16. Valid logging levels (continued). The following table lists the valid levels for application servers at
WebSphere Application Server Version 6 and later, and the valid logging and trace levels for earlier versions.

severe error - Task cannot continue but
component, application, and
server can still function.
This level can also indicate
an impending fatal error.

warning warning - Potential error or impending
error. This level can also
indicate a progressive
failure (for example, the
potential leaking of
resources).

audit audit - Significant event affecting
server state or resources

info info - General information
outlining overall task
progress

config - - Configuration change or
status

detail - - General information
detailing subtask progress

fine - Event Trace information - General
trace + method entry, exit,
and return values

finer - Entry/Exit Trace information - Detailed
trace

finest - Debug Trace information - A more
detailed trace that includes
all the detail that is needed
to debug problems

all All enabled All events are logged. If you
create custom levels, All
includes those levels, and
can provide a more detailed
trace than finest.

When you enable a logging level in Version 6.0 or above, you are also enabling all of the levels with
higher severity. For example, if you set the logging level to warning on your Version 6.x application server,
then warning, severe and fatal events are processed.

[Basic mode logging] Trace information, which are events at the Fine, Finer and Finest levels, can be
written only to the trace log. Therefore, if you do not enable diagnostic trace, setting the log detail level to
Fine, Finer, or Finest will not have an effect on the data that is logged.

Changing the message IDs used in log files
You can change the default format for message IDs in server logs by setting the
com.ibm.websphere.logging.messageId.version system property.

Before you begin

Note: Beginning with WebSphere Application Server Version 6.0, logging files are formatted according to
a standardized system. However, the default runtime behavior is still configured to use the older
format. In new releases of WebSphere Application Server, the message IDs that are written to log

86 Troubleshooting and support

files will be changed to ensure they do not conflict with other IBM products. The default runtime
behavior is still configured to use the older message IDs, deprecated in Version 8.0.

As a result of the default runtime behavior, you might see a mixture of messages that use 4–letter
message prefixes and 5–letter message prefixes. The information in this topic explains how to
change your configuration so that the messages consistently show with 5–letter message prefixes.
The default behavior has not changed to minimize the impact on customers that depend on the
existence of the 4–letter message prefixes.

The following is a sample of an entry in a trace.log file using a default message ID. Note that the message
ID is PMON0001A
[1/26/05 10:17:12:529 EST] 0000000a PMIImpl A PMON0001A: PMI is enabled

A sample of the same entry using a new message ID follows. Note that the message ID is CWPMI0001A.
All new WebSphere Application Server message IDs begin with 'CW'.
[1/26/05 10:17:12:529 EST] 0000000a PMIImpl A CWPMI0001A: PMI is enabled.

About this task

If you are using a logging tool that uses the standardized format, you might want to change the default
configuration settings to format the logging output appropriately. You will need to change the configuration
for each Java virtual machine (JVM) in the cell if you want the output formatting to be the same across
application servers.

Procedure
v To configure logging files so that they use the newer, 5–letter error message prefixes for each process,

use the following commands with the wsadmin utility:

– Using Jacl:
set cfgJvmList [$AdminConfig list JavaVirtualMachine]
set cfgJvm [lindex $cfgJvmList JavaVirtualMachine]
$AdminConfig create Property $cfgJvm {{name com.ibm.websphere.logging.messageId.version} {value 6} {required false}}
$AdminConfig save

– Using Jython:
ls = java.lang.System.getProperty("line.separator")
cfgJvmList = AdminConfig.list("JavaVirtualMachine").split(ls)
print cfgJvmList
cfgJvm = cfgJvmList[JavaVirtualMachine]
AdminConfig.create(’Property’, cfgJvm, [[’name’, ’com.ibm.websphere.logging.messageId.version’], [’value’, ’6’],
[’required’, ’false’]])
AdminConfig.save()

Where JavaVirtualMachine is the number of the process that you want to use.

When you specify the process, the first process listed is zero (0), the second process is one (1), and
so on. Make the changes for each JVM in the cell for consistent output formatting.

Important: Restart the application server for the changes to take effect.

v To change the configuration so that the log files contain the newer, 5–letter message prefixes in the
startServer.log or stopServer.log files, modify the startServer and stopServer scripts in the
install_root/bin directory.

Within these scripts, append the following code to the end of the existing D_ARGS parameter:
$DEBUG -Dcom.ibm.websphere.logging.messageId.version=6

Results

Message IDs written to log files will now be compliant with the new standard.

Chapter 4. Configuring Java logging using the administrative console 87

Converting log files to use IBM unique Message IDs
The convertlog command creates a new log file with either new or old message IDs substituted in place of
the message IDs in the source file.

Before you begin

Note: Prior to Version 6.x, components were assigned message IDs that are not necessarily unique
across IBM software products. In Version 6.0, a system property was provided to map the message
IDs in output logs to a set of IBM unique message IDs (all WebSphere Application Server message
IDs now start with CW) that do not conflict with other IBM software products. The default runtime
behavior still uses the old message IDs.

About this task

To facilitate the migration of logging tools that are reliant on the old message IDs, the convertlog command
is provided to convert the message IDs of log entries from the old standard to the new standard, or the
new standard back to the old. By default, the software is configured to use the old message IDs when
logging, but you can change the default output with the com.ibm.websphere.logging.messageId.version
system property. Read “Changing the message IDs used in log files” on page 86 for more information.

Procedure

Use the convertlog command to convert the log output:
convertlog <source file name> <destination file name> [options]

options: -newMessageFormat convert message IDs to CCCCCnnnnS format
(cannot be used with -m5)
-oldMessageFormat convert message IDs to CCCCnnnnS format
(cannot be used with -m6)

Results

After using the convertlog command you have a new file with message IDs in the chosen format.

convertlog command
The convertlog command is used to convert the message IDs in log entries from the old standard to the
new standard, or the new standard back to the old.

Previous versions of WebSphere Application Server used message IDs that are deprecated in WebSphere
Application Server Version 8.0. To facilitate the migration of tools based on the old message IDs, the
convertlog command is implemented to translate log files from one message ID standard to the other.

Use the convertlog command as follows:
convertlog <source file name> <destination file name> [options]

options: -newMessageFormat convert message IDs to CCCCCnnnnS format
(cannot be used with -m5)
-oldMessageFormat convert message IDs to CCCCnnnnS format
(cannot be used with -m6)

MessageConverter class
The com.ibm.websphere.logging.MessageConverter class provides a method to convert a message ID at
the front of a String into either a new message ID or an old message ID. The direction of the conversion is
controlled with the conversionType argument.

Use the MessageConverter class with log analysis tools to convert message IDs from earlier versions of
WebSphere Application Server into the corresponding message IDs that are used in later releases, or to
revert message IDs to an earlier format.

Method

88 Troubleshooting and support

public static java.lang.String convert(java.lang.String in, short conversionType)

Parameters

Use the following parameters with the MessageConverter class:

Parameter Name Description

in The message to convert. The method assumes the
message ID is the first part of the supplied message with
no leading white space.

conversionType CONVERSION_TYPE_WASV5_TO_WASV6

CONVERSION_TYPE_WASV6_TO_WASV5

HTTP error, FRCA, and NCSA access log settings
Use this page to configure the global HTTP error log, and National Center for Supercomputing Applications
(NCSA) access log settings for an HTTP inbound channel. If you are running the product on z/OS, you
can also use this page to configure the global Fast Response Cache Accelerator (FRCA) log settings for
an HTTP inbound channel. A FRCA log is a specialized form of a NCSA log and can only be created in a
z/OS environment.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name. Under Troubleshooting, click NCSA access and HTTP error logging. This
console page has separate sections for each type of logging. The FRCA logging section only appears if
you are running the product on z/OS.

The HTTP error log contains a record of HTTP processing errors that occur. The level of error logging that
occurs is dependent on the value that is selected for the Error log level field.

The NCSA access log contains a record of all inbound client requests that the HTTP transport channel
handles. All of the messages that are contained in a NCSA access log are in NCSA format.

The FRCA log is a specialized NCSA access log that can only be created if you are running the product
on z/OS. This log contains a record of all inbound client requests that are handled by the Fast Response
Cache Accelerator. All of the messages that are contained in this log are in NCSA format.

In a z/OS environment, HTTP error, and NCSA access, and FRCA logging must be configured at the
controller level.

After you configure the HTTP error logs, NCSA access logs, and FRCA logs, you must explicitly enable
each type of logging on the settings page for the HTTP channels for which you want a specific types of
logging to occur. To view the settings page for an HTTP channel, click Servers > Server Types >
WebSphere application servers > server_name > Web Container Settings > HTTP inbound channel
> Web container transport chains.

gotcha: The settings for any of these logs can also be modified on the settings page for a specific HTTP
inbound channel. Any changes that you make on the HTTP inbound channel settings page only
apply to that specific inbound channel. and override any global configuration settings that you
specify on this page.

Enable logging service at server start-up
Select this option if you want any of the following logging to start when the server starts:
v FRCA logging
v NCSA access logging

Chapter 4. Configuring Java logging using the administrative console 89

v HTTP error logging

gotcha: Even if you select this option, you must explicitly enable the type of logging that you want to
occur on this page and on the settings page for the HTTP transport channel for which you want
that type of logging to occur.

Enable FRCA access logging
When this field is selected, a record of inbound client requests that the HTTP transport channel handles is
kept in the FRCA log.

This field only displays if you are running the product on z/OS.

FRCA log file path
Specifies the directory path and name of the FRCA log. You should use a server-specific variable, such as
$(SERVER_LOG_ROOT), to prevent log file name collisions.

This field only displays if you are running the product on z/OS.

FRCA log maximum size
Specifies the maximum size, in megabytes, of the FRCA access log. When the content of the FRCA
access log reaches the specified maximum size limit, a log_name.1 archive log is created. The current
content of the FRCA access log is then copied to this archive log.

The next time the content in the FRCA access log reaches the specified maximum log size, the content of
the FRCA access log is again copied to the log_name.1 archive log. The copy process overwrites the
current content of the archive file with the most current content of the FRCA access log.

This field only displays if you are running the product on z/OS.

Maximum number of historical files
Specifies the maximum number of historical versions of the FRCA log file that are kept for future
reference.

This field only displays if you are running the product on z/OS.

FRCA log format
Specifies which FRCA format is used when logging client access information. If you select Common, the
log entries contain the requested resource and a few other pieces of information, but does not contain
referral, user agent, and cookie information. If you select Combined, referral, user agent, and cookie
information is included.

This field only displays if you are running the product for z/OS.

Enable NCSA access logging
When selected, a record of inbound client requests that the HTTP transport channel handles is kept in the
NCSA access log.

NCSA access log file path
Specifies the directory path and name of the NCSA access log. Standard variable substitutions, such as
$(SERVER_LOG_ROOT), can be used when specifying the directory path.

90 Troubleshooting and support

On the z/OS platform, you should use a server-specific variable, such as $(SERVER_LOG_ROOT), to
prevent log file name collisions.

NCSA access log maximum size
Specifies the maximum size, in megabytes, of the NCSA access log. When the content of the NCSA
access log reaches the specified maximum size limit, a log_name.1 archive log is created. The current
content of the NCSA access log is then copied to this archive log.

The next time the content in the NCSA access log reaches the specified maximum log size, the content of
the NCSA access log is again copied to the log_name.1 archive log. The copy process overwrites the
current content of the archive file with the most current content of the NCSA access log.

Maximum number of historical files
Specifies the maximum number of historical versions of the NCSA access log file that are kept for future
reference.

NCSA access log format
Specifies which NCSA format is used when logging client access information. If you select Common, the
log entries contain the requested resource and a few other pieces of information, but does not contain
referral, user agent, and cookie information. If you select Combined, referral, user agent, and cookie
information is included.

Enable error logging
When selected, HTTP errors that occur while the HTTP channel processes client requests are recorded in
the HTTP error log.

Error log file path
Specifies the directory path and the name of the HTTP error log. Standard variable substitutions, such as
$(SERVER_LOG_ROOT), can be used when specifying the directory path.

On the z/OS platform, you should use a server-specific variable, such as $(SERVER_LOG_ROOT), to
prevent log file name collisions.

Error log maximum size
Specifies the maximum size, in megabytes, of the HTTP error log. When the content of the HTTP error log
reaches the specified maximum size limit, a log_name.1 archive log is created. The current content of the
HTTP error log is then copied to this archive log.

The next time the content in the HTTP error log reaches the specified maximum log size, the content of
the HTTP error log is again copied to the log_name.1 archive log. The copy process overwrites the current
content of the archive file with the most current content of the HTTP error log.

Maximum number of historical files
Specifies the maximum number of historical versions of the Error log file that are kept for future reference.

Error log level
Specifies the type of error messages that are included in the HTTP error log.

You can select:

Critical
Only critical failures that stop the Application Server from functioning properly are logged.

Chapter 4. Configuring Java logging using the administrative console 91

Error The errors that occur in response to clients are logged. These errors require Application Server
administrator intervention if they result from server configuration settings.

Warning
Information on general errors, such as socket exceptions that occur while handling client requests,
are logged. These errors do not typically require Application Server administrator intervention.

Information
The status of the various tasks that are performed while handling client requests is logged.

Debug
More verbose task status information is logged. This level of logging is not intended to replace
RAS logging for debugging problems, but does provide a steady status report on the progress of
individual client requests. If this level of logging is selected, you must specify a large enough log
file size in the Error log maximum size field to contain all of the information that is logged.

92 Troubleshooting and support

Chapter 5. Using HPEL to troubleshoot applications

You can use High Performance Extensible Logging (HPEL) to help diagnose problems in WebSphere
Application Server.

About this task

Administrators using WebSphere Application Server need to use log and trace files to determine whether
their applications and the server are running correctly.

Logs typically contain information that is of interest to administrators and must be looked at periodically to
ensure there are no unexpected errors or warnings.

Trace typically contains information that is useful for debugging application or server problems and can
help identify specific problems with individual components.

Procedure
1. Enable HPEL if you have not done so already. Read about changing from basic mode to HPEL logging

and tracing for more information.

2. Configure the HPEL facility. For example, configure HPEL to store your logs and trace in appropriate
directories, and specify how long you want log and trace content to be retained before being deleted.
Read about HPEL to learn about the log and trace framework overall, and read about configuring
HPEL for more configuration information.

3. Restart the application server after making static configuration changes.

High Performance Extensible Logging (HPEL)
High Performance Extensible Logging (HPEL) is a log and trace facility that is provided as a part of
WebSphere Application Server.

Overview

Note: The basic log and trace facility is enabled by default. To use HPEL you must enable it.

Note: HPEL provides a convenient mechanism for storing and accessing log, trace, System.err, and
System.out information produced by the application server or your applications. It is an alternative
to the existing log and trace facilities offered on the z/OS platform which exploit JES, LogStreams,
Component Trace, Hierarchical File System, or other facilities.

HPEL log and trace storage

HPEL provides a log data repository, a trace data repository, and a text log file. See the following figure to
understand how applications and the application server store log and trace information.

© Copyright IBM Corp. 2011 93

Application
code

Application
code

Application
code

com.xyz.abc.def
(Logger)

com.xyz.abc.ghi
(Logger)

JRAS.API
(deprecated)

Anonymous
(Logger)

com.xyz.abc
(Logger)

root
(Logger)

Service broker com.ibm.ws.xyz
(Logger)

com.ibm.ws
(Logger) Service

log

SystemOut.log

Trace log

Text
Log

Trace Data
Repository

Log Data
Repository

Applications

WebSphere Application Server

HPEL

Compatibility

LogData
Handler

TraceData
Handler

Text Log
Handler

JMX Notification
Handler

RasLoggingService
M Bean

Service
Log

Handler

SystemOut
Handler

Trace
Handler

HPEL log data repository

The log data repository is a storage facility for log records. Log data is typically intended to be reviewed by
administrators. This includes any information applications or the server write to System.out, System.err, or
java.util.logging at level Detail or higher (including Detail, Config, Info, Audit, Warning, Severe, Fatal, and
any custom levels at level Detail or higher).

HPEL trace data repository

The trace data repository is a storage facility for trace records. Trace data is typically intended for use by
application programmers or by the WebSphere Application Server support team. This includes any
information applications or the server write to java.util.logging at levels below level Detail (including Fine,
Finer, Finest, and any custom levels below level Detail).

Note: Log and trace content written to the deprecated JRAS logging API is also included in the log and
trace data repositories. Some logging APIs, such as Jakarta Commons Logging can also be
configured to route their log and trace data to java.util.logging, and would have their output stored
in the log data or trace data repository as well.

HPEL text log

The text log file is a plain text file for log and trace records. The text log file is provided for convenience,
primarily so that log content can be read without having to run the LogViewer command-line tool to convert
the log data repository content to plain text.

The text log file does not contain any content that is not also stored in either the log data repository or
trace data repository. You can disable the text log to enhance server performance. The text log can be
configured to record trace content for debugging convenience.

Note: Writing trace to the text log is expensive from a performance perspective.

Log and trace performance

Log and trace events are each stored in only one place

94 Troubleshooting and support

Log events, System.out, and System.err are stored in the log data repository. Trace events are stored in
the trace data repository. If the text log file is disabled, HPEL might only write log and trace content to
these repositories. Storing each type of event in one place ensures that performance is not wasted on
redundant data storage.

Log events, and optionally trace events, are written to the text log file when it is enabled. Since this data is
always also stored in the log data and trace data repositories, the text log file content is redundant. The
text log is convenient for users who do not want to run the LogViewer command-line tool to see their logs
and trace; but you can disable the text log if this convenience is not needed.

Application server

Trace data
repository

Text
log

(optional)

Log data
repository

System.out,
System.err,

,
trace data
log data

trace data

System.out,
System.err,
log data

Log and trace repositories are not shared across processes

Synchronizing activities between processes causes a degradation in performance to all processes
involved. With HPEL, each server process has its own log data repository, trace data repository, and text
log file. Since these files are not shared across processes, the server runtime environment does not need
to synchronize with other processes when writing to these destinations.

Data is not formatted unless it is needed

Formatting data for an user to read uses processor time. Rather than format log event and trace event
data at run time, HPEL log and trace data is stored more rapidly in a proprietary binary representation.
This improves the performance of the log and trace facility. By deferring log and trace formatting until the
LogViewer is run, sections of the log or trace that are never viewed are never formatted.

You can enable the text log file, which stores the log data and trace data in an already readable text
format.

Note: Disable the text log when performance of your server is a key concern, or if the text log is not
wanted.

Log and trace data is buffered before being written to disk

Writing large blocks of data to a disk is more efficient than writing the same amount of data in small
blocks. HPEL provides buffer log and trace data before writing it to disk. By default, log and trace data is

Chapter 5. Using HPEL to troubleshoot applications 95

stored in an 8 KB buffer before being written to disk. If the buffer is filled within 10 seconds, the buffer is
written to disk. If the buffer is not filled within that time it is automatically written to disk to ensure that the
logs have the most current information.

Note: The size of the buffer can be controlled by setting the HPEL.BUFFER.SIZE system property. The
frequency that the buffer writes to disk can be controlled by setting the
HPEL.FLUSH.PERIOD.SECS system property.

Administration of log and trace

Note: HPEL has been designed to be easy to configure and understand. For example, administrators can
easily configure how much disk space to dedicate to logs or trace, or how long to retain log and
trace records, and leave the management of log and trace content up to the server. As another
example all log, trace, System.out, and System.err content can be accessed using one easy-to-use
command (LogViewer), avoiding any possible confusion over which file to access for certain
content.

Reading from the log data and trace data repositories

The log data and trace data repositories are stored in a WebSphere Application Server proprietary format
and cannot be read using text file editors such as Notepad or VI. You can copy the log data and trace data
repositories in to a plain text format using the LogViewer command.

Trace Data
Repository

Log Data
repository

Text
LogLog Viewer

HPEL LogViewer command

The HPEL LogViewer is an easy-to-use, command-line tool provided for HPEL users to work with the log
data and trace data repositories. The LogViewer provides filtering and formatting options that make finding
important content in the log data and trace data repositories easy. For example, a user might filter any
errors or warnings, then filter all log and trace entries that occurred within 10 seconds of a key error
message on the same thread.

HPEL in the administrative console

The administrative console contains panels that enable HPEL administrators to:

v Configure the HPEL log data repository.

v Configure the HPEL trace data repository.

v Configure the HPEL text log file.

v View the contents of the HPEL log and trace data repositories.

v View and set the log detail levels for logging and tracing.

To use these capabilities, in the administrative console, click Troubleshooting > Logs and Trace link.

96 Troubleshooting and support

Development resources

Note: HPEL has been designed to make working with log and trace content more flexible and effective
than the basic logging facility. Log and trace content can be easily filtered to show only the records
that are of interest. You can use the command line (see the description of the HPEL LogViewer
command), or developers can create powerful log handling programs using the HPEL API.

Scripts and Java programs read from the log data and trace data repositories

Developers and scripters have a number of options for how to read the log data and trace data
repositories:

v Locally or remotely from a wsadmin script, using the HPELControlService JMX MBean

v Locally or remotely from a Java program, using the HPELControlService JMX MBean

v Locally from a Java program, using the com.ibm.websphere.logging.hpel API

Application server

Trace data
repository

Text
log

(optional)

Log data
repository

System.out,
System.err,

,
trace data
log data

trace data

System.out,
System.err,
log data

HPEL-related JMX MBeans

A MBean interface has been provided to make it easy to access HPEL repository content remotely. For
example, a developer might write a JMX client program to read log content from across their WebSphere
Application Server cell. This interface is part of the HPELControlService MBean. Refer to the MBean
interface documentation for details on the HPEL remote log reading interface.

Table 17. JMX MBeans related to HPEL. The JMX MBeans are related to the operation of HPEL
JMX MBean Description

HPELControlService Provides operations related to configuring the log or trace detail level of
the server, viewing the log component registry, and querying the log and
trace repositories

HPELLogDataService Provides operations related to configuring the log data repository of the
server

HPELTraceDataService Provides operations related to configuring the trace data repository of the
server

HPELTextLogService Provides operations related to configuring the text log file of the server

RasLoggingService Only used for JMX Notification of log events

Chapter 5. Using HPEL to troubleshoot applications 97

When using HPEL for log and trace rather than basic logging, the log and trace JMX MBean,
TraceService, is not used.

HPEL API

An API has been provided to make it easy for developers to develop tools to consume content from the
HPEL log and trace repositories. For example, a developer might write a Java program to search the log
and trace content to find any messages with message IDs that match a known list of important message
IDs. This API is in the com.ibm.websphere.logging.hpel package. Refer to the API documentation for
details on the HPEL log reading API.

Basic mode and HPEL mode
Two modes of logging and tracing exist in the product, which are basic mode and High Performance
Extensible Logging (HPEL) mode. Use this topic to understand the differences between these modes.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Basic mode, the default mode, is the existing log and trace framework from prior releases of WebSphere
Application Server. Any existing scripts and tools you have that use logs and trace might need minor
modifications to work with HPEL mode.

To take advantage of the new log and trace framework, HPEL mode must be enabled. After HPEL mode is
enabled the JVM logs (typically SystemOut.log and SystemErr.log), the trace log (typically trace.log), and
the service log (typically activity.log) are no longer written to. Instead, log and trace content is written to a
log data or trace data repository in a proprietary binary format and, if configured, to a text log file.
Disabling the writing of the text log file results in the largest possible performance benefit of HPEL. A log
viewing tool, LogViewer, is provided to allow for viewing, filtering, monitoring, and formatting the log and
trace data in the repositories.

Log and Trace files

The following figure shows the files used by the basic mode and HPEL mode log and trace facilities. When
enabled, the HPEL text log file stores content from Java trace (optional), Java logs, System.out, and
System.err. You can disable the HPEL text log in cases where it is not needed as indicated by the dotted
lines.

98 Troubleshooting and support

Basic Mode HPEL mode

Java trace

Java logs

System out

System err

Trace log

Service
log

SystemOut.log

ShowLog

native_stdout.logcout

cerr

SystemErr.log

native_stderr.log

Java trace

Java logs

System out

System err

Trace
data

repository

Text
log

Log data
repository

LogViewer

native_stdout.logcout

cerr native_stderr.log

Table 18. Basic mode and HPEL mode files. This table shows where each of the application and application server
log, trace, JVM log, and native JVM log content is routed and how to view that content.
Source Basic mode files HPEL mode files How to view the HPEL files

System.out SystemOut.log

trace.log (when trace enabled)

logdata/*.wbl

TextLog_<timestamp>.log (when
text log enabled)

logdata - use LogViewer, with
optional filtering, to render log data
repository as readable text, then
use any text editor

TextLog - any text editor

System.err SystemErr.log Same as System.out Same as System.out

java.util.logging (levels DETAIL and
above)

SystemOut.log

activity.log

trace.log (when trace enabled)

Same as System.out Same as System.out

java.util.logging (levels below
DETAIL)

trace.log tracedata/*.wbl

TextLog_<timestamp>.log (when
text log enabled)

tracedata - use LogViewer, with
optional filtering, to render trace
data repository as readable text,
then use any text editor

TextLog - any text editor

native cout native_stdout.log native_stdout.log Any text editor

native cerr native_stderr.log native_stderr.log Any text editor

MBean services

Table 19. Basic mode and HPEL mode MBeans. This table shows the JMX MBeans that are associated with the
basic mode and HPEL mode log and trace frameworks.
Basic mode MBeans HPEL mode MBeans HPEL MBean Descriptions

RasLoggingServiceMBean RasLoggingServiceMBean Provides JMX Notification

HPELLogDataServiceMBean Configures the log repository such as location,
retention policy, out of space behavior, buffering,
and file switching

HPELTraceDataServiceMBean Configures the trace repository such as location,
retention policy, out of space behavior, buffering,
and file switching

Chapter 5. Using HPEL to troubleshoot applications 99

Table 19. Basic mode and HPEL mode MBeans (continued). This table shows the JMX MBeans that are associated
with the basic mode and HPEL mode log and trace frameworks.
Basic mode MBeans HPEL mode MBeans HPEL MBean Descriptions

HPELTextLogServiceMBean Configures the text log such as location,
retention policy, out of space behavior, buffering,
file switching, and SystemErr or SystemOut
format

TraceServiceMBean HPELControlServiceMBean Configures trace specification levels, and
provides access to log and trace repository
content

Changing from basic mode to HPEL logging and tracing
The basic mode log and trace framework is enabled by default when you set up a new application server.
Use this topic to switch to the High Performance Extensible Logging (HPEL) log and trace framework.

Before you begin

Before beginning this task, read about the differences between HPEL mode and basic mode. Be aware of
changes you might need to make to any tools and scripts you have that use the basic mode log and trace
files.

About this task

HPEL provides faster log and trace handling capabilities and more flexible ways to use log and trace
content than the basic mode. You can switch to HPEL mode using the administrative console, or using
wsadmin scripting.

Procedure
v Use the administrative console to switch to HPEL.

1. Log on to the administrative console.

2. If using an admin agent topology select a node that you want to manage and navigate to it.

3. From the navigation section in the console choose Troubleshooting > Logs and trace .

4. Select the server that you want to switch to HPEL.

5. Click Switch to HPEL Mode .

6. Save the changes.

v Use wsadmin scripting to switch to HPEL. Complete these steps to modify the server configuration.

1. Start wsadmin. In this case, you can connect wsadmin to a running server or access the
configuration data for a stopped server. Read about starting the wsadmin scripting client for more
information.

2. Get a reference to the HighPerformanceExtensibleLogging configuration object.

Using Jython:
HPELService = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:
myServer/HighPerformanceExtensibleLogging:/")

Table 20. AdminConfig command description. The table lists AdminConfig command and description.
Command Description

myCell The name of the cell

myNode The host name of the node

myServer The name of the server

3. Set the HighPerformanceExtensibleLogging enable attribute to true.

Using Jython:

100 Troubleshooting and support

AdminConfig.modify(HPELService, "[[enable true]]")

4. Get a reference to the RASLoggingService object.

Using Jython:
RASLogging = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:myServer/RASLoggingService:/")

Table 21. AdminConfig command description. The table lists AdminConfig command and description.

Command Description

myCell The name of the cell

myNode The host name of the node

myServer The name of the server

5. Set the RASLoggingService enable attribute to false.

Using Jython:
AdminConfig.modify(RASLogging, "[[enable false]]")

6. Save the configuration.

Using Jython:
AdminConfig.save()

Results

The server is now configured to use HPEL when you restart.

If this task was done using the deployment manager, you might need to synchronize the node agent on
the target node before restarting the server.

What to do next

Configure HPEL to meet your needs. If you have any tools or scripts that were using the basic mode log
and trace files, you might need to modify them to continue working with HPEL.

Changing from HPEL to basic mode logging and tracing
Use this topic if you need to switch from HPEL to the basic mode log and trace framework. The basic
mode log and trace framework is enabled by default when you set up a new application server.

Before you begin

Before beginning this task, read about the differences between HPEL mode and basic mode. Be aware of
changes you might need to make to any tools and scripts you have that use HPEL files or commands.

About this task

You can switch to basic mode using the administrative console, or using wsadmin scripting. HPEL provides
faster log and trace handling capabilities and more flexible ways to exploit log and trace content than the
basic mode.

Procedure
v Use the administrative console to switch to basic mode.

1. Log on to the administrative console.

2. If using an administrative agent topology, select a node that you want to manage and navigate to it.

3. From the navigation section in the console click Troubleshooting > Logs and trace.

4. Select the server that you want to switch to basic mode.

Chapter 5. Using HPEL to troubleshoot applications 101

5. Click Change log and trace mode.

6. Click Switch back to basic mode.

7. Save the changes.

v Use wsadmin scripting to switch to basic mode. These steps modify the server configuration. The server
does not need to be running to perform these steps.

1. Start wsadmin. In this case, wsadmin can be connected to a running server or accessing the
configuration data for a stopped server. Read about starting the wsadmin scripting client for more
information.

2. Get a reference to the HighPerformanceExtensibleLogging configuration object.

Using Jython:
HPELService = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:
myServer/HighPerformanceExtensibleLogging:/")

Table 22. AdminConfig command description. The table lists AdminConfig command and description.
Command Description

myCell The name of the cell

myNode The host name of the node

myServer The name of the server

3. Set the HighPerformanceExtensibleLogging enable attribute to false.

Using Jython:
AdminConfig.modify(HPELService, "[[enable false]]")

4. Get a reference to the RASLoggingService object.

Using Jython:
RASLogging = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:
myServer/RASLoggingService:/")

Table 23. AdminConfig command description. The table lists AdminConfig command and description.

Command Description

myCell The name of the cell

myNode The host name of the node

myServer The name of the server

5. Set the RASLoggingService enable attribute to true.

Using Jython:
AdminConfig.modify(RASLogging, "[[enable true]]")

6. Save the configuration.

Using Jython:
AdminConfig.save()

Results

The server is now configured to use the basic mode log and trace framework when you restart.

If this task was done using the deployment manager, you might need to synchronize the node agent on
the target node before restarting the server.

102 Troubleshooting and support

Configuring HPEL

Configuring HPEL with wsadmin scripting
You can configure the High Performance Extensible Logging (HPEL) log and trace framework using
wsadmin scripting. Use the examples in this topic as a guide to build your own wsadmin scripts.

About this task

HPEL provides faster log and trace handling capabilities and more flexible ways to use log and trace
content than the basic mode. You can configure the HPEL mode using the administrative console, or using
wsadmin scripting. The examples in this topic show how to configure HPEL using wsadmin. If you
complete this task using the deployment manager, then you might need to synchronize the node agent on
the target node and restart the server before configuration changes take effect.

Table 24. Variable Names. The table applies to all examples in this topic. All examples use the Jython scripting
language.
Variable Description

myCell The name of the cell

myNode The host name of the node

myServer The name of the server

Procedure
v Use the AdminConfig object to configure HPEL.

Changes you make using the AdminConfig object take effect the next time you start the server.

1. Change the trace specification.

The following example shows how to change the trace specification to
=info:com.ibm.ws.classloader.=all
HPELService = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:myServer/
HighPerformanceExtensibleLogging:/")
AdminConfig.modify(HPELService, "[[startupTraceSpec *=info:com.ibm.ws.classloader.*=all]]")
AdminConfig.save()

2. Change the size of the log repository.

The following example shows how to set HPEL to automatically delete the oldest log content from
the log repository when the repository size approaches 65 MB. Specify HPELTrace or HPELTextLog
instead of HPELLog to change the setting for the HPEL trace repository or HPEL text log.
HPELService = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:myServer/
HighPerformanceExtensibleLogging:/")
HPELLog = AdminConfig.list("HPELLog", HPELService)
AdminConfig.modify(HPELLog, "[[purgeMaxSize 65]]")
AdminConfig.save()

3. Change the log repository location.

The following example shows how to change the HPEL log repository directory name to
/tmp/myDirectory. Specify HPELTrace or HPELTextLog instead of HPELLog to change the setting for
the HPEL trace repository or HPEL text log.
HPELService = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:myServer/
HighPerformanceExtensibleLogging:/")
HPELLog = AdminConfig.list("HPELLog", HPELService)
AdminConfig.modify(HPELLog, "[[dataDirectory /tmp/myDirectory]]")
AdminConfig.save()

4. Disable log record buffering.

The following example shows how to change the HPEL log repository to not use log record
buffering. Specify HPELTrace or HPELTextLog instead of HPELLog to change the setting for the
HPEL trace repository or HPEL text log.

Chapter 5. Using HPEL to troubleshoot applications 103

HPELService = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:myServer/
HighPerformanceExtensibleLogging:/")
HPELLog = AdminConfig.list("HPELLog", HPELService)
AdminConfig.modify(HPELLog, "[[bufferingEnabled false]]")
AdminConfig.save()

Note: Enable log record buffering in almost all cases. Only disable log record buffering when your
server is failing unexpectedly and cannot write buffered content to disk before stopping.

5. Start writing to a new log file each day at a specified time.

The following example shows how to enable the HPEL log repository to start a new log file each day
at 3pm. Specify HPELTrace or HPELTextLog instead of HPELLog to change the setting for the
HPEL trace repository or HPEL text log.
HPELService = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:myServer/
HighPerformanceExtensibleLogging:/")
HPELLog = AdminConfig.list("HPELLog", HPELService)
AdminConfig.modify(HPELLog, "[[fileSwitchTime 15]]")
AdminConfig.modify(HPELLog, "[[fileSwitchEnabled true]]")
AdminConfig.save()

6. Change the out of space action for the log repository.

The following example shows how to change the out of space action for the HPEL log repository.
Specify HPELTrace or HPELTextLog instead of HPELLog to change the setting for the HPEL trace
repository or HPEL text log.
HPELService = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:myServer/
HighPerformanceExtensibleLogging:/")
HPELLog = AdminConfig.list("HPELLog", HPELService)
AdminConfig.modify(HPELLog, "[[outOfSpaceAction PurgeOld]]")
AdminConfig.save()

v Use the AdminControl object to configure HPEL. Changes you make using the AdminControl object take
effect immediately.

1. Change the trace specification.

The following example shows how to change the trace specification to
=info:com.ibm.ws.classloader.=all
HPELControlMBean = AdminControl.queryNames(’cell=myCell,node=myNode,
type=HPELControlService,process=myServer,*’)
AdminControl.setAttribute(HPELControlMBean, "traceSpecification",
"*=info:com.ibm.ws.classloader.*=all")

2. Change the size of the log repository.

The following example shows how to set HPEL to automatically delete the oldest log content from
the log repository when the repository size approaches 65 MB. Specify HPELTraceDataService or
HPELTextLogService instead of HPELLogDataService to change the setting for the HPEL trace
repository or HPEL text log.
HPELLogDataMBean = AdminControl.queryNames(’cell=myCell,
node=myNode,type=HPELLogDataService,process=myServer,*’)
AdminControl.setAttribute(HPELLogDataMBean, "purgeMaxSize", "65")

3. Change the log repository location.

The following example shows how to change the HPEL log repository directory name to
/tmp/myDirectory. Specify HPELTraceDataService or HPELTextLogService instead of
HPELLogDataService to change the setting for the HPEL trace repository or HPEL text log.
HPELLogDataMBean = AdminControl.queryNames(’cell=myCell,
node=myNode,type=HPELLogDataService,process=myServer,*’)
AdminControl.setAttribute(HPELLogDataMBean, "dataDirectory", "/tmp/myDirectory")

4. Disable log record buffering.

The following example shows how to change the HPEL log repository to not use log record
buffering. Specify HPELTraceDataService or HPELTextLogService instead of HPELLogDataService
to change the setting for the HPEL trace repository or HPEL text log.

104 Troubleshooting and support

HPELLogDataMBean = AdminControl.queryNames(’cell=myCell,node=myNode,
type=HPELLogDataService,process=myServer,*’)
AdminControl.setAttribute(HPELLogDataMBean, "bufferingEnabled", "false")

Note: Enable log record buffering in almost all cases. Only disable log record buffering when your
server is failing unexpectedly and cannot write buffered content to disk before stopping.

5. Start writing to a new log file each day at a specified time.

The following example shows how to enable the HPEL log repository to start a new log file each day
at 3pm. Specify HPELTrace or HPELTextLog instead of HPELLog to change the setting for the
HPEL trace repository or HPEL text log.
HPELLogDataMBean = AdminControl.queryNames(’cell=myCell,node=myNode,
type=HPELLogDataService,process=myServer,*’)
AdminControl.setAttribute(HPELLogDataMBean, "fileSwitchTime", "15")
AdminControl.setAttribute(HPELLogDataMBean, "fileSwitchEnabled", "true")

6. Change the out of space action for the log repository.

The following example shows how to change the out of space action for the HPEL log repository.
Specify HPELTraceDataService or HPELTextLogService instead of HPELLogDataService to change
the setting for the HPEL trace repository or HPEL text log.
HPELLogDataMBean = AdminControl.queryNames(’cell=myCell,node=myNode,
type=HPELLogDataService,process=myServer,*’)
AdminControl.setAttribute(HPELLogDataMBean, "outOfSpaceAction", "PurgeOld")

Results

HPEL is now configured. If you made changes with the AdminConfig command, restart the server to make
the changes take effect.

HPEL logging and trace settings
Use this page to view and configure High Performance Extensible Logging (HPEL) logging and trace
settings for the server.

Note: You can only access this page when the server is configured to use HPEL log and trace mode.

To view this administrative console page, click Troubleshooting > Logs and Trace > server_name.

Configure HPEL logging
Use this link to configure HPEL log options. If this server is in running state, then important log
configuration values are displayed below the link. These values summarize the current runtime values
being used by the server.

Configure HPEL trace
Use this link to configure HPEL trace options. If this server is in running state, then important trace
configuration values are displayed below the link. These values summarize the current runtime values
being used by the server.

Configure HPEL text log
Use this link to configure HPEL text log options. If this server is in running state, then important text log
configuration values are displayed below the link. These values summarize the current runtime values
being used by the server.

View HPEL logs and trace
Use this page to view log data from the HPEL repository. You can also use this page to filter and search
the repository. You can export the customized view or full repository into a text file or into a new HPEL
repository.

Chapter 5. Using HPEL to troubleshoot applications 105

Change log detail levels
Use this page to enter a log detail level that specifies the components, packages, or groups to trace.

Change log and trace mode
Use this link to switch back to basic mode logging, instead of HPEL mode logging currently enabled for
this server.

Manage process logs
WebSphere Application Server processes contain two output streams that are accessible to native code,
which runs in a particular process. These streams are the stdout and stderr streams. Native code,
including Java virtual machines (JVM), might write data to these process streams. In addition, you can
also configure JVM-provided System.out and System.err streams to write their data to these streams.

HPEL log configuration settings
Use this page to configure High Performance Extensible Logging (HPEL) log settings.

Note: You can only access this page when the server is configured to use HPEL log and trace mode.

To view this administrative console page, click Troubleshooting > Logs and trace > server_name >
Configure HPEL logging .

Directory path
Specifies the directory to which log files are written. A subdirectory, logdata, is created in this directory, and
the log files are written to this location.

Enable log record buffering
Specifies that the logging system avoids writing to disk each time a log record is created. The logging
system creates a buffer that can hold a number of log records, and writes the buffered events when the
buffer is full. The logging system also writes the buffered events after a few seconds have passed, even if
the buffer is not full.

Selecting this setting significantly improves logging performance; however, if the server stops
unexpectedly, the contents might not be written to the log repository.

Note: Enable log record buffering in almost all cases. Only disable log record buffering when your server
is failing unexpectedly and cannot write buffered content to disk before stopping.

Start new log file daily at <time>
Enables the logging framework to close the log file and start a new file at the specified time of day.
Closing the file makes it easy to copy the file to an archive.

Note: If you want to automatically archive your log files, set up your backup program to copy files after
the time you configured for new logs to be started. Configure the backup to occur at least 10
minutes after the time configured for new logs to be started to ensure that the server has closed the
previous file.

Begin cleanup of oldest records
Specifies the log cleanup settings to be used to automatically purge the oldest log records, or log records
that no longer fit in the configured space, from the log repository.

Select When log size approaches maximum to configure automatic log file cleanup to begin when the
total size of the log repository approaches the configured maximum size.

Select When oldest records reach age limit to configure automatic log file cleanup to begin when log
content is the age limit specified.

106 Troubleshooting and support

Select When either age or size restriction is met to configure automatic log file cleanup to begin when
either of the previous conditions is met.

Regardless of the selection chosen, records are deleted from the log repository in the order in which they
were written to the log repository.

Log record age limit:

Specifies the lifespan, in hours, that log records can remain in the log repository before the log records
can be automatically deleted by the server. When the oldest records in the log repository have existed
longer than the age limit specified, then those records are targeted for deletion by the server.

Maximum log size:

Specifies the maximum total size, in megabytes, that the server allows the log repository to reach. When
the log repository approaches this size limit, the server deletes the oldest records from the log repository
to make space for new log records.

Out of space action
Specifies how the server reacts to an inability to add content to the log repository.

Select Stop server to specify that the server stops when the server is unable to write to the log repository.

Select Purge old records to specify that the server continues to run, and that the oldest log records are
immediately removed when the server is unable to write to the log repository.

Select Stop logging to specify that the server continues to run, but that the server cannot continue to
write to the log when the server is unable to write to the log repository.

Save runtime changes to configuration as well
Specifies that changes are made to both the dynamic state of the running server, and the server
configuration, which takes effect on the next restart. If this check box is not selected, the server does not
copy the settings into the server configuration.

HPEL trace configuration settings
Use this page to configure High Performance Extensible Logging (HPEL) trace settings.

Note: You can only access this page when the server is configured to use HPEL log and trace mode.

To view this administrative console page, click Troubleshooting > Logs and trace > server_name >
Configure HPEL trace.

Trace to a directory
Specifies that the tracing system writes trace records to the trace directory as they are created by the
server.

Enable log record buffering
Specifies that the tracing system avoids writing to disk each time a trace record is created. The tracing
system creates a buffer that can hold a number of trace records, and writes the buffered events when the
buffer is full. The tracing system also writes the buffered events after a few seconds have passed, even if
the buffer is not full.

Selecting this setting significantly improves tracing performance; however, if the server stops unexpectedly,
the contents might not be written to the trace repository.

Chapter 5. Using HPEL to troubleshoot applications 107

Note: Enable trace record buffering in almost all cases. Only disable trace record buffering when your
server is failing unexpectedly and cannot write buffered content to disk before stopping.

Start new log file daily at <time>
Enables the tracing framework to close the trace file and start a new file at the specified time of day.
Closing the file makes it easy to copy the file to an archive.

Note: If you want to automatically archive your trace files, set up your backup program to copy files after
the time you configured for new files to be started. Configure the backup to occur at least 10
minutes after the time configured for new files to be started to ensure that the server has closed the
previous file.

Begin cleanup of oldest records
Specifies the trace cleanup settings to be used to automatically purge the oldest trace records, or trace
records that no longer fit in the configured space, from the trace repository.

Select When log size approaches maximum to configure automatic trace file cleanup to begin when the
total size of the trace repository approaches the configured maximum size.

Select When oldest records reach age limit to configure automatic trace file cleanup to begin when
trace content is the age limit specified.

Select When either age or size restriction is met to configure automatic trace file cleanup to begin when
either of the previous conditions is met.

Regardless of the selection chosen, records are deleted from the trace repository in the order in which
they were written to the trace repository.

Log record age limit:

Specifies the lifespan, in hours, that trace records can remain in the trace repository before the trace
records can be automatically deleted by the server. When the oldest records in the trace repository have
existed longer than the age limit specified, then those records are targeted for deletion by the server.

Maximum log size:

Specifies the maximum total size, in megabytes, that the server allows the trace repository to reach. When
the trace repository approaches this size limit, the server deletes the oldest records from the trace
repository to make space for new trace records.

Out of space action
Specifies how the server reacts to an inability to add content to the trace repository.

Select Stop server to specify that the server stops when the server is unable to write to the trace
repository.

Select Purge old records to specify that the server continues to run, and that the oldest trace records are
immediately removed when the server is unable to write to the trace repository.

Select Stop logging to specify that the server continues to run, but that the server cannot continue to
write to the trace when the server is unable to write to the trace repository.

Trace to a memory buffer
Specifies that the tracing system writes trace records to a memory buffer.

You can write the memory buffer contents to the trace directory from the runtime tab.

108 Troubleshooting and support

Memory buffer size
Specifies the amount of memory the tracing system allocates in the server to contain trace records.

In cases where the memory buffer is full when a new trace record is created, the oldest entry from the
memory buffer is deleted to make space.

Dump button
Use this button to write the contents of the trace memory buffer to the trace directory.

The tracing system resets the memory buffer after you dump it. The tracing system continues to record
trace records in the memory buffer after you dump the buffer.

Directory to use for tracing and dumping memory buffer
Specifies the directory to which trace files are written. A subdirectory, trace data, is created in this
directory, and the trace files are written to this location.

Save runtime changes to configuration as well
Specifies that changes are made to both the dynamic state of the running server, and the server
configuration, which takes effect on the next restart. If this check box is not selected, the server does not
copy the settings into the server configuration.

HPEL text log configuration settings
Use this page to configure High Performance Extensible Logging (HPEL) settings for text log.

Note: You can only access this page when the server is configured to use HPEL log and trace mode.

To view this administrative console page, click Troubleshooting > Logs and trace > server_name >
Configure HPEL Text Log.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Enable Text Log
Enables writing log and trace records into the text log file.

Specifies that in addition to writing log and trace records in binary format, the logging system writes them
in a text format as well. You can configure the text log to be formatted in either of the formats that the
basic mode SystemOut.log file uses.

Note: All content written to the text log is also written to either the log repository or trace repository.
Enabling the text log degrades performance for applications that frequently create log or trace
entries.

Directory path
Specifies the directory to which log files are written.

Text log file names have the following format: TextLog_<yy.mm.dd>_<hh.mm.ss>, where "TextLog_" is a
fixed prefix, <yy.mm.dd> is a date (year, month, date) of the first record in the file, and <hh.mm.ss> is the
time (hour, minute, second).

Chapter 5. Using HPEL to troubleshoot applications 109

Enable log record buffering
Specifies that the logging system avoids writing to disk each time a log record is created. The logging
system creates a buffer that can hold a number of log records, and writes the buffered events when the
buffer is full. The logging system also writes the buffered events after a few seconds have passed, even if
the buffer is not full.

Selecting this setting significantly improves logging performance; however, if the server stops
unexpectedly, the contents might not be written to the text log file.

Note: Enable log record buffering in almost all cases. Only disable log record buffering when your server
is failing unexpectedly and cannot write buffered content to disk before stopping.

Start new log file daily at <time>
Enables the logging framework to close the log file and start a new file at the specified time of day.
Closing the file makes it easy to copy the file to an archive.

Note: If you want to automatically archive your log files, set up your backup program to copy files after
the time you configured for new logs to be started. Configure the backup to occur at least 10
minutes after the time configured for new logs to be started to ensure that the server has closed the
previous file.

Begin cleanup of oldest records
Specifies the log cleanup settings to be used to automatically purge the oldest log records, or log records
that no longer fit in the configured space, from the text log directory.

Select When log size approaches maximum to configure automatic log file cleanup to begin when the
total size of the text log files approaches the configured maximum size.

Select When oldest records reach age limit to configure automatic log file cleanup to begin when log
content is the age limit specified.

Select When either age or size restriction is met to configure automatic log file cleanup to begin when
either of the previous conditions is met.

Regardless of the selection chosen, text log files are deleted from the text log directory in the order in
which they were written.

Log record age limit:

Specifies the lifespan, in hours, that log records can remain in the text log directory before the log records
can be automatically deleted by the server. When all records in a text log file have existed longer than the
age limit specified, then that file is targeted for deletion by the server.

Maximum log size:

Specifies the maximum total size, in megabytes, that the server allows the text log files to reach. When the
total size of the text log files approaches this size limit, the server deletes the oldest text log files from the
text log directory to make space for new log records.

Out of space action
Specifies how the server reacts to an inability to add content to the text log directory.

Select Stop server to specify that the server stops when the server is unable to write to the text log
directory.

110 Troubleshooting and support

Select Purge old records to specify that the server continues to run and that the file containing the oldest
log records is immediately removed when the server is unable to write to the text log directory.

Select Stop logging to specify that the server continues to run, but that the server cannot continue to
write to the log when the server is unable to write to the text log directory.

Text Output Format
Specifies the format to use in the text log file.

Select Basic to specify a shorter, one-line-per-record format.

Select Advanced to specify a longer format using full logger name and more details about each record.

Include trace records
Specifies whether trace records are included in the text log file, as well as log records.

Save runtime changes to configuration as well
Specifies that changes are made to both the dynamic state of the running server and the server
configuration, which take effect on the next restart. If this check box is not selected, the server does not
copy the settings into the server configuration.

Log viewer settings
Use this page to view your High Performance Extensible Logging (HPEL) log, trace, System.out, and
System.err content.

Note: You can only access this page when the server is configured to use basic log and trace mode.

To view this administrative console page, click Troubleshooting > Logs and trace > server_name >
View HPEL logs and trace.

If HPEL is not enabled, you must enable it. Read about changing to HPEL logging and tracing from basic
mode for more information.

You can view log and trace data for servers that are currently running and configured to use HPEL. You
can also view log and trace data for servers that are currently stopped as long as a node agent or
administrative agent is running on the same machine and that agent is configured to use HPEL.

Log view table
Displays the log, trace, System.out, and System.err records.

The log view section displays the records. Use the First Page, Previous Page, Next Page, and Last Page
buttons to move through the list of records, or specify filter criteria in the Content and Filtering Details
section to limit the rows displayed. Records are always displayed in the order they were recorded by the
server. By default the log view has 5 columns as listed in the following table..

Table 25. Log view table columns. The table columns provide information on the log records.

Column Description

Time Stamp The time when the event was recorded.

Thread ID The identity of the thread that recorded the event in hexadecimal
notation.

Logger The logger that recorded the event.

Level The type of event that was recorded.

Chapter 5. Using HPEL to troubleshoot applications 111

Table 25. Log view table columns (continued). The table columns provide information on the log records.

Column Description

Message The message from the recorded event. If the message has a
message ID the message ID is underlined. Click the message ID
to get an explanation and recommended user action for the
message.

To manipulate the log view, you can complete the following actions using available buttons.

Table 26. Log view table buttons. The table buttons help you configure the log settings.

Button Resulting action

Refresh View Clears the contents of the viewer and reinitializes the view using
records from the server. Use this button to retrieve information
about any additional rows created since the log viewer was
started.

Show Only Selected Threads Filters any records created by any thread other than the one
selected in the selection area. Clicking on this button enables the
Show All Threads button.

Show All Threads Displays any records that were filtered when you clicked Show
Only Selected Threads.. This button is only enabled when you
have restricted the view using the Show Only Selected Treads
button.

Select Columns Enables you to select the columns in the viewer that you want to
view.

Export Exports logs to local workstation in any of basic, advanced, or
binary (HPEL) formats

Copy to Clipboard Copies the records that are highlighted in the selection area into
the operating system clipboard.

Server Instance Information Displays attributes for the selected server instance process. Use
this table to find attributes and corresponding values for the
server instance process environment. These properties are
similar to the ones found in the header of basic mode logs.

Content and filtering details
Provides selection options to specify what content sources to include and what content to filter from the
log view.

To change what content sources are shown in the table, or to filter what content is shown, expand the
Content and Filtering Details section.

Server instance
Changes the server instance from which log records are retrieved.

A server instance represents a run of a server process. Each time the server is restarted, a new server
instance is created. By default, the log view table shows log records generated in the most recent server
instance. To select a different server start time, choose a server instance with the appropriate start
timestamp. The timestamps shown represent the timestamp of the first record written to each server
instance.

View contents
Controls what content sources are displayed in the log view.

System Out
Specifies that content logged to the System.out output stream is included in the log view.

112 Troubleshooting and support

System Error
Specifies that content logged to the System.err output stream is included in the log view.

Logs and trace
Specifies that log and trace records are included in the log view.

Log and trace entries can be further specified to include a minimum or maximum level. Minimum and
maximum can be specified together, for example to display only a certain level of trace. If log and trace is
not selected neither log nor trace records of any severity might be displayed.

Examples of log and trace filtering:

v Selecting logs and trace and clearing minimum level and maximum level fields results in the log view
displaying records with any log or trace level.

v Selecting logs and trace and setting minimum level to WARNING results in the log view displaying log
records with levels WARNING, FATAL, or SEVERE.

v Selecting logs and trace and setting maximum level to FINE results in the log view displaying trace
records with levels FINE, FINER, or FINEST.

v Selecting logs and trace and setting minimum level to DETAIL and maximum level to AUDIT results in
the log view displaying log records with levels DETAIL, CONFIG, INFO, or AUDIT.

Filtering
Controls which records are included in and excluded from the log view.

For all filters in this section, multiple entries might be specified using a colon (:) as a separator character.
A limited set of regular expression characters can be used. Refer to console documentation for more
details. If multiple filter settings are specified, the filter conditions must all be true for a record to be
displayed in the log view.

Include loggers
Specifies the list of loggers whose records are included in the log view.

Exclude loggers
Specifies the list of loggers whose records are excluded from the log view.

Message contents
Specifies the message content that each record must contain to be included in the log view.

Event timing
Controls what records are displayed in the log view based on a start and end date and time.

From
Specifies the time of day, which the record creation time must be greater than or equal to for the record to
be displayed in the log view.

Time must be specified as HH:mm:ss using the 24-hour clock. If the From value is not specified, a default
value of 00:00:00 is used.

v HH represents the hour of the day. Valid values are from 0 to 23.

v mm represents the minute of the hour. Valid values are from 0 to 59.

v ss represents the seconds of the minute. Valid values are from 0 to 59.

Chapter 5. Using HPEL to troubleshoot applications 113

On (first occurrence)
Specifies the date, which the record creation date must be greater than or equal to for the record to be
displayed in the log view.

Until
Specifies the time of day, which the record creation time must be less than or equal to for the record to be
displayed in the log view.

Time must be specified as HH:mm:ss using the 24-hour clock. If the Until value is not specified, a default
value of 23:59:59 is used.

v HH represents the hour of the day. Valid values are from 0 to 23.

v mm represents the minute of the hour. Valid values are from 0 to 59.

v ss represents the seconds of the minute. Valid values are from 0 to 59.

On (second occurrence)
Specifies the date, which the record creation date must be less than or equal to for the record to be
displayed in the log view.

LogViewer command-line tool
Use the LogViewer command to query the contents of the High Performance Extensible Logging (HPEL)
log and trace repositories. You can also use the LogViewer command to view new log and trace repository
entries as the server writes content to them.

LogViewer

The High Performance Extensible Logging (HPEL) facility writes to the log and trace repositories in a
binary format. You can view, query and filter the repository using the LogViewer command. The LogViewer
command provides options for quickly converting HPEL logs into a text file in various formats, including
basic, advanced, and Common Base Event format. The command also provides options to make getting
the data you need from the logs easier; for example, allowing you to filter what log records you want by
level, logger name, or date and time.

Use the following command to view the full contents of your log and trace repositories:

Optional parameters

-repositoryDir directory_name
Specifies the path to the repository directory. In the case where you want to query both the log and
trace data together, provide the path to the parent directory, which contains both the log data and
tracedata directories. If you use the default repository location, profile_root/logs/application_server/,
and run this tool from the profile bin directory, then this argument is optional. The tool checks the
default location if one is not provided. If multiple application servers exist in this profile with HPEL
repositories, you are prompted to select which server log and trace repository you want to view.

-outLog file_name
Specifies the file name you want the text output written to. If you do not provide this information, the
text output is displayed on the console.

-format basic | advanced | cbe-1.0.1
Specifies the output format. Supported formats include basic, advanced, and the CBE-1.0.1 format. If
you do not provide this information, the output is in basic format.

-monitor [interval]
Specifies that you want the logViewer to continuously monitor the repository and output new log record
entries as they are created. You can provide an optional integer argument after this parameter to

114 Troubleshooting and support

specify how often you want the LogViewer tool to query the repository for new records. By default the
logViewer queries the repository for new records every 5 seconds. When used with other filtering
options, only those new records that match the filter criteria are displayed.

-help
Use this parameter to have the LogViewer tool list the full set of options that are available.

-startDate date_time
You can filter the results that are displayed from the repository by date and time. Use the startDate
parameter to filter out log entries that occurred before the date or date time provided as an argument.
Provide either a date or date and time, entered in the MM/dd/yy format or the MM/dd/yy H:m:s:S
format.

-stopDate date_time
Use this parameter to filter out log entries that occurred after the specified date or date time. Provide
the argument in the same format as the -startDate option.

-level level_name
Specifies that you want the tool to only display those log events which match the level name you
provide as an argument. Valid values for the level name are FINEST, FINER, FINE, DETAIL, CONFIG,
INFO, AUDIT, WARNING, SEVERE, FATAL.

-minLevel level_name
Specifies that you want the tool to only display records which are at or above the specified level. Valid
values for the level name are FINEST, FINER, FINE, DETAIL, CONFIG, INFO, AUDIT, WARNING,
SEVERE, FATAL.

-maxLevel level_name
Specifies that you want the tool to only display records that are at or below the specified level. Valid
values for the level name are FINEST, FINER, FINE, DETAIL, CONFIG, INFO, AUDIT, WARNING,
SEVERE, FATAL.

-includeLoggers logger_names
When this option is used, only log events from the specified loggers are included in the LogViewer
output. Separate multiple entries with a comma. The * symbol can be used as a wild card to include all
loggers below a parent logger. When used in combination with the -excludedLoggers option, the more
specific match determines if the log event is included or excluded.

-excludeLoggers logger_names
Use this option to exclude log events from the specified loggers in the LogViewer output. Separate
multiple entries with a comma. The * symbol can be used as a wildcard to include all loggers below a
parent logger. When used in combination with the -includeLoggers option, the more specific match
determines if the log event is included or excluded.

-thread thread_ID
Use this option to restrict LogViewer output to only those log events from a specific thread. Any log
messages that were not created by the thread ID provided as an argument to this option are not
displayed. Specify the thread ID in hex format.

-extractToNewRepository directory_name
This option redirects log and trace records from a binary repository to a new binary repository at the
location that you specify. You can use this option with other filtering options to get a subset of log and
trace records into the new repository. This option uses the directory path where the new repository
must be written as an argument. Therefore, the directory must be empty. If the directory does not
exist, the directory is created. However, errors that occur during the directory creation might create
extraneous directories.

-listInstances
Use this option to list the IDs of available server process instances that are available to use with the
-instance option. After running LogViewer with the -listInstances option, you can then use the -instance

Chapter 5. Using HPEL to troubleshoot applications 115

option to invoke LogViewer with one of the server process instance IDs as an argument. Since this
option does not process any log or trace records, all other options are ignored when you specify this
option.

-instance instanceId
Use this option to retrieve the log and trace data for a given server process instance by providing the
server instance ID. Run LogViewer, along with the -listInstances option, before you use this option to
obtain a valid instance ID. This option is required when viewing logs and trace from an environment
that contains subprocesses, such as the z/OS operating system.

If this option is combined with -latestInstance, -instance is ignored.

-latestInstance
Use this option to retrieve the log and trace data from the most recent server instance. If this option is
used with the -instance option, the -instance option is ignored.

-message match_string
Use this option to retrieve only log or trace data with a message field that matches the requested text.

Filtering considerations

Be aware of LogViewer filtering optimizations. The LogViewer tool is able to filter log and trace data most
efficiently when used with the following filter options:

v startDate

v stopDate

v thread

v level

v minLevel

v maxLevel

Example usage

See the following examples of LogViewer commands on UNIX-based systems. The examples show how to
run LogViewer from the profile bin directory where the repositoryDir parameter is not required.

v Write all records in the default repository between July 19th, 2009 and August 2nd, 2009 to a file called
/tmp/promo.logs.

logViewer.sh -outLog /tmp/promo.logs -startDate 07/19/2009 -stopDate 08/02/2009

v Display new records whose specified level is WARNING or higher using the advanced format as the
server writes them to the log repository.

logViewer.sh -monitor -minLevel WARNING -format advanced

v Write only those log messages that were written to the error stream of a specific repository to a file
called logged_errors.txt.

logViewer.sh -repositoryDir /apps/server1/logs -includeLoggers SystemErr -outLog logged_errors.txt

v View events from the default repository that occurred before September 14th, 2009 4:28 PM eastern
daylight time.

logViewer.sh -stopDate "09/14/2009 16:28:00:000 EDT"

On z/OS operating systems where multiple processes exist, you must provide the instance ID to identify
which process you want to view logs and trace from. The instance ID of a controller is represented by a
numeric value while the instance ID of a servant is represented by a combination of a numeric value, job
name, job ID, and process ID. To obtain a list of valid instance IDs, run LogViewer with the -listInstances
option.

v Invoke LogViewer with the -listInstances option; for example:

logViewer.sh -listInstances

The following example is a list of instance IDs from one controller and three servants:

116 Troubleshooting and support

Instance ID Start Date
1280334046 5/10/10 18:53:12:770 GMT
1280334046/000001BC00000002_BBOS1S_STC003119 5/10/10 18:53:39:220 GMT
1280334046/000001B400000002_BBOS1S_STC003120 5/10/10 18:54:44:339 GMT
1280334046/000001C000000001_BBOS1S_STC003121 5/10/10 18:55:43:520 GMT

v

Invoke LogViewer with the -instance option using one of the instance IDs from the previous example.
The ID type is a controller; for example:

logViewer.sh -instance 1280334046

v Invoke LogViewer with -instance option for a servant instance; for example:

logViewer.sh -instance 1280334046/000001BC00000002_BBOS1S_STC003119

Developing log and trace reading applications

Determining which of basic mode and HPEL mode is enabled
WebSphere Application Server offers both a High Performance Extensible Logging (HPEL) log and trace
framework, and a basic log and trace framework. There are a number of ways to determine which of the
two frameworks is enabled.

About this task

In many circumstances it might be important to know whether the HPEL or basic log and trace framework
is enabled, for example, when writing a script whose purpose is to read from any log files of the server.

Since the configuration files of a server can differ from the running state of a server (for example when
configuration changes have been made but the server has not been restarted), steps are provided for
determining the log and trace mode in various ways.

Procedure
v Use wsadmin to determine the log and trace mode that a running server uses.

1. Start wsadmin. In this case, wsadmin must be connected to a running server, for example through
the SOAP port. Read about starting the wsadmin scripting client for more information.

2. Determine whether the HPELControlService object is available. If the HPELControlService is present
it can be concluded that the server is running with the HPEL log and trace framework.

Using Jython:
HPELMBean = AdminControl.queryNames(’cell=myCell,node=myNode,
type=HPELControlService,process=myServer,*’)
if (HPELMBean == ’’):

print "HPEL is not enabled"
else:

print "HPEL is enabled"

Table 27. AdminControl command description. The table lists AdminControl command and their description.
Command Description

myNode The host name of the node

myServer The name of the server

v Use wsadmin to determine the log and trace mode that a servers configuration specifies.

1. Start wsadmin. In this case, wsadmin can be connected to a running server or accessing the
configuration data for a stopped server. Read about starting the wsadmin scripting client for more
information.

2. Determine whether the RASLoggingService configuration object is enabled. If the
RASLoggingService config object is enabled then it can be concluded that the server is configured

Chapter 5. Using HPEL to troubleshoot applications 117

to run with the basic log and trace framework. Otherwise, if the HighPerformanceExtensibleLogging
config object is enabled it can be concluded that the server is configured to run with the HPEL log
and trace framework.

Note: If both the RASLoggingService config object and the HighPerformanceExtensibleLogging
config object are enabled it can be concluded that the server is configured to run with the
basic log and trace framework.

Using Jython:
RASLogging = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:myServer/RASLoggingService:/")
basicEnabled = AdminConfig.showAttribute(RASLogging, "enable")
if (basicEnabled == "true"):

print "Basic mode logging in effect"
else:

HPELSvc = AdminConfig.getid("/Cell:myCell/Node:myNode/Server:myServer/HighPerformanceExtensibleLogging:/")
HpelEnabled = AdminConfig.showAttribute(HPELSvc, "enable")
if (HpelEnabled == "true"):

print "HPEL is enabled"
else:

print "No logging is enabled"

Table 28. AdminControl command description. The table lists AdminControl command and their description.
Command Description

myCell The name of the cell

myNode The host name of the node

myServer The name of the server

v Use the administrative console to determine the log and trace mode that a running server uses.

1. Log into the administrative console.

2. Click Troubleshooting > Logs and Trace > myServer (where myServer is the name of the server
you are interested in)

3. Find the Switch to HPEL Mode button. If this button is available, the server is using the basic log
and trace framework. Otherwise, the server is using HPEL.

Results

For any method selected, the result is that you now know whether a server is configured to use the HPEL
or basic mode log and trace framework.

118 Troubleshooting and support

Chapter 6. Using sensitive log and trace guard

You can protect information with the sensitive log and trace guard. The sensitive log and trace guard
prevents loggers from writing sensitive information in your log and trace files.

Sensitive log and trace guard
The sensitive log and trace guard is a feature that helps administrators prevent sensitive information from
being exposed in log and trace files.

The sensitive log and trace guard uses an internal list of allowable levels for sensitive loggers which
specifies the lowest level at which listed loggers can generate log or trace data without containing
potentially sensitive data. You can also add your own loggers to the list that the sensitive log and trace
guard will block.

An example is as follows: If a servlet writes URL request parameters verbatim to logger
com.xyz.SomeLogger at level Level.FINE, and these request parameters could contain information such as
credit card numbers or passwords, then you should add an entry to the sensitive logger list to allow only
levels higher than Level.FINE to be logged - com.xyz.SomeLogger=CONFIG.

When the server initializes the log and trace system, or when you attempt to change the log detail level for
a server, the list of allowable levels for sensitive loggers is compared to the stated log detail level. Any
attempt to enable logging or tracing that is in conflict with entries in the list is overridden. In cases where
the same loggers are specified multiple times in the list the most restrictive entry is used. For example, if
the list of allowable levels for sensitive loggers contains a.b.*=INFO and a.b.*=FINE, then the a.b.* loggers
are restricted to only being able to log at levels INFO and higher. The following table provides examples of
how lists of allowable levels for sensitive loggers modify specified log detail level settings to determine
effective log detail level settings:

Table 29. Restriction list. Examples of how sensitive log and trace guard settings affect log detail level settings
Log detail level setting List of allowable levels for sensitive loggers Resulting effective log detail level setting

a.b.*=SEVERE a.b.*=FINE *=INFO:a.b.*=SEVERE

a.b.*=SEVERE a.b.*=SEVERE *=INFO:a.b.*=SEVERE

a.b.*=FINE a.b.*=FATAL *=INFO:a.b.*=FATAL

a.*=SEVERE a.b.*=FINE *=INFO:a.*=SEVERE

a.*=SEVERE a.b.*=SEVERE *=INFO:a.*=SEVERE

a.*=FINE a.b.*=FATAL *=INFO:a.*=FINE:a.b.*=FATAL

a.b.*=SEVERE a.*=FINE *=INFO:a.b.*=SEVERE

a.b.*=SEVERE a.*=SEVERE *=INFO:a.b.*=SEVERE

a.b.*=FINE a.*=FATAL *=INFO:a.b.*=FATAL

a.b.*=FINE *=SEVERE *=SEVERE:a.b.*=SEVERE

a.b.*=FINE *=FINE *=INFO:a.b.*=FINE

a.b.*=FINE *=FINEST *=INFO:a.b.*=FINE

a.b.*=FINE x.y.z.*=SEVERE *=INFO:a.b.*=FINE:x.y.z.*=SEVERE

a.b.*=FINE x.y.z.*=FINE *=INFO:a.b.*=FINE

a.b.*=FINE x.y.z.*=FINEST *=INFO:a.b.*=FINE

a.b.*=FINE *=WARNING:x.y.z.*=SEVERE *=WARNING:a.b.*=WARNING:x.y.z.*=SEVERE

a.b.*=FINE *=WARNING:*=SEVERE:x.y.z.*=SEVERE *=SEVERE:a.b.*=SEVERE

By using this log and trace guard, you can prevent loggers from logging at levels which might expose
sensitive information.

© Copyright IBM Corp. 2011 119

The product is preconfigured with a known list of loggers to restrict, however you might find that further
restrictions are required. .

Enabling and disabling sensitive log and trace guard
You can either enable or disable the sensitive log and trace guard to help control whether loggers write
sensitive information in your log and trace files.

About this task

Administrators using WebSphere Application Server can prevent sensitive information, such as data
provided from users in HTTP requests, from being written in log and trace files. In some cases, when
having access to private data can help with debugging, you might want to disable sensitive log and trace
guard. For example, you might see that a credit card number that was entered in a web form did not have
the required number of digits.

Sensitive log and trace guard works by preventing administrators from enabling certain loggers to levels at
which they are known to log or trace sensitive information.

Use the administrative console to enable or disable the sensitive log and trace guard.

Procedure
1. Log on to the administrative console.

2. If you are using an administrative agent topology, then select a node that you want to manage, and
navigate to it.

3. From the navigation section in the console, choose Troubleshooting > Logs and trace.

4. Select the server that you want to enable or disable with sensitive log and trace guard.

5. Click Change log detail levels.

6. Select the Disable logging and tracing of potentially sensitive data check box to enable sensitive
log and trace guard. To disable sensitive log and trace guard, clear the Disable logging and tracing
of potentially sensitive data check box.

7. Click OK

8. Save the changes.

Results

After you enable sensitive log and trace guard, the server is now configured to prevent known sensitive
loggers from writing sensitive content to the log and trace files. After you disable sensitive log and trace
guard, the server is now configured to allow known sensitive loggers to write sensitive content to the log
and trace files. If you completed these steps using the deployment manager, you might need to
synchronize the node agent on the target node before restarting the server.

Maintaining sensitive log and trace guard lists
The sensitive log and trace guard relies on lists which declare which loggers can potentially log or trace
sensitive information, and the levels at which the sensitive information would be logged. You can extend
the default list of loggers and their corresponding levels in cases where you find sensitive information in
your log or trace that you want to block from being logged or traced in the future.

Before you begin

Read about log level settings for information about enabling the Sensitive Log and Trace Guard.

120 Troubleshooting and support

About this task

The application server has a private default list of sensitive loggers and their corresponding levels which it
will block whenever the sensitive log and trace guard feature is enabled. The application server also
provides a sensitive log and trace guard property file, and a sensitive log and trace guard API that you can
use to declare new logger restrictions if you discover other loggers which log or trace sensitive information.

Note: If you attempt to add loggers to the sensitive log and trace guard list that have already been
declared, the sensitive log and trace guard will use the more restrictive logger setting of the already
declared and newly specified levels. For example, if the server is already configured to only allow
logger com.xyz.SomeLogger to log at level FINE, and you attempt to declare that the same logger
should only be allowed to log at level FINEST, the server will ignore the update, but if you attempt
to declare that the same logger should only be allowed to log at level INFO, then the server will
reconfigure the sensitive log and trace guard to use level INFO for that logger.

Procedure
v You can use a properties file to declare new logger restrictions. This file is in the cell-scoped

configuration for each profile. The name is:

<profileHome>/config/cells/<cellname>/ras.rawtracelist.properties

This file contains documentation and syntax samples, but contains no actual entries. If you edit this file
on the deployment manager the file is automatically synchronized with all nodes in the cell. If you edit
this file on a specific node, it will be replaced the next time the file is synchronized with the deployment
manager. Thus, it is best to maintain the list at the deployment manager.

v You can use the com.ibm.websphere.logging.RawTraceList API to declare new logger restrictions This
API allows you to add individual entries or an array of entries (using the PatternLevel object in the same
package). It also allows passing in an input stream in the same format as the properties file.

Chapter 6. Using sensitive log and trace guard 121

122 Troubleshooting and support

Chapter 7. Diagnosing problems (using diagnosis tools)

Various diagnosis tools are provided to help you determine the source and impact of problems occurring in
your application serving environment.

About this task

The purpose of this section is to aid you in understanding why your enterprise application, application
server, or WebSphere Application Server is not working and to help you resolve the problem. Unlike
performance tuning, which focuses on solving problems associated with slow processes and non-optimized
performance, problem determination focuses on finding solutions to functional problems.

Procedure
1. If deploying or running an application results in exceptions such as ClassNotFoundException, use the

Class Loader Viewer to diagnose problems with class loaders.

2. If you already have an error message and want to quickly look up its explanation and recommended
response, look up the message by expanding the Messages section of the Information Center under
Reference > Messages.

3. For help in knowing where to find error and warning messages, interpreting messages, and
configuring log files, see Working with message logs.

4. Difficult problems can require the use of tracing, which exposes the low-level flow of control and
interactions between components. For help in understanding and using traces, see Working with
trace.

5. For help in viewing diagnostic information like dumps, error logs and CTRACE information, see
Viewing diagnostic information

6. To learn how to work with Diagnostic Providers, see Working with Diagnostic Providers..

7. To find out how to look up documented problems, common mistakes, WebSphere Application Server
prerequisites, and other problem-determination information on the WebSphere Application Server
public website, or to obtain technical support from IBM, see Obtaining help from IBM.

8. The IBM developer kits: Diagnosis documentation describes debugging techniques and the diagnostic
tools that are available to help you solve problems with Java. It also gives guidance on how to submit
problems to IBM. You can find the guide at http://www.ibm.com/developerworks/java/jdk/diagnosis/.

9. For current information available from IBM Support on known problems and their resolution, see the
WebSphere Application Server Product support page. For last minute updates, limitations, and known
problems, refer to the Release notes section.

10. IBM Support has documents that can save you time gathering information needed to resolve this
problem. Before opening a PMR, see the Must gather documents page for information to gather to
send to IBM Support.

© Copyright IBM Corp. 2011 123

http://www.ibm.com/developerworks/java/jdk/diagnosis/
http://www.ibm.com/developerworks/java/jdk/diagnosis/
http://www.ibm.com/software/webservers/appserv/was/support/
http://www.ibm.com/support/search.wss?rs=180&q=mustgather

124 Troubleshooting and support

Chapter 8. Diagnosing problems with message logs

WebSphere Application Server can write system messages to several general purpose logs, including
JVM, process, and IBM service logs, which can be examined for problem determination.

Before you begin

The JVM logs are created by redirecting the System.out and System.err streams of the JVM to
independent log files. WebSphere Application Server writes formatted messages to the System.out stream.
In addition, applications and other code can write to these streams using the print() and println()
methods defined by the streams. Some Developer Kit built-ins such as the printStackTrace() method on
the Throwable class can also write to these streams. Typically, the System.out log is used to monitor the
health of the running application server. The System.out log and System.err log can be used for problem
determination. The System.err log contains exception stack trace information that is useful when
performing problem analysis.

Because each application server represents a JVM, there is one set of JVM logs for each application
server and all of its applications located by default in the following directory:

v install_root/profiles/profile_name/logs/server_name

In the case of a WebSphere Application Server, Network Deployment configuration, JVM logs are also
created for the deployment manager and each administrative agent because they also represent JVMs.

There is one set of STDOUT and STDERR log streams for each application server and all of its applications.
JVM logs are also created for the deployment manager and each administrative agent because they also
represent JVMs.

The process logs are created by redirecting the STDOUT and STDERR streams of the process to independent
log files. Native code, including the Java virtual machine (JVM) itself, writes to these files. As a general
rule, WebSphere Application Server does not write to these files. However, these logs can contain
information relating to problems in native code or diagnostic information written by the JVM.

As with JVM logs, there is a set of process logs for each application server, since each JVM is an
operating system process. For WebSphere Application Server, Network Deployment configuration, a set of
process logs is created for the deployment manager and each administrative agent.

The IBM service log contains both the WebSphere Application Server messages that are written to the
System.out stream and some special messages that contain extended service information that is normally
not of interest, but can be important when analyzing problems. There is one service log for all WebSphere
Application Server JVMs on a node, including all application servers. The IBM Service log is maintained in
a binary format and requires a special tool to view. This viewer, the Log and Trace Analyzer, provides
additional diagnostic capabilities. In addition, the binary format provides capabilities that are utilized by IBM
support organizations.

In addition to these general purpose logs, WebSphere Application Server contains other specialized logs
that are specific to a particular component or activity. For example, the HTTP server plug-in maintains a
special log. Normally, these logs are not of interest, but you might be instructed to examine one or more of
these logs while performing specific problem determination procedures. For details on how and when to
view the plug-in log, see the Accessing a web resource through the application server and bypassing the
HTTP server subsection of the A web resource does not display topic.

Note: The System.out and STDOUT streams are redirected to the SYSPRINT ddname under z/OS. The
System.err and STDERR streams are redirected to the SYSOUT ddname under z/OS. By default, the
WebSphere Application Server for z/OS cataloged procedures associate these ddnames with print

© Copyright IBM Corp. 2011 125

(SYSOUT=*) data sets, causing message logs to go into WebSphere Application Server job output.
Job output can be viewed with the Spool Display and Search Facility (SDSF) or equivalent
software.

About this task

Sometimes server and application problems can be diagnosed by examining log output from the
WebSphere Application Server.

Procedure

Determine which type of logs you would like to implement:

v JVM logs

v IBM service logs

Example

How to direct SYSPRINT and SYSOUT output to an HFS file.

If you are familiar with UNIX or Windows environments, you might be reluctant to use the facilities of
SDSF (or IOF) to view the SYSPRINT and SYSOUT output from servants. If you would rather use a
familiar editor (such as vi) in a Telnet session to view your output, it is possible to redirect the SYSPRINT
and SYSOUT outputs to files in an HFS.

The JCL example below shows how to modify the SYSPRINT DD card in your startup procedure to
redirect the output to an HFS file. The old SYSPRINT DD card has been commented out by preceding it
with /*, and a new SYSPRINT DD card points to a file in the "/myDir/myServer" directory, in this case
named was.log.d&LYYMMDD..t&LHHMMSS.log. The extra period between the date and time variables is not a
typographical error, but rather an instance of JCL syntax that is necessary to terminate the first variable.
&LYYMMDD will be replaced with the local date in YYMMDD format and &LHHMMSS will be replaced by
the local time in HHMMSS format. The PATHMODE subparameter sets the file mode to 775 and the
PATHOPTS subparameter OWRONLY opens the file for WRITE access. The sub-parameter OCREAT
indicates that if the file does not already exist, create it.

You can modify the SYSPRINT DD card in either your Servant or Controller startup procedure. In addition,
the SYSOUT DD card can be modified in the same way to redirect the SYSOUT output.
//*YSPRINT DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE
//SYSPRINT DD PATHMODE=(SIRWXU,SIRWXG,SIROTH),
// PATHOPTS=(OWRONLY,OCREAT),
// PATH=’/myDir/myServer/was.log.d&LYYMMDD..t&LHHMMSS’

Note: If you try to direct the output for multiple streams to the same file, such as setting both DEFALTDD
and HRDCPYDD variables, the allocation for the HRDCPYDD file fails and output is sent to the
default location (JOBLOG/SYSLOG).

Viewing JVM logs
The Java virtual machine (JVM) logs are written as plain text files.

About this task

The SystemOut.log and SystemErr.log JVM logs are located in the job logs of the application server.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,

126 Troubleshooting and support

SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

JVM log interpretation
View the JVM log files to determine problems within application environments.

The JVM logs contain print data written by applications. The application can write this data directly in the
form of System.out.print(), System.err.print(), or other method calls. The application can also write
data indirectly by calling a JVM function, such as an Exception.printStackTrace(). In addition, the
System.out JVM log contains system messages written by the WebSphere Application Server.

If you allow the application server to format the application data, it is printed in the normal z/OS trace
format. If you do not allow the application server to format the application data, the raw text is printed,
which is much harder to analyze.

Format of an error log entry
1| 2005/03/02 17:31:17.641 01 t=8FB718 c=UNK key=S2 (13007002)
2| ThreadId: 0000004e
3| FunctionName: com.ibm.ws.sm.workspace.impl.WorkSpaceManagerImpl
4| SourceId: com.ibm.ws.sm.workspace.impl.WorkSpaceManagerImpl
5| Category: AUDIT
6| ExtendedMessage: BBOO0222I: WKSP0023I: Workspace configuration consistency check is disabled.

Table 30. Parts of a log stream record. The following table explains the error log entry previously mentioned.
Line number Component Description

1 2005/03/02 17:31:17.641 01 Date / timestamp / 2-digit record version
number

1 t=8FB718 MVS TCB (thread) Address

1 c=UNK Request correlation information

1 key=S2 State/Key (S=Supervisor,P=Problem)

1 (13007002) Trace Point Identifier

2 ThreadId: 0000004e Thread Identifier (TID)

3 FunctionName:
com.ibm.ws.sm.workspace.impl.WorkSpaceManagerImpl

Function name

4 SourceId:
com.ibm.ws.sm.workspace.impl.WorkSpaceManagerImpl

Source Identifier

5 Category: AUDIT Category

6, 7 ExtendedMessage: ... Log message

Monitoring application logging using JMX notifications
Java developers can create programs to monitor application server logs using JMX notifications.

About this task

The most common log message listeners are written in Java, and connect to the deployment manager or
an application server using SOAP. Use this topic to build a Java client that listens for log events.

Note: Be careful when adding listeners to servers with high logging volume as JMX notifications can slow
down your server.

Chapter 8. Diagnosing problems with message logs 127

Procedure
1. Import the necessary packages. You will typically need the following import statements at the beginning

of your Java program:
import javax.management.Notification;
import javax.management.NotificationListener;
import javax.management.ObjectName;
import javax.management.InstanceNotFoundException;
import javax.management.MalformedObjectNameException;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.exception.ConnectorException;

Additionally, to handle the messages, and the types returned from the calls in subsequent steps you
will need the following import statements.
import java.util.Iterator;
import java.util.Properties;
import java.util.Set;
import com.ibm.websphere.ras.RasMessage;

2. Create a Java class that implements the NotificationListener interface.

3. Implement the handleNotification method. The following example is a sample that writes the message
text to the Java console:
public void handleNotification(Notification notification, Object handback) {

RasMessage rasMessage = (RasMessage)notification.getUserData() ;
System.out.println("Localized message: " + rasMessage.getLocalizedMessage(null));

}

4. Connect to the SOAP port of the server whose JMX MBeans you want to monitor. The following code
creates a SOAP-connected AdminClient object with a specified host and a specified port:

AdminClient adminClient = null ;
String hostName = "someHostName";
String soapPort = "8880";

Properties connectProps = new Properties();
connectProps.setProperty(AdminClient.CONNECTOR_TYPE, "SOAP");
connectProps.setProperty(AdminClient.CONNECTOR_HOST, hostName);
connectProps.setProperty(AdminClient.CONNECTOR_PORT, soapPort);

try {
adminClient = AdminClientFactory.createAdminClient(connectProps);

} catch (ConnectorException e) {
// error handling code

}

5. Retrieve the MBean object name for the RasLoggingService MBean. The following code retrieves the
RasLoggingService MBean object name:

String queryString = "WebSphere:cell="+cellName+",node="+nodeName+",process="+serverName+",
type=RasLoggingService,*" ;

Set<ObjectName> objectMBeans = null;
try {

ObjectName queryName = new ObjectName(queryString);
objectMBeans = (Set<ObjectName>)adminClient.queryNames(queryName, null);
if (objectMBeans.size() > 1) {

// error handling code to deal with the case where we get more than one name returned.
}

} catch (MalformedObjectNameException e) {
// error handling code

} catch (ConnectorException e) {
// error handling code

}

if (objectMBeans.isEmpty()) {
// error handling code to deal with the case where the MBean is not found

}

128 Troubleshooting and support

Iterator<ObjectName> objectNames = objectMBeans.iterator() ;
ObjectName objectName = objectNames.next() ;

6. Add the notification listener. This sample code adds a notification listener, waits for 60 seconds while it
processes notifications, then removes the notification listener. A listener can stay connected as long as
needed.

try {
adminClient.addNotificationListener(objectName, this, null, null);
Thread.sleep(60 * 1000) ;
adminClient.removeNotificationListener(objectName, this) ;

} catch (InstanceNotFoundException e) {
// error handling code

} catch (ConnectorException e) {
// error handling code

} catch (Exception e) {
// error handling code

}

7. Add the necessary jar to your classpath. Add the admin client jar file to your classpath to be able to
compile and run your code. The admin client jar file is in the <install_root>/runtimes directory.

Results

You have created a Java program that can listen to, and take actions as a result of log event notifications
from an application server.

Setting up the error log
WebSphere Application Server for z/OS uses an error log to record error information when an unexpected
condition or failure is detected within the product's own code. You can use the log stream to record activity
and help diagnose problems.

About this task

Unexpected conditions or failures include:

v Assertion failures

v Unrecoverable error conditions

v Failures related to vital resources, such as memory

v Operating system exceptions

v Programming defects in WebSphere Application Server for z/OS code.

Procedure
v Because WebSphere Application Server for z/OS is predefined as a z/OS system logger application,

you can use a log stream as the product's error log. By doing so, you can direct error information to a
coupling facility log stream, which provides sysplex-wide error logging, or to a DASD-only log stream,
which provides single system-only error logging.

v You can set up a common log stream for all WebSphere Application Server for z/OS servers, or
individual log streams for each application server. Local z/OS client ORBs can also log data in log
streams. The system logger APIs are unauthorized, but log stream resources can be protected using
security products such as RACF®.

v You can use the WebSphere variable ras_time_local to control whether timestamps in the error log
appear in local time (ras_time_local=1) or Greenwich Mean Time (GMT)(ras_time_local=0), which is
the default.

v For additional information about z/OS log stream requirements, access the z/OS MVS Setting up a
Sysplex, SA22-7625 available on the z/OS Library web page

Chapter 8. Diagnosing problems with message logs 129

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Viewing the service log
Service logs are logs written in a binary format. You cannot view a service log directly using a text editor.
You should never directly edit the service log, as doing so will corrupt the log.

Before you begin

You can view a service log using the Showlog tool to convert the contents of the service log to a text
format that you can then write to a file or dump to the command shell window.

About this task

Run the showlog script to view the contents of the service log as described in the following procedure.

Procedure
1. Open a shell window on the machine where the service log resides.

2. Change the directory to app_server_root/bin where app_server_root is the fully qualified path where
the WebSphere Application Server product is installed.

3. Run the showlog script.

Use the following format:
showlog.sh {-start startDateTime [-end endDateTime] | -interval interval}
[-format CBE-XML-1.0.1] [-encoding encoding] logStreamName
[outputFilename]

where:

-start Specifies the start date and time, in yyyy-MM-ddTHH:mm:ss.SSSZ format. Milliseconds and
time zone are optional.

-end Specifies the end date and time, in yyyy-MM-ddTHH:mm:ss.SSSZ format. Milliseconds and
time zone are optional.

-interval
Specifies the start date as the system date and time minus interval milliseconds, and end date
as the system date and time. Valid values are integers greater than 0.

-format
Specifies the output format. Currently only CBE-XML-1.0.1 format is supported (this complies
with the Common Base Event specification version 1.0.1). If no format is given, showlog
outputs in a tabular format.

-encoding
Specifies the output file encoding, a character encoding supported by the local Java Virtual
Machine .

logStreamName
Is a log file name.

outputFilename
Is optional. If no file name is given, the showlog script creates a default showlog.out filename,
outputFilename is created in the current directory unless it is a fully qualified file name.

The formatted contents of the service log are always written to a file. There are parameters to
showlog.sh which control content and encoding of the output. Enter showlog.sh without parameters for
parameter usage information.

The showlog script can return informational messages containing service names, return codes, and
reason codes. For more information about using the z/OS log stream, or to look up service names,
return codes, and reason codes, refer to z/OS MVS Authorized Assembler Services Reference
ENF-IXG(SA22-7610). Return and reason codes are listed for each service.

130 Troubleshooting and support

Refer to the topic "Authorization for System Logger Application Programs" in z/OS MVS Assembler
Services Guide (SA22-7605) for advice on permitting access to the log stream.

4. Run the following showlog script with no parameters to display usage instructions.

showlog.sh

5. Format and write the service log contents to a file.
showlog service_log_filename output_filename

If the service log is not in the default location, you must fully qualify the service_log_filename

Example

Here are examples of showlog scripts on z/OS systems

v To write all records from the WAS.ERROR.LOG file since July 14, 2004 in log analyzer format into the
myoutput.log file, use the following format:
showlog.sh -start 2004-07-14T00:00:00 WAS.ERROR.LOG myoutput.log

v To write all records from WAS.ERROR.LOG file since July 14, 2004 in Common Base Event XML 1.0.1
format into myoutput.log file, use the following format:
showlog.sh -start 2004-07-14T00:00:00 -format CBE-XML-1.0.1
WAS.ERROR.LOG myoutput.log

v To write all records from WAS.ERROR.LOG file between July 14, 2004 and April 9, 2005 in Common Base
Event XML 1.0.1 format into myoutput.log file, use the following format:
showlog.sh -start 2004-07-14T00:00:00 -end 2005-04-09T00:00:00
-format CBE-XML-1.0.1 WAS.ERROR.LOG myoutput.log

v To write all records from WAS.ERROR.LOG file since December 6, 2004 at 9pm Eastern standard time into
myoutput.log file (the default output file), use the following format:
showlog.sh -start 2004-12-06T21:00:00EST WAS.ERROR.LOG

Generating messages in Common Base Event format
Use the administrative console to enable writing of the logstream in Common Base Event format.

About this task

The z/OS logs can be stored in Common Base Event format. This enables the Showlog tool to read the
data in the logstream. In turn, the showlog output can be read by the log and trace analyzer (included as
part of the Application Server Toolkit).

Procedure
1. Click Application servers > server1 > Process Definition > Control > Java Virtual Machine >

Custom Properties

2. Add a new custom property with name="com.ibm.ws.logging.zOS.errorLog.format" and value
"CBE-XML-1.0.1"

3. Restart your application server for this setting to take effect.

Results

When this property is set to CBE-XML-1.0.1, the messages written to the error logstream are in binary
Common Base Event format. You can then use the showlog script to view the binary Common Base Event
records in the logstream.

Note:

Chapter 8. Diagnosing problems with message logs 131

If you enable writing of the logstream in Common Base Event format, the error log is no longer
viewable with the log browse utility. This action changes the format used to write to the logstream
so that only the showlog tool can read it.

Logstream size considerations
You might need to modify the size of the logstream record size if the application server is attempting to
write messages that are too large. If a message is too large, you will receive an error message that will be
written to the job log.

If the logstream record size is too small for a message being written to it, you see a message similar to
the following written to your job log:
TRAS0024I: Log entry is of size 5012 bytes which is too large to be added to
log stream which is configured for 4096 byte records. Log entry will not be
logged to the log stream.

The original message is also written to the job log and can be viewed there.

To resolve this issue and ensure your messages fit into your logstream, change the MAXBUFSIZE of the
error log logstream. The following code shows an example where the sample BBOERRLG job generated
by the Profile Management Tool or the zpmt command is modified to set the MAXBUFSIZE to 8192:
//BBOERRLG JOB (ACCTNO,ROOM),’USER10’,CLASS=A,REGION=0M
//*
//*
//*
//BBORCLGS EXEC PGM=IXCMIAPU
//STDOUT DD STDERR=*
//SYSIN DD *

DATA TYPE(LOGR)
DEFINE LOGSTREAM NAME(WAS.TY5.ERROR.LOG)

DASDONLY(YES)
HLQ(LOGGER)
LS_SIZE(500)
STG_SIZE(500)
MAXBUFSIZE(8192)
AUTODELETE(YES)
RETPD(1)
LS_DATACLAS(STANDARD)

132 Troubleshooting and support

Chapter 9. Working with trace

Use trace to obtain detailed information about running the WebSphere Application Server components,
including application servers, clients, and other processes in the environment.

About this task

Trace files show the time and sequence of methods called by WebSphere Application Server base
classes, and you can use these files to pinpoint the failure. Collecting a trace is often requested by IBM
technical support personnel. If you are not familiar with the internal structure of WebSphere Application
Server, the trace output might not be meaningful to you.

You can configure trace settings with the administrative console, or you can configure tracing from the
MVS console using the modify command.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Procedure
1. Configure an output destination to which trace data is sent.

2. Enable trace for the appropriate WebSphere Application Server or application components.

3. Run the application or operation to generate the trace data.

4. Analyze the trace data or forward it to the appropriate organization for analysis.

Results

For current information available from IBM Support on known problems and their resolution, see the IBM
Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the IBM Support page.

Enabling trace on client and stand-alone applications
When stand-alone client applications (such as Java applications which access enterprise beans hosted in
WebSphere Application Server) have problems interacting with WebSphere Application Server, it might be
useful to enable tracing for the application. Enabling trace for client programs will cause the WebSphere
Application Server classes used by those applications, such as naming-service client classes, to generate
trace information.

About this task

A common troubleshooting technique is to enable tracing on both the application server and client
applications, and match records according to timestamp to try to understand where a problem is occurring.

You can also configure tracing from the MVS console using the modify command.

© Copyright IBM Corp. 2011 133

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCN
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCN
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPEP

Procedure
1. To enable trace for the WebSphere Application Server classes in a client application, add the system

properties shown in the following example to the startup script or command of the client application.
The location of the output and the classes and detail included in the trace follow the same rules as for
adding trace to WebSphere Application Servers. For example, trace the stand-alone client application
program named com.ibm.sample.MyClientProgram, enter the following command:
java -DtraceSettingsFile=MyTraceSettings.properties
-Djava.util.logging.manager=com.ibm.ws.bootstrap.WsLogManager
-Djava.util.logging.configureByServer=true com.ibm.samples.MyClientProgram

The file identified by file name must be a properties file placed in the class path of the application
client or stand-alone process. You must create a trace properties file by copying the
%install_root\properties\TraceSettings.properties file to the same directory as your client
application Java archive (JAR) file.

You cannot use the -DtraceSettingsFile=TraceSettings.properties property to enable tracing of the
ORB component for thin clients. ORB tracing output for thin clients can be directed by setting
com.ibm.CORBA.Debug.Output = debugOutputFilename parameter in the command line.

The java.util.logging.manager and java.util.logging.configureByServer system properties configure Java
logging to use a WebSphere Application Server-specific LogManager class and to use the
configuration from the file specified by the traceSettingsFile property. The default Java Logging
properties file, located in the Java SE Runtime Environment 6 (JRE6), will not be applied.

2. You can also specify a trace string for writing messages with the Trace String property, Specify a
startup trace specification similar to that available on the server. For your convenience, you can enter
multiple individual trace strings into the trace settings file, one trace string per line.

Results

Here are the results of using each optional property setting:
v Specify a valid setting for the traceFileName property without a trace string to write messages to the

specified file or System.out only.
v Specify a trace string without a traceFileName property value to generate no output.
v Specify both a valid traceFileName property and a trace string to write both message and trace entries

to the location specified in the traceFileName property.

Tracing and logging configuration
Configure tracing and logging settings to help diagnose problems or evaluate system performance.

You can configure the application server to start in a trace-enabled state by setting the appropriate
configuration properties. You can only enable trace for an application client or stand-alone process at
process startup.

You can also configure tracing from the MVS console using the modify command.

In WebSphere Application Server, V6 and later, a logging infrastructure, extending Java Logging, is used.
This results in the following changes to the configuration of the logging infrastructure in WebSphere
Application Server:

v Loggers defined in Java logging are equivalent to, and configured in the same way as, trace
components introduced in previous versions of WebSphere Application Server. Both are referred to as
"components."

v Both Java logging levels and WebSphere Application Server levels can be used. The following is a
complete list of valid levels, ordered in ascending order of severity:

Trace option Output file

all trace.log

134 Troubleshooting and support

Trace option Output file

finest or debug trace.log

finer or entryExit trace.log

fine or event trace.log

detail SystemOut.log

config trace.log and SystemOut.log (If tracing is not enabled, the
output file is SystemOut.log)

info trace.log and SystemOut.log (If tracing is not enabled, the
output file is SystemOut.log)

audit trace.log and SystemOut.log (If tracing is not enabled, the
output file is SystemOut.log)

warning trace.log and SystemOut.log (If tracing is not enabled, the
output file is SystemOut.log)

severe or error trace.log and SystemOut.log (If tracing is not enabled, the
output file is SystemOut.log)

fatal trace.log and SystemOut.log (If tracing is not enabled, the
output file is SystemOut.log)

off trace.log and SystemOut.log (If tracing is not enabled, the
output file is SystemOut.log)

v Setting the logging and tracing level for a component to all will enable all the logging for that
component. Setting the logging and tracing level for a component to off will disable all the logging for
that component.

v You can only configure a component to one level. However, configuring a component to a certain level
enables it to perform logging on the configured level and any higher severity level.

v Several levels have equivalent names: finest is equivalent to debug; finer is equivalent to entryExit; fine
is equivalent to event; severe is equivalent to error.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Java Logging does not distinguish between tracing and message logging. However, previous versions of
WebSphere Application Server have made a clear distinction between those kind of messages. In
WebSphere Application Server, V6 and later, the differences between tracing and message logging are as
follows:

v Tracing messages are messages with lower severity (for example, tracing messages are logged on
levels fine, finer, finest, debug, entryExit, or event).

v Tracing messages are generally not localized.

v When tracing is enabled, a much higher volume of messages will be produced, and the trace output will
be in the trace file, not the SystemOut/Err log files. The trace file will only appear if tracing is enabled.

v Tracing messages provide information for problem determination.

Chapter 9. Working with trace 135

Trace and logging strings

In WebSphere Application Server, V5.1.1 and earlier, trace strings were used for configuring tracing only.
Starting in WebSphere Application Server, Version 6 and later, the "trace string" becomes a "logging
string"; it is used to configure both tracing and message logging.

In WebSphere Application Server, V5.1.1 and earlier, the trace service for all WebSphere Application
Server components is disabled by default. To request a change to the current state of the trace service, a
trace string is passed to the trace service. This trace string encodes the information detailing which level of
trace to enable or disable and for which components.

In all versions of WebSphere Application Server, the tracing for all components is disabled by default. To
change to the current state of the tracing and message logging, a logging string must be constructed and
passed to the server. This logging string specifies what level of trace or logging to enable or disable for
specific components.

You can type in trace strings (or logging strings), or construct them using the administrative console. Trace
and logging strings must conform to a specific grammar.

For WebSphere Application Server, V5.1.1 and earlier, the specification of this grammar is as follows:
TRACESTRING=COMPONENT_TRACE_STRING[:COMPONENT_TRACE_STRING]*

COMPONENT_TRACE_STRING=COMPONENT_NAME=LEVEL=STATE[,LEVEL=STATE]*

LEVEL = all | entryExit | debug | event

STATE = enabled | disabled

COMPONENT_NAME = COMPONENT | GROUP

For WebSphere Application Server, V6 and later, the previous grammar is supported. However a new
grammar has been added to better represent the underlying infrastructure:
LOGGINGSTRING=COMPONENT_LOGGING_STRING[:COMPONENT_LOGGING_STRING]*

COMPONENT_TRACE_STRING=COMPONENT_NAME=LEVEL

LEVEL = all | (finest | debug) | (finer | entryExit) | (fine | event)
| detail | config | info | audit | warning | (severe | error) | fatal | off

COMPONENT_NAME = COMPONENT | GROUP

The COMPONENT_NAME is the name of a component or group registered with the trace service logging
infrastructure. Typically, WebSphere Application Server components register using a fully qualified Java
class name, for example com.ibm.servlet.engine.ServletEngine. In addition, you can use a wildcard
character of asterisk (*) to terminate a component name and indicate multiple classes or packages. For
example, use a component name of com.ibm.servlet.* to specify all components whose names begin with
com.ibm.servlet. Use a wildcard character of asterisk (*) at the end of the component or group name to
make the logging string applicable to all components or groups whose names start with specified string.
For example, a logging string specifying "com.ibm.servlet.*" as a component name will be applied to all
components whose names begin with com.ibm.servlet. When an asterisk (*) is used by itself in place of
the component name, the level the string specifies, will be applied to all components.

The following are examples of using an asterisk (*) in logging strings. Note that the asterisk (*) in the
logging string does not need to have a period (.) in front of it. The period (.) can be used anywhere in the
logging string.

v com.ibm.ejs.ras.*=all - enables tracing for all loggers with names starting with "com.ibm.ejs.ras.". If
there is a logger named "com.ibm.ejs.ras" it will not have trace enabled.

136 Troubleshooting and support

v com.ibm.ejs.ras*=all - enables tracing for all loggers with names starting with "com.ibm.ejs.ras", such
as com.ibm.ejs.ras, com.ibm.ejs.raslogger, com.ibm.ejs.ras.ManagerAdmin

Note:

v In WebSphere Application Server, V5.1.1 and earlier, you could set the level to "all=disabled" to
disable tracing. This syntax, beginning with Version 6.0, will result in LEVEL=info; tracing will be
disabled, but logging will be enabled.

v In WebSphere Application Server, V6 and later, "info" is the default level. If the specified
component is not present (*=xxx is not found), *=info is always implied. Any component that is
not matched by the trace string will have its level set to info.

v If the logging string does not start with a component logging string specifying a level for all
components, using the "*" in place of component name, one will be added, setting the default
level for all components.

v STATE = enabled | disabled is not needed in Version 6 and later. However, if used, it has the
following effect:

– "enabled" sets the logging for the component specified to the level specified

– "disabled" sets the logging for the component specified to one level above the level specified.

Table 31. Logging string and resulting logging level. The following examples illustrate the effect that disabling has on
the logging level:

Logging string Resulting logging level Notes®

com.ibm.ejs.ras=debug=disabled com.ibm.ejs.ras=finer debug (version 5) = finest (version 6)

com.ibm.ejs.ras=all=disabled com.ibm.ejs.ras=info "all=disabled" will disable tracing;
logging is still enabled.

com.ibm.ejs.ras=fatal=disabled com.ibm.ejs.ras=off

com.ibm.ejs.ras=off=disabled com.ibm.ejs.ras=off off is the highest severity

Proceed from broad to specific trace specifications in the trace string

best-practices: Start the trace string from the most broad component groups and then select more
specific traces. The advantage to this approach is that the trace settings for classes or
packages that are contained in a larger group are specified correctly by including them
later in the trace string.

The logging string is processed from left to right. During the processing, part of the logging string might be
modified or removed if the levels they configure are overridden by another part of the logging string.

Groups that contain packages that disable traces disable any packages that are enabled previously on the
same line. For example:
=off : MyGroup1=info : MyGroup2=finest : com.mycompany.mypackage.=info : com.mycompany.mypackage.MyClass=finest

This trace string indicates that the only tracing should come from the MyGroup1 group, the MyGroup2
group, and the com.mycompany.mypackage.* package with more specific tracing for MyClass class. If you
reverse this string, all tracing is disabled.

Examples

Table 32. Version 5 and Version 6 strings. Examples of legal trace strings include:

Version 5 syntax Version 6 syntax

com.ibm.ejs.ras.ManagerAdmin=debug=enabled com.ibm.ejs.ras.ManagerAdmin=finest

com.ibm.ejs.ras.ManagerAdmin=all=enabled,event=disabled com.ibm.ejs.ras.ManagerAdmin=detail

Chapter 9. Working with trace 137

Table 32. Version 5 and Version 6 strings (continued). Examples of legal trace strings include:

Version 5 syntax Version 6 syntax

com.ibm.ejs.ras.*=all=enabled com.ibm.ejs.ras.*=all

com.ibm.ejs.ras.*=all=enabled:com.ibm.ws.ras=debug=
enabled,entryexit=enabled

com.ibm.ejs.ras.*=all:com.ibm.ws.ras=finer

Enabling trace at server startup
Use the administrative console to enable tracing at a server's startup. You can use trace to assist you in
monitoring system performance and diagnosing problems.

About this task

The diagnostic trace configuration settings for a server process determines the initial trace state for a
server process. The configuration settings are read at server startup and used to configure the trace
service. You can also change many of the trace service properties or settings while the server process is
running.

You can also configure tracing from the MVS console using the modify command.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Procedure
1. Start the administrative console.

2. Click Servers > Application Servers > server_name > Troubleshooting > Diagnostic Trace
Service.

3. Click Configuration.

4. Select whether to direct trace output to either a file or an in-memory circular buffer.

Note: Different components can produce different amounts of trace output per entry. Naming and
security tracing, for example, produces a much higher trace output than web container tracing.
Consider the type of data being collected when you configure your memory allocation and
output settings.

5. If the in-memory circular buffer is selected for the trace output set the size of the buffer, specified in
thousands of entries. This is the maximum number of entries that will be retained in the buffer at any
given time.

6. If a file is selected for trace output, set the maximum size in megabytes to which the file should be
allowed to grow. When the file reaches this size, the existing file will be closed, renamed, and a new
file with the original name reopened. The new name of the file will be based upon the original name
with a timestamp qualifier added to the name. In addition, specify the number of history files to keep.

7. Select the desired format for the generated trace.

8. Save the changed configuration.

9. To enter a trace string to set the trace specification to the desired state:

a. Click Troubleshooting > Logs and trace in the console navigation tree.

b. Select a server name.

138 Troubleshooting and support

c. Click Change Log Level Details.

d. If All Components has been enabled, you might want to turn it off, and then enable specific
components.

e. Click a component or group name. For more information see the page on log level settings. If the
selected server is not running, you will not be able to see individual component in graphic mode.

f. Enter a trace string in the trace string box.

g. Select Apply, then OK.

10. Allow enough time for the nodes to synchronize, and then start the server.

Enabling trace on a running server
Use the administrative console to enable tracing on a running server. You can use trace to assist you in
monitoring system performance and diagnosing problems.

About this task

You can modify the trace service state that determines which components are being actively traced for a
running server by using the following procedure.

You can also configure tracing from the MVS console using the modify command.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Procedure
1. Start the administrative console.

2. Click Servers > Application Servers > server_name > Troubleshooting > Diagnostic Trace
Service.

3. Select the Runtime tab.

4. Select the Save runtime changes to configuration as well check box if you want to write your
changes back to the server configuration.

5. Change the existing trace state by changing the trace specification to the desired state.

6. Configure the trace output if a change from the existing one is desired.

7. Click Apply.

Diagnostic trace service settings
Use this page to configure diagnostic trace service settings.

Note: You can only access this page when the server is configured to use basic log and trace mode.

To view this page, click the following path:

v Servers > Application Servers > server_name > Troubleshooting > Diagnostic Trace Service

Note: You can also configure tracing from the MVS console using the modify command.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance

Chapter 9. Working with trace 139

Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Trace Output
Specifies where trace output should be written. The trace output can be written directly to an output file, or
stored in memory and written to a file on demand using the Dump button found on the run-time page.

Different components can produce different amounts of trace output per entry. Naming and security
tracing, for example, produces a much higher trace output than web container tracing. Consider the type of
data being collected when you configure your memory allocation and output settings.

File

Specifies to write the trace output to a self-managing log file. The self-managing log file writes messages
to the file until the specified maximum file size is reached. When the file reaches the specified size,
logging is temporarily suspended and the log file is closed and renamed. The new name is based on the
original name of the file, plus a timestamp qualifier that indicates when the renaming occurred. Once the
renaming is complete, a new, empty log file with the original name is reopened, and logging resumes. No
messages are lost as a result of the rollover, although a single message may be split across the two files.
If you select this option you must specify the following parameters:

v Maximum File Size

– Specifies the maximum size, in megabytes, to which the output file is allowed to grow. This attribute
is only valid if the File Size attribute is selected. When the file reaches this size, it is rolled over as
described above.

v Maximum Number of Historical Files

– Specifies the maximum number of rolled over files to keep.

v File Name

– Specifies the name of the file to which the trace output is written.

Runtime tab
Save runtime changes to configuration

Save runtime changes made on the runtime tab to the trace configuration as well. Select this box to copy
run-time trace changes to the trace configuration settings as well. Saving these changes to the trace
configuration will cause the changes to persist even if the application is restarted.

Trace Output
Specifies where trace output should be written. The trace output can be written directly to an output file, or
stored in memory and written to a file on demand using the Dump button found on the run-time page.

File

Specifies to write the trace output to a self-managing log file. The self-managing log file writes messages
to the file until the specified maximum file size is reached. When the file reaches the specified size,
logging is temporarily suspended and the log file is closed and renamed. The new name is based on the
original name of the file, plus a timestamp qualifier that indicates when the renaming occurred. Once the
renaming is complete, a new, empty log file with the original name is reopened, and logging resumes. No
messages are lost as a result of the rollover, although a single message may be split across the two files.
If you select this option you must specify the following parameters:

v Maximum File Size

140 Troubleshooting and support

– Specifies the maximum size, in megabytes, to which the output file is allowed to grow. This attribute
is only valid if the File Size attribute is selected. When the file reaches this size, it is rolled over as
described above.

v Maximum Number of Historical Files

– Specifies the maximum number of rolled over files to keep.

v File Name

– View the file that is specified by the File Name parameter. This does not apply your configuration.

Select a server to configure logging and tracing
Use this page to select the server for which you want to configure logging and trace settings.

Application Servers

This page lists application servers in the cell and the nodes holding the application servers. The status
indicates whether a server is running, stopped, or encountering problems. If you are using the WebSphere
Application Server, Network Deployment product, this panel also shows the status of the application
servers.

When you select an application server, a panel is displayed that will allow you to choose which log or trace
task to configure for that application server.

To view this administrative console page, click Troubleshooting > Logs and Trace

Server
Specifies the logical name of the server.

Node
Specifies the name of the node for the application server.

Host name
Specifies the name of the host for the application server.

Version
Specifies the version for the application server.

Type
Specifies the type of application server.

Status
Indicates whether the application server is started or stopped. (WebSphere Application Server, Network
Deployment only)

Note that if the status is Unavailable, the node agent is not running in that node, and you must restart the
node agent before you can start the server.

Chapter 9. Working with trace 141

Log and trace settings
Use this page to view and configure logging and trace settings for the server.

Note: You can only access this page when the server is configured to use basic log and trace mode.

To view this administrative console page, click:

v Servers > Application Servers > server_name > Troubleshooting > Diagnostic Trace Service

Note: You can configure tracing from the MVS console using the modify command.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Switch to HPEL Mode button
Use the Switch to HPEL Mode button to change the log and trace mode for the server to HPEL.

Note: Switching the server to HPEL log and trace mode requires a server restart.

Diagnostic Trace
The diagnostic trace configuration settings for a server process determine the initial trace state for a server
process. The configuration settings are read at server startup and used to configure the trace service. You
can also change many of the trace service properties or settings while the server process is running.

Change Log Level Details
Enter a log detail level that specifies the components, packages, or groups to trace. The log detail level
string must conform to the specific grammar described in this topic. You can enter the log detail level string
directly, or generate it using the graphical trace interface.

NCSA access and HTTP error logging
The NCSA access and HTTP error logging page enables you to configure the log settings for your HTTP
server.

Setting up component trace (CTRACE)
WebSphere Application Server for z/OS uses z/OS component trace (CTRACE) facilities to manage the
collection and storage of trace data. CTRACE data is written to address space buffers in private
(pageable) storage, which can be formatted using IPCS if a dump of the address space is taken. CTRACE
data can also be written to trace data sets on disk or tape using an external writer.

Before you begin

Although CTRACE data is primarily output for use by IBM service personnel, using CTRACE capabilities at
your installation allows you to have additional trace data available when a problem first occurs. Because
CTRACE efficiently uses system resources, you can collect valuable trace data with minimal impact on
performance. For detailed information about the CTRACE facilities, see z/OS MVS Diagnosis: Tools and
Service Aids, GA22-7589.

142 Troubleshooting and support

http://publibz.boulder.ibm.com/epubs/pdf/iea2v130.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2v130.pdf

About this task

If you choose to write CTRACE data to trace data sets, you must create an external writer. You can set up
separate trace data sets for each cell or for each WebSphere Application Server for z/OS release, or you
can use a single trace data set for all WebSphere Application Server activity on a particular z/OS system.

Procedure

To implement a CTRACE data trace, read the following articles on preparing and starting CTRACE in your
application server:

v “Preparing CTRACE controls and resources”

v “Starting CTRACE as part of WebSphere Application Server for z/OS initialization” on page 144

v “Starting CTRACE while WebSphere Application Server for z/OS servers are active” on page 145

v “CTRACE to collect trace data for Java server applications” on page 146

Results

After you read articles you will be able to implement CTRACE data tracing in your applications.

Preparing CTRACE controls and resources
You must prepare CTRACE controls and resources before using it for trace data.

Before you begin

Before you start component trace (CTRACE) activity for WebSphere Application Server for z/OS servers,
you need to make some decisions about CTRACE controls and resources as well as create an external
writer if one is needed for trace data recording.

About this task

Perform the following steps to prepare CTRACE controls and resources:

Procedure
1. Decide whether to write CTRACE data to trace data sets (recommended) or keep CTRACE data in

memory buffers only.

2. If you wish to use trace data sets, perform these steps.

a. Decide whether to create one trace data set for all WebSphere Application Server activity on a
single z/OS system or separate trace data sets for each cell or WebSphere Application Server
release.

Trace data sets cannot be shared between z/OS systems; each system should have its own trace
data sets.

b. Choose names for the trace data sets.

To simplify external writer setup, include the z/OS system name in the data set name.

Recommendation: For a single trace data set for all WebSphere Application Server activity, use
something similar to SYS1.sysname.WAS390.CTRACE.

c. Allocate a trace data set on each z/OS system.

Note:

Do not specify DCB parameters RECFM, LRECL, or BLKSIZE; the external writer will
allocate them with record format VB and a system-optimal blocksize and logical record

Chapter 9. Working with trace 143

length. For trace data sets on disk, you should use a minimum of 10 cylinders (3390).
Secondary extents are ignored unless the NOWRAP option is specified when the external
writer is started. For example:
// EXEC PGM=IEFBR14
//TRACE DD DSN=SYS1.MVSS14.WAS390.CTRACE,UNIT=3390,VOL=SER=HPK19A,
// SPACE=(CYL,(20,0)),DISP=(NEW,CATLG),DCB=DSORG=PS

d. Choose a job name for the external writer.

Recommendation: Use BBOWTR if the same trace data set is to be used for all WebSphere
Application Server activity on each z/OS system.

e. Create the external writer cataloged procedure.

1) Copy member BBOWTR from the WebSphere Application Server for z/OS product data set
SBBOJCL to SYS1.PROCLIB or another procedure library defined to the master scheduler.

2) Rename the procedure to the external writer job name that you chose.

3) Customize the cataloged procedure by providing your trace data set name where indicated.

4) If the cataloged procedure will be shared among several z/OS systems, make sure that the
trace data set DD statements point to the appropriate trace data sets on each system.

f. Choose a system user ID under which the external writer started task will run.

This user ID must have read/write access to the trace data sets; you may wish to use an existing
started task user ID such as the default started task user ID for your system. Use the following
RACF command or equivalent to cause the external writer cataloged procedure to run under the
started task user ID:
RDEFINE STARTED external_writer_procname.* STDATA(USER(system_user_ID)) TRACE(YES)

The external writer started task should run with at least as high a dispatching priority as the
WebSphere Application Server address spaces that will use it for tracing.

g. Start the external writer to verify that the steps above were performed correctly.

Enter the following MVS console command:
TRACE CT,WTRSTART=external_writer_procname

3. Create a CTRACE parmlib member.

a. Copy member BBOCTI00 from the WebSphere Application Server for z/OS product data set
SBBOJCL to a data set in your system parmlib concatenation.

b. Rename the parmlib member to CTIBBOxx, where xx is a two-character suffix to be associated
with the external writer.

This is the value that will be specified during WebSphere Application Server for z/OS
customization.

c. Customize the CTIBBOxx parmlib member to indicate whether trace data sets and an external
writer are to be used and, if so, whether the external writer should be started automatically when
WebSphere Application Server activates the CTRACE.

4. If you plan to use separate trace data sets for different WebSphere Application Server cells or
releases, repeat all of these steps while choosing a new external writer name and parmlib member
suffix for each.

Results

CTRACE for WebSphere Application Server is now set up. Use the parmlib member suffix to associate a
particular WebSphere Application Server for z/OS cell with the CTRACE options that you have chosen.

Starting CTRACE as part of WebSphere Application Server for z/OS
initialization
You can start CTRACE as part of the initialization process for a WebSphere Application Server for a z/OS
cell using this information.

144 Troubleshooting and support

Before you begin

Make sure that you have properly prepared CTRACE controls and resources as described in “Preparing
CTRACE controls and resources” on page 143.

About this task

Perform the following steps to start CTRACE as part of the initialization process for a WebSphere
Application Server for z/OS cell:

Procedure
1. Start the CTRACE external writer.

v If you want the external writer to write records to the trace data set until the existing extents are full
then overwrite the oldest records, use the following MVS console command:
TRACE CT,WTRSTART=procname

where procname is the name of the cataloged procedure for the CTRACE writer.

v If you want the external writer to fill all primary and secondary extents then terminate, add the
NOWRAP option as in the following example:
TRACE CT,WTRSTART=procname,NOWRAP

v If the CTIBBOxx member for the cell contains a WTRSTART parameter, then no command is
necessary. If the external writer is not started, WebSphere Application Server will start it
automatically.

2. Start the WebSphere Application Server for z/OS application server using the generated instructions.

3. When you need to collect trace data for analysis, perform these steps.

a. Disconnect WebSphere Application Server for z/OS from CTRACE.

1) Use the following operator command:
TRACE CT,ON,COMP=cell_short_name

2) You will be prompted for additional options. Enter the following reply:
REPLY x,WTR=DISCONNECT,END

b. Stop the CTRACE external writer.

Use the following operator command:
TRACE CT,WTRSTOP=procname

where procname is the name of the cataloged procedure for the CTRACE writer.

Starting CTRACE while WebSphere Application Server for z/OS servers
are active
Use this page to start CTRACE when a WebSphere Application Server for z/OS server already is active.

Before you begin

Make sure that you have properly prepared CTRACE controls and resources as described in “Preparing
CTRACE controls and resources” on page 143.

About this task

If you start a WebSphere Application Server for z/OS server before starting the CTRACE writer for
WebSphere, the server still gathers data in its trace buffers. This trace data is not available for use unless
you follow this procedure or until a dump of the server address space is taken.

Chapter 9. Working with trace 145

Perform the following steps to start CTRACE when a WebSphere Application Server for z/OS server
already is active:

Procedure
1. Perform the following tasks.

a. Start the CTRACE external writer.

Use the following operator command:
TRACE CT,WTRSTART=procname

where procname is the name of the cataloged procedure for the CTRACE writer.

b. If necessary, connect WebSphere Application Server for z/OS to a CTRACE writer other than the
one specified in the CTIBBO xx parmlib member.

1) Use this operator command:
TRACE CT,ON,COMP=cell_short_name

2) You will be prompted for additional options. Enter the following reply:
REPLY x,WTR=procname,END

where procname is the name of the cataloged procedure for the CTRACE writer.

The CTRACE external writer begins writing the server's trace data to the location specified through the
WebSphere variable ras_trace_outputLocation.

2. When you need to collect trace data for analysis, perform these steps.

a. Disconnect WebSphere Application Server for z/OS from CTRACE.

1) Use the following operator command:
TRACE CT,ON,COMP=cell_short_name

2) You will be prompted for additional options. Enter the following reply:
REPLY x,WTR=DISCONNECT,END

b. Stop the CTRACE external writer.

Use the following operator command:
TRACE CT,WTRSTOP=procname

where procname is the name of the cataloged procedure for the CTRACE writer.

CTRACE to collect trace data for Java server applications
Applications that run in WebSphere Application Server for z/OS can use JRas to provide tracing support
that is consistent with WebSphere tracing.

Instrumented applications use the JRas interfaces and classes for logging and tracing; trace data is written
to the same component trace data set as the internal traces issued by the WebSphere Application Server
for z/OS runtime. So you can gather application trace data in the same locations, and use the same
commands to start and stop CTRACE for these JRas applications as you do for WebSphere Application
Server for z/OS server in which the applications are running.

146 Troubleshooting and support

Chapter 10. Troubleshooting class loaders

Class loaders find and load class files. For a deployed application to run properly, the class loaders that
affect the application and its modules must be configured so that the application can find the files and
resources that it needs. Diagnosing problems with class loaders can be complicated and time-consuming.
To diagnose and fix the problems more quickly, use the administrative console class loader viewer to
examine class loaders and the classes loaded by each class loader.

Before you begin

This topic assumes that you have installed an application on a server supported by the product and you
want to examine class loaders used by the application or its modules. The modules can be web modules
(.war files) or enterprise bean (EJB) modules (.jar files). The class loader viewer enables you to examine
class loaders in a runtime environment.

This topic also assumes that you have enabled the class loader viewer service. Click Servers > Server
Types > WebSphere application servers > server_name > Class loader viewer service, enable the
service and restart the server.

About this task

The runtime environment of WebSphere Application Server uses the following class loaders to find and
load new classes for an application in the following order:

1. The bootstrap, extensions, and CLASSPATH class loaders created by the Java virtual machine

2. A WebSphere extensions class loader

3. One or more application module class loaders that load elements of enterprise applications running in
the server

4. Zero or more web module class loaders

Each class loader is a child of the previous class loader. That is, the application module class loaders are
children of the WebSphere extensions class loader, which is a child of the CLASSPATH Java class loader.
Whenever a class needs to be loaded, the class loader usually delegates the request to its parent class
loader. If none of the parent class loaders can find the class, the original class loader attempts to load the
class. Requests can only go to a parent class loader; they cannot go to a child class loader. After a class
is loaded by a class loader, any new classes that it tries to load reuse the same class loader or go up the
precedence list until the class is found.

© IBM Corporation 2005 147

If the class loaders that load the artifacts of an application are not configured properly, the Java virtual
machine (JVM) might throw a class loading exception when starting or running that application. “Class
loading exceptions” on page 149 describes the types of exceptions caused by improperly configured class
loaders and suggests ways to use the class loader viewer to correct configurations of class loaders. The
types of exceptions include:
v ClassCastException
v ClassNotFoundException
v NoClassDefFoundException
v UnsatisfiedLinkError

Use the class loader viewer to examine class loaders and correct problems with application or class loader
configurations.

Procedure
v Examine a tree view that lists all installed applications and their modules. The modules can be web

modules (.war files) or EJB modules (.jar files).

Click Troubleshooting > Class loader viewer to access the Enterprise applications topology page.

v Examine the class loader delegation hierarchy.

On the Enterprise applications topology page, select a module to access the Class loader viewer page.
The page lists the class loaders visible to web and EJB modules in an installed enterprise application.
This page helps you to determine which class loaders loaded files of a module and to diagnose
problems with class loaders.

The delegation hierarchy is determined by the class loader delegation mode, or class loader order,
specified for an application or web module. The value can be either Classes loaded with parent class
loader first or Classes loaded with local class loader first (parent last). Refer to the
Configure class loaders step for more information.

v Export information on class loaders.

1. On the Class loader viewer page, click Export.

2. Select to open a browser or editor on the class loader information or to save the information to disk
in XML format.

3. Click OK, and specify any additional information requested by the system.

v Display information about class loaders visible to the module in an HTML table format.

On the Class loader viewer page, click Table View. The Table View page displays the following
information:

Table 33. Table View page. Information available on class loader attributes.

Class loader attribute Description

Delegation Indicates whether the class loader delegates the loading of the module to its parent class
loader. A value of true implies that the class loader of the parent application is being used
(Classes loaded with parent class loader first). A value of false implies that the
module class loader is being used (Classes loaded with local class loader first
(parent last)). Refer to the Configure class loaders step for more information.

Classpath Lists the paths over which the class loader searches for classes and resources.

Classes Lists the names of classes loaded in the JVM by this class loader.

The Table View option does not return a value when out-of-memory errors are generated. The
out-of-memory errors might be related to a memory leak. To examine information about class loaders in
a table, resolve the out-of-memory problem, and then click Table View again.

v Search class loaders.

On the Class loader viewer page, click Search to access the Search page, on which you can search
class loaders for the following:
– Specific strings

148 Troubleshooting and support

– Specific .jar files
– The names of files in a specific directory
– The names of files loaded by a specific class loader

The search is case-sensitive. “Class loading exceptions” describes several uses of the Search page.

v Configure class loaders. You can configure class loaders for the following:
– All applications installed on a specific server.
– A specific application
– A specific web module

Note: For detailed information about server, application, and web class loaders, see the chapter on
class loading in the Developing and deploying applications PDF book.

Class loader configuration determines which class loader loads the classes and resource files for an
application or web module. Application and WAR module class loader configuration settings include
Class loader order and WAR class loader policy.

A Class loader order value can be either Classes loaded with parent class loader first or Classes
loaded with local class loader first (parent last). The default is Classes loaded with parent
class loader first. A class loader with the Classes loaded with parent class loader first mode
delegates loading a class or resource to its immediate parent class loader before searching its
classpath.

When troubleshooting class loading problems, you might need to override classes visible to a parent
class loader. To override such classes with those specific to an application, set the Class loader order
to Classes loaded with local class loader first (parent last) on the class loader that contains the
application classes on its classpath. An application can override classes visible to a parent class loader,
but doing so can result in a ClassCastException or UnsatisfiedLinkError if there is a mixed use of
overridden classes and non-overridden classes.

For example, under default class loader policies, a web module has its own Web module (WAR) class
loader to load its artifacts, which are typically in the WEB-INF/classes and WEB-INF/lib directories. An
application module class loader is the immediate parent of this WAR class loader. To ensure that the
web module class loader searches these paths for a particular class or resource first, before delegating
the load operation to the application module class loader, set the Class loader order of the web
module to Classes loaded with local class loader first (parent last).

Class loader policies determine the structure of the application and WAR module class loaders. Under
the default policies, every running application EAR has its own application module class loader, and
every web module has its own WAR module class loader. The default policies ensure Java EE
compliance regarding visibility and isolation among application artifacts. Changing the default policies is
not suggested when troubleshooting class loading problems.

What to do next

If you continue to have class loader problems, refer to “Class loading exceptions” and to the class loading
chapter of the Developing and deploying applications PDF book.

Class loading exceptions
What kind of class-loading error do you see when you develop an application or start an installed
application?
v “ClassCastException” on page 150
v “ClassNotFoundException” on page 151
v “NoClassDefFoundException” on page 152
v “UnsatisfiedLinkError” on page 152

Chapter 10. Troubleshooting class loaders 149

ClassCastException

A class cast exception results when the following conditions exist and can be corrected by the following
actions:
v The type of the source object is not an instance of the target class (type).
v The class loader that loaded the source object (class) is different from the class loader that loaded the

target class.
v The application fails to perform or improperly performs a narrow operation.

The type of the source object is not an instance of the target class (type).
This is the typical class cast exception. You can diagnose whether the source object of a cast
statement is not an instance of the target class (type) by examining the class signature of the
source object class, then verifying that it does not contain the target class in its ancestry and the
source object class is different than the target class. You can obtain class information by inserting
a simple print statement in your code. For example:
System.out.println(source.getClass().getName() + “:” + target.getClass().getName());

Or use a javap command. For example:
javap java.util.HashMap
Compiled from "HashMap.java"
public class java.util.HashMap extends java.util.AbstractMap

implements java.util.Map,java.lang.Cloneable,java.io.Serializable {

The class loader that loaded the source object (class) is different from the class loader that loaded
the target class.

Assuming that the type of the source object is an instance of the target class, a class cast
exception occurs when the class loader that loaded the source object's class is different that the
class loader that loaded the target class. This condition might occur when the target class is
visible on the classpaths of more than one class loader in the WebSphere Application Server
runtime environment. To correct this problem, use the Search and Search by class name console
pages used to diagnose problems with class loaders:
1. Click Troubleshooting > Class loader viewer > module_name > Search to access the

Search page.
2. For Search type, select Class/Package.
3. For Search terms, type the name of the class that is loaded by two class loaders.
4. Click OK. The Search by class name page is displayed, listing all class loaders that load the

class.

If there is more than one class loader listed, then the target class was loaded by more than
one class loader. Because the source object is an instance of the target class, the class loader
that loaded the source object class is different from the class loader that loaded the target
class.

5. Return to the Class loader viewer page and examine the classpath to determine why two
different class loaders load the class.

6. Correct your code so that the class is visible only to the appropriate class loader.

The application fails to perform or improperly performs a narrow operation.
A class cast exception can occur because, when the application is resolving a remote enterprise
bean (EJB) object, the application code does not perform a narrow operation as required. The
application must perform a narrow operation after looking up a remote object. Examine the
application and determine whether it looks up a remote object and, if so, the result of the lookup is
submitted to a narrow method.

The narrow method must be invoked according to the EJB 2.0 programming model. In particular,
the target class submitted to the narrow method must be the exact, most derived interface of the
EJB. This also causes a class cast exception in the WebSphere Application Server runtime
environment. Examine the application and determine whether the target class submitted to the
narrow method is a super-interface of the EJB that is specified, not the exact EJB type; if so,
modify the application to invoke narrow with the exact EJB interface.

150 Troubleshooting and support

Lastly, if a class cast exception occurs during a narrow operation, verify that the narrow method is
being applied to the result of a remote EJB lookup, not to a local enterprise bean. A narrow is not
used for local lookups. Examine the application or module deployment descriptor to ensure that
the object being narrowed is not a local object.

ClassNotFoundException

A class not found exception results when the following conditions exist and can be corrected by the
following actions:
v The class is not visible on the logical classpath of the context class loader.
v The application incorrectly uses a class loader API.
v A dependent class is not visible.

The class is not visible on the logical classpath of the context class loader.
The class not found is not in the logical class path of the class loader associated with the current
thread. The logical classpath is the accumulation of all classpaths searched when a load operation
is invoked on a class loader. To correct this problem, use the Search page to search by class
name and by Java archive (JAR) name:

1. Click Troubleshooting > Class loader viewer > module_name > Search to access the
Search page.

2. For Search type, select Class/Package.

3. For Search terms, type the name of the class that is not found.

4. Click OK. The Search by class name page is displayed, listing all class loaders that load the
class.

5. Examine the page to see if the class exists in the list.

6. If the class is not in the list, return to the Search page. For Search terms, type the name of
the .jar file for the class; for Search type, select JAR/Directory.

7. Click OK. The Search by Path page is displayed, listing all directories that hold the JAR file.

If the JAR file is not in the list, the class likely is not in the logical class path, not readable or an
alternate class is already loaded. Move the class to a location that enables it to be loaded.

The application incorrectly uses a class loader API.
An application can obtain an instance of a class loader and call either the loadClass method on
that class loader, or it can call Class.forName(class_name, initialize, class_loader) with that class
loader. The application may be incorrectly using the class loader application programming interface
(API). For example, the class name is incorrect, the class is not visible on the logical classpath of
that class loader, or the wrong class loader was engaged.

To correct this problem, determine whether the class exists and whether the application is properly
using the class loader API. Follow the steps in The class is not visible on the logical classpath of
the context class loader to determine whether the class is loaded. If the class has not been
loaded, attempt to correct the application and see if the class loads. If the class is in the class
path with proper permission and is not being overridden by another factory class, examine the API
used to load the class.

1. Click Troubleshooting > Class loader viewer > module_name > Search to access the class
loader Search page.

2. For Search type, select Class/Package.

3. For Search terms, type the name of the class.

4. Click OK. The Search by class name page is displayed, listing all class loaders that load the
class.

5. Examine the page to see if the class exists in the list.

6. If the class is in the list and a ClassNotFound exception was thrown, then the .jar file or class
is not in the correct context or a wrong API call in the current context was used.

Chapter 10. Troubleshooting class loaders 151

If the class is not in the list, return to the Search page and do the following:
a. Search for the class that generated the exception; that is, the class calling Class.forName.
b. See which class loader loads the class.
c. Determine whether the class loader has access or can load the class not found by

evaluating the class path of the class loader.

A dependent class is not visible.
When a class loader clsldr loads a class cls, the Java virtual machine (JVM) invokes clsldr to load
the classes on which cls depends. Dependent classes must be visible on the logical classpath of
clsldr, otherwise an exception occurs. This condition typically occurs when users make
WebSphere Application Server classes visible to the JVM, or make application classes visible to
the JVM or to the WebSphere extensions class loader. For example:
v Class A depends on Class B.
v Class A is visible to the WebSphere extensions class loader.
v Class B is visible on the local classpath of a WAR module class loader, not the WebSphere

extensions class loader classpath.

When the JVM loads class A using the WebSphere extensions class loader, it then attempts to
load Class B using the same class loader and ultimately creates a class not found exception.

To correct this problem:
1. Make the application-specific classes visible to the appropriate application class loader.
2. Search for the class not found (Class B).
3. If Class B is in the proper location, search for the class that loads the dependent class (Class

A) in the Class loader viewer.
4. If the class is loaded and a ClassNotFound exception was thrown, then the .jar file or class is

not in proper context or the wrong API call in the current context was used.

If no class was found, do the following:
a. Search for the class that generated the exception; that is, the class calling Class.forName.
b. See which class loader loads the class.
c. Determine whether the class loader has access or can load the class not found by

evaluating the class path of the class loader.
5. Ensure that the caller class (Class B) is visible to the JVM or WebSphere extensions class

loader.

NoClassDefFoundException

A no class definition found exception results when the following conditions exist and can be corrected by
the following actions:

The class is not in the logical class path.
Refer to “ClassNotFoundException” on page 151 for information.

The class cannot load.
There are various reasons for a class not loading. The reasons include: failure to load the
dependent class, the dependent class has a bad format, or the version number of a class.

UnsatisfiedLinkError

A linkage error results when the following conditions exist and can be corrected by the following actions:
v A user action caused the error.
v System.mapLibraryName returns the wrong library file.
v The native library is already loaded.
v A dependent native library was used.

A user action caused the error.

Several user actions can result in a linkage error:

A library extension name is incorrect for the platform.

152 Troubleshooting and support

System.loadLibrary is passed an incorrect parameter.

The library is not visible.
As a best practice, use the JVM class loader to find or load native libraries. WebSphere
Application Server prints the Java library path (java.library.path) when starting up. If the
JVM class loader is intended to load the library, verify that the path containing the native
library file is in the Java library path. If not, append the path to the platform-specific native
library environment variable or to the java.library.path system property of the server
process definition.

In general, the Java virtual machine invokes findLibrary() on the class loader xxx that
loads the class that calls System.loadLibrary(). If xxx.findLibrary() fails, the Java virtual
machine attempts to find the library using the JVM class loader, which searches the JVM
library path. If the library cannot be found, the Java virtual machine creates an
UnsatisfiedLinkError exception.

Thus, if a WebSphere class loader is intended to find a native library myNativeLib, the
library must be visible on the nativelibpath of the class loader that loads the class that
calls System.loadLibrary(myNativeLib). This practice is necessary or desirable in the
following situation:

v Native libraries for data source providers must be visible on the nativelibpath of the
WebSphere extensions class loader. In this case, add the path containing the native
library to the Native library path setting of the data source provider configuration.

v Shared libraries have a Native library path in their configuration. Because shared
libraries enable the versioning of application-specific libraries, consider specifying the
paths to any native libraries used by the shared library code in the shared library
configuration.

Ensure that the correct WebSphere class loader loads the class that calls
System.loadLibrary() and that the native library is visible on the Native library path
setting.

The native library is already loaded.
This condition can result from either of the following errors:

User error
Check for multiple calls to System.loadLibrary and remove any extraneous calls.

Error when an application restarts
The JVM has a restriction that only one class loader can load a native library at a time. An
error results when an application restarts before the garbage collector cleans up the class
loader from the stopped application. When the class that loads the native library moves, all
of the classes that depend on that native library and their dependencies also must move.

To correct this condition, move the loading of the native library to a class loader that does
not reload:
1. Locate all application classes that load native libraries or have native methods.
2. Identify any dependent classes for the classes in step 1, such as logging packages.
3. Create a server-associated shared library or an isolated shared library.
4. Move the JAR files loaded for classes in steps 1 and 2 from the application to the

shared library created in step 3.
5. Save your changes.
6. Redeploy the application and rerun the scenario.

For more information about invoking, creating, and managing shared libraries, read
“Managing shared libraries” in the Administering applications and their environment PDF
book.

Chapter 10. Troubleshooting class loaders 153

Classes within server-scoped libraries are loaded once for each server lifecycle, ensuring
that the native library required by the application is loaded once for each Java virtual
machine, regardless of the application's life cycle.

A dependent native library was used.
Dependent native libraries must be found or loaded by the JVM class loader. That is, if a native
library NL is dependent on another native library, DNL, the JVM class loader must find DNL on the
Java library path. This is because the JVM runs native code when loading NL; when it encounters
the dependency on DNL, the JVM native code can call only to the JVM class loader to resolve the
dependency. A WebSphere class loader cannot load a dependent native library.

Modify the platform-specific environment variable defining the Java library path (LIBPATH) to
include the path containing the unresolved native library.

Class loader viewer service settings
Use this page to configure the server to start the class loader viewer service when the server starts. The
Class Loader Viewer helps you diagnose problems with class loaders.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Class loader viewer service.

Class loaders find and load class files. For a deployed application to run properly, the class loaders that
affect the application and its modules must be configured so that the application can find the files and
resources that it needs. Diagnosing problems with class loaders can be complicated and time-consuming.
To diagnose and fix the problems more quickly, enable the class loader viewer service on this page and
then use the console Class loader viewer to examine class loaders and the classes loaded by each class
loader. Click Troubleshooting > Class loader viewer to access the Class loader viewer in the console.

Enable service at server startup
Specifies whether or not the server attempts to start the class loader viewer service when the server
starts.

The default is not to start the class loader viewer service.

Enterprise application topology
Use this page to see where modules reside in a topology of enterprise applications. Knowing where a
module resides helps you to determine which class loader loaded a module and to diagnose problems with
class loaders.

To view this administrative console page, click Troubleshooting > Class loader viewer. This page lists all
installed applications and their modules in a tree view. The modules can be web modules (.war files) or
enterprise bean (EJB) modules (.jar files).

When deploying an application to a server or starting an application, you might encounter problems related
to class loaders. Use the console pages accessed from this page to troubleshoot errors such as the
following:
v ClassCastException
v ClassNotFoundException
v NoClassDefFoundException
v UnsatisfiedLinkError

You can use the Class loader viewer console pages without having to restart or manipulate the application.

154 Troubleshooting and support

Enterprise applications topology
Displays a tree hierarchy of applications installed on a server and lists the module files in the class paths
of the applications.

Expand the hierarchy for an application to see what web modules (.war files) and EJB modules (.jar files)
are in the application class path.

Click on a module name to examine the class loaders of the module.

Class loader viewer settings
Use this page to examine the class loaders visible to a web module (.war file) or enterprise bean (.ejb
file) in an installed enterprise application. This page helps you to determine which class loaders loaded
files of a module and to diagnose problems with class loaders.

To view this administrative console page, click Troubleshooting > Class loader viewer > module_name.

The module is currently running on all nodes and servers listed.

To learn more about classes used by the module and their class loaders, click a button:

Table 34. Class loader viewer buttons. Click a button to access information about classes.

Button Resulting action

Export Opens a dialog that enables you to view or save the class loader information on this page in an
XML file.

Table View Displays the Table view page, which provides information about class loaders visible to the
module in an HTML table format for each class loader. Such information includes:
Delegation

Whether the class loader delegates a load operation to its immediate parent before
searching its local classpath for a class or resource

Classpath
The local classpath, which includes the paths over which the class loader searches for
classes and resources, excluding the classpaths of any parent class loaders.

Classes
The names of classes loaded by the class loader

Search Displays the Search page, on which you can search class loaders for the following:
v Specific strings
v Specific .jar files
v The names of files in a specific directory
v The names of files loaded by a specific class loader

Class Loader
Displays a hierarchy of class loaders that affect the loading of classes used by the web or EJB module.
The Hierarchy tab displays the class loaders in a tree hierarchy. The Search Order tabs lists the class
loaders in the order in which the runtime environment uses them to find and load classes.

Expand a hierarchy of class loaders to view the following:

v Class loader names

v Arrows that point upwards beside class loader names, indicating that requests can go to a parent class
loader only and not go to a child class loader

v The names of classes that are loaded by a class loader

v The paths of property files and .jar files used by the classes

Chapter 10. Troubleshooting class loaders 155

The following class loaders might be in a hierarchy:

Table 35. Class loader name descriptions. Class loaders that might be in the hierarchy of class loaders.

Class loader name Description

JDK Extension Loader The JDK extensions class loader is a composite class loader that is
comprised of the Java virtual machine (JVM) bootstrap class loader, the
JVM extensions class loader and the JVM system class loader, which load
the core SDK classes and resources as well as classes and resources
visible on the JVM classpath.

WAS Extension Class Loader The WAS Extension Class Loader loads the WebSphere Application Server
classes, stand-alone resource classes, custom service classes, and custom
registry classes. At bootstrap, this class loader uses the ws.ext.dirs
system property to determine the path that is used to load classes. Each
directory in the ws.ext.dirs class path and every .jar file or compressed
.zip file in these directories is added to the class path used by this class
loader.

WAS Compound Class Loader The WAS Compound Class Loaders load classes and resources of
enterprise archive (EAR) modules, web application archive (WAR) modules,
and server-associated shared libraries. Under default class loader policies,
an instance of a WAS Compound Class Loader exists for each running
EAR and WAR module and for each class loader defined in the server
configuration.

Click on Classes to view a list of classes loaded by a class loader.

The class loader viewer service must be enabled to view the list of classes.

Search settings
Use this page to search for information about class loaders visible to a web module (.war file) or
enterprise bean (.ejb file) in an installed enterprise application. This page helps you diagnose problems
with class loaders.

To view this administrative console page, click Troubleshooting > Class loader viewer > module_name
> Search.

On the Search page, you can search class loaders for the following:
v Specific strings
v Specific .jar files
v The names of files in a specific directory
v The names of files loaded by a specific class loader

Search type
Specifies the type of items in which to search for the string.

Table 36. Search type fields. Type searchable information in a field and click Go.

Search type Instructions and resulting action

Class/Package In the Search terms field, type a class name or package name. After you select this search
type and click Go, the program searches class loaders for a class or package name. The
program displays a list of classes and packages that have the string in their name.

JAR/Directory In the Search terms field, type a .jar file name or directory name. After you select this
search type and click Go, the program searches class loaders for a .jar file or directory
name. The program displays a list of .jar files that have the string in their name and of all
files in directories that have the string in their name.

156 Troubleshooting and support

Search terms
Specifies the string to be found in the items searched.

The search is case-sensitive. If the search string is classname, the string ClassName is not found.

The search matches the entire string. If the search type is JAR/Directory and the search string is
C:/WebSphere/AppServerd0603.185/java/jre/lib/ext/CmpCrmf.jar, the entire path of the JAR file is
matched. If the search type is JAR/Directory and the search string is Cmp, the string Cmp is not found.

The search supports limited regular expressions. It supports the wildcard characters asterisk (*), question
mark (?), and percent sign (%). The wildcard characters * and % match zero or more characters; ? matches
exactly one character.

Table 37. Search strings with wildcard characters. Use the example search strings to see what items result from
searches.

Search string Resulting matches

Cmp Items that have Cmp in their name

Cmp.jar Items that have Cmp in their name and that end in .jar

%Cmp% Items that have Cmp in their name

%Cmp%.jar Items that have Cmp in their name and that end in .jar

*Cmp?rmf.jar Items that have a name with any characters before Cmp, then any one character,
and then rmf.jar

The search supports full regular expressions if the value for the search string starts and ends with a
forward slash (/).

Table 38. Search strings with regular expressions. Use the example search strings to see what items result from
searches.

Search string Resulting matches

/.*Cmp.*/ Items that contain any character before and after Cmp in their name

/.*Cmp.*\.jar/ Items that have Cmp in their name and that end in .jar

/.*Cmp?rmf\.jar/ Items that have a name with any characters before Cmp, then any one character,
and then rmf.jar

/.*\d\.jar/ Items with a name that ends in a number followed by .jar

Chapter 10. Troubleshooting class loaders 157

158 Troubleshooting and support

Chapter 11. Choosing and using diagnosis tools and controls
on z/OS

Below is a description of the types of tools and controls you can use for diagnosing and managing
problems in the product environment.

Before you begin

The product uses a variety of different tools and server controls to help you collect specific types of data to
determine where your servers are encountering problems. To efficiently use these tools you need to be
aware of the different functions each can provide and what type of information will be available from each.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

About this task

When your applications or servers are experiencing problems that may be originating from different
sources, use the tools below to collect data and information on processes in your environment. Each tool
has functions specific to different parts of the product, and they can be used in concert to help you better
diagnose your problems.

Procedure

Use the following z/OS tools to access and work with diagnostic information.
v z/OS console

The console displays configuration errors that cause the termination of the product address spaces.
Whatever goes to the console also goes to SYSLOG.

v System log (SYSLOG)

SYSLOG is the repository for all messages that have appeared on the operator console. It also contains
warning and informational messages that might be helpful after a failure has occurred.

v Job log

The job log contains errors and warnings (non-termination) that are related to configuration. Anything
that goes to the console and SYSLOG automatically goes to the job log.

v System output (SYSOUT)

SYSOUT is a batch log that usually contains diagnostic data from the Java Virtual Machine (JVM) that
runs in the servant. Any messages written to stderr will end up in SYSOUT. In addition, SYSOUT might
contain error messages that usually appear in the log stream, but were redirected to SYSOUT, because
the log stream was not available.

v Error log

The error log contains messages issued through Java logging and JRas support, if any. In addition, the
error log usually contains messages that are only intended for IBM use. These messages support
actions, problems, or issues that are usually externalized through additional messages that are issued
by other functions. When you work with IBM Support personnel, you might be asked to supply the error
log so that service personnel can use these support messages to help diagnose the problem.

Note: You must update the CFRM policy before using log streams that are CF-resident, such as the
WebSphere error log and RRS logs. See Updating the CFRM policy for details.

© Copyright IBM Corp. 2011 159

v SYSPRINT

SYSPRINT contains component trace (CTRACE) output for clients, and for servants when the product is
configured to use SYSPRINT instead of CTRACE buffers and data sets.

v Component trace (CTRACE) data set

CTRACE data sets contain diagnostic trace entries for various processes, depending on the trace
options configured for the product.

v Logrec

When an error occurs, the system records information about the error in the logrec data set or the
logrec log stream. The information provides you with a history of all hardware failures, selected software
errors, and selected system conditions.

v Transaction XA Partner Log

This log is used for recovery of XA resources. When an application accesses XA resources, the product
stores information about the resource to enable XA transaction recovery. For instructions on how to use
the Profile Management Tool or the zpmt command to configure the Transaction XA Partner Log see the
"Customization variables: Stand-alone application server cell" topic in the installing your application
serving environment section. For instructions on how to change the location of the Transaction XA
Partner Log, see the transaction service settings information.

v SDSF

Use the SDSF DA panel to see how many application server address spaces are active, and observe at
the CPU%, ECPU% and SIO rate. Use the "ENC" panel to see the enclaves running and what service
classes they are running under.

v RMF™

See Chapter 12, “Using RMF,” on page 185 for instructions on starting and using RMF to monitor your
transactions.

v MODIFY command

See the getting help for the modify command example documentation for instructions on using the z/OS
modify command to display information about the product servers or servants.

To find additional information about these tools, and about the process of diagnosing problems on z/OS,
use the z/OS product library to access the following books:
v z/OS MVS Diagnosis: Procedures, GA22-7587, which helps you diagnose problems in the MVS

operating system, its subsystems, its components, and in applications running under the system.
v z/OS MVS Diagnosis: Tools and Service Aids, GA22-7589, which provides detailed information about

tools and service aids that can help you diagnose problems. This book contains a guide on how to
select the appropriate tool or service aid for your purposes, and also provides an overview of all the
tools and service aids available.

Troubleshooting using WebSphere variables
Troubleshooting problems can be performed by changing certain variables in your application environment.

Before you begin

WebSphere Application Server for z/OS provides configuration variables that control server behavior.
v Configuration variables may be set on a cell, node, or server level.

– Variable values set on a cell level apply to all servers in all nodes in the cell, unless a different value
for the same variable is set on a node or server level. Variable settings on a node or server level
override values for the same variable set at the cell level.

– Variables set on a node level apply to all servers in the node, unless a different value for the same
variable is set on the server level. Variable settings on a server level override values for the same
variable set at the node or cell level.

– Variables set on a server level apply only to the specific server, not to any other servers in the same
node or cell.

160 Troubleshooting and support

http://www-1.ibm.com/servers/eserver/zseries/zos/bkserv/

Note: When you are diagnosing particular problems, you are most likely to alter variable values on a
server level, for a particular server. Specifying variable values on the server level affects both the
controller and servant regions.

v You may use scripting interfaces, instead of the administrative console, to alter configuration variable
values.

v These variables allow you to control:
– Output destinations and characteristics for the error log, and for CTRACE buffers, data sets and the

external writer.
– Trace buffers, data sets, and the content of trace data.
– Types of dumps to be requested.
– Timeout values for system and application behavior.

About this task

Depending on the types of problems you encounter, you might need to change the values set for
configuration variables that control WebSphere Application Server behavior. Generally speaking, the
default values are designed for normal operation in a production environment. Other circumstances might
require different values:
v When you first customize and verify WebSphere Application Server for z/OS installation, or
v When you test application workloads in a test environment, or
v when you encounter a problem, and need to collect more diagnostic data.

The following procedure explains how to use the administrative console to change configuration variable
values, commonly known as console settings.

Procedure
1. Click Environment -> Manage WebSphere Variables in the console navigation tree.

2. On the WebSphere Variables page, select Server as the scope of the variable setting, and click
Apply.

3. On the WebSphere Variables page, click New.

4. On the Variable page, specify a name and value for the variable. So other people can understand
what the variable is used for, also specify a description for the variable. Then click OK.

5. Verify that the variable is shown in the list of variables.

6. Save your configuration.

7. To have the configuration take effect, stop the server and then start the server again.

Types of configuration variables
You can configure a variety of configuration variables to control the behavior of WebSphere Application
Server for z/OS.

These configuration variables allow you to control:
v Output destinations and characteristics for the error log, and for CTRACE buffers, data sets and the

external writer.
v Trace buffers, data sets, and the content of trace data.
v Types of dumps to be requested.
v Timeout values for system and application behavior.

Log output destinations and characteristics
Use these variables to control log output destinations and characteristics.

client_ras_logstreamname=name: Specifies the name of the log stream for an application client
run-time to use for error information.

Default: If this variable is not specified, the client run-time uses SYSOUT.

Chapter 11. Choosing and using diagnosis tools and controls on z/OS 161

Example:
client_ras_logstreamname=MY.CLIENT.ERROR.LOG

gotcha: Do not put the log stream name in quotes. Log stream names are not data set names.

ras_default_msg_dd=DD_card_name: Redirects write-to-operator (WTO) messages that use the default
routing to hardcopy. These messages are redirected to the location identified through the DD card on the
server's JCL start procedure. These WTO messages are primarily messages that WebSphere Application
Server for z/OS issues during initialization.

Default: No default value is set; WTO messages that use default routing are sent to hardcopy.

Examples:
ras_default_msg_dd=MSGDD

ras_default_msg_dd=DFLTLOG

Example of the DFLTLOG DD card on the server's JCL start procedure:

//DFLTLOG DD SYSOUT=*

ras_hardcopy_msg_dd=DD_card_name: Redirects write-to-operator (WTO) messages that the product
routes to hardcopy. These messages are redirected to the location identified through the DD card on the
server's JCL start procedure. These WTO messages are primarily audit messages issued from Java code
during initialization.

Default: No default value is set; WTO messages that use hardcopy routing are sent to hardcopy.

Example:
ras_hardcopy_msg_dd=MSGDD

ras_log_logstreamName: Specifies the log stream that the produce uses for error information during
bootstrap processing. If the specified log stream is not found, or not accessible, a message is issued and
errors are written to the server's job log.

Default: If this variable is not specified, the product uses SYSOUT.

Example:
ras_log_logstreamName=MY.CB.ERROR.LOG

gotcha: Do not put the log stream name in quotes. Log stream names are not data set names.

Trace control settings
The following trace options allow you to capture the information needed to detect problems.

To view or set these options, use the WebSphere Application Server administrative console:

1. Select Environment > WebSphere variables.

2. Specify the variable name in the name field and specify the setting in the value field. You can also
describe the setting in the description field on this tab.

ras_trace_outputLocation=SYSPRINT | BUFFER | TRCFILE
Specifies where you want trace records to be sent:

v To SYSPRINT

v To a memory buffer (BUFFER), the contents of which are later written to a CTRACE data set

v To a trace data set (TRCFILE) specified on the TRCFILE DD statement in the start procedure for the
server.

162 Troubleshooting and support

For servers, you can specify one or more values, separated by a space. For clients, you can only
specify SYSPRINT.

Defaults:

v For clients, SYSPRINT

v For all other processes, BUFFER

Example: ras_trace_outputLocation=SYSPRINT BUFFER

ras_time_local=0 | 1
Specifies whether timestamps in trace records use Greenwich Mean Time (GMT) or local time. This
variable setting controls timestamp format in the error log, and in traces sent to SYSPRINT or
TRCFILE DD.

Default: 0 (GMT)

Example: ras_time_local=1 sets timestamps to local time.

Daemon_ras_trace_ctraceParms=SUFFIX | MEMBER_NAME
Identifies the CTRACE PARMLIB member. The value can be either:

v A two-character suffix, which is added to the string CTIBBO to form the name of the PARMLIB
member, or

v The fully specified name of the PARMLIB member. A fully specified name must conform to the
naming requirements for a CTRACE PARMLIB member.

If the specified PARMLIB member is not found, tracing is defined to CTRACE, but there is no
connection to a CTRACE external writer.

Note: The Daemon is the only server that recognizes this environment variable.

Default: None

Example: Daemon_ras_trace_ctraceParms=01 identifies PARMLIB member CTIBBO01

ras_trace_BufferCount= n
Specifies the number of trace buffers to allocate. Valid values are 4 through 8.

Default: 4

Example: ras_trace_BufferCount=6

ras_trace_BufferSize= n
Specifies the size of a single trace buffer in bytes. You can use the letters K (for kilobytes) or M (for
megabytes). Valid values are 128K through 4M.

Default: 1M

Example: ras_trace_BufferSize=2M

ras_trace_log_version= n
Specifies the version of trace log to display. Valid values are 1 and 2.

Default: 2

Example: ras_trace_log_version=1

Trace log stream record output
This article provides an example of the trace log stream output and explains the various attributes it
contains.

If you do not want the message tag to be included in the trace log output, complete the following actions:

1. In the administrative console, click Environment > WebSphere variables.

2. Select the appropriate scope, and then click New.

Chapter 11. Choosing and using diagnosis tools and controls on z/OS 163

3. Enter ras_trace_log_version in the Name field and 1 in the Value field.

4. Save and synchronize your changes, and then stop, and restart the server.

Sample output from the trace log: The numbers to the left of each sample were added to specify lines.
The numbers will not be in the actual output.
1| Trace: 2009/07/14 17:26:19.577 02 t=6C8B58 c=UNK key=P8 tag=jperf

(13007002)
2| ThreadId: 0000002d
3| FunctionName: PingServlet
4| SourceId: PingServlet
5| Category: AUDIT
6| ExtendedMessage: BBOO0222I: Audit Message from PingServlet

The log stream record output fields from stream BBO.BOSSXXXX are:

Table 39. Parts table for a server log stream record output. Components and descriptions.

Component Description

line 1: Trace: 2009/07/14 17:26:19.577 02 Date / timestamp / 2-digit record version number

line 1: t=6C8B58 Thread address

line 1: c=UNK Cell name

line 1: key=P8 System protection key

line 1: tag=jperf Message tag from classification file

line 1: (13007002) Trace specific value for this trace point

line 2: ThreadId: 0000002d Thread ID

line 3: FunctionName:PingServlet Function Name

line 4: SourceId:PingServlet Source ID

line 5: Category:AUDIT Category

line 6: ExtendedMessage: BBOO0222I: Audit
Message from PingServlet

Extended Message

Attention: Each field is delimited by a blank.

Dump control settings
Use these settings to manage the dump control configuration in WebSphere Application Server.
ras_dumpoptions_dumptype= n

Specifies the default dump used by the signal handler. Valid values and their meanings are:
v 0

No dump is generated.
v 1

A ctrace dump is taken.
v 2

A cdump dump is taken.
v 3

A csnap dump is taken.
v 4

A CEE3DMP dump is taken.

Note: CEE3DMP dumps are not available in WebSphere Application Server for z/OS with 64-bit
support. If this option is chosen, it will be ignored in 64-bit environments.

164 Troubleshooting and support

CEE3DMP generates a dump of Language Environment® and the member language libraries.
Sections of the dump are selectively included, depending on dump options specified, either by
default or through the
ras_dumpoptions_ledumpoptons

variable. By default, this value passes
THREAD(ALL) BLOCKS

to CEE3DMP. You can override the default options for CEE3DMP through the
ras_dumpoptions_ledumpoptons

variable. For more information about CEE3DMP and its options, see z/OS Language
Environment Programming Reference, SA22-7562..

Default: 3

Example:
ras_dumpoptions_dumptype=2

ras_dumpoptions_ledumpoptons= options
Specifies dump options to be used with a CEE3DMP. If you want more than one option, separate
each option with a blank. Specifies dump options to be used with a CEE3DMP. If you want more
than one option, separate each option with a blank.

This WebSphere variable is used only when you specify
ras_dumpoptions_dumptype=4

. For an explanation of CEE3DMP and valid dump options, see z/OS Language Environment
Programming Reference, SA22-7562.

Rule: The maximum length of the option string on this environment variable is 255. If the option
string is longer than 255, you receive message BBOM0011W and the CEE3DMP dump options
are set to
THREAD(ALL) BLOCKS

.

Default:
THREAD(ALL) BLOCKS

Example:
ras_dumpoptions_ledumpoptons=NOTRACEBACK NOFILES

Timeout properties summary
You can use timeout properties to control the amount of time you allow for various requests to complete.
Some of these properties map to internal variable names. The internal variable names are provided here
to aid you with debugging.

Timer properties as they relate to configuring your message-driven beans to work with
listener ports or activation specifications

For WebSphere Application Server Version 7 and later, listener ports are deprecated. Therefore plan to
migrate your WebSphere MQ message-driven bean deployment configurations from using listener ports to
using activation specifications. However, do not begin this migration until you are sure that the application
does not have to work on application servers earlier than WebSphere Application Server Version 7. In
some cases, you continue to use the WebSphere MQ message-driven bean deployment and listener ports
and in other case you use the WebSphere MQ message-driven bean deployment and activation
specifications.

Chapter 11. Choosing and using diagnosis tools and controls on z/OS 165

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

The following properties DO NOT apply to activation specification driven message-driven bean
deployment. That is, the properties require you to configure them to use the WebSphere MQ
message-driven bean deployment and listener ports:

v control_region_mdb_request_timeout

v control_region_mdb_queue_timeout_percent

v server_region_mdb_stalled_thread_dump_action

The follow properties DO apply to activation specification driven message-bean deployment. That is, these
properties require you to configure them to use the WebSphere MQ message-driven bean deployment and
activation specifications.

v control_region_wlm_dispatch_timeout

v control_region_iiop_queue_timeout_percent

v server_region_iiop_stalled_thread_dump_action

As you follow the instructions to configure these properties, remember what properties apply to listener
ports versus activation specifications.

Object Request Broker (ORB) service advanced settings

ORB listener keep alive
In a non-secure socket layer (SSL) environment, this property defines the value, in seconds, that is
provided to TCP/IP on the SOCK_TCP_KEEPALIVE option for the IIOP listener. The function of this
option is to verify if idle sessions are still valid by polling the client TCP/IP stack. If the client does not
respond, then the session is closed. If the connection to the client is lost without the server receiving
notification, then the session remains active on the server side. Use this option to clean up these
unnecessary sessions.

v If this property is not set, then the TCP/IP option is not set.

v Setting the SOCK_TCP_KEEPALIVE option generates network traffic on idle sessions, which can
be undesirable.

Default: 0

How to specify: To specify this property, in the administrative console, click Servers > Server Types
> WebSphere application servers > server_name > Container services > ORB service > z/OS
additional settings.

ORB SSL listener keep alive
In an SSL environment, this property defines the value, in seconds, that is provided to TCP/IP on the
SOCK_TCP_KEEPALIVE option for the IIOP listener. The function of this option is to verify if idle
sessions are still valid by polling the client TCP/IP stack. If the client does not respond, then the
session is closed. If the connection to the client is lost without the server receiving notification, then
the session remains active on the server side. Use this option to clean up these unnecessary
sessions.

v If this property is not set, then the TCP/IP option is not set.

v Setting the SOCK_TCP_KEEPALIVE option generates network traffic on idle sessions, which can
be undesirable.

Default: 0

How to specify: To specify this property, in the administrative console, click Servers > Server Types
> WebSphere application servers > server_name > Container services > ORB service > z/OS
additional settings.

WLM timeout
Specifies the maximum amount of time, in seconds, that workload management (WLM) waits for IIOP
requests to complete. This time limit includes:

v The time during which the IIOP request waits on the WLM queue until being dispatched to a servant

166 Troubleshooting and support

v The time during which an application component, running in the servant, processes the request and
generates a response

The server generates a failure response if this processing does not complete within the specified time.

Attention: This setting does not apply for HTTP requests or scalable messaging support; for that
type of work, the value specified for the ConnectionResponseTimeout server custom property controls
the time allowed for dispatching work to a servant.

Default: 300 seconds

How to specify: To specify this property, in the administrative console, click Servers > Server Types
> WebSphere application servers > server_name > Container services > ORB service > z/OS
additional settings.

Internal variable name (for debugging purposes): Locate the internal variable name,
control_region_wlm_dispatch_timeout, in the was.env file or the JES job log.

Example: WLM timeout=600

Use the control_region_iiop_queue_timeout_percent server custom property to designate a percentage
of the WLM timeout as the amount of time a request can remain on the WLM queue.

Request timeout
Specifies, in seconds, the maximum time that the client waits for the response to a client request. The
value specified for this field is a server wide setting that affects all outbound RMI/IIOP enterprise bean
invocations that are made on this server.

Because the sysplex TCP/IP that runs through the coupling facility does not always tell the client when
the other end of the socket has closed, clients can wait indefinitely for a response unless you set this
property. Setting the Request timeout property ensures that the client gets a response within the
specified time, even if the response is a COMM_FAILURE exception.

Default: 0 (unlimited). No timeout value is set.

How to specify: To specify this property, in the administrative console, click Servers > Server Types
> WebSphere application servers > server_name > > Container services > ORB service > z/OS
additional settings.

If you use command-line scripting, the full name of this system property is
com.ibm.CORBA.RequestTimeout.

Example: Specifying Request timeout=2, sets the time limit to 2 seconds.

Transaction service timeout properties

Total Transaction Lifetime Timeout
Specifies the maximum amount of time, in seconds, that the J2EE server waits for an application
transaction that originated in this server to complete if the application transaction does not set its own
timeout value through the UserTransaction.setTransactionTimeout() method.

If the application transaction is not committed or rolled back within the specified time, the application
transaction is marked for rollback and is allowed to continue running for a grace period of
approximately 4 minutes. If the application transaction is committed or rolled back during the grace
period, then the outcome of the transaction is always rolled back. If the application transaction does
not complete after the grace period, then the controller abnormally ends the servant in which the
application component is running with ABEND EC3 RSN=04130002 or 04130005.

gotcha: Only the total transaction lifetime timeout and the maximum transaction timeout have grace
periods.

Setting this value to 0 indicates that the timeout does not apply, and the value of the maximum
transaction timeout is used instead.

Chapter 11. Choosing and using diagnosis tools and controls on z/OS 167

Default: 120 seconds

How to specify: To specify this property, in the administrative console, click Servers > Server Types
> WebSphere application servers > server_name > Container services > Transaction service.

Internal variable name (for debugging purposes): Locate transaction_defaultTimeout in the was.env
file or the JES job log file.

Maximum transaction timeout
Specifies the maximum amount of time, in seconds, that the J2EE server waits for an application
transaction that is propagated into this server to complete. This value also applies to transactions that
are started in this server, if their associated applications do not set a transaction timeout and the total
transaction lifetime timeout is set to 0.

This value constrains the upper bound of all other timers. If an application uses the
UserTransaction.setTransactionTimeout() method to specify a longer length of time, then the J2EE
server changes the application setting to the value specified for the Maximum transaction timeout
property.

Setting this value to 0 indicates that the timeout does not apply, and any transactions that are affected
by this timeout never time out.

Default: 300 seconds

How to specify: To specify this property, in the administrative console, click Servers > Server Types
> WebSphere application servers > server_name > Container services > Transaction service.

Internal variable name (for debugging purposes): Locate the internal variable name,
transaction_maximumTimeout, in the was.env file or the JES job log.

transaction_recoveryTimeout
Specifies the time, in minutes, that this controller uses to attempt to resolve in-doubt transactions
before issuing a write-to-operator-with-reply (WTOR) message to the console that asks whether the
controller should perform the following actions:

v Stop trying to resolve in-doubt transactions.

v Write transaction-related information to the job log or hardcopy log and terminate.

If the operator replies that recovery is to continue, then the controller attempts recovery for the
specified amount of time before reissuing the WTOR message. After all the transactions are resolved,
the controller region terminates. This property applies only to controllers in peer restart and recovery
mode.

Default: 15 minutes

How to specify: To specify this property, in the administrative console, click Environment >
WebSphere variables, select the appropriate node or cell from the list of available nodes and cells,
and then click New. Add the transaction_recoveryTimeout property in the Name field, and specify a
different value in the Value field.

Internal variable name (for debugging purposes): Locate transaction_recoveryTimeout in the
was.env file or the JES job log.

Example: transaction_recoveryTimeout=7

Server custom properties

control_region_mdb_request_timeout
Specifies the time, in seconds, that the server waits for a message driven bean (MDB) request to
receive a response. If the response is not received within the specified amount of time, then the
servant might abnormally terminate with an EC3 ABEND, RSN=04130008. You can set this value to 0
if you need to disable this function.

Default: 120

168 Troubleshooting and support

How to specify: To specify this property, in the administrative console, click Environment >
WebSphere variables, select the appropriate node or cell from the list of available nodes and cells,
and then click New. Add the control_region_mdb_request_timeout property in the Name field, and
specify a different value in the Value field.

Internal variable name (for debugging purposes): Locate control_region_mdb_request_timeout in
the was.env file or the JES job log. See the application server z/OS custom properties documentation
for additional information.

Example: control_region_mdb_request_timeout=180

Use the control_region_mdb_queue_timeout_percent server custom property name to designate a
percentage of the value specified for the control_region_mdb_request_timeout property as the amount
of time that a MDB request can remain on the WLM queue. The control_region_mdb_request_timeout
custom property specifies the combined amount of time that the request spends on the WLM queue
and in dispatch. The control_region_mdb_queue_timeout_percent property only applies to the amount
of time that the request spends on the WLM queue.

control_region_timeout_save_last_servant
When set to 1, this property indicates that, when the wlm_minimumSRCount custom property is set to
a value that is greater than 1, then the last available servant is not abnormally terminated because of
a timeout situation. The servant can be abnormally terminated after a new servant region starts to
accept work requests. This setting enables work requests to continue without interruption. However,
setting this property to 1 might cause a loss of system resources if the dispatched servant thread that
timed out continues to loop or becomes inactive, preventing the servant threads assigned to this
servant from being released.

This property can be set to 0 or 1.

The setting for this property is ignored if the wlm_dynapplenv_single_server property is set to 1.

Default: 0

How to specify: To specify this property, in the administrative console, click Environment >
WebSphere variables, select the appropriate node or cell from the list of available nodes and cells,
and then click New. Add the control_region_timeout_save_last_servant property in the Name field, and
specify 1 in the Value field.

Internal variable name (for debugging purposes): Locate control_region_timeout_save_last_servant
in the was.env file or the JES job log.

protocol_http_timeout_output_recovery
Controls the recovery action taken on timeouts for requests received over the HTTP transport.
Specifying SERVANT allows for the termination of servants when timeouts occur. If an HTTP request is
under dispatch in a servant when its timeout value is reached, then the servant terminates with an
ABEND EC3 RSN=04130007. The HTTP request and socket are then cleaned up. A setting of SESSION
only cleans up the HTTP request and socket. No attempt is made to disrupt the processing of a
dispatched HTTP request within a servant. Using the session setting might result in a loss of
resources if the dispatched HTTP request loops or becomes inactive.

Default: SERVANT

How to specify: To specify this property, in the administrative console, click Environment >
WebSphere variables, select the appropriate node or cell from the list of available nodes and cells,
and then click New. Add the protocol_http_timeout_output_recovery property in the Name field, and
specify a different value in the Value field.

Internal variable name (for debugging purposes): Locate protocol_http_timeout_output_recovery in
the was.env file or the JES job log.

Example: protocol_http_timeout_output_recovery=SERVANT

Chapter 11. Choosing and using diagnosis tools and controls on z/OS 169

protocol_https_timeout_output_recovery
Controls the recovery action taken on timeouts for requests received over the HTTPS transport.
Specifying SERVANT allows for the termination of servants when timeouts occur. If an HTTP request is
under dispatch in a servant when its timeout value is reached, then the servant terminates with an
ABEND EC3 RSN=04130007. The HTTPS request and socket are then cleaned up. A setting of
SESSION only cleans up the HTTPS request and socket. No attempt is made to disrupt the processing
of a dispatched HTTPS request within a servant. Using the session setting might result in a loss of
resources if the dispatched HTTPS request loops or becomes inactive.

Default: SERVANT

How to specify: To specify this property, in the administrative console, click Environment >
WebSphere variables, select the appropriate node or cell from the list of available nodes and cells,
and then click New. Add the protocol_https_timeout_output_recovery property in the Name field, and
specify a different value in the Value field.

Internal variable name (for debugging purposes): Locate protocol_https_timeout_output_recovery
in the was.env file or the JES job log.

Example: protocol_https_timeout_output_recovery=SESSION

protocol_sip_timeout_output
Specifies the time, in seconds, that the server waits for a message driven bean (MDB) request, that
was sent over a SIP transport channel, to receive a response. If the response is not received within
the specified amount of time, then the servant might abnormally terminate with ABEND EC3
RSN=04130008. You can set this value to 0 if you need to disable this function.

Default: 120

How to specify: To specify this property, in the administrative console, click Environment >
WebSphere variables, select the appropriate node or cell from the list of available nodes and cells,
and then click New. Add the protocol_sip_timeout_output custom property in the Name field, and
specify a different value in the Value field.

Internal variable name (for debugging purposes): Locate protocol_sip_timeout_output in the
was.env file or the JES job log.

Example: protocol_sip_timeout_output=180

Use the control_region_sip_queue_timeout_percent server custom property name to designate a
percentage of the value specified for the protocol_sip_timeout_output property as the amount of time a
request can remain on the WLM queue.

protocol_sips_timeout_output
Specifies the time, in seconds, that the server waits for a message driven bean (MDB) request to
receive a response. If the response is not received within the specified amount of time, then the
servant might abnormally terminate with ABEND EC3 RSN=04130008. Set this value to 0 to disable
the function.

Default: 120

How to specify: To specify this property, in the administrative console, click Environment >
WebSphere variables, select the appropriate node or cell from the list of available nodes and cells,
and then click New. Add the protocol_sips_timeout_output custom property in the Name field, and
specify a different value in the Value field.

Internal variable name (for debugging purposes): Locate protocol_sips_timeout_output in the
was.env file or the JES job log. for additional information.

Example: protocol_sips_timeout_output=180

Use the control_region_sips_queue_timeout_percent server custom property name to designate a
percentage of the value specified for the protocol_sips_timeout_output property as the amount of time
a request can remain on the WLM queue.

170 Troubleshooting and support

protocol_sip_timeout_output_recovery
Controls the recovery action taken on timeouts for requests received over SIP. Specifying SERVANT
allows for the termination of servants when timeouts occur. If a SIP request is under dispatch in a
servant when its timeout value is reached, then the servant terminates with an ABEND EC3
RSN=04130007. The SIP request and socket are then cleaned up. A setting of SESSION only cleans up
the SIP request and socket. No attempt is made to disrupt the processing of a dispatched SIP request
within a servant. Using the session setting might result in a loss of resources if the dispatched SIP
request loops or becomes inactive.

Default: SERVANT

How to specify: To specify this property, in the administrative console, click Environment >
WebSphere variables, select the appropriate node or cell from the list of available nodes and cells,
and then click New. Add the protocol_sip_timeout_output_recovery property in the Name field, and
specify a different value in the Value field.

Internal variable name (for debugging purposes): Locate protocol_sip_timeout_output_recovery in
the was.env file or the JES job log.

Example: protocol_sip_timeout_output_recovery=SERVANT

protocol_sips_timeout_output_recovery
Controls the recovery action taken on timeouts for requests received over SIPS. Specifying SERVANT
allows for the termination of servants when timeouts occur. If an SIPS request is under dispatch in a
servant when its timeout value is reached, then the servant terminates with an ABEND EC3
RSN=04130007. The SIPS request and socket are then cleaned up. A setting of SESSION only cleans
up the SIPS request and socket. No attempt is made to disrupt the processing of a dispatched SIPS
request within a servant. Using the session setting might result in a loss of resources if the dispatched
SIPS request loops or becomes inactive.

Default: SERVANT

How to specify: To specify this property, in the administrative console, click Environment >
WebSphere variables, select the appropriate node or cell from the list of available nodes and cells,
and then click New. Add the protocol_sips_timeout_output_recovery property in the Name field, and
specify a different value in the Value field.

Internal variable name (for debugging purposes): Locate protocol_sips_timeout_output_recovery in
the was.env file or the JES job log.

Example: protocol_sips_timeout_output_recovery=SERVANT

server_region_request_cputimeused_limit
Specifies, in milliseconds, the amount of CPU time that an application request can consume.

This property helps prevent a single application request from monopolizing the available CPU time
because it allows you to limit the amount of CPU time that a single request can use. A CPU monitor is
invoked when a request is dispatched. If the request exceeds the specified amount of CPU time, the
controller considers the request unresponsive. The controller then issues message BBOO0327, to let
the requesting application know that the request was unresponsive.

The monitor, that monitors the amount of CPU time that a request is using, typically sends a signal to
the dispatched thread when the amount of CPU time used exceeds the specified amount. However,
there are situations when this signal cannot be delivered, and the request remains pending. For
example, if the thread goes native and invokes a PC routine, the signal remains pending until the PC
routine returns.

After the signal is delivered on the dispatch thread, the WLM enclave, that is associated with the
dispatched request, is quiesced. This situation lowers the dispatch priority of this request, and this
request should now only get CPU resources when the system is experiencing a light work load.

server_region_stalled_thread_threshold_percent
Specifies the percentage of threads that can become unresponsive before the controller terminates the

Chapter 11. Choosing and using diagnosis tools and controls on z/OS 171

servant. When the default value of 0 is specified, the controller terminates the servant as soon as the
controller determines that at least one thread has become unresponsive.

Default: 0

How to specify: To specify this property, in the administrative console, click Environment >
WebSphere variables, select the appropriate node or cell from the list of available nodes and cells,
and then click New. Add the server_region_stalled_thread_threshold_percent property in the Name
field, and specify a different value in the Value field.

Internal variable name (for debugging purposes): Locate
server_region_stalled_thread_threshold_percent in the was.env file or the JES job log.

Example: server_region_stalled_thread_threshold_percent=5

Java virtual machine (JVM) Custom properties

The following 2 JVM properties can be set by clicking Application Servers -> <SERVER> -> Process
Definition -> Servant -> Java Virtual Machine -> Custom Properties.

com.ibm.ws390.interrupt.disableBBOJ0122I
If this property is set to 1, then message BBOJ0122I is suppressed.

Data Type: Boolean

Default: 0

Used by Daemon: No. Only applicable to servant regions.

com.ibm.ws390.interrupt.applyDumpActionPreInterrupt
Specifies the need to gather documentation prior to attempting to progress a dispatched request. If
this property is set to 1, documentation specified by stalled_thread_dump_action is gathered prior to
any activities to encourage the dispatched request to complete (for example, prior to driving interrupt()
on any InterruptObject). The stalled_thread_dump_action defines which documentation to gather when
the request is considered hung, and any attempts to complete it have failed.

Data Type: Boolean

Default: 0

Used by Daemon: No. Only applicable to servant regions.

Secure sockets layer configuration repertoires

depfeat: System SSL for z/OS has been deprecated in WebSphere Application Server Version 8.0. Start
to convert any security scripts, that are based on System SSL, to use JSSE security.

V3 Timeout
Specifies the length of time, in seconds, that a browser can reuse a System SSL Version 3 session ID
without renegotiating encryption keys with the server. The repertoires that you define for a server
require the same V3 timeout value.

Default: 100

How to specify: To specify this property, in the administrative console, click Security > SSL
application servers > New SSL repertoire

Internal variable name (for debugging purposes): The following SSL configuration repertoire
timeout variables are set internally when you define your SSL repertoires:

v com_ibm_HTTP_claim_ssl_sys_v3_timeout

v com_ibm_DAEMON_claim_ssl_sys_v3_timeout

Locate these internal variables in the was.env file or the JES job log.

172 Troubleshooting and support

TCP transport channel timeout properties

Inactivity timeout property
Specifies the amount of time, in seconds, that the TCP transport channel waits for a read or write
request to complete on a socket.

gotcha: The value specified for this property might be overridden by the wait times established for
channels that are higher than this channel in the timer hierarchy. For example, the wait time
established for an HTTP transport channel overrides the value specified for this property for
every operation except the initial read on a new socket.

Default: 0 seconds

How to specify: To specify this property, in the administrative console, click Servers > Server Types
> WebSphere application servers > server_name > Web container transport chains > TCP
inbound channel.

HTTP transport channel timeout properties

ConnectionResponseTimeout
Specifies a maximum amount of time, in seconds, that the server waits for an application component
to respond to an HTTP request.

Set this property for each of the HTTP transport channel definitions on the server. You must set this
property for both SSL transport channels and non-SSL transport channels. If the response is not
received within the specified length of time, then the servant might fail with ABEND EC3 and
RSN=04130007. Setting this timer prevents client applications from waiting for a response from an
application component that might be in a deadlock, looping, or encountering some other processing
problem that causes the application component to stop processing requests.

Default: 300 seconds

How to specify: To specify this property, in the administrative console, click Servers > Server Types
> WebSphere application servers > server_name, and then, under Web Container Settings, click
Custom properties.

Internal variable name (for debugging purposes): If you are debugging a problem in SSL-enabled
transport, then locate the internal variable name, protocol_https_timeout_output, in the was.env file or
the JES job log. If you are debugging a problem in a non-SSL transport channel, then locate the
internal variable name, protocol_http_timeout_output, in the was.env file or the JES job log.

Use the control_region_http_queue_timeout_percent and control_region_https_queue_timeout_percent
application server custom properties to designate a percentage of the value specified for the
ConnectionResponseTimeout property as the amount of time that a request can remain on the WLM
queue.

Persistent timeout property
Specifies the amount of time, in seconds, that the HTTP transport channel allows a socket to remain
idle between requests.

Default: 30 seconds

How to specify: To specify this property, in the administrative console, click Servers > Server Types
> WebSphere application servers > server_name > Web container transport chains > HTTP
inbound channel.

Read timeout property
Specifies the amount of time, in seconds, that the HTTP transport channel waits for a read request to
complete on a socket after the first read request occurs. The read that is completing might be an
HTTP body, such as a POST, or part of the headers if the headers were not all read as part of the first
read request on the socket.

Default: 60 seconds

Chapter 11. Choosing and using diagnosis tools and controls on z/OS 173

How to specify: To specify this property, in the administrative console, click Servers > Server Types
> WebSphere application servers > server_name > Web container transport chains > HTTP
inbound channel.

Write timeout property
Specifies the amount of time, in seconds, that the HTTP transport channel waits on a socket for each
portion of response data to be transmitted. This timeout typically occurs in situations where responses
lag behind new requests. This situation can occur when a client has a low data rate or the network
interface card (NIC) for the server is saturated with I/O.

Default: 60 seconds

How to specify: To specify this property, in the administrative console, click Servers > Server Types
> WebSphere application servers > server_name > Web container transport chains > HTTP
inbound channel.

HTTP transport timeout variables

depfeat: HTTP transport support is deprecated.

ConnectionIOTimeOut
Specifies a maximum amount of time, in seconds, that the J2EE server waits for the complete HTTP
request to arrive. Set this property for each of the HTTP transport definitions on the server. You must
set this property for both SSL transport and non-SSL transport. The J2EE server starts the timer after
the connection has been established, and cancels the connection if a complete request does not arrive
within the specified maximum time limit. Specifying a value of 0 disables the timeout function.

Default: 10 seconds

How to specify: To specify this property, in the administrative console, click Servers > Server Types
> WebSphere application servers > server_name > Web container > Custom properties.

gotcha: This panel is only available if an HTTP transport is defined for your application server
environment. If an HTTP transport is not defined for your environment, then you can use the
wsadmin scripting tool to define 1. However, it is recommended that you use an HTTP
transport channel instead of an HTTP transport whenever possible.

ConnectionResponseTimeout
Specifies a maximum amount of time, in seconds, that the J2EE server waits for an application
component to respond to an HTTP request. Set this property for each of the HTTP transport definitions
on the server. You must set this property for both SSL transport and non-SSL transport. If the
response is not received within the specified length of time, then the servant might fail with ABEND
EC3 and RSN=04130007. Setting this timer prevents client applications from waiting for a response
from an application component that might be in a deadlock, looping, or encountering some other
processing problem that causes the application component to stop processing requests.

Default: 120 seconds

How to specify: To specify this property, in the administrative console, click Servers > Server Types
> WebSphere application servers > server_name > Web container > Custom properties.

Internal variable name (for debugging purposes): If you are debugging a problem in SSL-enabled
transport, then locate the internal variable name, protocol_https_timeout_output, in the was.env file or
the JES job log. If you are debugging a problem in non-SSL transport, then locate the internal variable
name, protocol_http_timeout_output, in the was.env file or the JES job log.

Use the control_region_http_queue_timeout_percent and control_region_https_queue_timeout_percent
server custom properties to designate a percentage of the ConnectionResponseTimeout property as
the amount of time that a request can remain on the WLM queue.

174 Troubleshooting and support

ConnectionKeepAliveTimeout
Specifies the time, in seconds, that the J2EE server waits for a subsequent request from an HTTP
client on a persistent connection. If another request is not received from the same client within this
time limit, then the connection is closed.

Default: 30 seconds

How to specify: To specify this property, in the administrative console, click Servers > Server Types
> WebSphere application servers > server_name > Web container > Custom properties.

Run-time environment: Best practices for maintaining the runtime
environment
Use these guidelines to make sure that WebSphere Application Server for z/OS is customized and
maintained correctly, to support your installation's application workload.

Checking these basic software and hardware requirements can help you avoid problems with the run-time
environment.
v Check that you have the necessary prerequisite software up and running. Check that they have

the proper authorizations and that the definitions are correct.
v Check for messages that signal potential problems. Look for warning and error messages in the

following sources:
– SYSLOG from other z/OS subsystems and products, such as TCP/IP (especially the DNS, if in use),

RACF, and so on
– WebSphere Application Server for z/OS error log
– SYSPRINT of the WebSphere Application Server for z/OS
– Component trace (CTRACE) output for the server

v Check the ports used by WebSphere Application Server. The ports that are used by WebSphere
Application Server must not be reserved by any other z/OS component.

v Ensure that z/OS has enough DASD space for SVC dumps. You might have to adjust the amount of
space, because it depends on the size of your applications, on the configured Java virtual machine
(JVM) heap size, and on the number of servant regions that might be included in one dump, and so on.
For an SVC dump of one controller and one servant, you can start with a minimum of 512, but might
have to increase the MAXSPACE to 1024 or higher, given the factors listed above.

v Check your general environment. Does your system have enough memory? Insufficient memory
problems can show up as AUX shortages, abends, or exceptions from the WebSphere Application
Server for z/OS run-time. Sometimes the heap size for Language Environment (LE) and for the Java
virtual machine (JVM) needs to be increased. If you are using RRS and DB2, make sure your system
has enough space for archive data sets.

v Make sure all prerequisite fixes have been installed; a quick check for a fix can save hours of
debugging.

For the most current information on fixes and service updates, see:
– The Preventive Service Planning (PSP) buckets for both WebSphere Application Server for z/OS and

JAVA subsets of the WebSphere Application Server for z/OS Upgrade. To obtain a copy of the most
current versions of these PSP buckets, you can either contact the IBM Support Center, use S/390®

SoftwareXcel or link to IBMLink.
– The Support web page of the WebSphere Application Server for z/OS website, which contains a

table of the latest authorized program analysis reports (APARs).

With the latest service information, check the following:
– Ensure that all prerequisite PTFs (fixes) have been applied to the system.
– Verify that all PTFs were actually present in the executables that were used at the time of error.

Often, SMP can indicate that a fix is present and installed on the system when, in reality, the
executables that were used at the time of error did not contain the fix.

System controls: Best practices for using system controls
Use this information as the best way to configure system controls.

Chapter 11. Choosing and using diagnosis tools and controls on z/OS 175

http://www.ibmlink.ibm.com/
http://www.ibm.com/software/webservers/appserv/zos_os390/support/

v You have the option of using a z/OS system logger log stream as the product error log. The
ras_log_logstreamName property identifies which log stream you want to use for the error log; it has no
default setting. If you do not use a log stream, however, messages that usually appear in the error log
are directed to server's job log.

v You have the option of directing trace output to SYSPRINT or buffers. The ras_trace_outputLocation
property controls the location of trace output. The default values for this property are SYSPRINT for
client applications, and buffers to all other processes. Although you can change the default for other
processes from buffers to SYSPRINT, performance is better when you use buffers.

v You can use the Resource Measurement Facility (RMF) to view status information that might indicate
potential problems. The product uses Workload Manager (WLM) services to report transaction
begin-to-end response times and execution delay times, which might indicate that changes are required
for timeout values or tuning controls.

Performance diagnosis information
The following report options are listed here for information. IBM Service may request that you run one or
more of these reports while assisting you with diagnosis. You do not need to collect this data unless it is
requested by IBM Service.
v If you suspect that you are having throughput problems in a particular address space, for example by

looking at some other real-time performance data, IBM Service may need to see a dump of one or more
address spaces. This is done using the following parameters:

JOBNAME=(<jobname list>)
SDATA=(LSQA,PSA,SQA,SUM,SWA,TRT,WLM,CSA,RGN)

v If you suspect that the problem could be resulting from GRS latch or ENQ contention, check the RMF
Enqueue Activity Report and enter the console command:

D GRS,CONTENTION

during a time period in which the performance problem is observed.
SYS.BPX.A000.FSLIT.FILESYS.LSN represents HFS latches. Latch sets with a numeric suffix are file
latches, specifically SYS.BPX.A000.FSLIT.FILESYS.LSN.01. If you detect file latch contention, the best
way to determine the exact HFS file causing the problem is with an SVC dump, also collected during a
time period in which contention occurred. You will need to dump one of the OMVS data spaces to get
the file information.

DUMP COMM=(description of problem)
Reply to dump WTO, where serverproc is the name of your WebSphere Server

address space(s)
JOBNAME=(OMVS,Serverproc),DSPNAME=(’OMVS’.SYSZBPX1,’OMVS’.SYSZBPX2),
SDATA=(CSA,GRSQ,LPA,NUC,PSA,RGN,SQA,TRT,SUM)

v Sometimes USS errors can cause performance problems. The USS Ctrace (SYSOMVS) MIN tracing
option always records OMVS errors. You can take an SVC dump of the OMVS address space (as
described in the previous bullet) and the data spaces and format the SYSOMVS CTRACE. Use IPCS
options 7.2.1, suboption D, component SYSOMVS and the TALLY option (default is FULL). Look for
trace events of errors in the TALLY report.

v To find delays in applications, collect application performance information
– SMF 120 records.
– Jinsight profile

Updating the CFRM policy
You must update the coupling facility resource management (CFRM) policy before using log streams that
are CF-resident, such as the WebSphere Application Server error log and RRS logs. If you have the
source for the current active CFRM policy, update the source and use the IXCMIAPU Administrative Data
utility to generate the new policy.

176 Troubleshooting and support

About this task

If you do not have the source for the current active CFRM policy, rebuild the source from the active CFRM
policy.

Procedure
1. Find the active policy by issuing the command: D XCF,POL You will get output similar to this (partial

display):
D XCF,POL

IXC364I 10.57.49 DISPLAY XCF 061
. . .
TYPE: CFRM

POLNAME: POLCF1N1
STARTED: 03/14/2003 11:32:22
LAST UPDATED: 03/14/2003 11:31:52

. . .

2. List the active CFRM Policy's structure definitions by using the Administrative Data utility:
//STEP1 EXEC PGM=IXCMIAPU
//STDOUT DD STDERR=*
//SYSABEND DD STDERR=*
//SYSIN DD *
DATA TYPE(CFRM) REPORT(YES)
/*

3. Extract the definitions for the ACTIVE policy only. Using the STDOUT from the above utility job, edit
the output with the following steps so it can be used to define a new policy in the next job:

a. Extract the definitions for the ACTIVE policy only.

b. Delete the heading lines.

c. Add the new structure definition using the BBOWCFRM member of the target CNTL dataset as a
model.

d. Copy it into a FB-LRECL(80) dataset to be used as SYSIN for the following job.

4. Use the Administrative Data utility to update the CFRM policy. The policy name can be the same as
the ACTIVE CFRM policy or a new name. If you use the active policy name, REPLACE(YES) must be
specified on the DEFINE control statement.
//STEP20 EXEC PGM=IXCMIAPU
//STDOUT DD STDERR=*
//SYSABEND DD STDERR=*
//SYSIN DD *
DATA TYPE(CFRM) REPORT(YES)

DEFINE POLICY NAME(POLCF1N1) REPLACE(YES)

CF NAME(CF1LPAR) DUMPSPACE(5000) PARTITION(0E) CPCID(00)
TYPE(009672) MFG(IBM) PLANT(02) SEQUENCE(000000051205)

CF NAME(CF2LPAR) DUMPSPACE(5000) PARTITION(0F) CPCID(00)
TYPE(009672) MFG(IBM) PLANT(02) SEQUENCE(000000051205)

STRUCTURE NAME(CTS130_DFHLOG) SIZE(24000) INITSIZE(12000)
REBUILDPERCENT(1) PREFLIST(CF1LPAR, CF2LPAR)

. . .
<== Insert your new structure definitions here

5. Activate the new policy by issuing the following MVS Command:
SETXCF START,POLICY,TYPE=CFRM,POLNAME=POLCF1N1

What to do next

For more information about coupling facility structures and the IXCMIAPU utility, see the z/OS manual
MVS Setting Up a Sysplex (SA22-7625).

Chapter 11. Choosing and using diagnosis tools and controls on z/OS 177

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SA22-7625-06

Error Dump and Cleanup interface
The Error Dump and Cleanup (BBORLEXT) interface exists to call WebSphere Application Server for z/OS
in a recovery environment to allow it to request a dump and to clean up its resources.

The interface will:
v Save the function and DLL names of the failing z/OS component into the SDWA.
v Determine whether or not to issue an SDUMP, if relevant to the time-of-failure environment.
v Clean up z/OS internal structures and connections.

Program requirements: This interface must be called from within a WebSphere Application Server for
z/OS location service daemon, controller (region), or servant (region). There are no restrictions against in
which recovery environment, such as an ESTAE or FRR routine, the caller must reside.

General information

Interface BALR to BBORLEXT

Address of routine (ECVT+'234'x)+'20'x

Address mode AMODE 31, RMODE any

State Allow problem program state, task mode

Cross memory mode PASN=HASN=SASN (non-cross memory)

Return codes No return codes

Function Clean-up various WebSphere for z/OS resources and
possibly issue an SVC dump for the current address
space

Input register information

1 Contains the address of the SDWA

14 Contains the return address

15 Contains the entry point address of BBORLEXT

Output register information

When control returns to the caller, the contents of the registers are as follows:

0-1 Used as a work register by the system

2-14 Unchanged

15 Used as a work register by the system

Note: Some callers depend on register contents remaining the same before and after issuing a service. If
the system changes the contents of registers on which the caller depends, the caller must save
them before issuing the service and restore them after the system returns control.

Note: A dump will not occur for X22 abends or for certain reason codes from 0D6, 052, 067, CC3, and
DC3 abends. There may also be other error conditions that will not create a dump.

178 Troubleshooting and support

Example:
Example Here is an example of how to call this routine in assembler:
LA 1,SDWA Load SDWA@ in Reg 1
L 15,(0,16) Load CVT address
L 15,140(,15) Load ECVT address
L 15,564(,15) Load address of z/OS structure
L 15,32(,15) Load address of z/OS routine
BALR 14,15 Invoke z/OS routine

Displaying information about current application server work
You can use either the administrative console or z/OS MVS console commands to accomplish multiple
operator tasks that are related to application servers. The z/OS display or modify console commands can
be used to obtain information about the work an application server is performing. You can also use these
commands to perform tasks that are useful in diagnosing application server problems.

About this task

You can use the z/OS display or modify commands to perform the following actions:

v Set parameters that control application server operations.

v Display information about the work that an application server or servant is handling.

v Dynamically change values related to tracing activity for a server or servant.

With the modify command, you can display information about the following functions:

v Active controllers (servers)

v Servants

v Sessions

v Trace settings

v Java trace

v Java virtual machine (JVM) heap statistics

v Work elements

v Error logs

Procedure
1. Display the options for the modify command.

You can use the help parameter to display the options that you can specify for the modify command.
For example, entering the command, f azsr01a,help, generates information that is similar to the
following information:
BBOO0178I THE COMMAND MODIFY MAY BE FOLLOWED BY ONE OF THE FOLLOWING KEYWORDS:
BBOO0179I CANCEL - CANCEL THIS CONTROL REGION
BBOO0179I TRACEALL - SET OVERALL TRACE LEVEL
BBOO0179I TRACEBASIC - SET BASIC TRACE COMPONENTS
BBOO0179I TRACEDETAIL - SET DETAILED TRACE COMPONENTS
BBOO0179I TRACESPECIFIC - SET SPECIFIC TRACE POINTS
BBOO0179I TRACEINIT - RESET TO INITIAL TRACE SETTINGS
BBOO0179I TRACENONE - TURN OFF ALL TRACING
BBOO0179I TRACETOSYSPRINT - SEND TRACE OUTPUT TO SYSPRINT (YES/NO)
BBOO0179I DISPLAY - DISPLAY STATUS
BBOO0179I TRACE_EXCLUDE_SPECIFIC - EXCLUDE SPECIFIC TRACE POINTS
BBOO0179I TRACEJAVA - SET JAVA TRACE OPTIONS
BBOO0179I TRACETOTRCFILE - SEND TRACE OUTPUT TO TRCFILE (YES/NO)
BBOO0179I MDBSTATS - MDB DETAILED STATISTICS
BBOO0179I PAUSELISTENERS - PAUSE THE COMMUNICATION LISTENERS
BBOO0179I RESUMELISTENERS - RESUME THE COMMUNICATION LISTENERS
BBOO0179I TIMEOUTDUMPACTION - SET TIMEOUT DUMP ACTION
BBOO0179I TIMEOUTDUMPACTIONSESSION - SET TIMEOUT DUMP ACTION SESSION
BBOO0179I TRACETOTRCFILE - SEND TRACE OUTPUT TO TRCFILE DD CARD (YES/NO)

Chapter 11. Choosing and using diagnosis tools and controls on z/OS 179

BBOO0179I MDBSTATS - MDB DETAILED STATISTICSBBOO0179I PAUSELISTENERS - PAUSE THE COMMUNICATION LISTENERS
BBOO0179I RESUMELISTENERS - RESUME THE COMMUNICATION LISTENERS
BBOO0179I STACKTRACE - LOG JAVA THREAD STACK TRACEBACKS
BBOO0179I TIMEOUTDUMPACTION - SET TIMEOUT DUMP ACTION
BBOO0179I TIMEOUTDUMPACTIONSESSION - SET TIMEOUT DUMP ACTION SESSION
BBOO0179I WLM_MIN_MAX - RESET WLM MIN/MAX SERVANT SETTINGS

2. Use the display,help parameter to display the parameters for the DISPLAY command.

Entering the command, f azsr01a,display,help, generates information that is similar to the following
information:
BBOO0178I THE COMMAND DISPLAY, MAY BE FOLLOWED BY ONE OF THE FOLLOWING KEYWORDS:
BBOO0179I SERVERS - DISPLAY ACTIVE CONTROL PROCESSES
BBOO0179I SERVANTS - DISPLAY SERVANT PROCESSES OWNED BY THIS CONTROL PROCESS
BBOO0179I SESSIONS - DISPLAY INFORMATION ABOUT COMMUNICATIONS SESSIONS
BBOO0179I TRACE - DISPLAY INFORMATION ABOUT TRACE SETTINGS
BBOO0179I JVMHEAP - DISPLAY JVM HEAP STATISTICS
BBOO0179I WORK - DISPLAY WORK ELEMENTS
BBOO0179I ERRLOG - DISPLAY THE LAST 10 ENTRIES IN THE ERROR LOG
BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,HELP

3. Use the z/OS modifyserver,display,work command to obtain information that might help diagnose
problems, or to display application server information.

You can enter the command, f server_name,display,work,display_work_parameters,
whereserver_name is the name of the server about which you need to obtain information, and
display_work_parameters is one of the following parameters:

HELP
Displays the display,work parameters.

CLINFO
Displays transaction classification information.

EJB
Displays IIOP driven Enterprise JavaBeans (EJB) requests, including total, current, dispatched and
timed out.

EJB,SRS
Displays, by servant name, the IIOP driven EJB requests.

SERVLET
Displays HTTP driven servlet requests driven by HTTP, including total, current, dispatched and
timed out.

SERVLET,SRS
Displays, by servant name, HTTP driven servlet requests.

MDB
Displays Java Message Service (JMS) driven message-driven bean (MDB) requests, including
total, current, dispatched and timed out. Only messages received via MQ Message Listener Port
(MLP) listeners in the controller are displayed.

MDB,SRS
Displays, by servant name, Java Message Service (JMS) driven message-driven bean (MDB)
requests. Only messages received via MQ Message Listener Port (MLP) listeners in the controller
are displayed.

ALL
Displays all of the preceding information for enterprise beans, servlets, and MDBs.

ALL,SRS
Displays, by servant name, all of the preceding information for enterprise beans, servants, and
MDBs.

180 Troubleshooting and support

SUMMARY
Displays all of the current in-progress, and in-dispatch requests for enterprise beans, servlets, and
MDBs.

SUMMARY,SRS
Displays, by servant name, all of the current in-progress, and in-dispatch requests for enterprise
beans, servlets, and MDBs.

SIP
Displays the Session Initiation Protocol (SIP) requests driven, including total, current, dispatched
and timed out.

SIP,SRS
Displays the SIP requests broken down by servant.

OLA
Displays inbound Optimized Local Adapter (OLA) requests driven by services BBOA1INV and
BBOA1SRQ, including total, current, dispatched, and timed out.

OLA,SRS
Displays, by servant name, OLA requests driven by services BBOA1INV and BBOA1SRQ.

4. Display the content of the product error log using the display,errlog parameter of the modify command.

The output from this command displays the last ten messages in the error log, even if you are not
routing them to a log stream. For example, entering the command, f x5sr01b,display,errlog,
generates information that is similar to the following information:
BBOO0266I (STC18876) BossLog: { 0001} 2003/11/25 20:08:55.120 01
SYSTEM=SYSB SERVER=X5SR01B PID=0X010201B2 TID=0X12FB3F00 00000000
c=UNK ./bborjtr.cpp+812 ... BBOO0222I TRAS0017I: The startup trace
state is *=all=disabled.
BBOO0266I (STC18876) BossLog: { 0002} 2003/11/25 20:09:08.255 01
SYSTEM=SYSB SERVER=X5SR01B PID=0X010201B2 TID=0X12FB3F00 00000000
c=UNK ./bborjtr.cpp+812 ... BBOO0222I SECJ0231I: The Security
component’s FFDC Diagnostic Module com.ibm.ws.security.core.SecurityDM
registered successfully: true.
BBOO0266I (STC18876) BossLog: { 0003} 2003/11/25 20:09:09.562 01
SYSTEM=SYSB SERVER=X5SR01B PID=0X010201B2 TID=0X12FB3F00 00000000
c=UNK ./bborjtr.cpp+812 ... BBOO0222I SECJ0212I: WCCM JAAS
configuration information successfully pushed to login provider class.
BBOO0266I (STC18876) BossLog: { 0004} 2003/11/25 20:09:09.573 01
SYSTEM=SYSB SERVER=X5SR01B PID=0X010201B2 TID=0X12FB3F00 00000000
c=UNK ./bborjtr.cpp+812 ... BBOO0222I SECJ0240I: Security service
initialization completed successfully
BBOO0266I (STC18876) BossLog: { 0005} 2003/11/25 20:09:18.304 01
SYSTEM=SYSB SERVER=X5SR01B PID=0X010201B2 TID=0X12FB3F00 00000000

c=UNK ./bborjtr.cpp+812 ... BBOO0223I PMI0023W: Unable to register
PMI module due to duplicate name: SoapConnectorThreadPool
BBOO0266I (STC18876) BossLog: { 0006} 2003/11/25 20:09:29.451 01
SYSTEM=SYSB SERVER=X5SR01B PID=0X010201B2 TID=0X12FB3F00 00000000
c=UNK ./bborjtr.cpp+812 ... BBOO0222I SECJ0243I: Security service
started successfully
BBOO0266I (STC18876) BossLog: { 0007} 2003/11/25 20:09:29.464 01
SYSTEM=SYSB SERVER=X5SR01B PID=0X010201B2 TID=0X12FB3F00 00000000
c=UNK ./bborjtr.cpp+812 ... BBOO0222I SECJ0210I: Security enabled false
BBOO0266I (STC18876) BossLog: { 0008} 2003/11/25 20:09:35.772 01
SYSTEM=SYSB SERVER=X5SR01B PID=0X010201B2 TID=0X12FB3F00 00000000
c=UNK ./bborjtr.cpp+812 ... BBOO0223I PMI0023W: Unable to register PMI
module due to duplicate name: ProcessDiscovery
. . . .
BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,ERRLOG

5. Dynamically change values related to tracing activity for a server or servant using the z/OS modify
command.

Chapter 11. Choosing and using diagnosis tools and controls on z/OS 181

Table 40. z/OS modify command parameters and their equivalent WebSphere variables. The following table lists the
modify command parameters and the WebSphere variable that provides equivalent functionality.

z/OS modify command
parameter

Equivalent WebSphere variable For more information, see

TRACEALL ras_trace_defaultTracingLevel Internal tracing tips for WebSphere for
z/OS

TRACEBASIC ras_trace_basic

Do not change this variable unless
directed to do so by IBM Support.

Setting trace controls for IBM service

TRACEDETAIL ras_trace_detail

Do not change this variable unless
directed to do so by IBM Support.

Setting trace controls for IBM service

TRACESPECIFIC ras_trace_specific

Do not change this variable unless
directed to do so by IBM Support.

Setting trace controls for IBM service

TRACE_EXCLUDE_SPECIFIC ras_trace_exclude_specific

Do not change this variable unless
directed to do so by IBM Support.

Setting trace controls for IBM service

TRACEINIT (no equivalent variable) Example: Getting help for the modify
command

TRACENONE (no equivalent variable) Example: Getting help for the modify
command

TRACETOSYSPRINT ras_trace_outputLocation=SYSPRINT Internal tracing tips for WebSphere for
z/OS

TRACETOTRCFILE ras_trace_outputLocation=TRCFILE Internal tracing tips for WebSphere for
z/OS

TRACEJAVA (no equivalent variable) Example: Getting help for the modify
command

TIMEOUTDUMPACTION control_region_timeout_dump_action Application server custom properties for
z/OS

TIMEOUTDUMPACTIONSESSION control_region_timeout_dump_action_sessionApplication server custom properties for
z/OS

Example

The following command examples demonstrate how to use various display,work parameters and the
resulting output. If you enter the command, f azsr01a,display,work,all, all of the information that is
shown for each of the following individual commands is displayed.
f azsr01a,display,work,servlet

BBOO0255I TIME OF LAST WORK DISPLAY Wed Jan 3 19:17:54 2008
BBOO0256I TOTAL SERVLET REQUESTS 150670 (DELTA 1654)
BBOO0257I CURRENT SERVLET REQUESTS 1

BBOO0258I SERVLET REQUESTS IN DISPATCH 0
BBOO0267I TOTAL SERVLET TIMEOUTS 0 (DELTA 0)
BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,WORK,SERVLET

f azsr01a,display,work,servlet,srs

BBOO0255I TIME OF LAST WORK DISPLAY Wed Jan 3 19:18:01 2008

182 Troubleshooting and support

BBOO0259I STC18964: TOTAL SERVLET REQUESTS 152344 (DELTA 1675)
BBOO0260I STC18964: SERVLET REQUESTS IN DISPATCH 0
BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,WORK,SERVLET,ALL

(EJB and MDB displays would look the same except for the request type.)

f azsr01a,display,work,summary

BBOO0255I TIME OF LAST WORK DISPLAY Wed Jan 3 19:18:38 2008
BBOO0261I TOTAL REQUESTS TO SERVER 173591 (DELTA 13944)
BBOO0262I TOTAL CURRENT REQUESTS 0
BBOO0263I TOTAL REQUESTS IN DISPATCH 0
BBOO0268I TOTAL TIMED OUT REQUESTS 0 (DELTA 0)
BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,WORK,SUMMARY

f azsr01a,display,work,summary,srs

BBOO0255I TIME OF LAST WORK DISPLAY Wed Dec 3 19:27:01 2003
BBOO0264I STC18964: TOTAL REQUESTS 173591 (DELTA 0)
BBOO0265I STC18964: TOTAL REQUESTS IN DISPATCH 0
BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,WORK,SUMMARY,SRS

Some points to consider:

v Adding ,help at the end of the command displays your choices. For
example, entering the command, display,work,help, displays the options
that you can specify for the display,work command.

v Entering display,work produces the same output as entering
display,work,summary.

v The display,EJB command only displays IIOP requests. Therefore, if an
HTTP driven request runs a JavaServer page (JSP), and a servlet that calls
an enterprise bean, only the servlet count increases, because only requests
that are used to get to the controller are counted. The JSP does not use
the controller.

v When displaying the work by servant, only the total and in-dispatch
requests display. Without the SRS parameter, the current requests and
timeouts also display.

v Work continues while the data is collected. The current data is saved and
used to calculate the delta when the next command is issued. In a heavy
load situation, the displayed values and deltas might not add up as you
expect.

v Entering TOTAL displays all of the work items that were handled since the
last display,work command was entered. This display does not include the
current in-flight requests.

Chapter 11. Choosing and using diagnosis tools and controls on z/OS 183

184 Troubleshooting and support

Chapter 12. Using RMF

RMF can usually be started with the simple 'S RMF' command from the MVS console.

About this task

The Monitor III data gatherer can be started after RMF with the 'F RMF,S III' modify command. To use the
RMF Monitor 3 display, go to the "Sysplex Summary" display as follows:

Procedure
1. Type RMF on ISPF command line.

2. Type 3 to see Monitor III choices.

3. Type S to get Sysplex reports.

4. Type 1 to see the Sysplex Summary report. You can scroll back and forth in time with PF10 and PF11,
or over-type the time field. Look at the transactions in the WebSphere Application Server service and
reporting class and note the Average Response time, Transactions per second, and Performance
Index. You may also explore further in RMF Monitor III to see the "System Information" report.

Example

Here is a typical RMF procedure:

//RMF PROC
//IEFPROC EXEC PGM=ERBMFMFC,REGION=0M,PARM=’MEMBER(XS)’
//IEFPARM DD DDNAME=IEFRDER
//IEFRDER DD DSN=SYS1.PARMLIB,DISP=SHR

The following is a copy of the PARMLIB member ERBRMFXS: (parmeters beginning with a /* are not used
in this example but may be useful to you.

CPU /* COLLECT CPU STATISTICS */
CHAN /* COLLECT CHANNEL STATISTICS */
CYCLE(1000) /* SAMPLE AT 1 TIME / SECOND */
DEVICE(NOCHRDR) /* NO CHARACTER RDR DEV STATS */
DEVICE(COMM) /* ADDED COMM FOR 37X5 */
DEVICE(DASD) /* COLLECT DIRECT ACCESS DEVICE */
/* STATISTICS */
DEVICE(NOGRAPH) /* NO GRAPHICS DEVICE STATISTICS */
DEVICE(NOTAPE) /* NO TAPE DEVICE STATISTICS */
DEVICE(NOUNITR) /* NO UNIT RECORD DEVICE STATS */
ENQ(SUMMARY) /* ENQ REPORTING */
INTERVAL(15M) /* REPORT AT 15 MIN INTERVALS */
IOQ(DASD) /* I/O Q’ING FOR DEV IN LOG CU */
IOQ(COMM) /* I/O Q’ING FOR DEV IN LOG CU */
NOVSTOR /* NO RMF 3.2 AND LATER REL */
OPTIONS /* OPERATOR MAY CHG RMF OPTIONS */
PAGING /* COLLECT PAGING STATISTICS */
PAGESP /* COLLECT PAGE/SWAP DATASET STAT*/
RECORD /* RECORD INTO SMF DATASET */
NOSTOP /* STOP AFTER 90 MINUTES */
SYNC(SMF) /* INTERVAL SYNCED WITH SMF */

STDERR(H) /* STDERR CLASS OF OUTPUT REPORT */
WKLD(PERIOD,SYSTEM) /* COLLECT WORKLOAD MANAGER

STATISTICS AND REPORT AT THE
PERIOD LEVEL + TOTAL LINE */

TRACE(CCVUTILP)

© Copyright IBM Corp. 2011 185

186 Troubleshooting and support

Chapter 13. Collecting job-related information with the System
Management Facility (SMF)

Before you begin

SMF can be enabled to collect and record system and job-related information on the WebSphere for z/OS
system. This information can be used to bill users, report system reliability, analyze your configuration,
schedule work, identify system resource usage, and perform other performance-related tasks that your
organization may require.

About this task

You can enable SMF recording for:

v Capacity planning, to determine:
– How many transactions have run?
– What is the average and maximum completion time for methods running on each server?
– How many clients are attached to each server instance? Of these clients, how many are active?

v Application profiling:
– To show an application broken down into its component parts.
– To provide timing information on the application's component parts.

v Error reporting:
– To detect and record soft failures (those that are generated through an exception or those that are

performance-related).
– To use this error information to trigger an event that will cause an action to occur once a threshold

has been reached.

Procedure
v Read the article “Enabling SMF recording” on page 189 for information on enabling SMF type 120

records.

v Read “Viewing the output data set” on page 192 for steps on viewing the data you record.

v Read “Disabling SMF recording for WebSphere Application Server” on page 192 for steps on disabling
SMF data collection.

Example

The SMF Browser available on the WebSphere for z/OS download site is able to display record type 120.
To download the SMF Browser go to: https://www14.software.ibm.com/webapp/iwm/web/
preLogin.do?source=zosos390. For further information on the SMF Browser, download the browser
package and read the associated documentation.

The following example shows sample output from the SMF Browser. The example features subtype 7 and
subtype 8, in that order.
Record#: 14;
Type: 120; Size: 820; Date: Fri Nov 23 04:54:17 EST 2001;
SystemID: SY1; SubsystemID: WAS; Flag: 94;
Subtype: 7 (WEB CONTAINER ACTIVITY);
Triplets: 4;
Triplet #: 1; offset: 76; length: 32; count: 1;
Triplet #: 2; offset: 108; length: 140; count: 1;
Triplet #: 3; offset: 264; length: 556; count: 1;
Triplet #: 1; Type: ProductSection;

Version: 1; Codeset: Unicode; Endian: 1; TimeStampFormat: 1 (S390STCK64);
IndexOfThisRecord: 1; Total # records: 1; Total # triplets: 4;

Triplet #: 2; Type: WebContainerActivitySection;
HostName : PLEX1;

© Copyright IBM Corp. 2011 187

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=zosos390
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=zosos390

ServerName : BBOASR4;
ServerInstanceName: BBOASR4A;
WlmEnclaveToken * 00000020 00000242 -------- --------

* ^... * p1047
ActivityID * b6c7a7b7 14e9bc85 000000b0 00000007

* 0926306b -------- -------- --------
*,............ *Cp1047
ActivityStartTime * b6c7a7b7 14e9bc85 40404040 40404040 *
ActivityStopTime * b6c7a7b7 53a8a645 40404040 40404040 *

Triplet #: 3; Type: HttpSessionManagerActivitySection;
http sessions created: 0; # http sessions invalidated: 0;
http sessions active: 0;

Average session life time: 0 [sec*10**-3];
Triplet #: 4; Type: WebApplicationActivitySection;
Name: PolicyIVP-localhost_1;
Servlets: 1;
Triplet #: 4.1; offset: 272; length: 284; count: 1;
Triplet #: 4.1; Type: ServletActivitySection;
Name: SimpleFileServlet;
ResponseTime: 48 [sec*10**-3];
errors: 0;
Loaded by this request: 0;
Loaded since (raw): ea54948e0d;
Loaded since: Thu Nov 22 10:02:49 EST 2001;

Record#: 72;
Type: 120; Size: 1744; Date: Fri Nov 23 05:01:02 EST 2001;
SystemID: SY1; SubsystemID: WAS; Flag: 94;
Subtype: 8 (WEB CONTAINER INTERVAL);
Triplets: 4;
Triplet #: 1; offset: 76; length: 32; count: 1;
Triplet #: 2; offset: 108; length: 112; count: 1;
Triplet #: 3; offset: 264; length: 1480; count: 1;
Triplet #: 1; Type: ProductSection;

Version: 1; Codeset: Unicode; Endian: 1; TimeStampFormat: 1 (S390STCK64);
IndexOfThisRecord: 1; Total # records: 1; Total # triplets: 4;

Triplet #: 2; Type: WebContainerIntervalSection;
HostName : PLEX1;
ServerName : BBOASR4;
ServerInstanceName: BBOASR4A;
SampleStartTime * b6c7a6fd 655c0604 40404040 40404040 *
SampleStopTime * b6c7a939 9a0e614c 40404040 40404040 *

Triplet #: 3; Type: HttpSessionManagerIntervalSection;
http sessions #created: 1; #invalidated: 0;
http sessions #active: 0; Min #active: 0; Max #active: 0;
Average session life time: 0;
Average session invalidate time: 0;
http sessions #finalized: 0; #tracked: 0;
http sessions #min live: 0; #max live: 0;

Triplet #: 4; Type: WebApplicationIntervalSection;
Name: PolicyIVP-localhost_1;
Servlets loaded: 0;
Servlets: 4;
Triplet #: 4.1; offset: 312; length: 292; count: 1;
Triplet #: 4.2; offset: 604; length: 292; count: 1;
Triplet #: 4.3; offset: 896; length: 292; count: 1;
Triplet #: 4.4; offset: 1188; length: 292; count: 1;
Triplet #: 4.1; Type: ServletIntervalSection;

Name: SimpleFileServlet;
requests: 6;
AverageResponseTime: 764 [sec*10**-3];
MinimumResponseTime: 18 [sec*10**-3];
MaximumResponseTime: 4133 [sec*10**-3];
errors: 0;
Loaded since (raw): ea54948e0d;
Loaded since: Thu Nov 22 10:02:49 EST 2001;

Triplet #: 4.2; Type: ServletIntervalSection;
Name: Was40Ivp;

188 Troubleshooting and support

requests: 4;
AverageResponseTime: 4664 [sec*10**-3];
MinimumResponseTime: 1584 [sec*10**-3];
MaximumResponseTime: 12572 [sec*10**-3];
errors: 0;
Loaded since (raw): ea58a1509e;
Loaded since: Fri Nov 23 04:55:14 EST 2001;

Triplet #: 4.3; Type: ServletIntervalSection;
Name: /cebit.jsp;
requests: 1;
AverageResponseTime: 204 [sec*10**-3];
MinimumResponseTime: 204 [sec*10**-3];
MaximumResponseTime: 204 [sec*10**-3];
errors: 0;
Loaded since (raw): ea58a24a69;
Loaded since: Fri Nov 23 04:56:18 EST 2001;

Triplet #: 4.4; Type: ServletIntervalSection;
Name: JSP 1.1 Processor;
requests: 1;
AverageResponseTime: 482 [sec*10**-3];
MinimumResponseTime: 482 [sec*10**-3];
MaximumResponseTime: 482 [sec*10**-3];
errors: 0;
Loaded since (raw): ea54948b66;
Loaded since: Thu Nov 22 10:02:48 EST 2001;

Enabling SMF recording
Use this page to enable SMF recording for WebSphere Application Server and select SMF type 120
records for output to the SMF data sets.

About this task

For an overview of SMF recording, see Chapter 1 of z/OS MVS System Management Facilities
(SA22-7630)

To enable properties for specific record types, use the administrative console.

.

Procedure
1. Edit the SMFPRMxx parmlib member and update the SYS or SUBSYS(STC,...) statement to include

the type 120 record.
SUBSYS(STC,EXITS(IEFU29,IEFACTRT),INTERVAL(SMF,SYNC), TYPE(0,30,70:79,88,89,120,245))

2. Use the SET command to indicate which SMF parmlib member the system should use. You must issue
the SET command before you start WebSphere Application Server. If you issue the command after the
application server has started, SMF type 120 records will not be collected.

3. Enable SMF type 120 records.

4. Format the output data set.

Results

You have successfully enabled SMF recording when the SMF data is recorded in the data set which is
specified in SMFPRMxx.

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 189

http://publibz.boulder.ibm.com/epubs/pdf/iea2g233.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g233.pdf

Using the administrative console to enable properties for specific SMF
record types
You can use the administrative console to view or set SMF record properties for specific types of SMF
records.

Before you begin

Ensure that you have proper access to the administrative console.

About this task

To enable SMF, you must first use the administrative console to enable properties for specific record types.

Procedure
1. In the administrative console, click Servers > Application Servers > server_name.

2. On the configuration page, click Server Infrastructure > Java and Process Management > Process
Definition > Control > Environment Entries.

3. To enable SMF type 120 records, click New, and specify one or more of the following properties:

v name = server_SMF_server_activity_enabled = 1 (or server_SMF_server_activity_enabled = true)

v name = server_SMF_server_interval_enabled = 1 (or true)

v name = server_SMF_container_activity_enabled = 1 (or true)

v name = server_SMF_container_interval_enabled = 1 (or true)

v name = server_SMF_interval_length, value=n, where n is the interval, in seconds, that the system
will use to write records for a server instance. Set this value to 0 to use the default SMF recording
interval.

v name = server_SMF_request_activity_enabled = 1 (or true)

v name = server_SMF_request_activity_CPU_detail = 0. To enable the property, set the value to 1.

v name = server_SMF_request_activity_timestamps = 0 To enable the property, set the value to 1.

v name = server_SMF_request_activity_security = 0 To enable the property, set the value to 1.

4. Click OK or Apply.

5. Save the changes and make sure a file sync is performed before restarting the servers.

6. For the changes to take effect, restart the application server.

Results

You have successfully activated SMF recording for the product when SMF type 120 records are being
recorded.

Editing the SMFPRMxx parmlib member
Use this page to edit the SMFPRMxx parmlib member and enable SMF recording for WebSphere
Application Server for z/OS.

Before you begin

Make a working copy of the sample PARMLIB member SMFPRMYL.

About this task

Follow these steps to edit the SMFPRMxx parmlib member and enable SMF recording for WebSphere
Application Server:

190 Troubleshooting and support

Procedure
1. Insert an ACTIVE statement to indicate SMF recording. See z/OS MVS Initialization and Tuning Guide

for more information.

2. Insert a SYS statement to indicate the types of SMF records you want the system to create. For
example, use SYS(TYPE(120:120)) to select WebSphere Application Server type 120 records only.
Keep the number of selected record types small to minimize the performance impact.

3. You can specify the interval in which you want the Server and Container interval records created (if no
interval was specified in administrative console for the server or container definition) using the INTVAL
(mm) statement in the SMFPRMxx parmlib member . The default SMF recording interval is 30 minutes.
See z/OS MVS Initialization and Tuning Reference for more information.

The server and container interval records will use either:

v The value specified in the server/container definition as specified in the administrative console

v The interval specified in the SMF parmlib member (from the SMF product settings) if you specify a
length of 0.

Writing records to DASD
You can configure WebSphere Application Server for z/OS to write records to DASD locations.

Before you begin

Make sure you have your modified PARMLIB member SMFPRMxx.

About this task

Follow this step to start writing records to DASD:

Procedure

Issue the following command: t smf=xx where xx is the suffix of the SMF parmlib member (SMFPRMxx).
See z/OS MVS System Management Facilities (SMF), SA22-7630 for more information.

Results

Writing records to DASD has been completed successfully when the data is recorded in the data set which
is specified in SMFPRMxx.

Formatting the output data set
Use this page to format the SMF recording output data set into a readable format for printing to the screen
or other output device.

Before you begin

Make sure SMF recording is running.

About this task

Perform the following steps to format the SMF recording output data set into a readable format for printing
to the screen or other output device:

Procedure
1. Switch the SMF data sets by entering i smf from the MVS console to switch the SMF data sets.

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 191

2. Run the SMF Dump program (IFASMFDP) to create a sequential data set from the raw dump. A
sample JCL is shown in z/OS MVS System Management Facilities (SMF), SA22-7630.

Results

You have successfully formatted the output data set when SMFDUMP ends with return code 0.

Viewing the output data set
Use the SMF Browser to view the output data set from the WebSphere Application Server for z/OS UNIX
environment.

Before you begin

The data set should be viewed using a program that can display record type 120.

About this task

The SMF Browser is provided in the form of a JAR file named bbomsmfv.jar. The bbomsmfv.jar file is not
supported by IBM. To use it from the WebSphere Application Server for z/OS UNIX environment:

Procedure
1. Verify that the JAVA_HOME environment variable refers to the current Java installation:

JAVA_HOME=../usr/bin/java/J1.3. This must be at least Java 1.3 since this release is the first to
implicitly contain the necessary record support needed by the SMF Browser.

2. Download the SMF Browser from the WebSphere Application Server for z/OS website at:
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=zosos390.

3. Copy the bbomsmfv.jar file to your tools directory. Be sure that any edits made to the file in the future
are made to both copies of the file, or run from the installation directory in the first place.

4. To interpret SMF data from a cataloged WebSphere Application Server for z/OS sequential file named
"USER.SMFDATA" (which was previously created using the IFASMFDP utility as described previously),
run: java -cp bbomsmfv.jar com.ibm.ws390.sm.smfview.SMF "INFILE(USER.SMFDATA)". It is implicit in
the Java command parameterization that your current working directory is the tools directory. If this is
not the case, you receive a NoClassDefFoundError on com.ibm.ws390.sm.smfview.SMF message.
Java does not generate a diagnostic when it does not find the bbomsmfv.jar file in the current
directory.

Results

The SMF Browser is successfully installed and invoked when you do not receive any Java error messages
after the invocation and the Browser output is shown on the screen.

Disabling SMF recording for WebSphere Application Server
This information describes how to disable SMF recording for WebSphere Application Server for z/OS.

Before you begin

Ensure that you have proper access to the administrative console.

About this task

SMF recording can be enabled for WebSphere Application Server, and for z/OS. The following steps
describe how to disable SMF recording for WebSphere Application Server:

192 Troubleshooting and support

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=zosos390

Procedure
1. In the administrative console, click Servers > Application Servers > server_name.

2. On the configuration page, click Server Infrastructure > Java and Process Management > Process
Definition > Control > Environment Entries.

3. To disable SMF type 120 records, set the following properties to false:

v name = server_SMF_server_activity_enabled = 0 (or server_SMF_server_activity_enabled = false)

v name = server_SMF_server_interval_enabled = 0 (or false)

v name = server_SMF_container_activity_enabled = 0 (or false)

v name = server_SMF_container_interval_enabled = 0 (or false)

v name = server_SMF_request_activity_enabled = 0 (or false).

v name = server_SMF_request_activity_CPU_detail = 0. To enable the property, set the value to 1.

v name = server_SMF_request_activity_timestamps = 0 To enable the property, set the value to 1.

v name = server_SMF_request_activity_security = 0 To enable the property, set the value to 1.

v name = server_SMF_request_activity_enabled=0 (or server_SMF_request_activity_enabled=false).

Alternatively, you could delete the SMF related properties. However, it will be easier for you to enable
SMF recording later if you keep the properties in place and just change their values to false.

4. Click OK or Apply.

5. Save the changes and make sure a file sync is performed before restarting the servers.

6. For the changes to take effect, restart the application server.

Results

You have successfully disabled SMF recording for WebSphere Application Server when SMF records of
records type 120 are no longer being recorded.

Disabling SMF recording for the entire MVS system
Use this page to disable SMF recording for your MVS System (z/OS).

Before you begin

Make sure that you have your own working copy of SMFPRMxx and SMF is running.

About this task

SMF recording can be enabled for WebSphere Application Server and for z/OS. The following steps
describe how to disable SMF recording for your MVS System (z/OS):

Procedure

Edit the SMFPRMxx parmlib member and set SMFPRMxx to "NOACTIVE" which will disable the writing of
SMF records to DASD. Use the SET command to activate that SMF parmlib member on the MVS system.

Results

SMF recording has successfully been disabled for the whole MVS system when SMF records for z/OS and
WebSphere Application Server are no longer being written to DASD.

Using SMF type 80 - preparing for audit support
SMF type 80 requires some preparation in order to be fully utilized in a WebSphere environment.

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 193

Before you begin

As WebSphere Application Server becomes more capable of authentication and setting or changing the
identity on a thread, so arises the need for the ability to audit these changes. Along with this also comes
the need to audit the accompanying authorization requests made through EJBRoles checking, intending to
produce audit records that include the original authenticated identity. This auditing in WebSphere
Application Server is managed not through WebSphere Application Server itself, but through its External
Security Manager (RACF or equivalent), where the SMF records are cut.

About this task

In order to take advantage of auditing in WebSphere Application Server, you need to set up SMF and
RACF and have both running.

Procedure
1. Set up SMF for audit support. For information on setting up and starting SMF, see z/OS MVS System

Management Facilities (SMF), SA22-7630

2. Enable auditing for the EJB Roles by setting the RACF AUDIT attribute. This will set up RACF for
auditing in WebSphere Application Server. You can turn on auditing for the ADMIN and PAYROLL
classes with the following command:

RALTER EJBROLE (ADMIN,PAYROLL) AUDIT(ALL)
v Alternately, you could modify the RACFROLE job to put the AUDIT information there.
v For more information and additional parameters for the AUDIT attribute, see the z/OS Security

Server RACF Auditor's Guide.

Audit support
This topic gives an overview of how to use audit support.

Auditing is performed using SMF records issued by RACF or an equivalent External Security Manager.
This means that SMF audit records are cut as part of the WebSphere Application Server use of SAF
interfaces such as IRRSIA00 (to manage ACEEs) and the RACROUTE macro.

Table 41. Security authentication mechanisms and the corresponding data that is written to each part of the ACEE
X500NAME field. The following table lists the various security authentication mechanisms and the corresponding
data that is written to each part of the ACEE X500NAME field (this data is also in the RACO and SMF records).

Authentication
mechanism

Service name Authenticated identity

Custom Registry WebSphere Custom Registry Custom registry principal name
Kerberos Kerberos for WebSphere Application

Server
Kerberos principal, in the "DCE" format used for
extracting the corresponding MVS userid using
IRRSIM00 (/.../realm/principal)

RunAs Rolename WebSphere Role Name Role name
RunAs Server WebSphere Server Credential MVS userid
Trust Interceptor WebSphere Authorized Login MVS userid
RunAs Userid/Password WebSphere Userid/Password MVS Userid

In addition to tracking by MVS userid, events need to be traced to an originating userid. This is especially
true for originating userids that are not MVS-based, such as EJB Roles, Kerberos principals, and Custom
Registry principals.

SMF settings
Configure SMF records to collect job information to tune application server performance.

194 Troubleshooting and support

Here is a sample SMFPRMxx member that will create interval records every 2 minutes, and record the
following SMF record types:
v 30 - Address space
v 70-79 - RMF
v 82 - Crypto
v 88-90 - System Logger, Usage & System Data
v 101 - DB2
v 110 - CICS®

v 120 - WebSphere

ACTIVE /*ACTIVE SMF RECORDING*/
DSNAME(&SYSNAME..MAN1, &SYSNAME..MAN2) /*TWO MAN DATASETS */
LISTDSN /* LIST DATA SET STATUS AT IPL*/
NOPROMPT /* DON’T PROMPT THE OPERATOR */
INTVAL(02) /* SMF GLOBAL RECORDING INTERVAL */
SYNCVAL(00) /* GLOBAL SYNC VALUE */
MAXDORM(3000) /* WRITE AN IDLE BUFFER AFTER 30 MIN*/
STATUS(010000) /* WRITE SMF STATS AFTER 1 HOUR*/
SID(&SYSNAME(1:4)) /* USE SYSNAME AS SID */
SUBSYS(STC,INTERVAL(SMF,SYNC),

TYPE(0,30,70:79,88:90,101,110,120))

Set the SMF recording interval to 2 minutes by using the 'SET SMF=xx' command to activate the
SMFPRMxx member from SYSx.PARMLIB. Use the 'D SMF,O' command to display the parameters in
effect.

Use a tool like WSWS to simulate an application stress load.

While the transactions are running, switch to SDSF and RMF to observe the transactions.

SMF record type 120: overview
Information resulting from the SMF data gathering process for WebSphere Application Server for z/OS is
held in SMF record type 120.

This information is typically presented with the help of a SMF data viewing tool. This record format
description is intended to enable your tool providers to design a SMF data viewing tool. Your system
administrators will use a SMF data viewing tool with a description presented by your tool provider, since it
requires them to make proper selections that limit the amount of presentation data. For example, they
might want to view a specific time frame and only specific containers, classes, and methods. They may
also occasionally need to refer to the record descriptions.

Two types of SMF records can be produced: activity records and interval records.

v Activity records are gathered as each activity within a server is completed. An activity is a logical unit of
business function. It can be a server or user-initiated transaction.

v Interval records consist of data gathered at installation-specified intervals and provide capacity planning
and reliability information.

For additional information about using SMF records, see z/OS MVS System Management Facilities (SMF),
SA22-7630.

Viewing records with the SMF Browser

You can use the SMF Browser, that is available on the product download site, to display record type 120.
To download the SMF Browser, go to: https://www14.software.ibm.com/webapp/iwm/web/
preLogin.do?source=zosos390.

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 195

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=zosos390
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=zosos390

The documentation that is provided with the download package describes how to use this tool.

SMF record type 120 (78) - WebSphere Application Server performance
statistics
WebSphere Application Server writes record type 120 to collect WebSphere Application Server
performance statistics.

For more information about SMF record types, see z/OS MVS System Management Facilities (SMF).

All subtypes of the record type 120 have the following format:
v Standard header section
v Individual header extension for subtype x
v Product section
v Subtype-specific sections listed below.

Record type 120 has the following subtypes:
v Subtype 1: Server activity record

– Server activity section (one section per record):

Contains information about each activity that occurred within one server.
– Communication session section (zero, one, or multiple sections per record):

Contains information about each communication session.
– JVM heap section (zero, one, or multiple sections per record):

Contains information about the heap in a server region.
v Subtype 3: Server interval record

– Server interval section (one section per record):

Contains aggregated information about all activities that occurred within the specified server interval.
– Server region section (zero, one, or multiple sections per record):

Contains information about server regions in the specified interval.
v Subtype 5: J2EE container activity record

– J2EE container activity section (one section per record):

Contains information about each activity that occurred within one J2EE container.
– Bean section (multiple (0..n) sections per record):

Contains information about all beans involved in this activity.
– Bean method section (multiple (0..n) sections per bean section):

Contains information about all methods of this bean involved in this activity.
v Subtype 6: J2EE container interval record

– J2EE container interval section (one section per record):

Contains aggregated information about all activities that occurred within one J2EE container in the
specified interval.

– Bean section (multiple (0..n) sections per record, see subtype 5):

Contains information about all beans involved in this activity in the specified interval.
– Bean method section (multiple (0..n) sections per bean section, see subtype 5):

Contains information about all methods of this class involved in this activity in the specified interval.
v Subtype 7: WebContainer activity record (Version 2)

– WebContainer activity section (one section per record):

Contains information about each activity that occurred within one WebContainer.
– HttpSessionManager activity section (one section per record):

Contains information about all sessions involved in this activity.
– WebApplication activity section (multiple (0..n) sections per record):

Contains information about all WebApplications involved in this activity.
- Servlet activity section (multiple (0..n) sections per WebApplication section):

196 Troubleshooting and support

Contains information about all Servlets involved in this activity.
v Subtype 8: WebContainer interval record (Version 2)

– WebContainer interval section (one section per record):

Contains information about each activity that occurred within one WebContainer in the specified
interval.

– HttpSessionManager interval section (one section per record):

Contains information about all sessions involved in this activity in the specified interval.
– WebApplication interval section (multiple (0..n) sections per record):

Contains information about all WebApplications involved in this activity in the specified interval.
- Servlet interval section (multiple (0..n) sections per WebApplication section):

Contains information about all Servlets involved in this activity in the specified interval.
v Subtype 9: Request Activity record

– Platform neutral server information section (one section per record):

Contains information about each activity that occurred within one server.
– z/OS server information section (one section per record):

Contains information about each server servant in the specified server.
– Platform neutral request information section

Contains information about each request that was received by one server.
– z/OS request information section

Contains information about each request that was received by each server servant in the specified
server.

– z/OS formatted timestamps section

Contains the date and time information for all of the actions that each server servant in the specified
server performed. These sections are optional.

– Network data for HTTP, SIP and IIOP transports section (zero or one section per record):

Contains information about either the HTTP, SIP or IIOP transports that are associated with one
server. There is a separate network data section for the HTTP requests, the SIP requests, and the
IIOP requests.

– Classification data section (multiple (0..n) sections per record):

Contains the classification information for each HTTP, SIP, and IIOP request received by a server.
There is a separate classification data section for each piece of classification information.

– Security data section (multiple (0..n) sections per record):

Contains the security information for each request received by a server. There is a separate security
data section for each identity type. These sections are optional.

– CPU usage breakdown section (multiple (0..n) sections per record):

Contains information about each item that was called and the CPU time that the task consumed,
minus the time it spent waiting for tasks it initiated to complete. This calculation is different from the
way CPU time is calculated in the container records. This section is optional.

– User data section (multiple (0..n) sections per record):

Contains information that is added by applications that use the SMF 120 subtype 9 user data APIs.

Triplets
You can use triplets to build self-describing SMF records that contain various types of data sections and a
varying number of each of these sections.

All data sections are described by triplets that consist of:

1. An offset that specifies the start position of the data

2. A length that describes the length of the section

3. A count that describes how many instances of the section are included in this record.

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 197

The two triplets that describe the product section and the general record information section (for example,
the section describing the container itself in a container activity record) are located at fixed positions within
the record. This allows one to start evaluating the record right after having evaluated the record header.

SMF record splitting
Since most of the WebSphere Application Server SMF records are used to describe variable-length data
structures (for example, there might be hundreds of classes by container and hundreds of methods by
class), the SMF records may be larger than the maximum record size supported by SMF (32KB). In this
case, the logical records need to be split into several physical records.

Each of those physical records needs to be self-describing and self-contained. Self-describing indicates
what we described in the paragraph on triplets before; it is a purely mechanical structure to help read a
record. Self-contained indicates that, even if we have only a subset of the physical records at hand that
together describe the original logical record, we need to be able to evaluate these records, combine the
information stored in them, and set an 'incomplete' flag. This is required since, as we break up a logical
record into physical records and write them to SMF one after the other, SMF might decide that only the
first few physical records fit into the primary SMF dump dataset whereas the remaining physical records
are written into an alternate SMF dump dataset. At the time when a formatted SMF dump dataset is
evaluated, we may not assume that all physical records that make up one logical record are present. For
example, self-containedness of a physical container activity record means that it contains the description of
the container, but not necessarily all of its classes.

We use a similar splitting mechanism like the one that is currently used in the RMF product. Note that in
the case of container records (subtypes 5, 6,7, and 8), we cannot assume that records will be split at a
class boundary, but we must consider the case when the methods that belong to one class also need to
be split over multiple physical records.

Note: The section length numbers used throughout the following diagrams are only for demonstrative
purposes. In particular, the arrows indicating 32K boundaries or the total length of the records are
placed at random. You can fit many more classes and methods into a physical record than
suggested by the diagrams.

Record environment and mapping
This page provides information on record environments and record mapping.

Record environment

The following conditions exist for the generation of this record:
v

Macro SMFWTM (record exit: IEFU83)
Mode Task
Addressing mode

31-bit

Record mapping

For a description of the common SMF record header fields and the triplet fields (offset/length/number), if
applicable, that locate the other sections on the record, see Header/Self-defining section.

For a description of triplets, see Using Triplets and MVS System Management Facilities (SMF)"
(SA22-7630).

Header/self-defining section:

These tables describe the header/self-defining section of an SMF record.

198 Troubleshooting and support

http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf

Table 42. Header/self-defining section of an SMF record. This section contains the common SMF
record headers fields and the triplet fields (offset/length/number), if applicable, that locate the
other sections on the record.
Offset (decimal) Offset

(hexadecimal)
Name Length Format Description

0 0 SM120LEN 2 binary Record length. This field and the
next field (total of four bytes) form
the RDW (record descriptor word).
See "Standard SMF record
header" in MVS System
Management Facilities (SMF)"
(SA22-7630), for a detailed
description.

2 2 SM120SEG 2 binary Segment descriptor (see record
length field)

4 4 SM120FLG 1 binary Bit meaning when set

0: New SMF record format

1: Subtypes used

2: Reserved

3-6: Version indicators*

7: Reserved

*See "Standard SMF record
header" in MVS System
Management Facilities (SMF)"
(SA22-7630), for a detailed
description.

5 5 SM120RTY 1 binary Record type 120(X'78')

6 6 SM120TME 4 binary Time since midnight, in hundredths
of a second, that the record was
moved into the SMF buffer.

10 A SM120DTE 4 packed Date when the record was moved
into the SMF buffer, in the form 0
cyydddF. See "Standard SMF
record header" in MVS System
Management Facilities (SMF)"
(SA22-7630), for a detailed
description.

14 E SM120SID 4 EBCDIC System identification (from the
SMFPRMxx SID parameter)

18 12 SM120SSI 4 EBCDIC Subsystem identification from
SUBSYS parameter

22 16 SM120RST 2 binary Record subtype:

1: Server activity

2: Container activity

3: Server interval

4: Container interval.

5: J2EE container activity

6: J2EE container interval

7: WebContainer activity

8: WebContainer interval

9: Request Activity record

24 18 SM120TRN 4 binary Number of triplets in the record.

28 1C SM120PRS 4 binary Offset to product section from
RDW.

32 20 SM120PRL 4 binary Length of product section.

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 199

http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf

Table 42. Header/self-defining section of an SMF record (continued). This section contains the
common SMF record headers fields and the triplet fields (offset/length/number), if applicable, that
locate the other sections on the record.
36 24 SM120PRN 4 binary Number of product sections.

Individual header extension for subtype 1

40 28 SM120SAS 4 binary Offset to server activity section
from RDW

44 2C SM120SAL 4 binary Length of server activity section

48 30 SM120SAN 4 binary Number of server activity sections

52 34 SM120CSS 4 binary Offset to communication session
section from RDW

56 38 SM120CSL 4 binary Length of communication session
section

60 3C SM120CSN 4 binary Number of communication session
sections

64 40 SM120JHS 4 binary Offset to JVM heap section from
RDW

68 44 SM120JHL 4 binary Length of JVM heap section

72 48 SM120JHN 4 binary Number of jvm heap sections

Individual header extension for subtype 3

40 28 SM120SIS 4 binary Offset to server interval section
from RDW

44 2C SM120SIL 4 binary Length of server interval section

48 30 SM120SIN 4 binary Number of server interval sections

The following triplet appears 0-n times; once for each server region section.

52 34 SM120SRS 4 binary Offset to server region section from
RDW

56 38 SM120SRL 4 binary Length of server region section

60 3C SM120SRN 4 binary Number of server region sections

Individual header extension for subtype 5

40 28 SM120JA1 4 binary Offset to J2EE container activity
section from RDW

44 2C SM120JA2 4 binary Length of J2EE container activity
section

48 30 SM120JA3 4 binary Number of J2EE container activity
sections

The following triplet appears 0-n times; once for each bean section.

52 34 SM120JAS 4 binary Offset to bean section from RDW

56 38 SM120JAL 4 binary Length of bean section

60 3C SM120JAN 4 binary Number of bean sections

Individual header extension for subtype 6

40 28 SM120JI1 4 binary Offset to J2EE container interval
section from RDW

44 2C SM120JI2 4 binary Length of J2EE container interval
section

200 Troubleshooting and support

48 30 SM120JI3 4 binary Number of J2EE container interval
sections

The following triplet appears 0-n times; once for each bean section.

52 34 SM120JIS 4 binary Offset to bean section from RDW

56 38 SM120JIL 4 binary Length of bean section

60 3C SM120JIN 4 binary Number of bean sections

Individual header extension for subtype 7

40 28 SM120WA1 4 binary Offset to WebContainer activity
section from RDW.

44 2C SM120WA2 4 binary Length of WebContainer activity
section.

48 30 SM120WA3 4 binary Number of WebContainer activity
sections.

52 34 SM120WA4 4 binary Offset to HttpSessionManager
activity section from RDW.

56 38 SM120WA5 4 binary Length of HttpSessionManager
activity section.

60 3C SM120WA6 4 binary Number of HttpSessionManager
activity sections.

The following triplet appears 0-n times, once for each WebApplication section.

64 40 SM120WA7 4 binary Offset to WebApplication section
from RDW.

68 44 SM120WA8 4 binary Length of WebApplication section.

72 48 SM120WA9 4 binary Number of WebApplication
sections.

Individual header extension for subtype 8

40 28 SM120WI1 4 binary Offset to WebContainer interval
section from RDW.

44 2C SM120WI2 4 binary Length of WebContainer interval
section.

48 30 SM120WI3 4 binary Number of WebContainer interval
sections.

52 34 SM120WI4 4 binary Offset to HttpSessionManager
interval section from RDW.

56 38 SM120WI5 4 binary Length of HttpSessionManager
interval section.

60 3C SM120WI6 4 binary Number of HttpSessionManager
interval sections.

The following triplet appears 0-n times, once for each WebApplication section.

64 40 SM120WI7 4 binary Offset to WebApplication section
from RDW.

68 44 SM120WI8 4 binary Length of WebApplication section.

72 48 SM120WI9 4 binary Number of WebApplication
sections.

Individual header extension for subtype 9

24 18 SM1209AA 4 binary Subtype version number

28 1C SM1209AB 4 binary Number of triplets

32 20 SM1209AC 4 binary Index of this record

36 24 SM1209AD 4 binary Total number of records

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 201

40 28 SM1209AE 8 EBCDIC Record continuation token

The following triplet appears for the Platform neutral server information section.

48 30 SM1209AF 4 binary The offset to the Platform neutral
server information section

52 34 SM1209AG 4 binary The length of the Platform neutral
server information section

56 38 SM1209AH 4 binary The number of Platform neutral
server information sections

The following triplet appears for the z/OS server information section.

60 3C SM1209AI 4 binary The offset to the z/OS server
information section

64 40 SM1209AJ 4 binary The length of the z/OS server
information section

68 44 SM1209AK 4 binary The number of z/OS server
information sections

The following triplet appears for the Platform neutral request information section.

72 48 SM1209AL 4 binary The offset to the Platform neutral
request information section

76 4C SM1209AM 4 binary The length of the Platform neutral
request information section

80 50 SM1209AN 4 binary The number of Platform neutral
request information sections

The following triplet appears for the z/OS request information section.

84 54 SM1209AO 4 binary The offset to the z/OS request
information section

88 58 SM1209AP 4 binary The length of the z/OS request
information section

92 5C SM1209AQ 4 binary The number of z/OS request
information sections

The following triplet appears for the z/OS formatted timestamps section. This section contains zeros when the formatted timestamps
are not being collected.

96 60 SM1209AR 4 binary The offset to the z/OS formatted
timestamps section

100 64 SM1209AS 4 binary The length of the z/OS formatted
timestamps section

104 68 SM1209AT 4 binary The number of z/OS formatted
timestamps sections

The following triplet contains network information. Only one version of this section appears for IIOP, HTTP transports, and SIP
transports. This section does not appear for MDBs, or for internal protocols.

108 6C SM1209AU 4 binary The offset to the Network data for
HTTP, SIP and IIOP transports
section

112 70 SM1209AV 4 binary The length of the Network data for
HTTP, SIP and IIOP transports
section

116 74 SM1209AW 4 binary The number of Network data for
HTTP, SIP and IIOP transports
sections

The following triplet appears for the Classification data section.

120 78 SM1209AX 4 binary The offset to the Classification
data section

124 7C SM1209AY 4 binary The length of the Classification
data section

128 80 SM1209AZ 4 binary The number of Classification data
sections

202 Troubleshooting and support

The following triplet appears for the Security data section.

132 84 SM1209BA 4 binary The offset to the Security data
section

136 88 SM1209BB 4 binary The length of the Security data
section

140 8C SM1209BC 4 binary The number of Security data
sections

The following triplet appears 0-30 times for the CPU usage breakdown sections.

144 90 SM1209BD 4 binary The offset to the CPU usage
breakdown

148 94 SM1209BE 4 binary The length of the CPU usage
breakdown section

152 98 SM1209BF 4 binary The number of CPU usage
breakdown sections

The following triplet appears for the user data section.

156 9C SM1209FB 4 binary The offset to the user data section

160 A0 SM1209FC 4 binary The length of the user data
section

164 A4 SM1209FD 4 binary The number of user data sections

36 24 SM120AAD 4 binary Total number of records

Product section:

These tables describe the product section of an SMF record.

Product section

Table 43. Product section. This section contains the product that generated the record.
Offset Offset Name Length Format Description

0 0 SM120MFV 4 binary CB SMF version

4 4 SM120COD 8 EBCDIC Character codeset in which
strings in the SMF record are
encoded

12 C SM120END 4 binary Encode of numbers in the SMF
record

16 10 SM120TSF 4 binary Encoding of timestamps:

1: S390STCK64: The time
values are encoded in 64-bit
S/390 Store Clock format.

Reassembly information.

20 14 SM120IXR 4 binary Index of this record

24 18 SM120NRC 4 binary Total number of records

28 1C SM120NTR 4 binary Total number of triplets

SMF Subtype 1: Server activity record:

The server activity SMF record is used to record activity that is running inside a WebSphere Application
Server for z/OS. This record can be used to perform basic charge-back accounting and to profile your
applications to determine, in detail, what is happening inside the WebSphere Application Server
transaction server.

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 203

A single record is created for each activity that is run inside a server or server instance. If the activity runs
in multiple servers, then a record is written for each server.

You can activate this record through the administrative console by setting
server_SMF_server_activity_enabled=1 (or server_SMF_server_activity_enabled=true). See “Using
the administrative console to enable properties for specific SMF record types” on page 190 for instructions.

Server activity record schema

This section includes Subtype 1: Server activity record.

Server activity section

Table 44. Server activity section. The Server activity section contains information about each activity that occurred
within one server.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120HNM 64 EBCDIC WebSphere Application Server for z/OS transaction
server host name

64 40 SM120SNA 8 EBCDIC WebSphere Application Server for z/OS transaction
server name

72 48 SM120INA 8 EBCDIC WebSphere Application Server for z/OS transaction
server instance name

80 50 SM120SNM 4 binary Total number of server servants that were involved
to process this activity. If applicable, up to the first
five server servant address space IDs are listed
within the next five fields.

84 54 SM120SR1 4 binary The specific WebSphere Application Server for
z/OS transaction server instance server servant
where the request ran

88 58 SM120SR2 4 binary The specific WebSphere Application Server for
z/OS transaction server instance server servant
where the request ran

92 5C SM120SR3 4 binary The specific WebSphere Application Server for
z/OS transaction server instance server servant
where the request ran

96 60 SM120SR4 4 binary The specific WebSphere Application Server for
z/OS transaction server instance server servant
where the request ran

100 64 SM120SR5 4 binary The specific WebSphere Application Server for
z/OS transaction server instance server servant
where the request ran

104 68 SM120CRE 8 EBCDIC The user credentials under which the activity
began. Due to deferred security authentication, the
user credentials assigned to the request when it
first reaches the server will often be the
unauthenticated guest ID, and not the ID of the
authenticated user that submitted the request.

112 70 SM120ATY 4 binary Type of activity that this record references:

1: Method request: This record refers to a method
request that is not part of a global transaction.

2: Transaction: This record refers to a transaction.

116 74 SM120AID 20 HEX Identity of the activity

136 88 SM120WLM 8 HEX WLM enclave token

144 90 SM120AST 16 S390STCK Activity start time

160 A0 SM120AET 16 S390STCK Activity stop time

176 B0 SM120NIM 4 binary Number of input methods

180 B4 SM120NGT 4 binary Number of global transactions that were started in
the server servant

204 Troubleshooting and support

Table 44. Server activity section (continued). The Server activity section contains information about each activity that
occurred within one server.
184 B8 SM120NLT 4 binary Number of local transactions that were started in

the server servant

188 BC SM120J2E 4 binary J2EE server

192 C0 SM120CEL 8 EBCDIC WebSphere Application Server for z/OS cell name

200 C8 SM120NOD 8 EBCDIC WebSphere Application Server for z/OS node name

208 D0 SM120WCP 8 binary Total CPU time accumulated by the WLM enclave.
TOD clock format (bit 51 = microseconds).

Communications session section

Table 45. Communications session section. There are zero, one, or multiple sections per record. The Communications
session section contains information about each communication session.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120CSH 8 HEX Communications session handle

8 8 SM120CSA 64 EBCDIC Communications session address

72 48 SM120CSO 4 binary Communications session optimization

1: Local communications session: The session is
a local OS/390® optimized communications
session.

2: Remote communications session: The session
is a remote communications session.

3: Remote encrypted (SSL)

4: Remote within sysplex.

5: HTTP session.

6: HTTP encrypted session.

7. Message-driven bean session

76 4C SM120SDR 4 binary Data received; the number of bytes received by
the server.

'FFFFFFFF'X indicates the 4-byte field is too
small. Use SM120CDR, an 8-byte field, instead.

80 50 SM120SDT 4 binary Data transferred; the number of bytes transferred
from the server back to the client.

'FFFFFFFF'X indicates the 4-byte field is too
small. Use SM120CDT, an 8-byte field, instead.

84 54 SM120CDR 8 binary Data received; the number of bytes received by
the server.

92 5C SM120CDT 8 binary Data transferred; the number of bytes transferred
from the server back to the client.

JVM Heap section

There are zero, one, or multiple sections per record. The JVM heap section contains information about the
heap in each server servant.

Table 46. JVM Heap section. The information in the JVM heap section comes from the QueryGCStatus() JNI function.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120JHA 4 binary Servant address space ID

4 4 SM120JHH 4 binary The heap for which the following data applies.

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 205

Table 46. JVM Heap section (continued). The information in the JVM heap section comes from the QueryGCStatus()
JNI function.
8 8 SM120JHC 4 binary The total number of allocation failures on this

heap or, if querying shared storage, the subpool
identifier. A negative value indicates the
information is for the shared memory page pool.

12 C SM120JHF 8 binary The total number of free bytes in the
heap/subpool/page pool.

20 14 SM120JHT 8 binary The total number of bytes in the heap, subpool,
or page pool.

SMF Subtype 3: Server interval record:

The purpose of the server interval SMF record is to record activity that is running inside a WebSphere
Application Server for z/OS. This record is produced at regular intervals and is an aggregate of the work
that ran inside the server instance during the interval.

A single record is created for each server instance that has interval recording active during the interval.
When a server is configured with multiple server instances, each server instance writes a record and the
records from all the server instances must be merged by whoever is looking at the SMF records to get a
complete view of the work that ran inside the logical server.

You can activate this record through the administrative console by setting
server_SMF_server_interval_enabled=1 (or server_SMF_server_interval_enabled=true). You can
specify an interval through the administrative console by setting server_SMF_interval_length=n, where n is
the desired number of seconds.

Server interval record schema

This section includes Subtype 3: Server interval record.

Server interval section

Table 47. Server interval section. The server interval section contains information about each activity that occurred
within one server.
Offset (decimal) Offset

(hexadecimal)
Name Length Format Description

0 0 SM120HN2 64 EBCDIC WebSphere Application Server for z/OS
transaction server host name

64 40 SM120SNI 8 EBCDIC WebSphere Application Server for z/OS
transaction server name

72 48 SM120INI 8 EBCDIC WebSphere Application Server for z/OS
transaction server instance name

80 50 SM120SST 16 S390STCK Time that the sample began in the server

96 60 SM120SET 16 S390STCK Time that the sample ended

112 70 SM120NG2 4 binary Number of global transactions that have run
through the server instance during the interval
that have been initiated by the server instance
during the interval

116 74 SM120NL2 4 binary Number of local transactions that have been
initiated by the server instance during the
interval

120 78 SM120NCS 4 binary Reserved

124 7C SM120NCA 4 binary The number of communications sessions that
have been active during the interval

128 80 SM120NLS 4 binary Reserved

206 Troubleshooting and support

Table 47. Server interval section (continued). The server interval section contains information about each activity that
occurred within one server.
132 84 SM120NLA 4 binary Number of active local communication sessions

that have been attached and active within the
server instance during the interval

136 88 SM120NRS 4 binary Reserved

140 8C SM120NRA 4 binary Number of active remote communication
sessions that have been attached and active
within the server instance during the interval

144 90 SM120BTS 4 binary Number of bytes that have been transferred to
the server from all attached clients

'FFFFFFFF'X indicates the 4-byte field is too
small. Use SM120ITS, an 8-byte field, instead.

148 94 SM120BFS 4 binary Number of bytes that have been sent from the
server to all attached clients

'FFFFFFFF'X indicates the 4-byte field is too
small. Use SM120IFS, an 8-byte field, instead.

152 98 SM120BTL 4 binary Number of bytes that have been transferred to
the server from all locally attached clients

'FFFFFFFF'X indicates the 4-byte field is too
small. Use SM120ITL, an 8-byte field, instead.

156 9C SM120BFL 4 binary Number of bytes that have been transferred
from the server to all locally attached clients

'FFFFFFFF'X indicates the 4-byte field is too
small. Use SM120IFL, an 8-byte field, instead.

160 A0 SM120BTR 4 binary Number of bytes that have been transferred to
the server from all remotely attached clients

'FFFFFFFF'X indicates the 4-byte field is too
small. Use SM120ITR, an 8-byte field, instead.

164 A4 SM120BFR 4 binary Number of bytes that have been transferred
from the server to all remotely attached clients

'FFFFFFFF'X indicates the 4-byte field is too
small. Use SM120IFR, an 8-byte field, instead.

168 A8 SM120J2 4 binary J2EE server.

172 AC SM120CL1 8 EBCDIC WebSphere Application Server for z/OS
transaction server cell name

180 B4 SM120ND1 8 EBCDIC WebSphere Application Server for z/OS
transaction server node name

188 BC SM120NHS 4 binary Reserved

192 C0 SM120NHA 4 binary Number of HTTP communication sessions that
have been attached and active within the server
instance during the interval

196 C4 SM120BTH 4 binary Number of bytes that have been transferred to
the server from all HTTP attached clients

'FFFFFFFF'X indicates the 4-byte field is too
small. Use SM120ITH, an 8-byte field, instead.

200 C8 SM120BFH 4 binary Number of bytes that have been transferred
from the server to all HTTP attached clients

'FFFFFFFF'X indicates the 4-byte field is too
small. Use SM120IFH, an 8-byte field, instead.

204 CC SM120TEC 8 binary Total CPU time accumulated by the WLM
enclaves. TOD clock format (bit 51 =
microseconds).

212 D4 SM120ITS 8 binary Number of bytes that have been transferred to
the server from all attached clients.

220 DC SM120IFS 8 binary Number of bytes that have been sent from the
server to all attached clients

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 207

Table 47. Server interval section (continued). The server interval section contains information about each activity that
occurred within one server.
228 E4 SM120ITL 8 binary Number of bytes that have been transferred to

the server from all locally attached clients

236 EC SM120IFL 8 binary Number of bytes that have been transferred
from the server to all locally attached clients

244 F4 SM120ITR 8 binary Number of bytes that have been transferred to
the server from all remotely attached clients

252 FC SM120IFR 8 binary Number of bytes that have been transferred
from the server to all remotely attached clients

260 104 SM120ITH 8 binary Number of bytes that have been transferred to
the server from all HTTP attached clients

268 10C SM120IFH 8 binary Number of bytes that have been transferred
from the server to all HTTP attached clients

276 114 SM120ITP 8 binary Number of bytes that have been transferred to
the server from all SIP attached clients

284 11C SM120IFP 8 binary Number of bytes that have been transferred
from the server to all SIP attached clients.

292 124 SM120NPA 4 Binary Number of SIP communication sessions that
have been attached and active within the server
instance during the interval

296 128 SM120BTP 4 binary Number of bytes that have been transferred to
the server from all SIP attached clients.
'FFFFFFFF"X indicates the 4-byte field is too
small. Use SM120ITP, an 8-byte field, instead.

300 12C SM120BFP 4 binary Number of bytes that have been transferred
from the server to all SIP attached clients.
'FFFFFFFF"X indicates the 4-byte field is too
small. Use SM120IFP, an 8-byte field, instead.

304 130 SM120IR1 4 Reserved

Server servant section

.

Table 48. Server servant section. There are zero, one, or multiple sections per record. The server servant section
contains information about each server servant in the specified server interval
Offset Offset Name Length Format Description

0 0 SM120SSA 4 binary Servant address space ID

4 4 SM120SNT 4 binary Number of triplets.

The following triplet appears 0-n times; once for each heap id section.

8 8 SM120SSO 4 binary Offset to heap id section from the beginning of
this server servant section.

12 C SM120SSL 4 binary Length of heap id section.

16 10 SM120SSN 4 binary Number of heap id sections.

Subtype 3: Heap ID section

Table 49. Subtype 3: Heap ID section. There are multiple (0..n) sections per server servant section. The Heap id
section contains information about all heaps of this server servant involved in this activity.
Offset Offset Name Length Format Description

0 0 SM120HIH 4 binary The heap for which the following data applies.

4 4 SM120HIC 4 binary Number of allocation failures on this heap
during the interval.

208 Troubleshooting and support

Table 49. Subtype 3: Heap ID section (continued). There are multiple (0..n) sections per server servant section. The
Heap id section contains information about all heaps of this server servant involved in this activity.
8 8 SM120HI1 8 binary Minimum number of bytes during the interval.

16 10 SM120HI2 8 binary Maximum number of bytes during the interval.

24 18 SM120HI3 8 binary Average number of bytes during the interval.

32 20 SM120HI4 8 binary Minimum number of free bytes during the
interval.

40 28 SM120HI5 8 binary Maximum number of free bytes during the
interval.

48 30 SM120HI6 8 binary Average number of free bytes during the
interval.

SMF Subtype 5: J2EE container activity record (Version 2):

The purpose of the J2EE container activity SMF record is to record activity within a J2EE container that is
located inside the WebSphere Application Server transaction server.

This record can be used to perform basic charge-back accounting, application profiling, problem
determination, and capacity planning. A single record is created for each activity that is run within a J2EE
container located inside a WebSphere Application Server transaction server.

You can activate this record through the administrative console by setting
server_SMF_container_activity_enabled=1 (or server_SMF_container_activity_enabled=true) .

J2EE container activity record (Version 2) schema

This section includes Subtype 5: J2EE container activity record (Version 2).

J2EE container activity section

Table 50. J2EE container activity section. There is one section per record. The J2EE container activity section
contains information about each activity that occurred within one J2EE container.
Offset Offset Name Length Format Description

0 0 SM120JA4 64 EBCDIC WebSphere Application Server for z/OS transaction
server host name

64 40 SM120JA5 8 EBCDIC WebSphere Application Server for z/OS transaction
server name

72 48 SM120JA6 8 EBCDIC WebSphere Application Server for z/OS transaction
server instance name

80 50 SM120JA7 4 binary The specific WebSphere Application Server for z/OS
transaction server instance server servant where the
request ran

84 54 SM120JA8 512 Unicode WebSphere Application Server for z/OS container
name.

596 254 SM120JA9 8 HEX The WLM enclave token

604 25C SM120JAA 4 binary RESERVED

608 260 SM120JAB 20 HEX The identity of the activity

628 274 SM120CL2 8 EBCDIC Cell

636 27C SM120ND2 8 EBCDIC Node

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 209

Bean section

Table 51. Bean section. There are multiple sections per record. The bean section contains information about all beans
involved in this activity.
Offset Offset Name Length Format Description

0 0 SM120JB1 512 Unicode AMCName of the bean activated by the container.
Note: If the length of the AMCName exceeds 256
DBCS characters (512 bytes), the rightmost 256
characters are recorded.

512 200 SM120JB2 60 binary UUID based AMC name

572 23C SM120JB3 4 binary The bean's type. 2: Stateless session bean. 3:
Stateful session bean. 4: BMP entity bean. 5: CMP
entity bean. 6. Message-driven bean.

576 240 SM120JB4 4 binary RESERVED

580 244 SM120JB5 4 binary RESERVED

584 248 SM120JB6 4 binary RESERVED

588 24C SM120JB7 4 binary The bean's reentrance policy. 0: Not reentrant within
transaction. 1: Reentrant within transaction.

592 250 SM120JB8 4 binary RESERVED

596 254 SM120JMC 4 binary RESERVED

600 258 SM120JM6 4 binary RESERVED

604 25C SM120JB9 4 binary Number of method triplets in this bean section

The following triplet appears 0-n times; once for each bean method section.

608 260 SM120JBS 4 binary Offset to bean method section from the beginning of
this bean section

612 264 SM120JBL 4 binary Length of bean method section

616 268 SM120JBN 4 binary Number of bean method sections

Bean method section

Table 52. Bean method section. There are multiple sections per bean section. The bean method section contains
information about all methods of beans involved in this activity.
Offset Offset Name Length Format Description

0 0 SM120JM1 1,024 Unicode The name of the method including its signature in
its externalized, human-readable form. If the length
of the method exceeds 512 DBCS characters (1024
bytes), the leftmost 512 characters are recorded.

1024 400® SM120JM2 4 binary The number of times the method was invoked
during the activity.

1028 404 SM120JM3 4 binary Average response time. The response time is
measured in milliseconds (the granularity provided
by the JVM - hopefully, it will be equal to 0 in most
cases).

1032 408 SM120JM4 4 binary Maximum response time. The response time is
measured in milliseconds.

1036 40C SM120JM5 4 binary The bean method's transaction policy. Values from
com.ibm.websphere.csi. TransactionAttribute.java:

0: "TX_NOT_SUPPORTED"
1: "TX_BEAN_MANAGED"
2: "TX_REQUIRED"
3: "TX_SUPPORTS"
4: "TX_REQUIRES_NEW"
5: "TX_MANDATORY"
6: "TX_NEVER"

1040 410 SM120JM8 4 binary RESERVED.

1044 414 SM120JM9 4 binary RESERVED.

210 Troubleshooting and support

Table 52. Bean method section (continued). There are multiple sections per bean section. The bean method section
contains information about all methods of beans involved in this activity.
1048 418 SM120JMA 512 Unicode List of ejbRoles associated with the method.

Separator character: ";" (semicolon). If the length of
the concatenated string exceeds 256 characters
(512 bytes), only its leftmost 256 characters are
recorded.

1560 618 SM120JMB 4 binary RESERVED.

1564 61C SM120JMD 4 binary RESERVED.

1568 620 SM120JME 4 binary ejbLoad: # of invocations

1572 624 SM120JMF 4 binary ejbLoad: avg execution time

1576 628 SM120JMG 4 binary ejbLoad: max execution time

1580 62C SM120JMH 4 binary ejbStore: # of invocations

1584 630 SM120JMI 4 binary ejbStore: avg execution time

1588 634 SM120JMJ 4 binary ejbStore: max execution time

1592 638 SM120JMK 4 binary ejbActivate: # of invocations

1596 63C SM120JML 4 binary ejbActivate: avg execution time

1600 640 SM120JMM 4 binary ejbActivate: max execution time

1604 644 SM120JMN 4 binary ejbPassivate: # of invocations

1608 648 SM120JMO 4 binary ejbPassivate: avg execution time

1612 64C SM120JMP 4 binary ejbPassivate: max execution time

1616 650 SM120JMQ 8 binary Average cpu time in microseconds.

1624 658 SM120JMR 8 binary Minimum cpu time in microseconds.

1632 660 SM120JMS 8 binary Maximum cpu time in microseconds.

SMF Subtype 6: J2EE container interval record (Version 2):

The purpose of the J2EE container interval SMF record is to record activity within a J2EE container that is
located inside the WebSphere Application Server transaction server.

This record is produced at regular intervals and is an aggregate of the activities running inside a J2EE
container during the interval. This record can be used to perform application profiling, problem
determination, and capacity planning.

A single record is created for each active J2EE container located in a WebSphere Application Server
transaction server within the interval being recorded. If there is more than one server instance associated
with a server, a record for the container will exist for each server instance. To get a common view of the
work running in the J2EE container during the interval, you must merge the records after processing.

You can specify an interval through the WebSphere Application Server administrative console by setting
server_SMF_interval_length=n, where n is the desired number of seconds.

You can activate this record by setting server_SMF_container_interval_enabled=1 (or
server_SMF_container_interval_enabled=true) on the administrative console.

J2EE container interval record (Version 2) schema

This section includes Subtype 6: J2EE container interval record (Version 2).

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 211

J2EE container interval section

Table 53. J2EE container interval section. There is one section per record. The J2EE container interval section
contains information about each activity that occurred within one J2EE container in the specified interval.
Offset (decimal) Offset

(hexadecimal)
Name Length Format Description

0 0 SM120JI4 64 EBCDIC The WebSphere Application Server for z/OS
transaction server host name.

64 40 SM120JI5 8 EBCDIC The WebSphere Application Server for z/OS
transaction server name.

72 48 SM120JI6 8 EBCDIC The WebSphere Application Server for z/OS
transaction server instance name.

80 50 SM120JI7 512 Unicode The WebSphere Application Server for z/OS
container name.
Note: This is hardcoded to "Default" for the 4.0.1
time frame.

592 250 SM120JI8 16 S390STCK The time that the sample began in the server.

608 260 SM120JI9 16 S390STCK The time that the sample ended.

624 270 SM120CL3 8 EBCDIC Cell

632 278 SM120ND3 8 EBCDIC Node

Subtype 6: Bean section:

See Subtype 5: Bean section

Subtype 6: Bean method section:

See Subtype 5: Bean method section

SMF Subtype 7: WebContainer activity record (Version 2):

The purpose of the WebContainer activity SMF record is to record activity within a WebContainer running
inside a WebSphere Application Server for z/OS transaction server.

The web container is deployed within an EJB and runs within the EJB container. The WebContainer acts
as a web server handling HTTP sessions and servlets. The EJB container is not aware of the work the
WebContainer does. Instead, the EJB container only records that the EJB has been dispatched.
Meanwhile, the WebContainer gathers the detailed information, such as HTTP sessions, servlets, and their
respective performance data. A single WebContainer Activity record is created for each activity that is run
within a web container.

WebContainer SMF recording is activated and deactivated along with the activation and deactivation of
SMF recording for the J2EE container.

WebContainer activity record (Version 2) schema

This section includes Subtype 7: WebContainer activity record (Version 2).

WebContainer activity section

.

Table 54. WebContainer activity section. There is one section per record. The WebContainer activity section contains
information about each activity that occurred within one web container.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

212 Troubleshooting and support

Table 54. WebContainer activity section (continued). There is one section per record. The WebContainer activity
section contains information about each activity that occurred within one web container.
0 0 SM120WAA 64 EBCDIC The WebSphere

transaction server host
name.

64 40 SM120WAB 8 EBCDIC The WebSphere
transaction server name.

72 48 SM120WAC 8 EBCDIC The WebSphere
transaction server
instance name.

80 50 SM120WAD 8 HEX The WLM enclave token.

88 58 SM120WAE 20 HEX The identity of the
activity.

108 6C SM120WAF 16 S390STCK The time the activity
began in the server.

124 7C SM120WAG 16 S390STCK The time the activity
ended.

140 8C SM120CL4 8 EBCDIC Cell

148 94 SM120ND4 8 EBCDIC Node

HttpSessionManager section

Table 55. HttpSessionManager section. There is one section per record. The HttpSessionManager section contains
information about all (there may be zero or one) http sessions associated to one single activity.
Offset Offset Name Length Format Description

0 0 SM120WAH 4 binary "created Sessions": Number of
http sessions that were created.

4 4 SM120WAI 4 binary "invalidatedSessions": Number of
http session that were invalidated.

8 8 SM120WAJ 4 binary "activeSessions": Number of http
sessions that were referenced
during this activity.

12 C SM120WAK 4 binary "sessionLifeTime": lifetime of the
session in milliseconds. If
"invalidatedSessions" > 0, this is
the average lifetime (in
milliseconds) of the invalidated
http session.

WebApplication section

Table 56. WebApplication section. There are multiple (0-n) sections per record. The WebApplication section contains
information about all WebApplications involved in this activity.
Offset Offset Name Length Format Description

0 0 SM120WAL 256 Unicode The name of the WebApplication.

256 100 SM120WAM 4 binary Number of servlet triplets in this web
application section.

The following triplet appears 0-n times, once for each servlet section.

260 104 SM120WAN 4 binary Offset to servlet section from the
beginning of this WebApplication
section.

264 108 SM120WAO 4 binary Length of servlet section.

268 10C SM120WAP 4 binary Number of servlet sections.

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 213

Servlet activity section

Table 57. Servlet activity section. There are multiple (0-n) sections per WebApplication section. The Servlet activity
section contains information about each servlet associated with WebApplications involved in this activity.
Offset Offset Name Length Format Description

0 0 SM120WAQ 256 Unicode The name of the servlet.

256 100 SM120WAR 4 binary "responseTime": Response time in
milliseconds.

260 104 SM120WAS 4 binary "numErrors": The number of errors that
were encountered during the servlet
execution.

264 108 SM120WAT 4 binary "loaded":

0: The servlet did not have to be loaded
as a result of this request.

1: The servlet had to be loaded as the
result of this request.

268 10C SM120WAU 16 EBCDIC "loadedSince": Timestamp from
System.currentTimeMillis() when the
servlet was loaded, in HEX format.

Sample: The data as it appears in the
record has the format

e7ef7c577c

, which needs to be converted to a Java
long:

996155348860

. The Java long digits can be converted to
java.util.Date:

Thu Jul 26 15:49:08 GMT+02:00 2001

284 11C SM120CPU 8 binary Cpu time in microseconds.

SMF Subtype 8: WebContainer interval record (Version 2):

The purpose of the WebContainer interval SMF record is to record activity within a WebContainer running
inside a WebSphere Application Server for z/OS transaction server.

The web container acts as a web server handling HttpSessions and Servlets. The EJB container is not
aware of the purpose of the WebContainer activity record and only records that the EJB has been
dispatched, but does not gather any of the detailed information, such as HttpSessions, Servlets, and their
respective performance data. A single WebContainer record is created for each web container.

In addition to data that is associated with an individual activity, there are some cases of web container
work that are performed outside the scope of an individual request. For example, some instances of http
session finalization and http session invalidation are performed asynchronously. In such a case a
WebContainer interval record would record this data

WebContainer SMF recording is activated and deactivated along with the activation and deactivation of
SMF recording for the J2EE container.

WebContainer interval record (Version 2) schema

WebContainer interval record (Version 2) schema.

214 Troubleshooting and support

WebContainer interval section

Table 58. WebContainer interval section. There is one section per record. The WebContainer interval section contains
information about each activity that occurred within one WebContainer record.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120WIA 64 EBCDIC The WebSphere transaction server host
name.

64 40 SM120WIB 8 EBCDIC The WebSphere transaction server
name.

72 48 SM120WIC 8 EBCDIC The WebSphere transaction server
instance name.

80 50 SM120WID 16 S390STCK The time the sample began.

96 60 SM120WIE 16 S390STCK The time the sample ended.

112 70 SM120CL5 8 EBCDIC Cell

120 78 SM120ND5 8 EBCDIC Node

HttpSessionManager section

Table 59. HttpSessionManager section. There is one section per record. The HttpSessionManager section contains
information about all (there may be zero or one) http sessions associated to one single activity.
Offset Offset Name Length Format Description

0 0 SM120WIF 4 binary "createdSessions": Number of http
sessions that were created.

4 4 SM120WIG 4 binary "invalidatedSessions": Number of http
sessions that were invalidated.

8 8 SM120WIH 4 binary "activeSessions": Current® number of http
sessions that are actively referenced in
the server at the end of the interval.

12 C SM120WII 4 binary "minActiveSessions": Minimum number of
active http sessions during the interval..

16 10 SM120WIJ 4 binary "maxActiveSessions": Maximum number
of active http sessions during the interval.

20 14 SM120WIK 4 binary "sessionLifeTime": Average lifetime (in
milliseconds) of invalidated http sessions.

24 18 SM120WIL 4 binary "sessionInvalidateTime": Average time (in
milliseconds) that was required to process
the invalidation of http sessions.

28 1C SM120WIM 4 binary "finalizedSessions": Number of sessions
that were finalized.

32 20 SM120WIN 4 binary "liveSessions": Total number of http
sessions being tracked by the server at
the end of the interval. This includes both
active and inactive sessions.

36 24 SM120WIO 4 binary "minLiveSessions": Minimum number of
live http sessions during the interval.

40 28 SM120WIP 4 binary "maxLiveSessions": Maximum number of
live http sessions during the interval.

WebApplication interval section

Table 60. WebApplication interval section. There are multiple (0-n) sections per record. The WebApplication interval
section contains information about all WebApplications involved in this activity.
Offset Offset Name Length Format Description

0 0 SM120WIQ 256 Unicode The WebApplication name.

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 215

Table 60. WebApplication interval section (continued). There are multiple (0-n) sections per record. The
WebApplication interval section contains information about all WebApplications involved in this activity.
256 100 SM120WIR 4 binary "numLoadedServlets": Number of

servlets that were loaded.
Note: This value might differ from the
number of servlet sections in this record
since servlets might exist that have
been inactive during the interval.

260 104 SM120WIS 4 binary Number of servlet triplets in this web
application section.

The following triplet appears 0-n times, once for each servlet section.

264 108 SM120WIT 4 binary Offset to servlet section from the
beginning of this WebApplication
section.

268 10C SM120WIU 4 binary Length of the servlet section.

272 110 SM120WIV 4 binary Number of servlet section.

Servlet section

Table 61. Servlet section. There are multiple (0-n) sections per WebApplication section. The Servlet activity section
contains information about all servlets involved per WebApplication in this activity.
Offset Offset Name Length Format Description

0 0 SM120WIW 256 Unicode The servlet name.

256 100 SM120WIX 4 binary "totalRequests": Number of times the
servlet service was requested during the
interval.

260 104 SM120WIY 4 binary "responseTime": Average response time in
milliseconds.

264 108 SM120WIZ 4 binary "minResponseTime": Minimum response
time in milliseconds.

268 10C SM120WJ1 4 binary "maxResponseTime": Maximum response
time in milliseconds.

272 110 SM120WJ2 4 binary "numErrors": The number of errors that
were encountered during servlet
execution.

276 114 SM120WJ3 16 EBCDIC "loadedSince": Timestamp when the
servlet was loaded.

Sample:

Fri May 25 08:42:25 EDT 2001

292 124 SM120WJ4 8 binary Average cpu time in microseconds.

300 12C SM120WJ5 8 binary Minimum cpu time in microseconds.

308 134 SM120WJ6 8 binary Maximum cpu time in microseconds.

SMF Subtype 9: Request Activity record:

The purpose of the Request Activity SMF record is to record activity that is running inside the product. This
record is produced whenever a server receives a request.

When you do capacity planning, you need to look at the costs that are involved in running requests and
how many requests you process over a set period of time. You can use the SMF Subtype 9 record to
monitor which requests are associated with which applications, how many requests you get, and how
much resource each request uses. You can also use this record to identify the application involved, and
the CPU time that the request consumes. Because a new record is created for each request, you can
determine the number of requests that you get over a specific length of time.

216 Troubleshooting and support

After you collect these SMF records for awhile, you should be able to project your future system
requirements. For example, you might look at the data that was collected for a specific application, and
project what your CPU requirements will be as the number of users accessing that application increases.
The data that was collected might also be useful if you are charging a third party to use this application,
because the record indicates the resources that were used and who used them.

The default Subtype 9 record contains all of the information that you should need to properly monitor the
performance of your Enterprise JavaBeans (EJB), and web applications. You can specifically request other
data, such as the formatted time stamp data, security data, or CPU usage data. However, collecting that
data adds to the system overhead that is required to collect the data that populates these sections of the
record.

You can activate this record through the administrative console by setting
server_SMF_request_activity_enabled=1 (or server_SMF_request_activity_enabled=true).

If you do not want these records to be generated, you can set server_SMF_request_activity_enabled=0
(or server_SMF_request_activity_enabled=false), which turns off the creation of this SMF record type.
This is the default value for this property.

Request activity record schema

The record header is the same for every Subtype 9 record that is created by the same controller. The
following triplets section appears for every record that the controller generates.

The Request Activity record is divided into the following sections.

Platform neutral server information section

Table 62. Table 1. Platform neutral server information section. This section contains information about the server that
handled the request.
Offset (decimal) Offset

(hexadecimal)
Name Length Format Description

0 0 SM1209BG 4 binary The version of the Server information

4 4 SM1209BH 8 EBCDIC Cell short name

12 C SM1209BI 8 EBCDIC Node short name

20 14 SM1209BJ 8 EBCDIC Cluster short name

28 1C SM1209BK 8 EBCDIC Server short name

36 24 SM1209BL 4 EBCDIC Server or controller PID

40 28 SM1209BM 1 binary Product version level (the w in the format
w.x.y.z)

41 29 SM1209BN 1 binary Product release level (the x in the format
w.x.y.z)

42 2A SM1209BO 1 binary Part of the product modification level (the y in
the format w.x.y.z)

43 2B SM1209BP 1 binary Part of the product modification level (the z in
the format w.x.y.z)

44 2C * 32 Reserved

z/OS server information section

Table 63. Table 2. z/OS server information section. This section contains information about the controller and servant
where the request was dispatched. One of these sections in included in each record.
Offset (decimal) Offset

(hexadecimal)
Name Length Format Description

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 217

Table 63. Table 2. z/OS server information section (continued). This section contains information about the controller
and servant where the request was dispatched. One of these sections in included in each record.
0 0 SM1209BQ 4 binary The version of the server information

4 4 SM1209BR 8 EBCDIC The name of the system on which the product
is running (CVTSNAME)

12 C SM1209BS 8 EBCDIC The name of the sysplex on which the product
is running

20 14 SM1209BT 8 EBCDIC The job name for the controller

28 1C SM1209BU 8 EBCDIC The job ID for the controller

36 24 SM1209BV 8 binary The STOKEN for the controller

44 2C SM1209BW 2 binary Controller ASID

46 2E SM1209GE 2 binary Contains the following flags:

v SMF SM1209GF (bit 1) CPU Usage
Overflow if turned on, the CPU usage
section exceeded 30, which is the maximum
number of sections that are allowed. Some
of your data was lost.

v SMF1209GG (bit 2) CEEGMTO
failed/unavailable if turned on, the GMT
offsets failed to be retrieved from the
CEEGMTO API or the CEEGMTO API was
not available.

v Bits 3-16 are reserved

48 30 SM1209BX 20 binary The cluster UUID

68 44 SM1209BY 20 binary The server UUID

88 58 SM1209BZ 8 EBCDIC The daemon group name

96 60 SM1209CA 4 binary The hours portion of the LE GMT offset. The
value is obtained from the CEEGMTO API if
you are running in 31-bit mode. The field
contains all zeros if the CEEGMTO API fails or
is unavailable, or if you are running in 64-bit
mode. The CEEGMTO API is not supported in
64-bit mode. In these situations, flag SM1209FJ
is turned on to indicate that the zeros in this
field are not valid GMT offsets.

100 64 SM1209CB 4 binary The minutes portion of the LE GMT offset. The
value is obtained from the CEEGMTO API if
you are running in 31-bit mode. The field
contains all zeros if the CEEGMTO API fails or
is unavailable, or if you are running in 64-bit
mode. The CEEGMTO API is not supported in
64-bit mode. In these situations, flag SM1209FJ
is turned on to indicate that the zeros in this
field are not valid GMT offsets.

104 68 SM1209CC 8 binary The seconds portion of the LE GMT offset. The
value is obtained from the CEEGMTO API if
you are running in 31-bit mode. The field
contains all zeros if the CEEGMTO API fails or
is unavailable, or if you are running in 64-bit
mode. The CEEGMTO API is not supported in
64-bit mode. In these situations, flag SM1209FJ
is turned on to indicate that the zeros in this
field are not valid GMT offsets.

112 70 SM1209CD 8 binary The system GMT offset. The value is obtained
from the CVTLDTO API.

120 78 SM1209HV 16 EBCDIC The service level (expanded)

120 78 SM1209CE 8 EBCDIC The service level

136 88 * 20 Reserved

218 Troubleshooting and support

Platform neutral request information section

Table 64. Table 3. Platform neutral request information section. This section provides request information that is not
platform specific.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM1209CF 4 binary The version of the request information

4 4 SM1209CG 4 binary The PID of the dispatch servant

8 8 SM1209CH 8 binary The ID of the dispatched task. This value is
returned from pthread_self.

16 10 SM1209CI 8 binary The amount of CPU time, in microseconds, that
is used by dispatch TCB

24 18 SM1209CJ 4 binary The completion minor code. A value of 0
indicates that the request successfully
completed. If a value other than 0 is present, a
problem occurred during processing of the
request.

28 1C * 4 Reserved

32 20 SM1209CK 4 binary The type of request that was processed:

0 indicates that the request type is not known

1 indicates that the request was an IIOP
request

2 indicates that the request was an HTTP
request

3 indicates that the request was an HTTPS
request

4 indicates that the request was a MDB Plan
"A" request. A Plan "A" request is an MDB
request from a listener port that is listening in
the controller.

5 indicates that the request was a MDB Plan
"B" request. A Plan "B" request is an MDB
request from a listener port that is listening in
the servant.

6 indicates that the request was a MDB Plan
"C" request. A Plan "C" request is an MDB
request from an activation specification that is
listening in the adjunct.

7 indicates that the request was a SIP request

8 indicates that the request was a SIPS request

9 indicates that the request was an MBean
request

10 indicates that the request was an OTS
request

11 indicates that the request was an internal
request

12 indicates that the request was an Optimized
Local Adapters (OLA) request.

36 24 * 32 Reserved

z/OS request information section

Table 65. Table 4. z/OS request information section. zIIP and zAAP enclaves are not supported on z/OS Version 1.7.
Therefore, if you are running the product on z/OS Version 1.7, fields that normally contain zIIP and zAAP enclave
information, contain a value of -1.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM1209CL 4 binary The version of the request information

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 219

Table 65. Table 4. z/OS request information section (continued). zIIP and zAAP enclaves are not supported on z/OS
Version 1.7. Therefore, if you are running the product on z/OS Version 1.7, fields that normally contain zIIP and zAAP
enclave information, contain a value of -1.
4 4 SM1209CM 16 S390STCKE The time that the request was received

20 14 SM1209CN 16 S390STCKE The time that the request was added to the
queue

36 24 SM1209CO 16 S390STCKE The time that the request was dispatched

52 34 SM1209CP 16 S390STCKE The time that the dispatch completed

68 44 SM1209CQ 16 S390STCKE The time that the controller finished processing
the request response

84 54 SM1209CR 8 EBCDIC The job name for the dispatch servant

92 5C SM1209CS 8 EBCDIC The job ID for the dispatch servant

100 64 SM1209CT 8 binary The STOKEN for the dispatch servant

108 6C SM1209CU 2 binary The ASID for the dispatch servant

110 6E * 2 Reserved for alignment

112 70 SM1209CV 4 binary The address of the dispatch TCB

116 74 SM1209CW 16 binary The TTOKEN for the dispatch TCB

132 84 SM1209CX 8 binary The amount of CPU time that was spent on
non-standard CPs, such as the System z
Application Assist Processor (zAAP) and z9
Integrated Information Processor (zIIP). This
value is obtained from the TIMEUSED API. A
value of -1 displays in this field if

v A value cannot be obtained from the
TIMEUSED service.

v The level of z/OS on which you are running
is not Version 1.9 with APAR OA20758
applied, or Version 1.10 or higher.

140 8C SM1209CY 8 binary The enclave token

148 94 SM1209CZ 32 Reserved

180 B4 SM1209DA 8 binary The enclave CPU time at the end of the
dispatch of this request, as reported by the
CPUTIME parameter of the IWMEQTME API.
The units are in TOD format.

188 BC SM1209DB 8 binary The enclave zAAP CPU time at the end of the
dispatch of this request, as reported by the
ZAAPTIME parameter of the IWMEQTME API.
The value is zero if the PTF for z/OS APAR
OA22160 is not installed on your system.

196 C4 SM1209DC 8 binary The amount of CPU time at the end of the
dispatch of this request that is spent on a
regular CP that could have been run on a
zAAP, but the zAAP was not available. This
value is obtained from the ZAAPONCPTIME.
field in the IWMEQTME macro. The value is
zero if the PTF for z/OS APAR OA22160 is not
installed on your system.

204 CC SM1209DD 8 binary The zIIP enclave that is on the CPU at the end
of the dispatch of this request. This value is
obtained from the ZIIPONCPTIME. field in the
IWMEQTME macro. The value is zero if the
PTF for z/OS APAR OA22160 is not installed on
your system.

212 D4 SM1209DE 8 binary The zIIP Quality Time enclave that was on the
CPU at the end of the dispatch of this request.
This value is obtained from the ZIIPQUALTIME
field in the IWMEQTME macro. The value is
zero if the PTF for z/OS APAR OA22160 is not
installed on your system.

220 Troubleshooting and support

Table 65. Table 4. z/OS request information section (continued). zIIP and zAAP enclaves are not supported on z/OS
Version 1.7. Therefore, if you are running the product on z/OS Version 1.7, fields that normally contain zIIP and zAAP
enclave information, contain a value of -1.
220 DC SM1209DF 8 binary The eligible zIIP enclave that is on the CPU at

the end of the dispatch of this request. This
value is obtained from the ZIIPTIME field in the
IWMEQTME macro. The value is zero if the
PTF for z/OS APAR OA22160 is not installed on
your system.

228 E4 SM1209DG 4 binary The zAAP normalization factor at the end of the
dispatch of this request. This value is obtained
from the ZAAPNFACTOR parameter of the
IWMEQTME API. The value is zero if the PTF
for z/OS APAR OA22160 is not installed on
your system.

232 E8 SM1209DH 8 binary The amount of CPU time that was used by the
enclave as reported by the CPUTIME
parameter of the IWM4EDEL API

240 F0 SM1209DI 8 binary The delete zAAP CPU enclave. A value of 0
indicates that the enclave was not deleted or
not normalized. This value is obtained from the
ZAAPTIME field in the IWM4EDEL macro.

248 F8 SM1209DJ 4 binary The enclave delete zAAP normalization factor
as reported by the ZAAPNFACTOR parameter
of the IWM4EDEL API.

252 FC * 4 Reserved

256 100 SM1209DK 8 EBCDIC The enclave delete zIIP time accumulated by
the enclave as reported by the ZIIPTIME
parameter of the IWM4EDEL API. A value of 0
indicates that the enclave was not deleted.

264 108 SM1209DL 8 EBCDIC The enclave delete zIIP Service accumulated
by the enclave as reported by the
ZIIPSERVICE parameter of the IWM4EDEL
API. A value of 0 indicates that the enclave was
not deleted or not normalized.

272 110 SM1209DM 8 EBCDIC The enclave delete zAAP Service accumulated
by the enclave as reported by the
ZAAPSERVICE parameter of the IWM4EDEL
API. A value of 0 indicates that the enclave was
not deleted.

280 118 SM1209DN 8 EBCDIC The enclave delete CPU service accumulated
by the enclave as reported by the
CPUSERVICE parameter of the IWM4EDEL
API. A value of 0 indicates that the enclave was
not deleted.

288 120 SM1209DO 4 EBCDIC The enclave delete Response Time ratio as
reported by the RESPTIME_RATIO parameter
of the IWM4EDEL API. A value of 0 indicates
that the enclave was not deleted.

292 124 SM1209DP 12 Reserved for alignment

304 130 SM1209DQ 73 binary The global transaction ID (GTID) value

377 179 * 3 Reserved for alignment

380 17C SM1209DR 4 binary The dispatch timeout value

384 180 SM1209DS 8 EBCDIC The transaction class, if one is being used

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 221

Table 65. Table 4. z/OS request information section (continued). zIIP and zAAP enclaves are not supported on z/OS
Version 1.7. Therefore, if you are running the product on z/OS Version 1.7, fields that normally contain zIIP and zAAP
enclave information, contain a value of -1.
392 188 SM1209DT 4 binary Is either blank or contains the following flags:

SM1209DU (bit 1) - if turned on, an enclave
was created by this server for this request

SM1209DV (bit 2) - if turned on, the timeout
value was given to the product by an external
source instead of being taken from the
configuration for the server

SM1209DW (bit 3) - if turned on, the
transaction class value was given to the product
by an external source instead of being taken
from the configuration for the server

SM1209DX (bit 4) - if turned on, this is a one
way IIOP request, for which a response is not
expected

SM1209DY (bit 5) - CPU usage overflow. If
turned on, the CPU usage section exceeded
30, which is the maximum number of sections
that are allowed. Some of your data was lost.
Preferably, use SM1209GF because this
section might not always be present.

SM1209DZ (bit 6) - If turned on, the request
was queued with affinity.

SM1209FJ (bit 7) - CEEGMTO
failed/unavailable ((Use of SM1209GG is
preferred because this section may not always
be present.)

SM1209FK (bit 8) - if turned on, the
classification_only_trace Reliability Availability
and Serviceability (RAS) attribute indicated that
classification level tracing is in effect for the
application server. If you issued a modify
TRACERECORD,OFF command, then the
classification_only_trace is not in effect. The
field is valid only if the SM1209CL field is
greater than or equal to 2.

SM1209FM (bit 9) - if turned on, the server
wide environment variable or the
SMF_request_activity_enabled RAS attribute
indicated to collect an SMF 120 subtype 9
record. If you issued a modify command to stop
the collection, the SMF 120 subtype 9 record
was not collected. The field is valid only if the
SM1209CL field is greater than or equal to 2.

SM1209FN (bit 10) - if turned on, the server
wide environment variable or the
SMF_request_activity_timestamps RAS attribute
indicated to include the time stamp section in
the SMF 120 subtype 9 record. If you issued a
modify command to turn off the timestamp
section, the SMF record does not contain the
timestamp section. The field is valid only if the
SM1209CL field is greater than or equal to 2.

222 Troubleshooting and support

Table 65. Table 4. z/OS request information section (continued). zIIP and zAAP enclaves are not supported on z/OS
Version 1.7. Therefore, if you are running the product on z/OS Version 1.7, fields that normally contain zIIP and zAAP
enclave information, contain a value of -1.
392 188 SM1209DT 4 binary (continued)

SM1209FO (bit 11) - if turned on, the server
wide environment variable or the
SMF_request_activity_security RAS attribute
indicated to include the security data section in
the SMF 120 subtype 9 record. If you issued a
modify command to turn off the security data
section, the SMF record does not contain the
security data section. The field is valid only if
the SM1209CL field is greater than or equal to
2.

SM1209FP (bit 12) - if turned on, the server
wide environment variable or the
SMF_request_activity_CPU_detail RAS attribute
indicated to include the CPU usage breakdown
section in the SMF 120 subtype 9 record. If you
issued a modify command to turn off the CPU
usage breakdown section, the SMF record does
not contain the CPU usage breakdown section.
The field is valid only if the SM1209CL field is
greater than or equal to 2.

SM1209FQ (bit 13) - if turned on, the
propagate_transaction_name attribute indicated
to use the Customer Information Control
System (CICS) transaction name as the
workload management (WLM) transaction class
for the optimized local adapter request. The
field is valid only if the SM1209CL field is
greater than or equal to 2.

Bits 14 - 32 are reserved

396 18C * 32 Reserved

428 1AC SM1209FR 4 binary The numerical value corresponds to the value
of the stalled_thread_dump_action RAS
attribute: 0 for none, 1 for javacore, 2 for
heapdump, 3 for traceback, 4 for svcdump, and 5
for javatdump.

The field is valid only if the SM1209CL field is
greater than or equal to 2.

432 1B0 SM1209FS 4 binary The numerical value corresponds to the value
of the cputimeused_dump_action RAS attribute:
0 for none, 1 for javacore, 2 for heapdump, 3 for
traceback, 4 for svcdump, and 5 for javatdump.

The field is valid only if the SM1209CL field is
greater than or equal to 2.

436 1B4 SM1209FT 4 binary The numerical value corresponds to the value
of the dpm_dump_action RAS attribute: 0 for
none, 1 for javacore, 2 for heapdump, 3 for
traceback, 4 for svcdump, and 5 for javatdump.

The field is valid only if the SM1209CL field is
greater than or equal to 2.

440 1B8 SM1209FU 4 binary The numerical value corresponds to the value
of the timeout_recovery RAS attribute: 1 for
servant and 2 for session.

The field is valid only if the SM1209CL field is
greater than or equal to 2.

444 1BC SM1209FV 4 binary The value of the dispatch_timeout classification
RAS attribute.

The field is valid only if the SM1209CL field is
greater than or equal to 2.

448 1C0 SM1209FW 4 binary Queue timeout, which is calculated using the
dispatch_timeout and queue_timeout_percent
classification RAS attributes.

The field is valid only if the SM1209CL field is
greater than or equal to 2.

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 223

Table 65. Table 4. z/OS request information section (continued). zIIP and zAAP enclaves are not supported on z/OS
Version 1.7. Therefore, if you are running the product on z/OS Version 1.7, fields that normally contain zIIP and zAAP
enclave information, contain a value of -1.
452 1C4 SM1209FX 4 binary The value of the request_timeout classification

RAS attribute.

The field is valid only if the SM1209CL field is
greater than or equal to 2.

456 1C8 SM1209FY 4 binary The value of the cputimeused_limit
classification RAS attribute.

The field is valid only if the SM1209CL field is
greater than or equal to 2.

460 1CC SM1209FZ 4 binary The value of the dpm_interval classification
RAS attribute.

The field is valid only if the SM1209CL field is
greater than or equal to 2.

464 1D0 SM1209GA 8 EBCDIC The value of the message_tag classification
RAS attribute.

The field is valid only if the SM1209CL field is
greater than or equal to 2.

472 1D8 SM1209GH 4 binary Length of obtained affinity RNAME

476 1DC SM1209GI 128 EBCDIC Obtained affinity RNAME

604 25C SM1209GJ 4 binary Length of routing affinity RNAME

608 260 SM1209GK 128 EBCDIC Routing affinity RNAME

z/OS formatted timestamps section

This section contains the date and time information for specific events that occured durring the processing
of the request. All of the times that are included in this section are expressed in the format yyyy/mm/dd
hh:mm:ss.xxxxxx, where yyyy is the year, mm is the month, dd is the day, hh is the hour, mm is the
minutes, ss is the seconds, and xxxxxx is the microseconds.

Including the timestamp section in the Subtype 9 record is optional. Collecting the data to update this
section adds system overhead and can make these SMF records larger. Therefore, the collection of this
data, by default, is turned off. When the collection of this data is turned off, the Number of records field in
the triplets section, that is located at the beginning of the record contains, a zero.

Table 66. z/OS formatted timestamps section. To turn on the collection of this data, use the administrative console to
specify either the server_SMF_request_activity_timestamps=1 or server_SMF_request_activity_timestamps=true
SMF property.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM1209EA 26 EBCDIC The time that the request was received

26 1A SM1209EB 26 EBCDIC The time that the request was added to the
WLM queue

52 34 SM1209EC 26 EBCDIC The time that the request was dispatched in the
servant

78 4E SM1209ED 26 EBCDIC The time that the dispatch completed in the
servant

104 68 SM1209EE 26 EBCDIC The time that the controller finished processing
the request

130 82 * 2 Reserved for alignment

224 Troubleshooting and support

Network data for HTTP, SIP, and IIOP transports section

Table 67. Network data for HTTP, SIP, and IIOP transports section. This section contains information about the origin
of the request that this record describes. It is only present for protocols for which the product can obtain origin
information. For example, this section does not exist for Message Driven Beans (MDBs) requests. A record contains
only one instance of this section.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM1209EF 4 binary The version of the network data

4 4 SM1209EG 8 binary The size of the request, in bytes, that was
received from the client

12 C SM1209EH 8 binary The size of the response, in bytes, that is sent
back to the client

20 14 SM1209EI 4 binary The target port for the request. A value of -1
indicates that local communications was used.

24 18 SM1209EJ 4 binary The length of the origin string

28 1C SM1209EK 128 EBCDIC The origin string. Following is an example of an
origin string: ip addr=9.57.7.193 port=1344.
The bytes that follow the string contain blank
spaces.

156 9C * 32 Reserved

Classification data section

Table 68. Classification data section. This section contains the classification information for this request. If a
transaction class was encountered earlier, this information might have been used to determine that transaction class
name.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM1209EL 4 binary The version of the classification data

4 4 SM1209EM 4 binary The data type. Not all of these data types apply
to all requests. For example, only data types 6,
7, or 8 appear in this field for an HTTP request.

1 indicates that it is the name of an application

2 indicates that it is the name of a module

3 indicates that it is the name of a component

4 indicates that it is the name of a class

5 indicates that it is the name of a method

6 indicates that it is a URI

7 indicates that it is the name of the target host

8 indicates that it is the name of the target port

9 indicates that it is a message listener port

10 indicates that it is the name of a selector

11 indicates that it is the name of the Optimized
Local Adapters (OLA) service

12 indicates that it is the CICS imported
transaction name

8 8 SM1209EN 4 binary The length of the data

12 C SM1209EO 128 EBCDIC The data string

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 225

Security data section

This section contains the security information for each request. There is a separate security data section
for each identity type. Depending on your security configuration, up to three identity types might exist.
Therefore, there can be up to three instances of this section in a record, depending on which data is
available for the request, for which the report is generated.

Including the security sections in the Subtype 9 record is optional. Collecting the data to update this
section adds system overhead and can make these SMF records larger. Therefore, the collection of this
data, by default, is turned off. When the collection of this data is turned off, the Number of records field in
the triplets section at the top of the record contains a zero.

Table 69. Security data section. To turn on the collection of this data, use the administrative console to specify either
the server_SMF_request_activity_security=1 or server_SMF_request_activity_security=true SMF property.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM1209EP 4 binary The version of the security data

4 4 SM1209EQ 4 binary The data type:

1 indicates that it is the server identity

2 indicates that it is the received identity

3 indicates that it is the invocation identity

8 8 SM1209ER 4 binary The length of the identity

12 C SM1209ES 64 EBCDIC The identity string

CPU usage breakdown section

This section contains information about an item that was called and the CPU time that the task consumed,
minus the time that the CPU spent waiting for tasks it initiated to complete. This calculation is different
from the way CPU time is calculated in the container records.

There can be up to 30 instances of this section in a record; one for each item that is called. If your
application calls more than 30 different items under the dispatch of a single request, only the first 30 items
are included. Bit 5 of field SM1209DT indicates when such a truncation occurs.

Including the CPU usage section in the Subtype 9 record is optional. Collecting the data to update this
section adds system overhead and can make these SMF records quite large. Therefore, the collection of
this data, by default, is turned off. When the collection of this data is turned off or none were collected
during a request, the field for the number of CPU usage break down sections (SM1209AB) in the triplet at
the top of the record contains a zero.

Table 70. CPU usage breakdown section. To turn on the collection of this data, use the administrative console to
specify either the server_SMF_request_activity_CPU_detail=1 or server_SMF_request_activity_CPU_detail=true
SMF property.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM1209ET 4 binary The version of the CPU usage data

4 4 SM1209EU 4 binary The data type:

1 indicates that the data comes from the EJB
container

2 indicates that the data comes from the web
container

8 8 SM1209EV 8 binary The amount of CPU time, in microseconds, that
the item, such as an EJB or a servlet, spent in
dispatch

226 Troubleshooting and support

Table 70. CPU usage breakdown section (continued). To turn on the collection of this data, use the administrative
console to specify either the server_SMF_request_activity_CPU_detail=1 or
server_SMF_request_activity_CPU_detail=true SMF property.
16 10 SM1209FI 8 binary The elapsed time, in milliseconds, that is spent

processing the item, such as an EJB or servlet

24 18 SM1209EW 4 binary How many times the item, such as an EJB or a
servlet, was executed during the dispatch of
this request

28 1C SM1209EX 4 binary The length of string 1

32 20 SM1209EY 256 EBCDIC String 1. String 1 has one of the following
values:

AMC, which indicates that an EJB was processed

Web App, which indicates that a Servlet was
processed

288 120 SM1209EZ 4 binary The length of string 2

292 124 SM1209FA 256 EBCDIC String 2 has one of the following values:

The method name or signature, if an EJB is
accessing the data

The name of the servlet if a servlet is accessing
the data

User data section

You can use the package com.ibm.websphere.smf API to add up to 5 User data sections to the end of this
record. Each of these sections must be less than or equal to 2 KB in length. The data that is contained in
these sections is not formatted and appears exactly as it is received from your application.

Table 71. User data section. The SMF 120 Subtype 9 record can be turned on and off dynamically. Use the
SmfEventNotifier API, if you want to be notified when the product starts and stops writing this record.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM1209FE 4 binary The version of the User data section

4 4 SM1209FF 4 binary The user data type. Types 65535 and lower are
reserved for IBM use.

8 8 SM1209FG 4 binary The length of the User data section

12 C SM1209FH 2048 binary The data that the application added

SMF Subtype 10: Outbound Request record:

The purpose of the Outbound Request SMF record is to record requests that go outbound. This record is
produced whenever an optimized local adapter request goes outbound.

You can use the SMF Subtype 10 record to monitor how many outbound requests are occurring, where
they are going and how long it takes.

You can activate this record through the administrative console by setting
server_SMF_outbound_enabled=1 (or server_SMF_outbound_enabled=true).

If you do not want these records to be generated, you can set server_SMF_outbound_enabled=0 (or
server_SMF_outbound_enabled=false), which turns off the creation of this SMF record type. This is the
default value for this property.

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 227

|
|

Outbound Request record schema

The record header is the same for every Subtype 10 record that is created by the same server.

The Outbound Request record is divided into the following sections.

Platform neutral server information section

Table 72. Platform neutral server information section. This section contains information about the server that handled
the request.
Offset (decimal) Offset

(hexadecimal)
Name Length Format Description

0 0 SM120ABG 4 binary The version of the server information

4 4 SM120ABH 8 EBCDIC Cell short name

12 C SM120ABI 8 EBCDIC Node short name

20 14 SM120ABJ 8 EBCDIC Cluster short name

28 1C SM120AAK 8 EBCDIC Server short name

36 24 SM120ABL 4 EBCDIC Server or controller PID

40 28 SM120ABM 1 binary Product version level (the w in the format
w.x.y.z)

41 29 SM120ABN 1 binary Product release level (the x in the format
w.x.y.z)

42 2A SM120ABO 1 binary Part of the product modification level (the y in
the format w.x.y.z)

43 2B SM120ABP 1 binary Part of the product modification level (the z in
the format w.x.y.z)

44 2C * 32 Reserved

z/OS server information section

Table 73. z/OS server information section. This section contains information about the controller and servant where
the request was dispatched. One of these sections in included in each record.
Offset (decimal) Offset

(hexadecimal)
Name Length Format Description

0 0 SM120ABQ 4 binary The version of the server information

4 4 SM120ABR 8 EBCDIC The name of the system on which the product
is running (CVTSNAME)

12 C SM120ABS 8 EBCDIC The name of the sysplex on which the product
is running

20 14 SM120ABT 8 EBCDIC The job name for the controller

28 1C SM120ABU 8 EBCDIC The job ID for the controller

36 24 SM120ABV 8 binary The STOKEN for the controller

44 2C SM120ABW 2 binary Controller ASID

46 2E SM120AGE 2 binary Contains the following flags:

v .Bit 1 is reserved

v SMF120AGG (bit 2) CEEGMTO
failed/unavailable if turned on, the GMT
offsets failed to be retrieved from the
CEEGMTO API or the CEEGMTO API was
not available.

v Bits 3-16 are reserved

48 30 SM120ABX 20 binary The cluster UUID

228 Troubleshooting and support

Table 73. z/OS server information section (continued). This section contains information about the controller and
servant where the request was dispatched. One of these sections in included in each record.
68 44 SM120ABY 20 binary The server UUID

88 58 SM120ABZ 8 EBCDIC The daemon group name

96 60 SM120ACA 4 binary The hours portion of the LE GMT offset. The
value is obtained from the CEEGMTO API if
you are running in 31-bit mode. The field
contains all zeros if the CEEGMTO API fails or
is unavailable, or if you are running in 64-bit
mode. The CEEGMTO API is not supported in
64-bit mode. In these situations, flag
SM120AGG is turned on to indicate that the
zeros in this field are not valid GMT offsets.

100 64 SM120ACB 4 binary The minutes portion of the LE GMT offset. The
value is obtained from the CEEGMTO API if
you are running in 31-bit mode. The field
contains all zeros if the CEEGMTO API fails or
is unavailable, or if you are running in 64-bit
mode. The CEEGMTO API is not supported in
64-bit mode. In these situations, flag
SM120AGG is turned on to indicate that the
zeros in this field are not valid GMT offsets.

104 68 SM120ACC 8 binary The seconds portion of the LE GMT offset. The
value is obtained from the CEEGMTO API if
you are running in 31-bit mode. The field
contains all zeros if the CEEGMTO API fails or
is unavailable, or if you are running in 64-bit
mode. The CEEGMTO API is not supported in
64-bit mode. In these situations, flag
SM120AGG is turned on to indicate that the
zeros in this field are not valid GMT offsets.

112 70 SM120ACD 8 binary The system GMT offset. The value is obtained
from the CVTLDTO API.

120 78 SM120AHV 16 EBCDIC The service level (expanded)

136 88 * 20 Reserved

Outbound Request information section

Table 74. Outbound Request information section. This section contains information about the outbound request. One
of these sections is included in each record.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120ACF 4 binary The version of the outbound request information

4 4 SM120ACG 4 binary The PID of the dispatch servant

8 8 SM120ACH 8 binary The ID of the dispatched task. This value is
returned from pthread_self.

16 10 SM120ACK 4 binary Outbound request type

o unknown

1 WOLA

2 OTMA

20 14 * 4 Reserved

24 18 SM120ACR 8 EBCDIC The job name for the dispatch servant

32 20 SM120ACS 8 EBCDIC The job ID for the dispatch servant

40 28 SM120ACT 8 binary The STOKEN for the dispatch servant

48 30 SM120ACU 2 binary The ASID for the dispatch servant

50 32 * 2 Reserved for alignment

52 34 SM120ACV 4 binary The address of the dispatch TCB

56 38 SM120ACW 16 binary The TTOKEN for the dispatch TCB

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 229

Table 74. Outbound Request information section (continued). This section contains information about the outbound
request. One of these sections is included in each record.
72 48 SM120ACY 8 binary The enclave token

80 50 SM120AD1 8 binary The number of bytes sent

88 58 SM120AD2 8 binary The number of response bytes

96 60 SM120AD3 16 S390STCKE The time the request went outbound

112 70 SM120AD4 16 S390STCKE The time the outbound request returned

128 80 * 32 Reserved

WOLA Outbound Request type specific section

Table 75. WOLA Outbound Request type specific section. This section contains specific information about the WOLA
outbound request. There are zero to one of these sections included in each record.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120AD5 4 binary The version of the WOLA outbound request
type specific section

4 4 SM120AD6 12 EBCDIC The register name the outbound request is
going to

16 10 SM120AD7 256 EBCDIC The service name the outbound request is
going to

272 110 SM120AD8 256 binary The outbound request correlator context. This
correlator context also ends up in the CICS
SMF 110 records.

528 210 SM120AD9 24 Reserved

Outbound Request transaction context section

Table 76. Outbound Request transaction context section. This section contains transaction information about the
WOLA outbound request. There are zero to one of these sections included in each record.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120ADA 4 binary The version of the outbound request transaction
context section

4 4 SM120ADB 140 binary The transactional XID

144 90 SM120ADC 24 Reserved

Outbound Request security context section

Table 77. Outbound Request security context section. This section contains security information about the WOLA
outbound request. There are zero to one of these sections included in each record.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120ADD 4 binary The version of the outbound request security
context section

4 4 SM120ADE 8 EBCDIC The security context

12 C SM120ADF 28 Reserved

Outbound Request CICS context section

Table 78. Outbound Request CICS context section. This section contains the CICS context associated with the WOLA
outbound request. There are zero to one of these sections included in each record.
Offset (decimal) Offset (hexadecimal) Name Length Format Description

230 Troubleshooting and support

Table 78. Outbound Request CICS context section (continued). This section contains the CICS context associated
with the WOLA outbound request. There are zero to one of these sections included in each record.
0 0 SM120ADG 4 binary The version of the outbound request CICS

context section

4 4 SM120ADH 80 binary The CICS context

84 54 SM120ADI 28 Reserved

OTMA Outbound Request type specific section

Table 79. OTMA Outbound Request type specific section
Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120ADJ 4 binary The version of the OTMA outbound request
type specific section

4 4 SM120ADK 12 EBCDIC The OTMA register name of the outbound
request

16 10 SM120ADL 256 EBCDIC The OTMA service name of the outbound
request

272 110 SM120ADM 8 EBCDIC The OTMA IMS™ transaction name of the
outbound request

280 118 SM120ADN 8 EBCDIC The OTMA IMS group id of the outbound
request

288 120 SM120ADO 16 EBCDIC The OTMA IMS server name of the outbound
request

304 130 SM120ADP 24 Reserved

Chapter 13. Collecting job-related information with the System Management Facility (SMF) 231

232 Troubleshooting and support

Chapter 14. Choosing diagnostic information sources

You can use a variety of diagnostic information sources to view application data and troubleshoot
problems.

About this task

Troubleshooting problems in a complex server environment can be challenging, considering the many
choices of diagnostic information to analyze and wide variety of potential problem areas. Familiarize
yourself with the different types of diagnostic tools and information that the product provides to maximize
your efficiency and productivity when you are confronted with a problem.

Procedure

Read the following topics for information about specific sources of diagnostic data, and the tools or
resources you might need to view or work with that data.

Table 80. Type of diagnostic tools and data. Click the links to read about more information.

Type of diagnostic tools
or data:

Notes and instructions for use appear in:

CEEDUMPs “CEEDUMPs in the job log”

SVC dumps Viewing SVC dumps

CTRACE and JRas data Viewing CTRACE and JRas data through IPCS

Error log data Viewing error log contents through the Log Browse Utility (BBORBLOG)

z/OS display command Using the z/OS display command

Java minor codes Converting Java minor codes

SYSPRINT Diagnosing problems with message logs

Message routing Message routing

CEEDUMPs in the job log
An error caught by LE or the Java runtime can result in the production of a CEEDUMP, which is written to
a separate CEEDUMP specification in the job log.

To view the dump contents, select the CEEDUMP portion of the output for the address space. The
'Traceback' section at the beginning of the dump can be very helpful.

SVC dumps
A SVC dump is a core dump initiated by the operating system generally when a programming exception
occurs. SVC dump processing stores data in dump data sets that you pre-allocate, or that the system
allocates automatically as needed.

Alternatively, you can initiate an SVC dump through the MVS console, to gather diagnostic data for a
'hang' condition, for example. SVC dumps that you initiate this way are called console dumps.

One example of an abend that could occur is the EC3 abend. WebSphere Application Server for z/OS
requests an SVC dump when a controller terminates a servant (region) with an EC3 abend when timeout
conditions occur.
v Your installation can set parmlib options that determine what to dump, eliminate duplicate dumps, and

so on. WebSphere Application Server for z/OS provides a dump parmlib sample in

© Copyright IBM Corp. 2011 233

SBBOJCL(BBODMCCB)

.
v The standard SDATA expected in a SVC dump:

SDATA=(ALLNUC,CSA,GRSQ,LPA,LSQA,PSA,RGN,SQA,SUM,SWA,TRT),end
v If you cannot find an SVC dump for a specific abend, your installation might be using Dump analysis

and elimination (DAE) to suppress the dump. If this is the case, you can change DAE to let the dump
be taken or set a SLIP on the specific abend for a particular job name if the timeout is consistently
happening. For further information, see:
– z/OS MVS Diagnosis: Tools and Service Aids, GA22-7589 for details about using DAE.
– z/OS MVS System Commands, SA22-7627 for details about the SLIP command, which controls

SLIP (serviceability level indication processing), a diagnostic aid that intercepts or traps certain
system events and specifies what action to take. Using the SLIP command, you can set, modify, and
delete SLIP traps.

v When you initiate a console dump:
– When you want an SVC dump of a servant region, also request a dump of the servant's controller

region.
– Unless you suspect a particular servant region as the source of a problem, dump the controller

region and all of its servant regions.
v If syslog contains a message indicating that the maxspace limit was reached for this dump, the SVC

dump might be a partial one that might not contain the data you need to diagnose the timeout. This limit
means that the data set used for SVC dump is not large enough, and you have to change the size to
capture a complete dump.

Note: If you are running WebSphere Application Server for z/OS with 64-bit support, and you specify
RGN (region) in the SDATA parameter set, you will need to allocate a much larger space limit for
the SVC dump.

v To view CEEDUMP contents within the SVC dump, use the IPCS verbexit LEDATA, with the
CEEDUMP or NTHREADS options, to format and analyze Language Environment control blocks. For
additional information, see z/OS Language Environment Debugging Guide, GA22-756 for instructions for
using IPCS to format and analyze CEEDUMP contents.

See z/OS MVS Diagnosis: Tools and Service Aids, GA22-7589 for additional information about SVC
dumps.

Formatting CTRACE data with an IPCS dialog
You can set up an IPCS dialog to format applications trace data gathered by WebSphere Application
Server for z/OS.

Before you begin

Once activated, the WebSphere Application Server for z/OS always writes trace data into memory buffers.
The number and size of these buffers is controlled using WebSphere variables. You can get this trace data
from a dump, which may be taken by the system or requested by the operator through DUMP or SLIP
commands.

To view messages or application trace data from Component Trace, you must use the interactive problem
control system (IPCS) to format the data. The source of the trace data can be a dump data set or a trace
data set. When setting up IPCS, your installation may customize IPCS for its users.

IBM recommends providing access to the IPCS dialog through the Profile Management Tool or the zpmt
command. If your installation has not customized IPCS as recommended, you need to start the IPCS
dialog. See z/OS MVS IPCS User's Guide, SA22-7596 to find out how to start the IPCS dialog.

234 Troubleshooting and support

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

About this task

Perform the following steps to use the IPCS dialog to format application trace data:

Procedure
1. From the IPCS Primary Option Menu panel, select option 6 (COMMAND).

2. On the IPCS Subcommand Entry panel:

a. Issue the SETDEF subcommand to determine the default values for routing displays.

b. Enter the CTRACE command, with the following required parameters: CTRACE COMP(
cell_short_name)

where cell_short_name is the value specified through the Profile Management Tool or the zpmt
command to identify the location of server configuration files. The name must be 8 or fewer
characters and all uppercase.

Note: If you were interested in only JRAS data, you would enter the following:
CTRACE COMP(cell_short_name
)USEREXIT(JRAS)

Specify additional parameters as necessary.

Example: To direct trace data to the terminal only, you would append the NOPRINT and
TERMINAL parameters to the CTRACE command.

Tip: For a complete list of CTRACE command parameters, see z/OS MVS IPCS Commands,
SA22-7594.

3. View your application's data, basing the method you choose on which one is appropriate for the
location of the data:

v If you directed output to the IPCS print data set (IPCSPRNT), use the ISPF/PDF Browse option.

v If you directed output to the terminal, use the Dump Display Reporter panel

Tips: To navigate through the trace data on the Dump Display Reporter panel, use the commands and
PF keys listed in z/OS MVS IPCS User's Guide, SA22-7596.

CTRACE enables you to view multiple traces together with the trace data from the various sources
intermixed based on the time stamp. See z/OS MVS IPCS Commands, SA22-7594, for specifics on
using this MERGE subcommand.

Formatting CTRACE data in batch mode with IPCS
You can use the interactive problem control system (IPCS) in batch mode to automate formatting CTRACE
data.

Before you begin

You must create an IPCS dump directory before you can use IPCS in batch mode. When setting up IPCS,
your installation may customize IPCS for its users. This customization can include modifying the
IBM-supplied BLSCDDIR CLIST with default values for creating an IPCS dump directory.

About this task

To view messages or application trace data from Component Trace, you must use the interactive problem
control system (IPCS) to format the data. Using IPCS in batch mode is the easiest method of formatting
data, especially if you do not have much experience with using IPCS, TSO/E and ISPF. Through batch
mode, you can use IPCS to format trace data and write it to an MVS data set. Optionally, you may copy
the contents of that data set into an HFS file for viewing.

Chapter 14. Choosing diagnostic information sources 235

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

When your installation has modified the BLSCDDIR CLIST the steps outlined herein will create an IPCS
dump directory.
1. Decide on a fully-qualified data set name for the directory.
2. From the TSO/E command prompt, enter the BLSCDDIR command, specifying the data set name.

For example, to create a dump directory named IBMUSER.DDIR, enter:

%blscddir dsn(’ibmuser.ddir’)

If your installation has not customized IPCS, you might need to alter other BLSCDDIR CLIST parameters.
See the z/OS MVS IPCS User's Guide, SA22-7596 and z/OS MVS IPCS Commands, SA22-7594 for more
details about using the BLSCDDIR CLIST to create a dump directory.

Perform the following steps to use IPCS in batch mode to format application trace data:

Procedure
1. Create a file and copy the following sample JCL into it. This JCL invokes IPCS to extract and format

JRAS trace data and write it into an MVS data set, and then uses the TSO/E OPUT command to copy
the formatted data from the MVS data set into an HFS file.

//IBMUSERX JOB ,
// CLASS=J,NOTIFY=&SYSUID,MSGCLASS=H
//IPCS EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=50
//IPCSDDIR DD DSN=IBMUSER.DDIR,DISP=SHR
//IPCSDOC DD STDERR=H
//JRASTRC DD DSN=IBMUSER.CB390.CTRACE,DISP=SHR
//IPCSPRNT DD DSN=IBMUSER.IPCS.OUT,DISP=OLD
//SYSTSPRT DD STDERR=*
//SYSTSIN DD *
IPCS
DROPDUMP DDNAME(JRASTRC)
PROFILE LINESIZE(80)PAGESIZE(99999999)
SETDEF NOCONFIRM
CTRACE COMP(SYSBBOSS) DDNAME(JRASTRC) FULL PRINT +

NOTERMINAL
DROPDUMP DDNAME(JRASTRC)
END
/*
//OPUT EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=50
//SYSTSPRT DD STDERR=*
//SYSTSIN DD *
oput ’ibmuser.ipcs.out’ ’/u/ibmuser/ipcs/jrastrace.txt’ TEXT
/*

2. Edit the sample JCL to replace IBMUSER.DDIR with the data set name that you used for the IPCS
dump directory you created.

a. Use the PAGESIZE parameter on the PROFILE statement only if you do not want to print the
output data set.

b. You may replace the HFS file name with the name of an existing HFS file, but you do not have to
do so. The OPUT command processing will create a new HFS file, if the one specified does not
exist, and grants read and write access to that file for your user ID only.

If you do specify an existing HFS file, the OPUT command processing will write over any data that
is already in that file. If you want to know more about the OPUT command, see the z/OS UNIX
System Services Command Reference, SA22-7802.

c. Change the data set name specified on the JRASTRC DD in the example to the name of the data
set containing the CTRACE data.

d. Change the name of the MVS data set on both the JRASTRC DD statement and the OPUT
command in the SYSTSIN stream, as necessary. The formatted output of the JRAS CTRACE data
is first written to the MVS data set specified by the IPCSPRNT DD statement and then (optionally)

236 Troubleshooting and support

copied to the HFS data set. You must either pre-allocate this data set, or change the sample JCL
to allocate the data set. This data set should have a record format of VBA and a record length of
133.

3. Submit the JCL to start the IPCS batch job.

What to do next

Once you are done you can use a UNIX editor, such as vi, to view your trace data in the HFS file. If you
want to know more about the UNIX editors, see z/OS UNIX System Services User's Guide, SA22-7801.

CTRACE enables you to view multiple traces together with the trace data from the various sources
intermixed based on the time stamp. See z/OS MVS IPCS Commands, SA22-7594, for specifics on using
this MERGE subcommand.

Sample JCL to display WebSphere for z/OS trace data
Use this sample JCL to display trace data for WebSphere Application Server for z/OS.

The following sample shows JCL that displays WebSphere for z/OS trace data.

Note: The JCL uses an IPCS dump directory (in VSAM data set userid.DUMP.DIR) that must be allocated
before you run the JCL. See z/OS MVS IPCS Commands, SA22-7594 , for information about
initializing a dump directory.

//SHOWTRC JOB <job card info>
//JOBLIB DD DISP=SHR,DSN=BBO.MIGLIB
// DD DISP=SHR,DSN=SYS1.MIGLIB
//PRINTIT EXEC PGM=IKJEFT01,REGION=OM
//IPCSDDIR DD DISP=(OLD,KEEP),DSN=userid.DUMP.DIR
//IPCSPARM DD DISP=SHR,DSN=SYS1.PARMLIB
//SYSTSPRT DD SYSOUT=*
//IPCSTOC DD SYSOUT=*
//IPCSPRNT DD SYSOUT=*
//*---------------------------
//SYSTSIN DD *
IPCS NOPARM

CTRACE COMP(SYSBBOSS) SUB((subname)) FULL DSN(’dump.data.set’)
/*

The following example shows JCL that displays WebSphere for z/OS trace data for multiple address
spaces.
//SHOWTRC2 JOB <job card info>

//JOBLIB DD DISP=SHR,DSN=BBO.MIGLIB
// DD DISP=SHR,DSN=SYS1.MIGLIB
//PRINTIT EXEC PGM=IKJEFT01,REGION=OM
//IPCSDDIR DD DISP=(OLD,KEEP),DSN=userid.DUMP.DIR
//IPCSPARM DD DISP=SHR,DSN=SYS1.PARMLIB
//SYSTSPRT DD SYSOUT=*
//IPCSTOC DD SYSOUT=*
//IPCSPRNT DD SYSOUT=*
//*---------------------------
//SYSTSIN DD *
IPCS NOPARM

MERGE
CTRACE COMP(SYSBBOSS) SUB((subname)) FULL DSN(’dump.data.set’)
CTRACE COMP(SYSBBOSS) SUB((subname2)) FULL DSN(’dump.data.set’)
MERGEEND

/*

Note: You need to copy the files from WAS_HOME/lib/ipcs/ into BBO.MIGLIB.

Chapter 14. Choosing diagnostic information sources 237

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

ICPS CTRACE command
The CTRACE command specifies the cell from which trace data will be gathered.

Read “Formatting CTRACE data with an IPCS dialog” on page 234 for information on when to use the
CTRACE command with an IPCS dialog. The CTRACE command uses the following syntax:
CTRACE COMP (CELL_SHORT_NAME)

where CELL_SHORT_NAME is the value specified through the Profile Management Tool or the zpmt command
to identify the location of server configuration files. The name must be 8 or fewer characters and all
uppercase.

You can also use the IPCS CTRACE command to merge multiple trace entities together such as multiple
WebSphere Application Server for z/OS address space traces, OMVS, and TCPIP. For example code, see
“Sample JCL to display WebSphere for z/OS trace data” on page 237.

IPCS CTRACE subname query
If the trace data set is an SVC dump, the trace subname must also be specified. This subname is the
aggregation of the address space's jobname with its ASID (address space identifier), in printable
hexadecimal.

An easy way to determine the subname is to query CTRACE for the data using the following IPCS
subcommand:
CTRACE QUERY DSN(’dump.data.set’)

Once you get the subname you can view the WebSphere Application Server for z/OS trace data with the
following IPCS subcommand:
CTRACE COMP(CELL_SHORT_NAME) SUB((subname)) FULL DSN(’dump.data.set’)

where CELL_SHORT_NAME is the value specified through the Profile Management Tool or the zpmt
command to identify the location of server configuration files. The name must be 8 or fewer characters and
all uppercase.

Note: The subname parameter is optional for only the trace data set. It is required when viewing the trace
data using the dump data set.

Viewing error log contents through the Log Browse Utility
(BBORBLOG)
You can use the Log Browse Utility (BBORBLOG) to view error log contents for troubleshooting and tuning
purposes.

About this task

You can use the Log Browse Utility (BBORBLOG) to view the error log stream. If you need to look at the
WebSphere Application Server for z/OS error log stream, use ISPF option 6 to enter the command:

Procedure
1. Use ISPF option 6 to enter the proper command.

ex ’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX’

where the log-stream name is BBO.BOSSXXXX

2. The space allocation and the unit for the allocation are contained within the REXX code. If you keep a
large amount of trace data, the allocation must be made larger.

238 Troubleshooting and support

3. The WebSphere Application Server for z/OS provides an ISPF REXX EXEC named BBORBLOG, that
allows you to browse the error log stream.

4. Save the output.

When you use the BBORBLOG browser, it creates a data set name, which depends on the TSO
PROFILE PREFIX value. If you invoke the TSO environment with a TSO PROFILE PREFIX definition
value, this value is used, in conjunction with the log stream name, to form the output data set. For
example, if you issue the TSO PROFILE PREFIX(HARRY) command and the log stream name is
BBO.BOSSXXXX, the output data set is HARRY.BBO.BOSSXXXX.

If you wish to save your browser output, you can use the outdsn parameter to specify a name for the
output data set before you save it. For more information on this parameter, see the usage information
on the BBORBLOG log browse utility. The contents of the current view of the log stream will remain
until the stream reaches its retention date. The next time you invoke the browser, however, the current
view of the log stream will be deleted because if it uses the same data set name. If you use the
outdsn parameter to specify a unique output data set name the current view of the log stream is not
deleted. The previous data will exist in another record (not the current view) until its retention date.

Results

Use the following information to determine viewing of the error log:
v By default, the macro formats the error records to fit a 3270 display.
v Timestamps are in Greenwich Mean Time (GMT) unless changed by setting the WebSphere Application

Server variable ras_time_local to 1.
v Message BBOJ0051I, which appears in the job output, can help correlate error-log entries to the proper

job output.

Using the log browse utility (BBORBLOG)
Use the log browse utility (BBORLOG) to view log stream files.

About this task

The browser takes the following parameters.

Table 81. Log browse utility parameters. The data stored in the WebSphere Application Server log stream must be
formatted using the BBORBLOG Rexx Exec routine. By default, BBORBLOG formats the error records to fit a 3270
display.

Parameter Description

log stream name The name of the log stream. See the job messages for
the name of the log stream.

format option 80 The default. The log stream record is formatted on a
lrecl length of 80 characters. Additional lines are wrapped.

NOFORMAT Turns off formatting. The error log message
displays as one log message string in the browse file.

reclen This optional keyword parameter specifies the formatted
record length for the output data set. When you use this
parameter, it must follow the log stream name and
format option parameters in order. However, if you
specify this parameter, the format option is an optional
positional parameter. If you specify NOFORMAT for the
format option parameter, the default value is 4096. If the
format option parameter value is 80, this parameter
value defaults to 80. The value range for this parameter
is 80 to 32752.

Chapter 14. Choosing diagnostic information sources 239

Table 81. Log browse utility parameters (continued). The data stored in the WebSphere Application Server log
stream must be formatted using the BBORBLOG Rexx Exec routine. By default, BBORBLOG formats the error
records to fit a 3270 display.

Parameter Description

outdsn This optional keyword parameter is the non-fully qualified
data set name for the output data set. When you use this
parameter, it must follow the log stream name and
format option parameters in order. The default value for
this parameter is the name of the log stream.

Procedure
1. Edit BBO.SBBOEXEC(BBORBLOG) and set the bborblogpath variable to the HFS path where the

bborblog dll exists or copy the bborblog dll from the HFS into a dataset that is in linklist. For
example, copy the cp -X bborblog "//’xxx.LOAD(bborblog)’’’ command.

2. View the error log stream output using the BBORBLOG browser. To invoke the browser, go to ISPF
option 6 and enter:
’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX format option’

Note: In this example, BBORBLOG resides in BBO.SBBOEXEC.

Results

The browser creates a browser data set named "userid.stream_name ", which contains the contents of the
log stream.

Important: The browser data set is named userid.stream_name if the invoking TSO environment includes
a TSO PROFILE PREFIX value. If the user ID does not have a TSO PROFILE PREFIX value,
then the default output data set name is stream_name.

When the browser is executed, it:
1. Allocates a data set called userid.stream_name, which overwrites any duplicate data sets.
2. Populates the data set with the contents of the log stream.
3. Puts the user in "browse" mode on the data set.

Important: Each time BBORBLOG is invoked a static file is created which overwrites the existing file. In order
to refresh the file, it is necessary to re-issue BBORBLOG

If the BBORBLOG is not in the linklist or in link pack area (LPA), the utility fails with the following error:
COMMAND BBORBLOG NOT FOUND 57 *-* ADDRESS TSO "BBORBLOG "strm" "format"" +++ RC(-3) +++

Example

There are several valid methods with separate commands to invoke the browser. The following example
shows these different methods:

Example: If the BBORBLOG member was in a data set named BBO.SBBOEXEC, then you would issue one
of the following depending on your chosen format option:
ex ’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX’
ex ’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX 80’
ex ’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX NOFORMAT’
ex ’BBO.SBBOEXEC(BBORBLOG)’ ’bbo.bossxxxx NOFORMAT reclen=5200 outdsn=bbos001.stc00123.bborblog’
ex ’BBO.SBBOEXEC(BBORBLOG)’ ’bbo.bossxxxx NOFORMAT outdsn=bbos001.stc00456.bborblog’
ex ’BBO.SBBOEXEC(BBORBLOG)’ ’bbo.bossxxxx 80 reclen=200’

240 Troubleshooting and support

Tip:: It is easier to invoke the browser if you add the target library (in our example, BBO.SBBOEXEC) to the
SYSEXEC concatenation of the user logon procedure during the WebSphere Application Server for z/OS
installation. If you concatenate the library during installation, you do not have to specify the library
containing the browser REXX exec- you only need to specify BBORBLOG.

Error log stream record output
This article provides two samples of error log stream output and explains the various attributes they
contain.

There are two error log stream records:
v Server logstream
v CERR of a server.

If you do not want the message tag to be included in the error log output, complete the following actions:

1. In the administrative console, click Environment > WebSphere variables.

2. Select the appropriate scope, and then click New.

3. Enter ras_error_log_version in the Name field and 2 in the Value field.

4. Save and synchronize your changes, and then stop, and restart the server.

If you do not want the message tag and the name of the cell, node, and cluster to be included in the error
log output, complete the following actions:

1. In the administrative console, click Environment > WebSphere variables.

2. Select the appropriate scope, and then click New.

3. Enter ras_error_log_version in the Name field and 1 in the Value field.

4. Save and synchronize your changes, and then stop, and restart the server.

Sample output from a server logstream: The numbers to the left of each sample were added to specify
lines. The numbers will not be in the actual output.
1| 2008/11/19 22:17:46.325 03 SYSTEM=ATZ3013 CELL=BBOCELL

NODE=BBONODE CLUSTER=BBOC001 SERVER=BBOS001 JobName=BBOS001S
2| ASID=0X0053 PID=0X0200025E TID=0X00000045 0XCCDF70CC c=./bbgrjtr.cpp at
3| tag=classlvl... TRAS0028I: The trace output is stored

The log stream record output fields from stream BBO.BOSSXXXX are:

Table 82. Description of components. Parts table for a server logstream record output

Component Description

line 1:

2008/11/19 22:17:46.325 03

Date / timestamp / 2-digit record version number

line 1:

SYSTEM=ATZ3013

System name

line 1:

CELL=BBOCELL

Cell name

line 1:

NODE=BBONODE

Node name

line 1:

CLUSTER=BBOC001

Cluster name

line 1:

SERVER=BBOS001

Server name

Chapter 14. Choosing diagnostic information sources 241

Table 82. Description of components (continued). Parts table for a server logstream record output

Component Description

line 1:

JobName=BBOS001S

Jobname

line 2:

ASID=0X0033

ASID (address space identifier)

line 2:

PID=0X0100003C

PID (Process ID)

line 2:

TID=0X24F858A0 0X000004

TID (Thread ID)

line 2:

c=2.1010030

Request correlation information

line 3:

. /bbooreq.cpp+4437

File name & line

line 3:

tag=classlvl

Message tag defined in the classification file

line 3:

BBOU0013W

Log message number

line 3:

The function...

Log message

lines 4–5:

make_user_exception... CosNaming::Naming...

Continuation lines: Continuation of the Log Stream log message

Attention: Each field is delimited by a blank.

Sample output from CERR of a server:
1| BossLog: { 0017} 2008/10/01 15:58:25.557 03 SYSTEM=SY1 CELL=BBOCELL NODE=BBONODE CLUSTER=BBOC001
2| SERVER=BBOS001 JobName=BBOS001S PID=0X0100003C TID=0X24F82920 00000000 c=3.C5D02
3| ./bboiroot.cpp+1195 tag=classlvl... BBOU0012W The function IRootHomeImpl::findHome(
4| const char*)+1195 received CORBA system exception CORBA::INTERNAL.
5| Error code is C9C21200.

The CERR job message output fields are:

Table 83. Description of components. Parts table for a CERR record output

Component Description

line 1:

BossLog: { 0017}

BossLog: {entry number}

line 1:

2000/06/01 15:58:25.557 03

Date / timestamp / 2-digit record version number

line 1:

SYSTEM=SY1

System name

line 1:

CELL=BBOCELL

Cell name

line 1:

NODE=BBONODE

Node name

line 1:

CLUSTER=BBOC001

Cluster name

242 Troubleshooting and support

Table 83. Description of components (continued). Parts table for a CERR record output

Component Description

line 1:

SERVER=BBOS001

Server name

line 1:

JobName=BBOS001S

Job name

line 2:

PID=0X0100003C

PID (Process ID)

line 2:

TID=0X24F82920 00000000

TID (Thread ID)

line 2:

c=3.C5D02

Request correlation information

line 3:

. /bboiroot.cpp+1195

File name & line

line 3:

tag=classlvl

Message tag defined in the Classification file

line 3:

BBOU0012W

Log message number

line 3:

The function IRootHomeImpl::find...

Log message

lines 4-5:

const char*)+1195 received CORBA
system exception CORBA::INTERNAL.
Error code is C9C21200.

Continuation lines: Continuation lines of the CERR
job message

v Each field is delimited by a blank.
v The CERR format is found in SYSOUT, not the logger.

Saving your BBORBLOG browser output

When you use the BBORBLOG browser, it creates a data set with your user ID, followed by the log stream
name. You should rename it if you wish to save your browser output. The contents of the current view of
the log stream will remain until the stream reaches its retention date. The next time you invoke the
browser; however, the current view of the log stream will be deleted because it uses the same data set
name. The previous data will exist in another record, not the current view, until its retention date.

z/OS display command
Use either the WebSphere Application Server administrative console or the z/OS MVS console to
accomplish many operations tasks related to WebSphere Application Server for z/OS servers. Entering the
z/OS display or modify commands through the MVS console can provide information or perform tasks that
are useful for diagnosing problems.

The purpose of the DISPLAY command is to display information about the operating system, the jobs and
application programs that are running, the processor, devices that are online and offline, central and
expanded storage, workload management service policy and mode status, and the time of day.

For example, you could use the command
D WLM,APPLENV=*

Chapter 14. Choosing diagnostic information sources 243

to verify that WLM is defined and available for your applications.

To display the dynamic WLM application environment, use the command:
D WLM,DYNAPPL=*

You can check the WLM environment for a specific application using the following command:
D WLM,APPLENV=appname

These commands will return information similar to the following:
RESPONSE=SC42
IWM029I 13.09.47 WLM DISPLAY 075
APPLICATION ENVIRONMENT NAME STATE STATE DATA
appname AVAILABLE
ATTRIBUTES:PROC=procname SUBSYSTEM TYPE:CB

For more information on the display command see z/OS MVS System Commands, SA22-7627

Hexadecimal conversion of Java error codes
Occasionally, Java will take an WebSphere Application Server for z/OS error code (C9C2xxxx in
hexadecimal) and convert it to a very large negative number. If you get a very large negative number, try
converting it back to hexadecimal to find the correct code.

To convert the error codes back to hexadecimal you must add 232 to the negative number and convert it
into hexadecimal. This can be done using the OMVS command.
bc

Example: Suppose you get the error code "910022649":
1. Under OMVS, type the command:

bc
2. then type:

obase=16
2^32 - 910022649
quit

The bc program displays C9C22807, which is the hex value that you should look up.

Managing operator message routing
Use the product message routing capabilities to control server traffic flow.

You can route many of the BBO prefixed error messages to specific datasets instead of having them go to
SYSLOG, which can create a lot of traffic. This is implemented with the use of two environment variables,
ras_default_msg_dd and ras_hardcopy_msg_dd, and the specification of the appropriate DD statement in
your JCL start procedure.

The following explains, in more detail how messages get routed.

v WTO messages issued by the Application Server during initialization are sent to hardcopy, but most can
be routed to the data set specified by ras_default_msg_dd (see “Log output destinations and
characteristics” on page 161).

v The Java audit messages are also sent to hardcopy, but can be routed to the data set specified by
ras_hardcopy_msg_dd. (see “Log output destinations and characteristics” on page 161).

244 Troubleshooting and support

http://publibz.boulder.ibm.com/epubs/pdf/iea2g141.pdf

v Trace error, service, and fatal messages are sent to the error log specified by the
ras_log_logstreamName. Otherwise, they go to CERR (SYSOUT). Some might also go to hardcopy. At
the W500104 service level, the ras_log_logstreamName environment variable is not set to the error
logstream name in the was.env variables.

To set this environment variable, on the administrative console, click Environment > WebSphere
variables, select a scope, and click New.

v Early error messages go to SYSOUT until the product connects to the log stream. A WTO (BBOO0153I)
is issued telling you how many messages went to SYSOUT before you connected to the log stream.

v If you are using JES2, the SEGMENT= parameter can be added to the SYSPRINT and SYSOUT DD
cards if you want to segment output using the periodic writing of form-feed characters to the output
streams. Form-feed characters are written to the output streams based on the values of the
ras_stderr_ff_interval, ras_stdout_ff_interval, ras_stderr_ff_line_interval, and ras_stdout_ff_line_interval
environment variables. These variables are described in more detail in the topic Application server
custom properties for z/OS The SEGMENT= parameter is not supported on JES3..

To set these environment variables, on the administrative console, click Environment > WebSphere
variables, select a scope, and then click New.

v Trace messages are routed to ras_trace_outputLocation.

v System.out.println, System.err.println, STDOUT and cout go to SYSPRINT (see the topic Redirectiong
SYSPRINT and SYSOUT output to an HFS File for more information.

v STDERR and cerr go to SYSOUT

To use these message routing variables, you must do two things:

1. Add these parameters to the server definitions using the Administrative Console under Environment ->
Manage WebSphere Variables:

v ras_default_msg_dd =DEFALTDD

v ras_hardcopy_msg_dd =HRDCPYDD

You can set these variables for individual control and servant processes, but it is easier to set them in
the Environment variables for the entire cell. For the Daemon, you must prefix them with "DAEMON_"
and set them at the cell level:

v DAEMON_ras_default_msg_dd =DEFALTDD

v DAEMON_ras_hardcopy_msg_dd =HRDCPYDD

2. Update the procedures in PROCLIB to add these new DD statements:
//* Output DDs
//CEEDUMP DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE
//SYSOUT DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE
//SYSPRINT DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE
//DEFALTDD DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE
//HRDCPYDD DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE

Note:

v If you specify the new environment variables, but do not specify the DD cards in the procedure,
you will not get an error message indicating that the DD cards are missing and the tracing output
will not be written anywhere.

v If you try to direct the output for multiple streams to the same DD, such as setting both
ras_default_msg_dd and ras_hardcopy_msg_dd to DEFALTDD (or to SYSPRINT) then the
allocation will fail and output will be sent to the default location (JOBLOG/SYSLOG).

For example, these DD files are used to segregate the messages and keep almost all of them off the
hardcopy console (SYSLOG):

1. JESMSGLG - a few start-up and shut-down messages

2. JESYSMSG - MVS allocation and deallocation messages

3. SYSOUT - a few start-up and shut-down messages

Chapter 14. Choosing diagnostic information sources 245

4. SYSPRINT - a few start-up and shut-down messages

5. HRDCPYDD - audit messages that would normally go to SYSLOG

6. DEFALTDD - informational messages that would normally go to SYSLOG

246 Troubleshooting and support

Chapter 15. Configuring the hang detection policy

The hang detection option for WebSphere Application Server is turned on by default. You can configure a
hang detection policy to accommodate your applications and environment so that potential hangs can be
reported, providing earlier detection of failing servers. When a hung thread is detected, WebSphere
Application Server notifies you so that you can troubleshoot the problem.

Before you begin

A common error in Java Platform, Enterprise Edition (Java EE) applications is a hung thread. A hung
thread can result from a simple software defect (such as an infinite loop) or a more complex cause (for
example, a resource deadlock). System resources, such as CPU time, might be consumed by this hung
transaction when threads run unbounded code paths, such as when the code is running in an infinite loop.
Alternately, a system can become unresponsive even though all resources are idle, as in a deadlock
scenario. Unless an end user or a monitoring tool reports the problem, the system may remain in this
degraded state indefinitely.

Using the hang detection policy, you can specify a time that is too long for a unit of work to complete. The
thread monitor checks all managed threads in the system (for example, web container threads and object
request broker (ORB) threads) . Unmanaged threads, which are threads created by applications, are not
monitored. For more information read “Hung threads in Java Platform, Enterprise Edition applications” on
page 248.

About this task

The thread hang detection option is enabled by default. To adjust the hang detection policy values, or to
disable hang detection completely:

Procedure
1. From the administrative console, click Servers > Application Servers > server_name

2. Under Server Infrastructure, click Administration > Custom Properties

3. Click New.

4. Add the following properties:

Name com.ibm.websphere.threadmonitor.interval

Value The frequency, in seconds, at which managed threads in
the selected application server will be interrogated.

Default 180 seconds (three minutes)

Name com.ibm.websphere.threadmonitor.threshold

Value The length of time, in seconds, in which a thread can be
active before it is considered hung. Any thread that is
detected as active for longer than this length of time is
reported as hung.

Default 600 seconds (ten minutes)

Name com.ibm.websphere.threadmonitor.false.alarm.threshold

© Copyright IBM Corp. 2011 247

Value The number of times (T) that false alarms can occur
before automatically increasing the threshold. It is
possible that a thread that is reported as hung eventually
completes its work, resulting in a false alarm. A large
number of these events indicates that the threshhold
value is too small. The hang detection facility can
automatically respond to this situation: For every T false
alarms, the threshold T is increased by a factor of 1.5.
Set the value to zero (or less) to disable the automatic
adjustment.

Default 100

Name com.ibm.websphere.threadmonitor.dump.java

Value Set to true to cause a javacore to be created when a
hung thread is detected and a WSVR0605W message is
printed. The threads section of the javacore can be
analyzed to determine what the reported thread and other
related threads are doing.

Default false

To disable the hang detection option, set the com.ibm.websphere.threadmonitor.interval property to
less than or equal to zero.

5. Click Apply.

6. Click OK.

7. Save the changes. Make sure a file synchronization is performed before restarting the servers.

8. Restart the Application Server for the changes to take effect.

Hung threads in Java Platform, Enterprise Edition applications
WebSphere Application Server monitors thread activity and performs diagnostic actions if one has become
inactive.

When WebSphere detects that a thread has been active longer than the time defined by the thread
monitor threshold, the application server takes the following actions:

v Logs a warning in the WebSphere Application Server log that indicates the name of the thread that is
hung and how long it has already been active. The following message is written to the log:
WSVR0605W: Thread threadname has been active for
hangtime and may be hung. There are totalthreads
threads in total in the server that may be hung.

where: threadname is the name that appears in a JVM thread dump, hangtime gives an approximation
of how long the thread has been active and totalthreads gives an overall assessment of the system
threads.

v Issues a Java Management Extensions (JMX) notification. This notification enables third-party tools to
catch the event and take appropriate action, such as triggering a JVM thread dump of the server, or
issuing an electronic page or email. The following JMX notification events are defined in the
com.ibm.websphere.management.NotificationConstants class:

– TYPE_THREAD_MONITOR_THREAD_HUNG This event is triggered by the detection of a
(potentially) hung thread.

– TYPE_THREAD_MONITOR_THREAD_CLEAR This event is triggered if a thread that was previously
reported as hung completes its work. Consult the section on false alarms for more information.

248 Troubleshooting and support

v Triggers changes in the performance monitoring infrastructure (PMI) data counters. These PMI data
counters are used by various tools, such as the Tivoli Performance Viewer, to provide a performance
analysis.

v Triggers changes in the performance monitoring infrastructure (PMI) data counters. These PMI data
counters are used by various tools, such as the Tivoli Performance Viewer, to provide a performance
analysis.

For additional information about performance monitoring and Tivoli Performance Viewer, see the chapter
Monitoring performance with Tivoli Performance Viewer in the Tuning guide PDF book

False Alarms

If the work actually completes, a second set of messages, notifications and PMI events is produced to
identify the false alarm. The following message is written to the log:
WSVR0606W: Thread threadname was previously reported to be
hung but has completed. It was active for approximately hangtime.
There are totalthreads threads in total in the server that still
may be hung.

where threadname is the name that appears in a JVM thread dump, hangtime gives an approximation of
how long the thread has been active and totalthreads gives an overall assessment of the system threads.

Automatic adjustment of the hang time threshold

If the thread monitor determines that too many false alarms are issued (determined by the number of pairs
of hang and clear messages), it can automatically adjust the threshold. When this adjustment occurs, the
following message is written to the log:
WSVR0607W: Too many thread hangs have been falsely reported. The hang
threshold is now being set to thresholdtime.

where: thresholdtime is the time (in seconds) in which a thread can be active before it is considered hung.

You can prevent WebSphere Application Server from automatically adjusting the hang time threshold. See
Chapter 15, “Configuring the hang detection policy,” on page 247

Example: Adjusting the thread monitor to affect server hang detection
The hang detection policy affects how the application server responds to a thread that is not being
processed correctly.

You can adjust the thread monitor settings by using the wsadmin scripting interface. These changes take
effect immediately, but do not persist to the server configuration, and are lost when the server is restarted.
The following script provides an example of how to adjust the properties for the thread monitor using the
wsadmin tool:
Read in the interval, threshold, false alarm from the command line
set interval [lindex $argv 0]
set threshold [lindex $argv 1]
set adjustment [lindex $argv 2]

Get the object name of the server you want to change the values on
set server [$AdminControl completeObjectName "type=Server,*"]

Read in the interval and print to the console
set i [$AdminControl getAttribute $server threadMonitorInterval]

Read in the threshold and print to the console
set t [$AdminControl getAttribute $server threadMonitorThreshold]

Read in the false alarm adjustment threshold and print to the console

Chapter 15. Configuring the hang detection policy 249

set a [$AdminControl getAttribute $server threadMonitorAdjustmentThreshold]

Set the new values using the command line parameters
$AdminControl setAttribute $server threadMonitorInterval ${interval}

$AdminControl setAttribute $server threadMonitorThreshold ${threshold}

$AdminControl setAttribute $server threadMonitorAdjustmentThreshold ${adjustment}

250 Troubleshooting and support

Chapter 16. Automation and recovery scenarios and
guidelines

The following section provides information on how to monitor and recover WebSphere Application Server
for z/OS and the subsystems it uses.

It provides startup, shutdown, and recovery procedures and scenarios. It also tells you how to determine if
the subsystems are up or down, and tells you where to find more information.

APPC automation and recovery scenarios
This page contains scenarios and information on the automation and recovery of APPC.

Table 84. Scenarios and information on the automation and recovery of APPC. Use the following table to diagnose
various APPC problems.

Task APPC automation and recovery scenarios

Startup APPC should be started before WebSphere Application Server for
z/OS. In theory, WebSphere Application Server for z/OS could be
started before APPC, but only as long as no objects get dispatched in
containers that have an IMS APPC LRMI associated with them. If
APPC is not up before WebSphere Application Server for z/OS, and
you want to use an APPC connector to talk to IMS, then you will have
no connectivity. APPC/MVS does not have to be up for CICS. APPC
does not have to be started after VTAM®.

Shutdown Reverse the startup procedure. Shutdown WebSphere Application
Server for z/OS, APPC, then VTAM.

Handling in-flight or indoubt transactions if
there is a failure

If you are using APPC for communications and it fails, do the
following:
1. Shutdown all servers with APPC connectivity.
2. Restart APPC (if it totally failed).
3. Restart the WebSphere Application Server for z/OS server.

Note: APPC will resynchronize itself. If your transaction is indoubt,
IMS waits until you restart APPC. IMS relies on RRS for recovery.
RRS will resolve transactions that are in doubt by handshaking with
every subsystem it was communicating with before it went down. If
you are using CICS, note that CICS has its own coordinator.

How to determine if APPC is running Issue the DISPLAY APPC,LU,ALL command. If APPC is not active, it will
say so. In addition, the status of the logical units used by WebSphere
Application Server for z/OS and/or IMS should be active or no APPC
work will be successful.

What happens to WebSphere for z/OS if
APPC goes down?

Any objects attempting to use the IMS APPC PAA will not work. The
server region running on behalf of the container attempting to use
APPC will likely get a C9C24C05 error, indicating that an APPC
ALLOCATE request was attempted and failed. Additional APPC error
diagnostic information that helps to pinpoint the APPC problem is
contained in the logs associated with this region.

What happens to other subsystems if APPC
goes down?

Not applicable

Where to find more information v z/OS MVS Planning: Operations
v z/OS MVS Planning: APPC/MVS Management
v z/OS MVS Programming: Resource Recovery

© Copyright IBM Corp. 2011 251

WLM automation and recovery scenarios
This table provides scenarios for automation and recovery of WLM enabled systems.

Table 85. WLM automation and recovery scenarios. The following tables lists tasks and the WLM automation and
recovery scenarios for the task.

Task WLM automation and recovery scenarios

Startup WLM is automatically started by z/OS when you IPL your system.
You do not have to start it.

Shutdown You cannot shutdown WLM.

Handling in-flight and indoubt transactions if
there is a failure

Not applicable

How to determine if WLM is running Not applicable

What happens to the product if WLM goes
down?

Not applicable

What happens to other subsystems if WLM goes
down?

Not applicable

How to handle a catastrophic failure of the
servants

Following a catastrophic failure of the servants, you can use one
of the following resume commands, depending on your application
environment type:
v Static application environment:

v wlm,applenv=applenvname,
resume

v Dynamic application environment:

v wlm,dynappl=applenvname,
resume,options

Where to find more information v z/OS MVS Planning: Workload Management
v z/OS MVS Programming: Workload Management Services

RACF automation and recovery scenarios
This table provides scenarios for RACF automation and recovery.

Table 86. Scenarios for RACF automation and recovery. RACF program provides improved security for an installation
data. RACF protects your vital system resources and controls what users can do on the operating system.

Task RACF automation and recovery scenarios

Startup If it is installed, RACF is started as a part of IPL.

Shutdown RACF is not shutdown.

Handling in-flight and indoubt transactions if
there is a failure

Not applicable

How to determine if RACF is running Use the RACF SETROPTS command to display the status of
RACF.

What happens to WebSphere for z/OS if RACF
goes down?

RACF goes into fail safe mode. This means that for every
resource that is accessed, the operator is asked to verify if it is
okay. In general, the system is IPLed if this occurs.

What happens to other subsystems if RACF
goes down?

It depends on the subsystem and how RACF fails.

Where to find more information v z/OS Security Server RACF System Programmer's Guide
v z/OS Security Server RACF Security Administrator's Guide

252 Troubleshooting and support

RRS automation and recovery scenarios
Use this table for RRS automation and recovery scenarios.

Table 87. RRS automation and recovery scenarios. Although RRS restart and resource manager restart are two
separate items, they must be considered together because in many instances RRS restart issues have a major effect
on resource manager restart issues. For additional information, read about the RRS restart and recovery section in
the Systems Programmer's Guide to Resource Recovery Services (RRS) book.

Task RRS automation and recovery scenarios

Startup Ensure System Logger has been started before RRS.
Note: RRS will display error messages indicating that System Logger
must be started first if you try to start RRS without starting System
Logger.Ensure RRS is started before WebSphere for z/OS. RRS does
not start by itself. RRS will start automatically only if it was registered
with the Automatic Restart Manager (ARM) and if ARM is running. To
start RRS, issue the start command:

start atrrrs,sub=master

Note: RRS doesn't restart itself if you issue the cancel command, so
you need to restart it manually if it was canceled or if ARM isn't
running.

Shutdown Shutdown RRS in the reverse order that you started RRS. Shutdown
WebSphere Application Server for z/OS, then RRS, followed by
System Logger. There is no controlled way to bring down RRS. The
best approach is:
1. Quiesce WebSphere Application Server for z/OS.
2. Shutdown WebSphere Application Server for z/OS.
3. Cancel RRS.

Note: You may want to bring down the DB2 you are using for
WebSphere Application Server for z/OS before canceling RRS.

To cancel RRS, issue the command:

setrrs cancel

Handling in-flight and indoubt transactions if
there is a failure

Refer to the RRS system management panels to display in-flight and
resolve indoubt transactions. You can display the resource managers
on the RM panels in RRS, display all units of recovery (UR), filter the
URs, and then resolve the indoubts. You cannot resolve in-flights. You
can display all RRS-managed transactions.

If you are using the IMS Connector for Java, this process applies only
if IMS Connector for Java, IMS Connect, and the IMS subsystem are
configured locally on the same z/OS system image on which the
WebSphere for z/OS J2EE server runs. The local configuration is the
only configuration in which IMS Connector for Java runs as an
RRS-transactional connector.

How to determine if RRS is running Use the display command:

d a,atrrs

atrrs is the name of the default RRS procedure shipped with
WebSphere Application Server for z/OS. Use the procedure name that
you use to start RRS. The address space comes from the procedure.

What happens to WebSphere for z/OS if
RRS goes down?

RRS is a required subsystem, so WebSphere Application Server for
z/OS will not run without it. If RRS goes down, WebSphere Application
Server for z/OS will get fatal errors. You need to get RRS started, then
restart WebSphere Application Server for z/OS.

Chapter 16. Automation and recovery scenarios and guidelines 253

http://www.redbooks.ibm.com/redbooks/pdfs/sg246980.pdf

Table 87. RRS automation and recovery scenarios (continued). Although RRS restart and resource manager restart
are two separate items, they must be considered together because in many instances RRS restart issues have a
major effect on resource manager restart issues. For additional information, read about the RRS restart and recovery
section in the Systems Programmer's Guide to Resource Recovery Services (RRS) book.

Task RRS automation and recovery scenarios

What happens to other subsystems if RRS
goes down?

RRS is the WebSphere Application Server for z/OS transaction
monitor. If you cancel RRS, you will have problems with any
subsystems using it (for example, WebSphere Application Server for
z/OS, DB2, IMS). You should understand the implications before you
cancel RRS.

Where to find more information z/OS MVS Programming: Resource Recovery

UNIX System Services automation and recovery scenarios
This table provides automation and recovery scenarios for using UNIX System Services.

Table 88. Automation and recovery scenarios for using UNIX System Services. The MVS operator can use the
DISPLAY command to obtain the UNIX System Services status, for example, active or terminating, shutting down or
restarting.

Task UNIX System Services automation and recovery scenarios

Startup UNIX System Services is a permanent component of MVS and
is started automatically at IPL time.

Shutdown You can use the MODIFY command to control z/OS UNIX
System Services and to terminate a z/OS UNIX process or
thread. You can also use it to shut down z/OS UNIX initiators
and to request a SYSMDUMP for a process.

For more information on the MODIFY command see z/OS MVS
System Commands, SA22-7627.

Handling in-flight or indoubt transactions if there is
a failure

The only data that could be considered transactional in nature
is data stored in the HFS.

How to determine if UNIX System Services is
running

UNIX System Services is always available as long as the
system is up and running.

What happens to WebSphere for z/OS if UNIX
System Services goes down?

If UNIX System Services fails, the system must be re-IPLed, or
you can use the MODIFY OMVS command to recycle z/OS
UNIX System Services. This is an alternative to re-IPLing the
system in order to reinitialize the z/OS UNIX System Services
environment. This command should be used only on a limited
basis when complete reinitialization and reconfiguration are
required. Prior to issuing MODIFY OMVS to initiate a shutdown,
you should review the information about shutdown in z/OS
UNIX System Services Planning.

For more information on the MODIFY command see z/OS MVS
System Commands, SA22-7627.

254 Troubleshooting and support

http://www.redbooks.ibm.com/redbooks/pdfs/sg246980.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g141.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g141.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g141.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g141.pdf

Table 88. Automation and recovery scenarios for using UNIX System Services (continued). The MVS operator can
use the DISPLAY command to obtain the UNIX System Services status, for example, active or terminating, shutting
down or restarting.

Task UNIX System Services automation and recovery scenarios

What happens to other subsystems if UNIX System
Services goes down?

If UNIX System Services fails, then other subsystems will be
adversely affected until the problem is resolved. The system
must be re-IPLed, or you can use the MODIFY OMVS
command to recycle z/OS UNIX System Services. This is an
alternative to re-IPLing the system in order to reinitialize the
z/OS UNIX System Services environment. This command
should be used only on a limited basis when complete
reinitialization and reconfiguration are required. Prior to issuing
MODIFY OMVS to initiate a shutdown, you should review the
information about shutdown in z/OS UNIX System Services
Planning.

For more information on the MODIFY command see z/OS MVS
System Commands, SA22-7627.

Where to find more information z/OS UNIX System Services Planning

TCP/IP automation and recovery scenarios
This table provides automation and recovery scenarios for TCP/IP configurations.

Table 89. Automation and recovery scenarios for TCP/IP configurations. To prepare TCP/IP on z/OS, read about the
information in the Preparing TCP/IP on z/OS topic.

Task TCP/IP automation and recovery scenarios

Startup TCP/IP must be up before starting WebSphere Application Server for z/OS.

Shutdown Shutdown WebSphere Application Server for z/OS before shutting down
TCP/IP.

Handling inflight or indoubt transactions
if there is a failure

Methods in flight might have their transactions rolled back when the attempt
to send a response to the method fails. Other transactions might wait for a
timeout.

How to determine if TCP/IP is running Use the display command looking for the TCP/IP procedure.

What happens to WebSphere
Application Server for z/OS if TCP/IP
goes down?

Restart TPC/IP. After TCP/IP is restarted, you also must restart WebSphere
Application Server.

If you are using another product to supplement WebSphere Application
Server for z/OS, you might need to restart the application server for the
other programs to re-initialize the TCP/IP settings.

What happens to other subsystems if
TCP/IP goes down?

If TCP/IP goes down, sessions break and transactions react as described
above.
Note: If TCP/IP goes down, LDAP functionality might be affected. You
might need to recycle LDAP and restart WebSphere Application Server for
z/OS if this occurs.

Chapter 16. Automation and recovery scenarios and guidelines 255

http://publibz.boulder.ibm.com/epubs/pdf/iea2g141.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g141.pdf

DB2 automation and recovery scenarios
This article provides scenarios for automation and recovery of DB2 resources.

Table 90. DB2 automation and recovery scenarios. DB2 for z/OS is the database of choice for critical data for many
enterprises. It is becoming more important to protect this data in case of disaster and to be able to restart with a
consistent copy of the DB2 data as quick as possible and with minimal losses.

Task DB2 automation and recovery scenarios

Startup DB2 is started after RRS but before LDAP, NFS, and WebSphere
Application Server for z/OS.

Shutdown Reverse of startup sequence.

Handling in-flight or indoubt transactions if
there is a failure

Use the RRS panels to resolve. See z/OS MVS Programming:
Resource Recovery. The RRS panels are the preferred way to
resolve DB2 indoubts because they allow you to view all resource
managers that have an interest in the transaction. However, you can
also use DB2 to resolve indoubts. You can issue the command:

DISPLAY THREAD(*) TYPE(INDOUBT)

to display DB2 information about the indoubt threads it knows about
(if there are too many, you can go into S.LOG to view the
information). This display will give you a DB2 identifier called a "nid".
Copy the nid and paste it into this command:

-RECOVER INDOUBT (RRSAF) ACTION(COMMIT)
NID(B1D379D17ED6CF900000009401010000)

where the nid is the one that you cut from the display command. You
can issue this command to roll back the transaction:

-RECOVER INDOUBT (RRSAF) ACTION(ABORT)
NID(B1D379D17ED6CF900000009401010000)

How to determine if DB2 is running Use the display command to display the DB2 address space.

What happens to WebSphere Application
Server for z/OS if DB2 goes down?

WebSphere Application Server for z/OS continues to run. WebSphere
Application Server for z/OS does not require restarting in this
scenario.

What happens to other subsystems if DB2
goes down?

Not applicable

Where to find more information See the DB2 books at the following Internet location:http://
www.ibm.com/servers/eserver/zseries/zos/

CICS automation and recovery scenarios
This article explains different scenarios for CICS automation and recovery.

Table 91. Scenarios for CICS automation and recovery. The MVS operator can use the DISPLAY command to obtain
the UNIX System Services status, for example, active or terminating, shutting down or restarting.

Task CICS automation and recovery scenarios

Startup CICS and any required CICS products, such as CICS Transaction
Gateway, need to be properly installed, initialized, and started
before any work flows to a CICS-enabled WebSphere Application
Server controller.

Shutdown Shutdown the WebSphere Application Server controller that uses
CICS as a backing store, then shut down the CICS service.

256 Troubleshooting and support

http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/eserver/zseries/zos/

Table 91. Scenarios for CICS automation and recovery (continued). The MVS operator can use the DISPLAY
command to obtain the UNIX System Services status, for example, active or terminating, shutting down or restarting.

Task CICS automation and recovery scenarios

Handling in-flight or indoubt transactions if there
is a failure

If there is an error during processing, both CICS and WebSphere
Application Server for z/OS rely on the underlying RRS subsystem
to handle all rollback notifications to the registered interests. In the
case of inflight transactions, RRS will notify all participants that a
rollback is required, and normal rollback processing will occur in
each registered party. In the case of indoubt transactions, it may
be necessary to recycle the WebSphere Application Server for
z/OS Application Control/Server region to release any pending
transaction in CICS.

How to determine if CICS is running This is installation dependent.

Troubleshooting the failure of CICS web
transactions that trigger the error
WSIFIOException

Failure occurs because the CICS resource adapter cannot access
the CTG*.so files, which the adapter requires for running the Web
Services Invocation Framework (WSIF). Solve the problem with
the following steps:

1. Copy the CTG*.so files into the /lib directory of your Application
Server installation. For example, the/lib directory might have
the following path: WebSphere/V7R0/AppServer1/lib/.

2. Restart the CICS web transaction service over WSIF.

What happens to CICS if WebSphere
Application Server for z/OS goes down?

Should WebSphere Application Server for z/OS happen to go
down, one of two situations could occur:
1. If WebSphere Application Server for z/OS and CICS are

currently engaged in a unit of work, then RRS processing as
described above would occur and it may be necessary to
recycle the application control server regions to release
pending transactional work in CICS.

2. If WebSphere Application Server for z/OS and CICS are not
currently engaged in a unit of work, CICS is not affected.

What happens to other subsystems if CICS goes
down?

Not applicable

Where to find more information CICS Operations and Utilities Guide

IMS automation and recovery scenarios
This article provides scenarios for IMS automation and recovery.

Table 92. Scenarios for IMS automation and recovery. When a failure occurs, you must perform the correct recovery
and restart procedures to ensure system integrity.

Task IMS automation and recovery scenarios

Startup IMS and any required IMS products, such as IMS Connect, need to be
properly installed, initialized, and started before any work flows to an
IMS-enabled WebSphere for z/OS application control server region are
run.

Shutdown Shutdown the WebSphere Application Server for z/OS application
controller that uses IMS as a backing store, then shutdown the IMS
service

Chapter 16. Automation and recovery scenarios and guidelines 257

Table 92. Scenarios for IMS automation and recovery (continued). When a failure occurs, you must perform the
correct recovery and restart procedures to ensure system integrity.

Task IMS automation and recovery scenarios

Handling in-flight or indoubt transactions if
there is a failure

If there is an error during processing, both IMS and WebSphere
Application Server for z/OS rely on the underlying RRS subsystem to
handle all rollback notifications to the registered interests. In the case of
inflight transactions, RRS will notify all participants that a rollback is
required and normal rollback processing will occur in each registered
party. In the case of indoubt transactions, it may be necessary to
recycle the WebSphere Application Server for z/OS Application
Control/Server region to release any pending transaction in the IMS
MPRs.

How to determine if IMS is running This is installation-dependent.

What happens to IMS if WebSphere
Application Server for z/OS goes down?

Should WebSphere Application Server for z/OS happen to go down,
one of two situations could occur:
1. If WebSphere Application Server for z/OS and IMS are currently

engaged in a unit of work, then RRS processing as described
above would occur and it may be necessary to recycle the
application control server regions to release pending transactional
work in the IMS MPR.

2. If WebSphere Application Server for z/OS and IMS are not currently
engaged in a unit of work, IMS is not affected.

What happens to other subsystems if IMS
goes down?

Not applicable

Where to find more information IMS/ESA® Operator's Reference

WebSphere Application Server for z/OS (Daemon) automation and
recovery scenarios
This article provides some scenarios for automation and recovery of WebSphere Application Server for
z/OS.

Table 93. Scenarios for automation and recovery of WebSphere Application Server for z/OS. To support WebSphere
Application Server for z/OS to restart on an alternate system, a few prerequisites must be installed on every system
(your original system as well as any systems intended for recovery) before reconfiguring the ARM policies to enable
peer restart and recovery. For more information, read about the Setting up peer restart and recovery topic.

Task WebSphere Application Server for z/OS (daemon) automation
and recovery scenarios

Startup See the instructions described in the where to perform WebSphere
Application Server operations documentation.

Shutdown See the instructions described in the where to perform WebSphere
Application Server operations documentation.

Handling inflight or indoubt transactions if there
is a failure

The daemon is a location agent. If the daemon fails during the
course of a transaction, locate requests to the daemon can fail.
These request failures might be surfaced by the client ORB. If the
client is a WebSphere Application Server for z/OS client running in
a sysplex, the locate request can be routed to another available
daemon in the sysplex, if present.

How to determine if the daemon is running Use the MVS display command.

What happens to WebSphere Application
Server for z/OS if the daemon goes down?

If the daemon goes down, all WebSphere Application Server for
z/OS servers started on the same system also are terminated.

258 Troubleshooting and support

Table 93. Scenarios for automation and recovery of WebSphere Application Server for z/OS (continued). To support
WebSphere Application Server for z/OS to restart on an alternate system, a few prerequisites must be installed on
every system (your original system as well as any systems intended for recovery) before reconfiguring the ARM
policies to enable peer restart and recovery. For more information, read about the Setting up peer restart and
recovery topic.

Task WebSphere Application Server for z/OS (daemon) automation
and recovery scenarios

What happens to other subsystems if the
daemon goes down?

Other subsystems continue to work fine. As a general rule, if the
servers on multiple systems are defined in cluster and there is
another one in the sysplex, if the daemon goes down , clients are
not affected.

Web server (servlet) automation and recovery scenarios
This table provides scenarios for web server (or servlet) automation and recovery.

Table 94. Web server (or servlet) scenarios.. Displays web server (or servlet) scenarios for automation and recovery.

Task WebServer automation and recovery scenarios

Startup Web servers have a relationship with WebSphere Application Server for z/OS only in
the sense that a client application program that is written to use WebSphere
Application Server for z/OS facilities may be written as a servlet. Any implications for
ordering of startup will be introduced by the applications. You probably want to have
the WebSphere Application Server for z/OS servers up and ready before starting the
client application that the web server is hosting.

Shutdown There are no dependencies from the product code. Similar to most applications, you
may want to quiesce the clients prior to taking down the target WebSphere Application
Server for z/OS servers. Shut down the web server to stop the port of entry.

Handling in-flight or indoubt
transactions if there is a
failure

Since a web server is stateless, there are no in-flight or indoubt transactions.

How to determine if a web
server is running

Use the z/OS display commands and viewer tools such as SDSF or the administrative
console, to monitor the web server.

What happens to WebSphere
Application Server for z/OS if
the web server goes down?

WebSphere Application Server for z/OS can be enhanced when combined with an
IBM HTTP Web Server for more robust load balancing and failover.

What happens to other
subsystems if a Web Server
goes down?

There is no effect on other subsystems.

Where to find more
information

z/OS HTTP Server Planning, Installing, and Using or the documentation for your
particular web server.

Chapter 16. Automation and recovery scenarios and guidelines 259

260 Troubleshooting and support

Chapter 17. Working with troubleshooting tools

WebSphere Application Server includes a number of troubleshooting tools that are designed to help you
isolate the source of problems. Many of these tools are designed to generate information to be used by
IBM Support, and their output might not be understandable by the customer.

About this task

This section only discusses tools that are bundled with the WebSphere Application Server product. A wide
range of tools which address a variety of problems is available from the WebSphere Application Server
Technical Support website.

Procedure
1. Select the appropriate tool for the task. For more information on the capacities of the supplied

troubleshooting tools, see the relevant articles in this section.

2. Run the tool as described in the relevant article.

3. Contact IBM Support for assistance in deciphering the output of the tool. For current information
available from IBM Support on known problems and their resolution, see the IBM Support page. IBM
Support has documents that can save you time gathering information needed to resolve this problem.
For the last minute updates, limitations, and known problems, see the release notes. Before opening a
PMR, see the Must gather page.

4. Use the IBM Support Assistant to help find and use various IBM Support resources, such as updated
documentation and problem determination tools.

First failure data capture (FFDC)
When a failure occurs during product runtime processing, the (FFDC) feature instantly collects information
about the events and errors that lead up to the failure. The captured data can then be used to analyze the
problem. After a maximum number of days, these files are automatically deleted from your system.

After the information, which is uniquely identified for the servant region that produced the exception, is
collected, and saved in a log file, FFDC returns control to the affected engines.

By default, a FFDC log file is automatically purged seven days it is created. You can configure the amount
of days between purges if you are concerned about the amount of space that the FFDC log files are using.

Two FFDC implementations are provided in the product:

v The WebSphere FFDC, which is the legacy FFDC implementation. This FFDC can only be used in
WebSphere products.

v The IBM FFDC, which is a more componentized, and more generic implementation that depends solely
on the JDK. This FFDC can be used in client processes and by non-WebSphere products, because it is
pluggable with non-WebSphere data collectors, formatters, providers, and listeners.

Both of these FFDC implementations support the OnDirProvider type functionality that is configurable
using the com.ibm.ffdc.log Java environment variable. The OnDirProvider functionality includes a built-in
provider that stores incidents as separate files in a directory, along with a separate summary file. The
com.ibm.ffdc.log Java environment variable can be set to the following values:

v <file_name>, where file_name is either be the name of a single file or a directory path.

– If file_name exists and is the name of a single file, all of the incident and summary reporting
information that FFDC collects is appended into that file.

© Copyright IBM Corp. 2011 261

http://www.ibm.com/software/webservers/appserv/support.html
http://www.ibm.com/software/webservers/appserv/support.html
http://www-306.ibm.com/software/webservers/appserv/was/support/
http://www-1.ibm.com/support/search.wss?rs=180&q=mustgather

– If file_name exists and is a directory path, whenever an incident occurs, a new file is created in that
directory and all of the incident and summary reporting information for that incident is written into this
newly created file. The incident is also added to the summary report in this directory.

– If file_name ends in a file separator (\ or /). but a file with the specified name does not exist, a
directory called file_name is created. Then, whenever an incident occurs, a new file is created in that
directory and all of the incident and summary reporting information for that incident is written into this
newly created file. The incident is also added to the summary report in this directory.

– If file_name does not end in a file separator (\ or /). and a file with the specified name does not exist,
a single file is created and given the specified name. All of the incident and summary reporting
information that FFDC collects is then appended into that file.

v System.out, which appends the incidents and summary report information to the stdout output stream.

v System.err, which append the incidents and summary report information to the stderr output stream.
System.err is the default value for the com.ibm.ffdc.log Java environment variable.

v Suppress, which causes all FFDC collected information to be discarded.

Specifying a value for the com.ibm.ffdc.log Java environment variable is the only configuration change that
you need to make to exploit the OnDirProvider functionality. The new FFDC also provides mechanisms to
overly choose this provider or to use your own WebSphere provider.

Starting in WebSphere Application Server V8, this same variable can be used to redirect the FFDC
incidents and summary created in the product. The only acceptable value for that, however, is a directory.
So it is recommended that, if this variable is used in a WebSphere server environment, that the
specification end in a File separator (/ or \\) to avoid conflicts.

gotcha: If the default setting for automatic purging of FFDC information is too long for your environment,
see the topic Configuring first failure data capture log file purges for a description of how you can
modify the length of time that the FFDC information is retained on your system.

Configuring first failure data capture log file purges
The first failure data capture (FFDC) log file saves information that is generated from a processing failure.
These files are deleted after a maximum number of days has passed. The captured data is saved in a log
file for analyzing the problem.

Before you begin

FFDC is intended primarily for use by IBM Support. FFDC instantly collects events and errors that occur
during the product run time. The information is captured as it occurs and is written to a log file that can be
analyzed by IBM Support. The data is uniquely identified for the servant region that produced the
exception.

The log file purges in seven days by default. If you are concerned about the amount of disk space used by
the FFDC log files, you can configure the days between purges.

The FFDC configuration properties files are located in the properties directory under the Application Server
product installation. You must set the ExceptionFileMaximumAge property to the same value in all three
files: ffdcRun.properties, ffdcStart.properties, and ffdcStop.properties. You can set the
ExceptionFileMaximumAge property to configure the days between purging the FFDC log files. The value
of the ExceptionFileMaximumAge property must be a positive number. The FFDC feature does not affect
the performance of the Application Server product.

About this task

Perform the following steps to configure the number of days between the FFDC log file purges. The value
is in days.

262 Troubleshooting and support

Procedure
1. Open the ffdcRun.properties file.

The file is located in the app_server_root/properties directory.

2. Change the value for the ExceptionFileMaximumAge property to the number of days between the
FFDC log file purges. The value of the ExceptionFileMaximumAge property must be a positive number.
The default is seven days. For example, ExceptionFileMaximumAge = 3 sets the default time to three
days. The FFDC log file is purged after three days.

3. Save the ffdcRun.properties file and exit.

4. Repeat the previous steps to modify the ffdcStart.properties and ffdcStop.properties files.

Results

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

The FFDC file management function removes the FFDC log files that have reached the maximum age and
generates a message in the SYSOUT of the server job log.

Chapter 17. Working with troubleshooting tools 263

264 Troubleshooting and support

Chapter 18. Working with Diagnostic Providers

Diagnostic Providers enable you to query the startup configuration, current configuration, and current state
of a diagnostic domain. In addition, Diagnostic Providers can also provide access to any self diagnostic
tests that are available from a diagnostic domain.

About this task

The Diagnostic Provider Utility is a simple front end in the administration console that presents the
available set of Diagnostic Providers and enables you to work with them.

Procedure

Learn about Diagnostic Providers

Diagnostic Providers
Diagnostic Providers are a quick method for viewing configuration and the current state of individual
components within an application server environment.

WebSphere Application Server components can be considered as being divisible into diagnostic domains.
A diagnostic domain refers to a set of classes within the component that share a set of diagnostics. Some
larger components might have multiple diagnostic domains. For example, the Connection Manager
logically consists of multiple data sources and connection factories that each have separate diagnostic
domains.

This image shows the relationships between the parts that make up the Diagnostic Provider (DP) utility.

Diagnostic Provider MBeans

A single diagnostic domain receives its diagnostic services from a Diagnostic Provider MBean. The
Diagnostic Provider MBean enables you to query the startup configuration, current configuration, and
current state of the diagnostic domain. In addition, Diagnostic Provider MBeans can also provide access to
any self diagnostic tests that are available from the diagnostic domain. Some characteristics of Diagnostic
Provider MBeans include:
v Diagnostic Provider MBeans are Java Management Extensions (JMX) MBeans
v Diagnostic Provider MBeans all implement a DiagnosticProvider interface which includes methods for

configuration dumps, state dumps, and self diagnostic tests
v Diagnostic Provider MBeans provide a way to expose information about running components so

administrators can more easily debug problems related to those components. As with other MBeans
running in WebSphere Application Server, they can be accessed from JMX client code, or through the
wsadmin tool.

Diagnostic Provider Infrastructure

Diagnostic Provider MBeans are efficient at delivering Java object representations of configuration, state,
and self test information. This is good for when programs interact. For human users to access the
information, WebSphere Application Server provides a set of facilities to extend the value of Diagnostic
Provider MBeans.

The Diagnostic Service MBean
provides methods to convert Diagnostic Provider MBean output into human readable formats. The
Diagnostic Service MBean also provides some methods to facilitate looking up the Diagnostic

© IBM Corporation 2005 265

Provider MBeans on the same server as the Diagnostic Service MBean. For administrators that
want to access diagnostic data from a command line, the wsadmin tool can be used directly with
the Diagnostic Service MBean to get formatted results

The Diagnostic Provider utility
a set of panels included in the WebSphere Application Server administration console through
which administrators can interact with Diagnostic Provider MBeans. The Diagnostic Provider utility
is a simple front end in the administration console that presents the available set of Diagnostic
Provider MBeans present on each managed server, and provides a means to execute and view
the results of configuration dumps, state dumps, and diagnostic self tests.

.

The purpose of Diagnostic Providers

Diagnostic Providers give you more information for quickly discovering and diagnosing system problems.
The following scenario contrasts the experience of an administrator working with a component that does
not have a Diagnostic Provider to one that does.

When the administrator works with a component that is without a Diagnostic Provider, the events are as
follows:
1. A log entry indicates that a particular component is experiencing a problem.
2. The system administrator sees the log entry through the runtime messages panel.
3. The system administrator cannot tell what is wrong, so calls IBM support for assistance, with a

potentially ill-defined problem.

When the administrator works with a component with a Diagnostic Provider, and the Diagnostic Provider
ID is registered with the component's logger, the situation changes as follows:
1. A log entry that contains a Diagnostic Provider ID (DPID) indicates that something has gone wrong in a

specific component.
2. The system administrator sees the log entry through the runtime messages panel.
3. The administrator clicks a button on the runtime message panel to execute a state dump or a

configuration dump, or to be taken to the list of component self tests.
4. From the self test, the administrator is warned that the component is configured in a way that could

lead to poor performance or failures.

Furthermore, when the administrator works with a component with a Diagnostic Provider, and the
Diagnostic Provider ID is not registered with the component's logger, the situation might unfold like this:
1. A log entry which doesn’t contain a DPID indicates that something has gone wrong in a component.
2. The system administrator sees the log entry through the runtime messages panel.
3. The system administrator uses the administrative console to navigate through the available set of

Diagnostic Providers and selects one that sounds appropriate.
4. He runs a configuration dump, a state dump, or a self diagnostic test against the Diagnostic Provider

to collect information about the component.
5. From the state dump, the administrator is able to notice that the component state is not what would be

expected for its workload.
6. The administrator works with the test team to determine which of the flows is causing the state of the

component to diverge from what is expected (as evidenced by repeated execution of the state dump).

Diagnostic Provider IDs
A Diagnostic Provider ID (DPID) is the unique address of a Diagnostic Provider MBean. Components that
have associated Diagnostic Provider MBeans can include the DPID in their log entries.

Diagnostic Provider IDs are implemented in WebSphere Application Server as Java Management
Extensions (JMX) MBean ObjectNames, and can be used at JMX MBean servers to look up Diagnostic
Provider MBeans.

266 Troubleshooting and support

By including the String representation of the DPID in each logged message, the message can be tracked
back to the Diagnostic Provider related to the component. A method is provided to associate Diagnostic
Provider IDs with Loggers (from the java.util.logging logging API).

The diagram above shows how the use of DPIDs in log entries enables callbacks to the component that
originally created the log entry.
1. Shows the component logging with a DPID included in the log entry.
2. The administrator examines the log entry through the Runtime Messages Utility and notices that the

entry has a link to a Diagnostic Provider.
3. The administrator uses the link to gain access to the relevant MBean in the Diagnostic Provider Utility .
4. The Diagnostic Provider Utility contacts the Diagnostic Provider MBean to ask for more information.
5. The request for more information is sent back to the source of the original log entry.
6. The response from the Diagnostic Provider is provided in the administration console.

Diagnostic Provider configuration dumps, state dumps, and self tests
The Diagnostic Provider (DP) infrastructure allows for a software component or stack product in the
WebSphere Application Server space to expose key information about its configuration, current state, and
current ability to perform operations.

The methods that expose this information might be driven as a result of a message put out by the
component (by a logger which automatically includes the Diagnostic Provider ID in each message), or
might be driven as a result of an overall system health-check when an administrator or automated tool is
monitoring the system.

Configuration dumps

A Configuration dump is an operation you can perform on a Diagnostic Provider to list the startup or
current values of the configuration attributes for the DP. The name for each data item in this dump should
reflect its disposition. That is, each item should be called startup-xxx or current-xxx to show whether this is
a startup or current value. The collection of attributes returned from this operation can be thought of as the
payload of the configuration dump. More information about payloads can be found in “Diagnostic Provider
method implementation” on page 273.

You can find several ways to filter the output of a configuration dump in “Diagnostic Provider registered
attributes and registered tests” on page 268.

State dumps

A State dump is similar to a configuration dump, but it differs in two key areas. First, a state dump displays
current information about the operation of a component. An example is a connection pool. A configuration
dump can show DataSource name, the minConnections (configured or current), the maxConnections, the
DataBase name, and so on. A state dump is more likely to show the current connections in use, the high
concurrent use count, the number of times the pool has been expanded, the average time between
requesting a connection and returning it, and so forth.

State dumps can be impacted by the values in the State Collection Specification. This is a dynamic
specification that controls additional data collection that the component can do at runtime. If additional data
is being collected, then a State dump might display more information. The same filters and payload
information that apply to Configuration dumps (see “Diagnostic Provider registered attributes and
registered tests” on page 268) apply to State dumps.

Chapter 18. Working with Diagnostic Providers 267

Self Diagnostic tests

Self diagnostic tests are non-invasive operations that a Diagnostic Provider exposes. Non-invasive means
that if they modify anything for the test, the conclusion of the test reverses the modification. These tests
give an administrator the option to test simple functions of a component to see if it is able to perform them.

The filters for a self diagnostic test apply to the test itself, not to the output of the test. A typical use of Self
Diagnostic tests could be for a pool manager of some sort to pull an object out of the pool and return it to
the pool to verify that this operation can still be performed, and with acceptable performance.

Diagnostic Provider registered attributes and registered tests
Each Diagnostic Provider (DP) provides a list of state dump attributes, configuration dump attributes, self
tests, and self test attributes. The tests are operations that the DP can perform. The attributes are pieces
of information that are available for collection from a Configuration dump, a State dump, or a specific Self
Diagnostic test.

Each attribute can be seen as a piece of information with a label on it. Each attribute is also considered to
be either registered or not registered. A registered attribute is one that should be available from one
release of WebSphere Application Server to the next. A nonregistered attribute might not be available in its
current form in future releases of the product (no commitment has been made).

When performing a Configuration dump, a State dump, or a Self Diagnostic test, an administrator or
automatic tooling can request only registered values, or all values, depending on the needs of the
administrator or tool. Note that the option of filtering results is only available through the Diagnostic
Provider's Java Management Extension (JMX) MBean interface, which you can access programmatically
or through the wsadmin tool.

The DiagnosticProviderRegistration XML file

The DiagnosticProviderRegistration Extensible Markup Language (XML) file is used in conjunction with the
method signatures to filter the results of calling the various methods. This XML file defines the
configuration information, state information, and self diagnostic tests exposed by the component. In the
configuration and state information, the key working unit is referred to as the attribute. Specification of an
attribute is as follows:
<attribute>

<id><Regular Expression representing the attribute name></id>
<descriptionKey><MsgKey into a ResourceBundle for localization of the label></descriptionKey>
<registered>true</registered>

</attribute>

The parts are as follows:

ID: The attribute's name. This name can be expressed with wildcard characters conforming to regular
expression syntax. The registered attribute ID is used in the following places:
v Within Diagnostic Provider configuration dump and state dump methods to determine which

attributes to return.
v In the administration console to match description keys to attributes returned from a request to

a Diagnostic Provider for a configuration dump, state dump, or self diagnostic operation.

As an example, if a configuration dump returns an attribute with ID cachedServlet-MyServlet-
servletPath to the administration console, the administration console could use the descriptionKey
corresponding to the attribute registered as <id>cachedServlet-.*-servletPath</id> when
selecting what description text to put next to this attribute's name and return values.

descriptionKey:
This is a key into a resourceBundle for localization.

268 Troubleshooting and support

registered:
This is a boolean qualifying whether this attribute will be available from one release of the software
to the next. If registered is true, then this attribute should be available in the next release. If
registered is false, then there is no guarantee that this attribute will continue to exist. Automation
should use some caution when handling non-registered attributes.

Specification of a selfDiagnosticTest is as follows:
<test>

<id><Regular Expression for the name of the test></id>
<descriptionKey><MsgKey into a ResourceBundle for localization of the label></descriptionKey>
<attribute><One or more attributes which will be output from this test></attribute>

</test>

The parts are as follows:

ID: Similar to the ID for the attribute, but in this case, describing the test to be performed instead of
the attribute to be returned.

descriptionKey:
This is a key into a resourceBundle for localization.

Method interfaces
public DiagnosticEvent [] configDump(String aAttributeId, boolean aRegisteredOnly);
public DiagnosticEvent [] stateDump(String aAttributeId, boolean aRegisteredOnly);

These methods invoke the configuration or state dump on the component, and specify a regular
expression filter for the attributes to return as well as filtering the output to include all matching attributes,
or only those attributes which are registered. This enables the administrator or automated software driving
the method to specify a subset of the overall fields (especially important if many attributes are exposed or
if the State Collection Specification increases the amount of data available). The following helper methods
are available to assist with filtering the output.

To take a list of Attributes that are available to return, and filter them:
public static AttributeInfo [] queryMatchingDPInfoAttributes(String aAttributeId,

AttributeInfo [] inAttrs, String [] namesToCheck, boolean aRegisteredOnly) {

To take a single Attribute that is available to return, and filter it:
public static AttributeInfo queryMatchingDPInfoAttributes(String aAttributeId,

AttributeInfo [] inAttrs, String nameToCheck, boolean aRegisteredOnly) {

To go through a populated set of Attribute Information and remove unneeded parts:
public static void filterEventPayload(String aAttributeId, HashMap payLoad) {

For details on these messages, please review the API documentation for the DiagnosticProviderHelper
class. The basic concept is that, once the component knows what attributes are able to be returned, the
helper method will determine which of them should be returned based on the regular expression logic and
registration boolean.

The selfDiagnostic Method interface here is similar to that of Configdump and Statedump:
public DiagnosticEvent[] selfDiagnostic(String aTestId, boolean aRegisteredOnly)

The difference is that the first parameter is a regular expression filter for which test to run.

Chapter 18. Working with Diagnostic Providers 269

Diagnostic Provider names
In addition to the Diagnostic Provider ID (DPID), each component that implements the Diagnostic Provider
interface must have a Diagnostic Provider Name. While the DPID must be unique within the entire
WebSphere Application Server domain, the Diagnostic Provider Name need only be unique within the Java
Virtual Machine (JVM).

Unlike the Diagnostic Provider ID, which tends to be long and not human-friendly, the Diagnostic Provider
Name should be shorter and easier to read. In addition, by convention it should end in DP. The Diagnostic
Service MBean (see “The simpler interfaces provided by the Diagnostic Service MBean”) can drive
methods on a Diagnostic Provider using its name.

The simpler interfaces provided by the Diagnostic Service MBean
All services for a Diagnostic Provider (DP) are also available through a Java Management Extensions
(JMX) interface known as the Diagnostic Service interface. The Diagnostic Service interface enables
administrators to drive methods against DPs using the Diagnostic Provider Name or Diagnostic Provider
ID.

When formatted output is requested of the Diagnostic Service, it is localized to the client Locale. This
makes the Diagnostic Service MBean ideal for clients using an interface where consuming complex Java
objects, such as those returned from the Diagnostic Provider MBeans, is not feasible. An example of such
an interface is the wsadmin tool.

The Diagnostic Service interface provides four signatures for each of the key methods available on the
Diagnostic Providers (configDump, stateDump, and selfDiagnostic) objects. Because these method
signatures look so similar, this example shows it all through the configDump methods. The four Diagnostic
Service methods that map to configDump on a Diagnostic Provider are:
public DiagnosticEvent [] configDump(String aDPName, String aAttributeIdSpec, boolean aRegisteredOnly)
public DiagnosticEvent [] configDumpById(String aDPid, String aAttributeIdSpec, boolean aRegisteredOnly)
public String [] configDumpFormatted(String aDPName, String aAttributeIdSpec,

boolean aRegisteredOnly, Locale aLocale)
public String [] configDumpFormattedById(String aDPid, String aAttributeIdSpec,

boolean aRegisteredOnly, Locale aLocale) {

The first two return exactly what the Diagnostic Provider does. The second two methods act as a
pass-through to the actual Diagnostic Provider, but they take the array of Diagnostic Events that the
Diagnostic Provider returns, and convert it into a more easily consumable String array. In addition, these
methods handle localizing the output to the appropriate locale. It is important to note that the same method
can be driven using the Diagnostic Provider ID or the Diagnostic Provider Name.

Creating a Diagnostic Provider
Use Diagnostic Providers to query the startup configuration, current configuration, and current state of a
diagnostic domain. Diagnostic Providers also provide access to any self diagnostic tests that are available
from a diagnostic domain.

Before you begin

To complete this task you must have programming knowledge of your system and the proper authorities to
perform the following steps.

About this task

The steps that follow outline a general process for creating Diagnostic Providers (DP).

270 Troubleshooting and support

Procedure
1. Determine your diagnostic domain. Look for configuration MBeans that control a similar domain in the

same component. Extending an existing configuration MBean with a DP interface avoids proliferation of
new MBeans and has the benefit that mapping from a diagnostic MBean to a configuration MBean
requires no additional information.

2. Determine what configuration attributes you want to expose. Include information that is used to
configure your component from the configuration MBeans.

3. Determine what state attributes you want to expose. Anything you might want to know about the state
of your component for troubleshooting can go here.

4. Determine what self diagnostic tests you will expose.

5. Determine what test attributes you will return for each self diagnostic.

6. Create your DP registration Extensible Markup Language (XML) file.

7. Create your DP implementation.

a. To see an example, refer to “Implementing a Diagnostic Provider” on page 273 and keep in mind
that most things that a Diagnostic Provider should do are already done for you in the
DiagnosticProviderHelper class.

b. To ensure that you do not collect unwanted data, add hooks in your component code where you
need to collect state data using the DiagnosticConfig object.

c. Add hooks in your component code where you need to store or be able to access configuration
data.

8. Add code to register your DP implementation. Typically, the best place to do this is where your
component is initialized.

9. Add Diagnostic Provider IDs (DPID) to your logged messages. Registering a DPID with a logger
makes that information available in any messages logged with this logger. This enables fast paths in
the DP utility to function on this particular Diagnostic Provider.

a. Register your DPID with your loggers (for any of your loggers that you only want to associate a
single DPID with).

b. When you use multiple DPIDs with the same Logger, you can (instead of registering a single DPID
with a Logger) add DPIDs to individual logging calls in the parm[0] position. Do not put {0} in the
corresponding localized messages. It is bad practice to print the DPID in your messages as this
would be inconsistent with messages from loggers with statically assigned DPIDs.

Diagnostic Provider Extensible Markup Language
Some conventions to follow for Diagnostic Provider (DP) Extensible Markup Language (XML) declarations.

These guidelines are to help keep your use of Diagnostic Providers (DP) consistent.

v Include the Document type definition (DTD) for your Diagnostic Provider at the top of every DP
declaration Extensible Markup Language (XML) file.

v Start all names and name segments with lower case. Use camel case for attribute names. That is,
capitalize every initial letter in the name, except the first. For example, traceCollectionSpec.

v Indicate hierarchy with dashes. Dashes work better than dots because attribute names are regular
expressions. For example, traceService-traceCollectionSpec.

v Indicate string dynamic parts to attribute names using an asterisk (*). For example,
vhosts-.*-webgroups-.*-webapps-.*-listeners-filterInvocationListeners

which would match vhosts-someHost-webgroups-someGroup-webapps-someApp-listeners-
filterInvocationListeners

v Indicate numeric dynamic parts to attribute names using [0-9]*. For example,
vhosts-index-[0-9]*

Chapter 18. Working with Diagnostic Providers 271

which would match webcontainer-vhosts-index-123

v If you have a general purpose self diagnostic test that can be run without significant performance cost,
name it general.

Some tips for configDump implementation
v configDump should contain information used to define the component's environment. Some examples

are:

– configuration data set by Java Management Extensions (JMX)

– configuration from system properties, xml files, and property files

– configuration information hard-wired and unchanging in code (such as, if a resource adapter
implements interface X, or has some static final field Y, then those could indicate aspects of
configuration and be included in the configDump).

v configDump should not contain dynamically registered attributes, such as:

– a list of registered loggers (this belongs in stateDump)

– a list of servlets in an application (this belongs in stateDump).

v configDump should be separated into 2 sections -- startup and current.

– All configDump attributes must start with either startup- or current-.

– The startup section details the component's environment at startup time. Startup configDump
attributes start with startup- .

– The current section details the component's environment at the moment the configDump is
requested. Current configDump attributes start with current-.

Best practices for configDump
v Group related attributes using an attribute hierarchy (such as, for two attributes about the traceLog:

startup-traceLog-rolloverSize=20, startup-traceLog-maxNumberOfBackupFiles=1)

v For information in the current attribute list that refers to the same thing as a startup attribute, the names
of both current and startup attributes should match.

v If an attribute has no use after startup, only show it in the startup section (for example, a configuration
attribute that contains a file name from which startup data is read).

Choosing a Diagnostic Provider name
To ensure consistency when choosing Diagnostic Provider names to use with your components, you
should consider the guidelines that follow.

Diagnostic Provider name guidelines:

v Names must be unique within a Java Virtual Machine (JVM). One Diagnostic Provider name goes
uniquely with one Diagnostic Provider ID within a server.

v If necessary, names can contain a dynamic element to help with uniqueness. Of course, the dynamic
element should have meaning to the administrator.

v Although not a hard limit, the static part of names should be 16 characters or less.

v The static part of names must follow the class name convention. Start with a capital letter, no spaces,
and capitalize each word in the name.

v The static part of names must end with DP.

v Valid names contain a static part only, or a static part followed by a dash (-), followed by a dynamic
part. Some valid examples:
– ConnMgrDP-instance_specific_stuff
– WebContainerDP
– AdvisorDP
– NodeAgentDP

272 Troubleshooting and support

Implementing a Diagnostic Provider
To use a Diagnostic Provider you must configure an MBean with the methods and attributes required to
handle the data from the application server and client applications.

Before you begin

This task presumes that you have a programming knowledge of the creation of MBeans. For more
information about the interaction of MBeans with WebSphere Application Server, refer to topic, Creating
and registering standard, dynamic, and open custom MBeans in the Administering applications and their
environment PDF book.

About this task

The steps that follow outline a general process for implementing a Diagnostic Provider (DP).

Procedure
1. Modify the MBean descriptor Extensible Markup Language (XML). To implement a Diagnostic Provider,

you must have an MBean, and the MBean should include this statement in its descriptor XML as a
direct child of the MBean element:
<parentType type="DiagnosticProvider"/>

This defines the operations, attributes, and aggregators necessary for an MBean to be a Diagnostic
Provider. If you do not need to have this DP exist in z/OS Controllers, then this XML inclusion handles
all z/OS specifics for your MBean.

2. Modify the MBean Implementation. Your MBean should already have a class which instantiates it and
registers it with the Java Management Extensions (JMX) server.

The first difference here is that you must define a property in the Properties class that is passed to the
registration (and becomes part of the ObjectName). The property is diagnosticProvider=true and it
can be added with a line of code such as:
MyProps.setProperty(DiagnosticProvider.DIAGNOSTIC_PROVIDER_KEY, DiagnosticProvider.DIAGNOSTIC_PROVIDER_VALUE) ;

The second difference is that this class should register this Diagnostic Provider with the Diagnostic
Service. A helper method is available to do this:
DiagnosticProviderHelper.registerMBeanWithDiagnosticService(DiagnosticProviderPName, DiagnosticProviderId) ;

Obviously this must be done after the registration when the ObjectName can be retrieved into the
DiagnosticProviderId string.

3. Implement the Diagnostic Provider methods.

Diagnostic Provider method implementation
To create a Diagnostic Provider (DP) you must have an MBean that includes the required methods in its
deployment Extensible Markup Language (XML) file. These methods define the operations, attributes, and
aggregators necessary for an MBean to be a Diagnostic Provider.

Adding these methods can be accomplished by adding the parentType directive to your existing XML file
(see “Implementing a Diagnostic Provider”), or by including the operations directly into your deployment
XML file. The definitions needed are included in “Diagnostic Provider registered attributes and registered
tests” on page 268. The next step is for the MBean to actually implement these methods. The methods to
implement include:
v “getRegisteredDiagnostics” on page 274
v “getDiagnosticProviderName” on page 274
v “getDiagnosticProviderID” on page 274
v “configDump” on page 274
v “stateDump” on page 275
v “selfDiagnostic” on page 275

Chapter 18. Working with Diagnostic Providers 273

v “localize” on page 276

getRegisteredDiagnostics

This method exposes the registration information for this Diagnostic Provider. It is commonly used by the
DP Utility in the administration console to gather information about Diagnostic Providers that are to be
displayed in the console. This method returns a DiagnosticProviderInfo object that is usually attained by
passing the appropriate XML to a DiagnosticProviderHelper helper class. Here is an example:
public DiagnosticProviderInfo getRegisteredDiagnostics() {

InputStream regIS= Thread.currentThread().getContextClassLoader().getResourceAsStream(
"com/ibm/ws/xxx/SampleDP2DiagnosticProvider.xml");
dpInfo = DiagnosticProviderHelper.loadRegistry(regIS, sDPName) ;

if (dpInfo == null) {
sSampleDP2MBeanLogger.logp(Level.WARNING, sThisClass, "getRegisteredDiagnostics",
"RasDiag.DPInfo.NoGotz") ;

}
return dpInfo ;

}

Notice that the XML is packaged and available in the classpath of the current classloader. The
“Registration XML” on page 276 contains crucial information that the Diagnostic Provider uses to “Populate
the payload” on page 276 and “localize” on page 276 results.

getDiagnosticProviderName

This is usually a pretty simple return of a constant as the following example shows
public String getDiagnosticProviderName() {

return sDPName;
}

getDiagnosticProviderID

This is usually a pretty simple return of a Java Management Extensions (JMX) object ID that MBeans can
pull out of the base class method. For example:
public String getDiagnosticProviderId() {

return getObjectName().toString() ;
}

configDump

The configDump method enables the Diagnostic Provider to expose the configuration data that was in
place when this Diagnostic Provider started (or the current values of them). The DiagnosticEvent objects
that this method returns include a “Payload” on page 276 that contains the core data. The following is an
excerpt from a configDump method:
public DiagnosticEvent [] configDump(String aAttributeIdSpec, boolean aRegisteredOnly) {

HashMap cdHash = new HashMap(64) ;

// “Populate the payload” on page 276

DiagnosticEvent [] diagnosticEvent = new DiagnosticEvent[1] ;
diagnosticEvent[0] = DiagnosticEventFactory.createConfigDump(getObjectName().toString(),
"ThisClassName", "configDump", cdHash) ;

return diagnosticEvent ;
}

This returns an array of DiagnosticEvent objects. Normally, configDump and stateDump return only one
object. However, the method accepts an array because on z/OS systems a server can have multiple

274 Troubleshooting and support

servants, and aggregation of the output from the servants is stored in the array.

stateDump

The stateDump method enables the Diagnostic Provider to expose the current state data, or data about
the current operating conditions of the Diagnostic Provider. The data made available can be anything likely
to assist a customer, an IBM support person, or automated tooling in analyzing the health of the
component and problem determination if there is an issue. The amount of data available is impacted by
the State Collection Specification in effect at the time. If the current State Collection Specification involves
the collection of additional data by the Diagnostic Provider, then this additional data can be exposed in the
stateDump. The DiagnosticEvent objects that this method returns include a “Payload” on page 276 that
contains the core data. The following is an excerpt from a stateDump method:
public DiagnosticEvent [] stateDump(String aAttributeIdSpec, boolean aRegisteredOnly) {

HashMap sdHash = new HashMap(64) ;

// “Populate the payload” on page 276

DiagnosticEvent [] diagnosticEvent = new DiagnosticEvent[1] ;
diagnosticEvent[0] = DiagnosticEventFactory.createStateDump(getObjectName().toString(),
"ThisClassName", "stateDump", sdHash) ;

return diagnosticEvent ;
}

This returns an array of DiagnosticEvent objects. Normally, configDump and stateDump return only one
object.

The method accepts an array because a z/OS server can have multiple servants, and aggregation of the
output from the servants is stored in the array.

selfDiagnostic

The selfDiagnostic method enables the Diagnostic Provider to perform certain predefined activities to test
key functionalities of your system. These tests should not have a lasting effect on the system. For
example, if the test is to create a TCP/IP connection to a remote host, the test should also break that
connection before returning its results so that the state of the component is unchanged by the test. The
information returned by the test is determined by the attributes included in the test section of the XML file.
The following is an excerpt from a selfDiagnostic method:
public DiagnosticEvent [] selfDiagnostic(String aAttributeIdSpec, boolean aRegisteredOnly) {

TestInfo [] testInfo = dpInfo.selfDiagnosticInfo.testInfo ; // Retrieve the test registry information
Pattern testChecker = Pattern.compile(aAttributeIdSpec) ; // Compile test regexp parm for faster checking
ArrayList deList = new ArrayList(8) ; // Allocate expandable list of DiagnosticEvents
for (int i = 0; i < testInfo.length; i++) {
if (testChecker.matcher(testInfo[i].id).matches()) {

HashMap deHash = new HashMap(32) ;

// “Populate the payload” on page 276

deList.add(DiagnosticEventFactory.createDiagnosticEvent(getObjectName().toString(),
DiagnosticEvent.EVENT_TYPE_SELF_DIAGNOSTIC, DiagnosticEvent.LEVEL_INFO,
"ThisClassName", "selfDiagnostic", dpInfo.resourceBundleName,

"RasDiag.SDP2.createDE3", // MsgKey for localization
// Parms to incorporate in msg

new Object [] { "OneParm", "TwoParm", "RedParm", "BlueParm"}, deHash)) ;
}
}

DiagnosticEvent [] diagnosticEvent = new DiagnosticEvent[deList.size()] ;

Chapter 18. Working with Diagnostic Providers 275

diagnosticEvent = (DiagnosticEvent [])deList.toArray(diagnosticEvent) ;

return diagnosticEvent ;
}

This returns an array of DiagnosticEvent objects. In this example, one DiagnosticEvent was created
from each test that matched the parameter regular expression. The Diagnostic Provider is not required to
produce only one per test. The generation of “Payload” is similar to that of configDump and stateDump.

Aggregation on multiple z/OS servants for an individual server concatenates the arrays from each servant.

localize

The DiagnosticEvents that methods return contain payload HashMaps that contain MessageKeys and
ResourceBundles. The final consumer of these events is often not on the server, and thus may not have
the appropriate classpath to resolve this. For this purpose, a callback to the Diagnostic Provider to localize
the variables is done. A helper method, however, makes it a simple method to write, as this example
demonstrates:
public String [] localize(String [] aKeys, Locale aLocale) {

return DiagnosticProviderHelper.localize(dpInfo.resourceBundleName, aKeys, aLocale) ;
}

Note that the dpInfo (DiagnosticProviderInfo) object is needed as this object includes a reference to the
ResourceBundle.

Payload

A recurring theme in these methods is the ability to include a payload in return objects. This is a set of
name=value pairs that include the information being exposed by the method. Diagnostic Events returned
from a configDump, stateDump, or selfDiagnostic test are relatively complex Java objects. The majority of
the information that is returned is contained in the DiagnosticData portion of the DiagnosticEvent object.
Each attribute returned by the Diagnostic Provider is stored in an entry in a HashMap. There can be
cascading HashMaps within a single DiagnosticEvent object (if breaking the data down into subGroups
makes sense). Each HashMap entry contains either a reference to a child HashMap, or a
DiagnosticTypedValue (which contains the value, the type of data, and a MsgKey for localization of the
label or /name). The values to be returned should be filtered with:
v The type of method (that is, configDump, stateDump, or selfDiagnostic)
v The AttributeIdSpec sent in to filter the values
v The current State Collection Specification (which can impact the amount of data available).

Populate the payload

The API documentation for DiagnosticProviderHelper.queryMatchingDPInfoAttributes explains how to do
the filtering before retrieving the data. In some cases, it is easier and helps performance for a Diagnostic
Provider to retrieve all data into the Payload and then filter the HashMap after the fact. The
post-population filtering can be done with the method DiagnosticProviderHelper.filterEventPayload. For
information on use of the JavaBeans type approach, see the API documentation for the
AttributeBeanInfo.populateMap method.

Registration XML

Registration XML enables much of the information needed by the Diagnostic Provider to be externalized. It
also provides a means of commonizing localization and consumption of the tests (thus aiding automation).
An excerpt of this XML from a sample Diagnostic Provider follows:

276 Troubleshooting and support

<!DOCTYPE diagnosticProvider PUBLIC "RasDiag" "/DiagnosticProvider.dtd">

<diagnosticProvider>
<resourceBundleName> com.ibm.ws.rasdiag.resources.RasDiagSample</resourceBundleName>
<state>

<attribute>
<id>Leg-Foot</id>
<descriptionKey>SampleDiagnostic.LegFoot.descriptionKey</descriptionKey>
<registered>true</registered>
</attribute>
<attribute>
<id>Leg-Ankle</id>
<descriptionKey>SampleDiagnostic.LegAnkle.descriptionKey</descriptionKey>
<registered>true</registered>

</attribute>
</state>
<config>

<attribute>
<id>Arm-Hand-Size</id>
<descriptionKey>SampleDiagnostic.HandSize.descriptionKey</descriptionKey>
<registered>true</registered>

</attribute>
<attribute>

<id>Leg-Foot-Size</id>
<descriptionKey>SampleDiagnostic.FootSize.descriptionKey</descriptionKey>
<registered>true</registered>

</attribute>
</config>
<selfDiagnostic>

<test>
<id>Kick</id>
<descriptionKey>SampleDiagnostic.Kick.descriptionKey</descriptionKey>
<attribute>
<id>Kick-Pain</id>
<descriptionKey>SampleDiagnostic.KickPain.descriptionKey</descriptionKey>
</attribute>
<attribute>
<id>Kick-Length</id>
<descriptionKey>SampleDiagnostic.KickLength.descriptionKey</descriptionKey>
</attribute>

</test>
<test>
<id>Throw</id>
<descriptionKey>SampleDiagnostic.Throw.descriptionKey</descriptionKey>

<attribute>
<id>Throw-Pain</id>
<descriptionKey>SampleDiagnostic.ThrowPain.descriptionKey</descriptionKey>
<registered>true</registered>
</attribute>
<attribute>
<id>Throw-Length</id>
<descriptionKey>SampleDiagnostic.ThrowLength.descriptionKey</descriptionKey>
<registered>true</registered>
</attribute>

</test>
</selfDiagnostic>

</diagnosticProvider>

For understanding the storage of this information into a DiagnosticProviderInfo object, see the API
documentation for DiagnosticProviderInfo. For conceptual information about the purpose of the registration
XML, see “Diagnostic Provider registered attributes and registered tests” on page 268.

Diagnostic Provider XML example:

Here is an example of the Diagnostic Provider Extensible Markup Language (XML).

Chapter 18. Working with Diagnostic Providers 277

version="6.0"
platform="common"
aggregationHandlerClass="com.ibm.ws.management.component.DiagnosticProviderAggregator"
description="DiagnosticProvider portion of Mbean for inclusion into MBeans implementing this interface">

<attribute
description="DiagnosticProviderName (not dependent on runtime, but subset of ObjectName"
getMethod="getDiagnosticProviderName" name="diagnosticProviderName"
type="java.lang.String" proxyInvokeType="unicall" proxySetterInvokeType="multicall"/>

<operation
description="Get the DiagnosticProvider ID"
impact="INFO" name="getDiagnosticProviderId" role="operation"
targetObjectType="objectReference" type="java.lang.String" proxyInvokeType="unicall">
<signature/>

</operation>
<operation

description="Return the registry information based on type (config/state/selfDiag)."
impact="INFO" name="getRegisteredDiagnostics" role="operation"
targetObjectType="objectReference"
type="com.ibm.wsspi.rasdiag.diagnosticProviderRegistration.DiagnosticProviderInfo"
proxyInvokeType="unicall">
<signature/>

</operation>
<operation

description="Dump the configuration information associated with managed resource."
impact="INFO" name="configDump" role="operation"
targetObjectType="objectReference" type="[Lcom.ibm.wsspi.rasdiag.DiagnosticEvent;"
proxyInvokeType="multicall">
<signature>

<parameter description="Attribute ID to use"
name="attributeId" type="java.lang.String"/>

<parameter description="Report on just registered info, or all info"
name="registeredOnly" type="boolean"/>

</signature>
</operation>
<operation

description="Dump state information for the managed resource."
impact="INFO" name="stateDump" role="operation"
targetObjectType="objectReference" type="[Lcom.ibm.wsspi.rasdiag.DiagnosticEvent;"

proxyInvokeType="multicall">
<signature>

<parameter description="Attribute ID to use"
name="attributeId" type="java.lang.String"/>

<parameter description="Report on just registered info, or all info"
name="registeredOnly" type="boolean"/>

</signature>
</operation>
<operation

description="Perform diagnostics on the managed resource driven by current diagnostic mode setting."
impact="ACTION" name="selfDiagnostic" role="operation"
targetObjectType="objectReference" type="[Lcom.ibm.wsspi.rasdiag.DiagnosticEvent;"

proxyInvokeType="multicall">
<signature>

<parameter description="Test ID to use"
name="testId" type="java.lang.String"/>

<parameter description="Report on just registered info, or all info"
name="registeredOnly" type="boolean"/>

</signature>
</operation>
<operation

description="localize messages for console display"
impact="INFO" name="localize" role="operation"
targetObjectType="objectReference" type="[Ljava.lang.String;"

proxyInvokeType="unicall">
<signature>

278 Troubleshooting and support

<parameter description="Message Keys" name="msgKeys" type="[Ljava.lang.String;"/>
<parameter description="Locale to use for output" name="locale" type="java.util.Locale"/>

</signature>
</operation>

Creating a Diagnostic Provider registration XML file
The Diagnostic Provider registration XML is used to provide information about the exposed configuration,
state, and self diagnostic attributes and tests to the Diagnostic Provider utility. It is also used to populate
objects needed later in the process, to assist in filtering, and to assist in localization.

Before you begin

Programming knowledge of your system and the proper authorities to perform the following steps.

About this task

The steps that follow outline a general process for creating a Diagnostic Provider (DP) registration
Extensible Markup Language (XML) file.

Procedure
1. Start with the DP document type definition (DTD). If you are using the helper methods (see the step

called Create your DP implementation in “Creating a Diagnostic Provider” on page 270), you can use
this DOCTYPE line to pick up the common DTD:
<!DOCTYPE diagnosticProvider PUBLIC "RasDiag" "/DiagnosticProvider.dtd">

If you are extending an existing MBean with an existing XML configuration, you might need either to
add the DP XML to an existing DTD, or omit the DP XML entirely. If you omit the DP XML, you will not
be able to validate that your XML file is well formed.

2. Follow the conventions described in “Diagnostic Provider Extensible Markup Language” on page 271 to
help keep your XML consistent with other components. You can find an example of a small DP
registration XML file in “Diagnostic Provider method implementation” on page 273.

Associating a Diagnostic Provider ID with a logger
If you are using a Diagnostic Provider to manage alerts and messages, you need to associate the
Diagnostic Provider ID with a logger. This can be done dynamically or through a static assignment.

About this task

Components whose diagnostics are managed through a Diagnostic Provider MBean should include the
Diagnostic Provider ID (DPID) in all logged messages. In some cases a single logger always logs with the
same DPID. In those cases, it is appropriate to statically associate the DPID with the logger. In other
cases, a logger might log on behalf of various diagnostic domains. For example, although every data
source has a separate Diagnostic Provider MBean, they all share the same logger. In those cases, the
DPID can be dynamically supplied on each logging call.

Static Assignment
About this task

The method below statically assigns a DPID to a logger.

Procedure

Associate a DPID with a logger:

Chapter 18. Working with Diagnostic Providers 279

Logger logger = Logger.getLogger("com.ibm.ws.MyClass");
DiagnosticProviderHelper.addDiagnosticProviderIDtoLogger(logger, dpid);

Dynamic Assignment
About this task

DPIDs can be associated with a single log request by including them as the first message parameter,
prefixed with DPID:. To associate a DPID with a single log request using a logger:
Object[] parms = new Object[] { "DPID:" + dpid };
logger.logp(classname, methodname, "MSG0001", parms);

Note that in the dynamic case, the DPID does not need to actually show up in the formatted message.
The two examples below illustrate:
(in resource bundle)
// by not including {0} first parm is not printed in the message.
MSG0001=This message does not include the DPID.

// note - it is not recommended to print the DPID in your message.
MSG0002=This message includes the DPID...it’s value is {0}.

It is recommended that messages not include the DPID in the formatted message. As shown above, this is
done by not including {0} in the message value in the resource bundle.

Using Diagnostic Providers from wsadmin scripts
In addition to enabling Diagnostic Providers (DP) from the administration console, you can also use them
through scripts from the Wsadmin tool.

About this task

You might want to enable, disable, or configure Diagnostic Providers from the administrative console, but
in some cases it might be more efficient or useful to do so with scripts using the wsadmin tool.

Read the wsadmin tool information about using the tool with scripts.

Procedure
1. List the MBeans that implement the Diagnostic Provider (DP) interface. Enter

$AdminControl queryNames diagnosticProvider=true,*

And you will see an output that displays all of the Diagnostic Providers in a format like this:
"WebSphere:name=Default Datasource,process=server1,platform=dynamicproxy,node=

camelhair,JDBCProvider=Derby JDBC Provider,
diagnosticProvider=true,j2eeType=JDBCDataSource,J2EEServer=server1,Server=server1,

version=6.1.0.0,type=DataSource,
mbeanIdentifier=cells/camelhairCell/nodes/camelhair/servers/server1/resources.xml#

DataSource_1131113688564,
JDBCResource=Derby JDBC Provider,cell=camelhairCell"
"WebSphere:name=DefaultEJBTimerDataSource,process=server1,platform=dynamicproxy,

node=camelhair,
JDBCProvider=Derby JDBC Provider (XA),diagnosticProvider=true,j2eeType=

JDBCDataSource,J2EEServer=server1,Server=server1,version=6.1.0.0,type=DataSource,
mbeanIdentifier=cells/camelhairCell/nodes/camelhair/servers/server1/
resources.xml#DataSource_1000001,

JDBCResource=Derby JDBC Provider (XA),cell=camelhairCell"
WebSphere:name=WebcontainerDiagnosticProvider,process=server1,platform=

dynamicproxy,node=camelhair,diagnosticProvider=true,
version=6.1.0.0,type=WebcontainerEventProvider,mbeanIdentifier=null,

cell=camelhairCell

280 Troubleshooting and support

2. Capture the ObjectName of your Diagnostic Provider in a variable. This enables you to reference your
Diagnostic Provider more easily, especially in a script. For example, instead of typing all of those lines,
if you want to work with the WebContainer Diagnostic Provider, for example, you can do the following:

v set DP [lindex [$AdminControl queryNames
name=WebcontainerDiagnosticProvider,diagnosticProvider=true,*] 0]

This ObjectName stored in the DP variable can be used on the methods, or you can use the
Diagnostic Provider name as text or a variable.

v Now that you have the ObjectName in a variable, you can get the Diagnostic Provider name in a
variable with the command:
set DPNm [$AdminControl invoke $DS getDiagnosticProviderNameById $DP]

This provides the result:
WebContainerDP

Now the DiagnosticProvider (WebContainer) is addressable by its objectname in variable DP, or by
its DiagnosticProvider name in variable DPNm. If you would prefer, you can hard-code the DPName
WebContainerDP as it is short enough.

3. Save the ObjectName of the DiagnosticService MBean to a variable. For wsadmin, WebSphere
Application Server provides this MBean so that the output of the Diagnostic Provider is more easily
consumable. Enter
set DS [lindex [$AdminControl queryNames name=DiagnosticService,*] 0]

4. Run a configDump. You can run a configDump and capture all attributes with the command:
$AdminControl invoke $DS configDumpFormattedById [list $DP .* true null]

This lists the values that the Diagnostic Provider used at start up (and possible current values). .

Table 95. An excerpt of the configDump output. The following table lists the values that the Diagnostic Provider used
at start up and possible current values.

Item Concatenated Name Value

customProperties = Null

defaultVirtualHostName = default_host

jvmProps = Null

localeProps = Null

servletCachingEnabled = false

aliases = *:9080;*:80;*:9443;

5. Filter the output of your configDump. You can use configDumpFormatted (leaving off the ById) and
switch $DP for $DPNm or the string WebContainerDP. This example uses $DPNm on this slightly
modified version whereby it only picks up attributes dealing with automation:
$AdminControl invoke $DS configDumpFormatted [list $DPNm .*auto.* true null]

This results in just those attributes that contain auto in them. Full (but strict) regular expression syntax
is allowed.

Table 96. Results. The following table lists the concatenated names and values.

Item Concatenated Name Value

autoLoadFiltersEnabled = false

autoRequestEncoding = false

autoResponseEncoding = false

autoLoadFiltersEnabled = false

autoRequestEncoding = false

autoResponseEncoding = false

Chapter 18. Working with Diagnostic Providers 281

The syntax is the same for stateDumps and selfDiagnostics

Viewing the run time configuration of a component using Diagnostic
Providers
You can use the administrative console to navigate to configuration data that can be used to check the
health of a server runtime component.

Before you begin

You must have sufficient authority to run the action.

About this task

Runtime components that have associated diagnostic providers can include their Diagnostic Provider ID
(DPID) in their log entries. If you know the DPID, you can enter it directly in the quick link text box.
Otherwise, navigate to the desired process by using the tree view displayed at the bottom of the panel, as
shown in the steps below.

Procedure
1. Start the administration console.

2. From the task bar on the left side of the console, select Troubleshooting.

3. From the task bar on the left side of the console, select Diagnostic Provider.

4. From the task bar on the left side of the console, select Configuration Data.

5. Either directly enter a Diagnostic Provider ID in the Quick link using diagnostic provider ID text box,
or select a process (cluster / node / server) from the available processes displayed at the bottom of the
panel under the section title Server selection topology.

6. From the list of available diagnostic providers for the selected process, choose the desired diagnostic
provider name. The configuration data for that diagnostic provider appears.

Configuration data quick link or server selection
Use this panel to select a Diagnostic Provider server for viewing run time configuration data.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > Configuration
Data

Quick link using Diagnostic Provider ID
From the Configuration data panel, enter a Diagnostic Provider ID to go directly to the page for the
configuration data for the Diagnostic Provider for the specific server.

Server selection topology
Use these folders to select server or cluster for viewing the configuration data for a Diagnostic Provider.

If you choose a cluster, whatever action you choose is performed on each server in the cluster.

The enterprise applications section shows you the servers that a particular application is running on. If you
select a server from this list, the action is performed on that server, not specifically that application.

Diagnostic Providers (selection)
Use this panel to select a Diagnostic Provider from the selected server or cluster.

The list will contain only Diagnostic Providers registered on the selected server or cluster. Not all
Diagnostic Providers register with every server in the cell.

282 Troubleshooting and support

You can follow several navigation paths to view this administrative console page. For example, click
Troubleshooting then expand Diagnostic Provider and click on Tests. Under Server selection
topology, click on a server or cluster name then click on a Diagnostic Provider from the list.

Diagnostic Providers
Choose a diagnostic provider from this list.

The path you chose to get to this panel determines which panel displays next.
v If you chose Troubleshooting > Diagnostic Provider > Tests, you see a panel that lists all of the

available tests to run on the Diagnostic Provider.
v If you chose Troubleshooting > Diagnostic Provider > State Data, you see a panel that shows the

collected state data for the Diagnostic Provider.
v If you chose Troubleshooting > Diagnostic Provider > Configuration Data, you see a panel that shows

the configuration data for the Diagnostic Provider.

Configuration data
Use this panel to view the current configuration data for a Diagnostic Provider on a selected server or
cluster. Not necessarily every piece of configuration data appears, but data that can be helpful in problem
determination is shown.

You can follow several navigation paths to view this administrative console page. For example, click
Troubleshooting then expand Diagnostic Provider and click on Configuration data . Under Server
selection topology, click on a server or cluster name then click on a Diagnostic Provider from the list.

The attributes show information that has been configured for the Diagnostic Provider. You can use the
Save button to save the information to a file.

Note: Results from a configuration dump contain names that start with either startup or current. The
startup entries represent data that was read in by the component at server startup time. The current
entries contain data that is current – meaning the value of the attributes in use by the runtime at the
time the configuration dump was requested.

Node
This is the node name from where the configuration data was collected.

Server
This is the server name from where the configuration data was collected.

Name
This is the name of the attribute for the configuration data.

Value
This is the value of the configuration data.

Description
This is a description of the configuration data.

Viewing the run time state data or configuring the state data collection
specifications for a Diagnostic Provider
Use the administrative console to navigate to the state data that can be used to check the health of a
server runtime component, or you can configure the state data to be collected for a server.

Chapter 18. Working with Diagnostic Providers 283

Before you begin

You must have sufficient authority to execute the action.

About this task

In the server selection topology section, use the view state data radio button to go to the list of registered
diagnostic providers. Use the change state data collection specification radio button to modify the state
collection specification for the runtime components for a server. Runtime components that have associated
diagnostic providers can include their Diagnostic Provider ID (DPID) in their log entries. If you know the
DPID, you can enter it directly in the quick link text box.

Procedure
1. Start the administration console.

2. Select Troubleshooting.

3. Select Diagnostic Provider.

4. Select State Data.

5. Select the View State Data radio button to simply look at the state data, or select the Change state
data collection specification radio button to change the configuration.

6. Either directly enter a Diagnostic Provider ID in the Quick link using diagnostic provider ID text box,
or select a process (cluster / node / server) from the available processes displayed at the bottom of the
panel.

v If you chose the View State Data radio button, a panel listing the available Diagnostic Providers
appears. Choose one of the providers by clicking on it. A panel displaying the state data appears.

v If you chose the Change state data collection specification radio button, a panel appears that
contains a list of the available Diagnostic Providers and a text entry block. The state collection
specification for the selected process is managed from this panel. Select one of the available
providers by using the checkbox next to it.

Diagnostic Provider State Collection Specification
The State Collection specification provides a mechanism for indicating what additional data diagnostic
providers in the system should retain in cases where this additional data could be useful for problem
determination or application tuning.

In normal operation, most components should work optimally and not store any operational data that is not
needed. There are times, however, when an administrator or automated tool may want a component to
collect more information than normal to help in problem determination. This data could then be exposed
through a State dump. The State Collection specification was created as a syntax for indicating what
additional data the diagnostic providers in the system should retain.

For the syntax of the aCollectionSpec string, refer to the DiagnosticConfigHome API documentation. It is
basically a semicolon (;) separated list of collection specification clauses which are of the form:
<DiagnosticProviderName regexp>:<AttributeId regexp>=[0|1]

Where the DiagnosticProviderName regular expression will make this clause apply to any Diagnostic
Provider Name that matches that regular expression. The AttributeId regexp and the boolean value (0 for
off, and 1 for on) are stored in the DiagnosticConfig object that each Diagnostic Provider uses. Turning on
or off, and processing the clauses left to right allows relatively complex specification. Any specification that
is not explicitly turned on is considered to be off. This format is explained further in the following
examples.

To turn on tracing for all attributes in the MyDP Diagnostic Provider:
MyDP:.*=1

284 Troubleshooting and support

To turn on tracing for all attributes of all Diagnostic Providers (this will probably impact system
performance):
.*:.*=1

To turn on all tracing for all attributes of all Diagnostic Providers beginning with ConnMgr (for example,
Data Sources):
ConnMgr.*:.*=1

This specification turns on special collection attributes in the MyDP Diagnostic Provider that begin with the
string PoolInfo. If, however, the attribute begins with PoolInfo.Db2Pool, then the collection is off (because
it is read left to right).
MyDP:PoolInfo.*=1;MyDP:PoolInfo.Db2Pool.*=0

It should be noted that State dumps can return important information even in the case where there is no
State Collection Specification turned on for a Diagnostic Provider. Diagnostic Providers frequently have to
keep some state information in order to operate. Anything in this category is available in a State dump
even if there is no special data collection going on. Using the State Collection Specification may increase
the amount of data available.

State Data Quick Link or Server Selection
Use this panel to select a server or cluster to either view collected state data, or to configure state data to
collect for a Diagnostic Provider.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > State Data.

Quick link using Diagnostic Provider ID
Enter a Diagnostic Provider ID to go directly to the view page for the collected state data for the
Diagnostic Provider.

Server selection topology
Use these radio buttons and folders to select a specific server or cluster for viewing of state data or
configuring the specification of state data.

If you choose a cluster, whatever action you choose is performed on each server in the cluster.

The enterprise applications section shows you the servers that a particular application is running on. If you
select a server from this list, the action is performed on that server, not specifically that application.

View state data
Select this radio button to view the state data for a Diagnostic Provider. Then select the cell or
cluster you want to work with.

Change state data collection settings
Select this radio button to configure the state collection specification for a Diagnostic Provider.
Then select the cluster or managed server you want to work with.

State data
Use this panel to view the current state data for a Diagnostic Provider on a selected server or cluster.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > State data >
select the View state data radio button and then select a server or cluster name > select a Diagnostic
Provider from the list.

The attributes show information that has been collected as part of the enabled state collection specification
for the Diagnostic Provider. You can use the save... button to save the information to a file

Chapter 18. Working with Diagnostic Providers 285

Node
This is the node name from where the state data was collected.

Server
This is the server name from where the state data was collected.

Name
This is the name of the state collection specification used to collect the state data.

Value
This is the value of the state collection specification used to collect the state data.

Description
This is a description of the state collection specification used to collect the state data.

Detailed state specification
Use this panel to view the attributes and descriptions of the Diagnostic Provider that you have selected.

To add attributes, select the checkbox next to your chosen diagnostic provider, then select the Add to
specification button.

To remove a diagnostic provider's sub-component attribute from the state specification, select the
sub-component attribute in the displayed list and then select the Remove from specification button.

When you are done adding or removing a diagnostic provider's sub-component attributes, select the Done
button.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > State data
>select the View state data radio button and then select a server or cluster name > select a Diagnostic
Provider from the list.

Attribute
This is the individual state collection specification available for the Diagnostic Provider.

Description
This is the description of the individual state collection specification item.

Change state specification
Use this panel to add a Diagnostic Provider and its attributes to the specification for collecting state data.

To add a diagnostic provider (DP) and all of its attributes, select the checkbox next to your chosen DP,
then click on the Add to specification button. To add only some of the DP's attributes, click on the DP
name itself in the list, and a new panel where you can perform this task appears.

To put the state specification into affect, select the Apply or OK button.

To reset the specification to its original state, use the Reset button.

To manually enter a state specification, update the text area with the state specification and use the
Update button.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > State data >
select the Change state data collection specification radio button and then select a server or cluster name
> select a Diagnostic Provider from the list.

286 Troubleshooting and support

Name
This is a list of available Diagnostic Providers for the server selected.

Modifying the State Collection Specification from wsadmin scripts
In addition to modifying the State Collection Specification from the administrative console, you can also
modify these settings using scripts and the wsadmin tool.

About this task

In doing problem determination, you might want to begin collecting additional data during normal
processing. This can be accomplished by modifying the State Collection Specification dynamically. This
section illustrates how to do that through the wsadmin tool . This technique can be used to turn on traces,
as well as to turn off traces. Depending on the usage pattern of the component, the impact should take
affect shortly after it is set.

Procedure
1. Capture the DiagnosticService ObjectName into a variable. Enter

set DS [lindex [$AdminControl queryNames name=DiagnosticService,*] 0]

2. Use this variable to drive the method to set the specification. Enter
$AdminControl invoke $DS setStateCollectionSpec "SampleDiagnosticProvider:player.*=1;
SampleDiagnosticProvider:defense.*=1"

The specification is of the form DiagnosticProviderName:AttributeId=0|1... (with a semicolon at the
end, multiple sub-specifications can be entered similar to the TraceSpec). The
DiagnosticProviderName and AttributeId can be proper regular expressions.

Running a self diagnostic on a Diagnostic Provider
You can check the status of server runtime components with predefined tests that can be associated with
a Diagnostic Provider. Use the administrative console to access these functions.

Before you begin

You must have sufficient authority to execute the action.

About this task

You can access a list of predefined diagnostic tests that you can use to check the status of a server
runtime component. Runtime components that have associated diagnostic providers can include their
Diagnostic Provide ID (DPID) in their log entries. If you know the DPID, you can enter it directly in the
quick link text box. Otherwise, navigate to the desired process by using the tree view displayed at the
bottom of the panel.

Procedure
1. Start the administration console.

2. Select Troubleshooting.

3. Select Diagnostic Provider.

4. Select Tests .

5. Either directly enter a Diagnostic Provider ID in the Quick link using diagnostic provider ID text box,
or select a process (cluster / node / server) from the available processes displayed in the Server
selection topology section.

6. Select the desired self diagnostic test.

7. Read the output messages from the self diagnostic test.

Chapter 18. Working with Diagnostic Providers 287

8. Select a self diagnostic test message by clicking on it. The console displays a panel with the attributes
related to the message you chose.

Tests Quick Link or Server Selection
Use this panel to select a Diagnostic Provider server for diagnostic tests.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > Tests.

Quick link using Diagnostic Provider ID
Enter a Diagnostic Provider ID to go directly to the view page for the collected state data for the
Diagnostic Provider.

Server selection topology
Use these folders to select server or cluster for viewing the available tests for a Diagnostic Provider.

If you choose a cluster, whatever action you choose is performed on each server in the cluster.

The enterprise applications section shows you the servers that a particular application is running on. If you
select a server from this list, the action is performed on that server, not specifically that application.

Test selection
Use this panel to select one of the tests that are available for the chosen Diagnostic Provider on the
chosen server or cluster.

You can follow several navigation paths to view this administrative console page. For example, click
Troubleshooting > Diagnostic Provider > Tests > select a server or cluster name > select a Diagnostic
Provider from the list.

Test identification
Choosing a test ID causes the test to run. Results of the test are shown on the Test Results panel.

Test description
A description of the test available to run on the Diagnostic Provider.

Test Results
Use this panel to see the results from the server or cluster members for the selected test.

You can follow several navigation paths to view this administrative console page. For example, click
Troubleshooting > Diagnostic Provider > Tests > select a cluster name > select a Diagnostic Provider
from the list > select a Test identification from the list.

Multiple results can be returned from a test from each server. The results are sorted by Node, then by
Server, then by Severity. You can page through the messages that are returned.

Server
The name of the server where the test result came back from.

Node
The name of the node where the test result came back from.

Severity
The severity of the result from the test run.

Message
A description of the test result.

288 Troubleshooting and support

The entries in this column are linked to another panel. If you click on a message, you can see additional
attributes associated with the message.

Test result details
Use this panel to see additional attributes for the selected test result.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > Tests > select
a cluster name > select a Diagnostic Provider from the list > select a Test identification from the list >
select a message.

The attributes show information that helped to diagnose the condition described in the message. You can
use the Save button to save to a file the attributes and the messages to which they correspond.

Name
The name of the test.

Value
This is the value of the test result.

Description
This is a description of the test.

Chapter 18. Working with Diagnostic Providers 289

290 Troubleshooting and support

Chapter 19. Troubleshooting help from IBM

If you are not able to resolve a WebSphere Application Server problem by following the steps described in
the Troubleshooting guide, by looking up error messages in the message reference, or looking for related
documentation on the online help, contact IBM Technical Support.

Purchase of WebSphere Application Server entitles you to one year of telephone support under the
Passport Advantage® program. For details on the Passport Advantage program, visit http://www.lotus.com/
services/passport.nsf/WebDocs/Passport_Advantage_Home.

The number for Passport Advantage members to call for WebSphere Application Server support is
1-800-237-5511. Please have the following information available when you call:

v Your Contract or Passport Advantage number.

v Your WebSphere Application Server version and revision level, plus any installed fixes.

v Your operating system name and version.

v Your database type and version.

v Basic topology data: how many machines are running how many application servers, and so on.

v Any error or warning messages related to your problem.

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the IBM Support page.

IBM Support Assistant

IBM Support Assistant allows you to search multiple knowledge repositories and gives you access to the
latest product information. You can choose to be guided through your problem symptoms or view a
complete listing of advanced tooling for analyzing everything from logs to memory dumps. Using the IBM
Support Assistant Workbench installed on a local workstation running the Windows or Linux Intel operating
system, you can connect to the IBM Support Assistant Agent installed on a remote system running on the
AIX®, Linux, Windows, or Solaris operating system. You can use IBM Support Assistant to run automated,
symptom-specific data collectors. This data can then be attached to an IBM Service Request so that you
can get help from IBM Support.

The Collector Tool

Tracing

WebSphere Application Server support engineers might ask you to enable tracing on a particular
component of the product to diagnose a difficult problem.

For details on how to do this, see Enabling trace.

Consulting

For complex issues such as integration with legacy systems, education, and help in getting started quickly
with the WebSphere product family, consider using IBM consulting services. To learn about these services,
browse the website http://www.ibm.com/services/fullservice.html.

Problem determination skills
In a large-scale enterprise system such as the WebSphere Application Server for z/OS environment,
diagnosis might require a variety of skills to progress from a symptom to fixing the underlying cause of that
symptom.

© Copyright IBM Corp. 2011 291

http://www.lotus.com/services/passport.nsf/WebDocs/Passport_Advantage_Home
http://www.lotus.com/services/passport.nsf/WebDocs/Passport_Advantage_Home
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg21145599
http://www.ibm.com/services/fullservice.html

Because WebSphere Application Server for z/OS exploits many of the qualities and services that are
unique to the z/OS operating system, diagnosing system-related problems might require skills in the
following areas:
v Parallel sysplex
v TCP/IP
v Security Server (RACF) or the equivalent
v Database systems such as DB2 Universal Database™ for z/OS
v UNIX Systems Services

You can find information for many of these topics in the publications available through the z/OS library
website.

Similarly, diagnosing application-related problems might require a variety of skills because of the variety of
application components that WebSphere Application Server for z/OS supports. Programmers who
diagnose application problems in the WebSphere Application Server for z/OS environment need some
familiarity with the following:
v The roles defined in the Sun Microsystems Java Platform, Enterprise Edition (Java EE) Specification

V1.3.
v The programming models and specifications for application components (Enterprise beans, web

applications, and client programs) supported in the Java EE 1.3 environment.
v The process of assembling, deploying, installing, and running server applications and clients in the

WebSphere Application Server for z/OS environment.
v Various tools such as the WebSphere Application Server for z/OS error log, and the job logs for

programs running on z/OS.

Diagnosing and fixing problems: Resources for learning
In addition to the information center, there are several Web-based resources for researching and resolving
problems related to the WebSphere Application Server.

The WebSphere Application Server support page

The official site for providing tools and sharing knowledge about WebSphere Application Server problems
is the WebSphere Application Server support page: http://www.ibm.com/software/webservers/appserv/
support.html. Among the features it provides are:
v A search field for searching the entire support site for documentation and fixes related to a specific

exception, error message, or other problem. Use this search function before contacting IBM Support
directly.

v Solve a problem links take you to specific problems and resolutions documented by WebSphere
Application Server technical support personnel.

v The Download links provide free WebSphere Application Server maintenance upgrades and problem
determination tools.
– fixes are software patches which address specific WebSphere Application Server defects. Selecting a

specific defect from the list in the Fixes by version page takes you to a description of what problem
the fix addresses.

– Fix packs are bundles of multiple fixes, tested together and released as a maintenance upgrade to
WebSphere Application Server. Refresh packs are fix packs that also contain new function. If you
select a fix pack from this page, you are taken to a page describing the target platform, WebSphere
Application Server prerequisite level, and other related information. Selecting the fix list link on that
page displays a list of the fixes which the fix pack includes. If you intend to install a fix which is part
of a fix pack, it is usually better to upgrade to the complete fix pack rather than to just install the
individual fix.

292 Troubleshooting and support

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/software/webservers/appserv/support.html
http://www.ibm.com/software/webservers/appserv/support.html

Accessing WebSphere Application Server support page resources

Some resources on the WebSphere Application Server support page are marked with a key icon. To
access these resources, you must supply a user ID and password, or register if do not already have an ID.
When registering, you are asked for your contract number, which is supplied as part of a WebSphere
Application Server purchase.

WebSphere Developer Domain

The Developer Domains are IBM-supported sites for enabling developers to learn about IBM software
products and how to use them. They contain resources such as articles, tutorials, and links to newsgroups
and user groups. You can reach the WebSphere Developer Domain at http://www7b.software.ibm.com/
wsdd/.

The IBM Support page

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the Must gather documents for information to gather to send to IBM Support.

Using IBM Support Assistant
IBM Support Assistant is a free troubleshooting application that helps you research, analyze, and resolve
problems using various support features and tools. IBM Support Assistant enables you to find solutions
yourself using the same troubleshooting techniques used by the IBM Support team, and it allows you to
organize and transfer your troubleshooting efforts between members of your team or to IBM for further
support.

About this task

IBM Support Assistant V4.0 is released with a host of new features and enhancements, making this
version the most comprehensive and flexible yet. Our one-stop-shop solution to research, analyze and
resolve software issues is now better than ever before, and you can still download it at no charge.

IBM Support Assistant version 4.0 enhancements include:

v Remote System Troubleshooting: Explore file systems, run automated data collectors and
troubleshooting tools, and view the system inventory on remote systems.

v Activity-based Workflow: Choose from support-related activities, or use the Guided Troubleshooter for
step-by-step help with analysis and resolution.

v Case Management: Organize your troubleshooting data in "cases"; then export and share these cases
with other problem analysts or with IBM Support.

v Improved Flexibility: Add your own search locations, control updates by hosting your own update site,
get the latest product news and updates.

The IBM Support Assistant V4.0 consists of the following three distinct entities:

IBM Support Assistant Workbench
The IBM Support Assistant Workbench, or simply the Workbench, is the client-facing application
that you can download and install on your workstation. It enables you to use all the
troubleshooting features of the Support Assistant such as Search, Product Information, Data
Collection, Managing Service Requests, and Guided Troubleshooting. However, the Workbench
can only perform these functions locally, for example, on the system where it is installed (with the
exception of the Portable Collector).

If you need to use the IBM Support Assistant features on remote systems, additionally install the
Agent Manager and Agent. However, if your problem determination needs are purely on the local
system, the Agent and Agent Manager are not required.

Chapter 19. Troubleshooting help from IBM 293

http://www7b.software.ibm.com/wsdd/
http://www7b.software.ibm.com/wsdd/
http://www-1.ibm.com/support/search.wss?rs=180&q=mustgather

The Workbench has a separate download and this is all that is required to get started with the
Support Assistant.

IBM Support Assistant Agent
The IBM Support Assistant Agent, or simply the Agent, is the piece of software that needs to be
installed on EVERY system that you need to troubleshoot remotely. Once an Agent is installed on
a system, it registers with the Agent Manager and you can use the Workbench to communicate
with the Agent and use features such as remote system file transfer, data collections and inventory
report generation on the remote machine.

IBM Support Assistant Agent Manager
The IBM Support Assistant Agent Manager, or simply the Agent Manager, needs to be installed
only ONCE in your network. The Agent Manager provides a central location where information on
all available Agents is stored and acts as the certificate authority. For the remote troubleshooting
to work, all Agent and Workbench instances register with this Agent Manager. Any time a Support
Assistant Workbench needs to perform remote functions, it authenticates with the Agent Manager
and gets a list of the available Agents. After this, the Workbench can communicate directly with the
Agents.

The Agent and Agent Manager can be downloaded in a combined installer, separate from the Workbench.

IBM Support Assistant Version 4 has the following functions:

Search interface and access to the latest product information
IBM Support Assistant allows you to search multiple knowledge repositories with one click and
gives you quick access to the latest product information so that you spend less time looking for the
solution and more time building skills and solving problems.

Troubleshooting tools
Whether you are new to an IBM product or an advanced user, IBM Support Assistant can help.
You can choose to be guided through your problem symptoms or view a complete listing of
advanced tooling for analyzing everything from logs to memory dumps.

Access to local and remote systems
Using the IBM Support Assistant Workbench installed on a local workstation running the Windows
or Linux Intel operating system, you can connect to the IBM Support Assistant Agent installed on a
remote system running on the AIX, Linux, Windows, or Solaris operating system through the IBM
Support Assistant Agent Manager on the Workbench. This function enables you to explore,
transfer data, and run diagnostic tooling not only on your system but on any other system where
the IBM Support Assistant Agent is installed.

Automated data gathering and efficient support
Instead of manually gathering information, you can use IBM Support Assistant to run automated,
symptom-specific data collectors. This data can then be attached to an IBM Service Request so
that you can get support from the experts at IBM Support.

Procedure
v Follow the installation instructions on IBM Support Assistant (ISA) website at: IBM Support Assistant

(ISA).

v Read the “First Steps" section of the documentation for IBM Support Assistant to run the customization
wizard, or migrate from a previous version of IBM Support Assistant. Read the "Tutorials" section to
learn more about the capabilities of ISA.

Diagnosing problems using IBM Support Assistant tooling
The IBM Support Assistant (ISA) is a free local software serviceability workbench that helps you resolve
questions and problems with IBM software products.

294 Troubleshooting and support

http://www.ibm.com/software/support/isa/
http://www.ibm.com/software/support/isa/

About this task

Tools for IBM Support Assistant perform numerous functions from memory-heap dump analysis and Java
core-dump analysis to enabling remote assistance from IBM Support. All of these tools come with help and
usage documentation that allow you to learn about the tools and start using them to analyze and resolve
your problems.

The following are samples of the tools available in IBM Support Assistant:

Memory Dump Diagnostic for Java (MDD4J)
The Memory Dump Diagnostic for Java tool analyzes common formats of memory dumps (heap
dumps) from the Java virtual machine (JVM) that is running the WebSphere Application Server or
any other stand-alone Java applications. The analysis of memory dumps is targeted towards
identifying data structures within the Java heap that might be root causes of memory leaks. The
analysis also identifies major contributors to the Java heap footprint of the application and their
ownership relationship. The tool is capable of analyzing very large memory dumps obtained from
production-environment application servers encountering OutOfMemoryError issues.

IBM Thread and Monitor Dump Analyzer (TMDA)
IBM Thread and Monitor Dump Analyzer (TMDA) provides analysis for Java thread dumps or
javacores such as those from WebSphere Application Server. You can analyze thread usage at
several different levels, starting with a high-level graphical view and drilling down to a detailed tally
of individual threads. If any deadlocks exist in the thread dump, TMDA detects and reports them.

Log Analyzer
Log Analyzer is a graphical user interface that provides a single point of contact for browsing,
analyzing, and correlating logs produced by multiple products. In addition to importing log files
from multiple products, Log Analyzer enables you to import and select symptom catalogs against
which log files can be analyzed and correlated.

IBM Visual Configuration Explorer
The IBM Visual Configuration Explorer provides a way for you to visualize, explore, and analyze
configuration information from diverse sources.

IBM Pattern Modeling and Analysis Tool for Java Garbage Collector (PMAT)
The IBM Pattern Modeling and Analysis Tool for Java Garbage Collector (PMAT) parses IBM
verbose garbage-collection (GC) trace, analyzes Java heap usage, and recommends key
configurations based on pattern modeling of Java heap usage. Only verbose GC traces that are
generated from IBM Java Development Kits (JDKs) are supported.

IBM Assist On-site
IBM Assist On-site provides remote desktop capabilities. You run this tool when you are instructed
to do so by IBM Support personnel. With this live remote-assistance tool, a member of the IBM
Support team can view your desktop and share control of your mouse and keyboard to help you
find a solution. The tool can speed up problem determination, data collection, and ultimately your
problem solution.

Procedure

To install tools for the IBM Support Assistant Workbench on a Windows or Linux Intel operating system, go
to the Update menu and select Tool Add-ons. A list of all available tools appears, and you can select the
tools that you would like to install.
You can install, update, or remove tools from the IBM Support Assistant Workbench at any time.

IBM service call preparation
When you report a problem to IBM service, you will need to provide as much information as possible to
help service personnel quickly resolve the problem.

Chapter 19. Troubleshooting help from IBM 295

The information you might need to send depends, in part, on the type of problem you have encountered,
and includes the following items:
v Job logs for affected address spaces; for example, the controller and any servant regions that the

controller terminated
v Job output for affected address spaces, particularly WebSphere Application Server for z/OS messages

that are written to the JESMSGLG data set
v The system log (SYSLOG), another source of WebSphere Application Server for z/OS messages
v WebSphere Application Server for z/OS error log
v The system logrec data set or log stream
v CTRACE external writer data sets
v SVC dumps, CEEDUMPs, or other types of dumps produced because of the problem.
v The affected server's environment file, WAS.env, which is located in the HFS:

AppServer/config/cells/cellname/nodes/nodename/servers/servername/was.env

Additionally, IBM service might request you to:
v Provide a description of the circumstances or scenario under which the error occurs.
v Use the VERBEXIT BBORDATA subcommand.
v Reset WebSphere variables that are for use only when directed by IBM service.
v Set WebSphere variable values for the location service daemon address space (same as those for

servers, with the prefix “ DAEMON_”).

IPCS VERBEXIT subcommand to display diagnostic data
The interactive problem control system (IPCS) is a tool that provides formatting and analysis support for
dumps and traces produced by WebSphere Application Server for z/OS and the applications that it hosts.

IBM service personnel might request that you use the IPCS subcommand VERBEXIT with the BBORDATA verb
name to display dump information for WebSphere Application Server for z/OS. The BBORDATA formatters
reside in the WAS_HOME/lib/ipcs/ directory, which must be copied into a dataset that is in the link list or
LPA

Entering VERBEXIT BBORDATA results in a display of dump contents that can include the following
WebSphere Application Server for z/OS structures:
v Global control blocks
v Address space control blocks
v Task control blocks (TCBs)
v ORB control block

Optional parameters control which of these structures are included in the dump display. If you enter
VERBEXIT BBORDATA without any optional parameters, the dump display includes only global control block
content

To enter VERBEXIT BBORDATA, you might use any of the methods for entering IPCS subcommands on z/OS,
as described in z/OS MVS IPCS User's Guide, SA22-7596. Use the following syntax: VERBEXIT BBORDATA [
'parameter [,parameter]...']

Valid parameters are:
v GLOBAL(bgvt-address)

Formats and displays cell-level global vector data for the specified address space. This display includes
the following formatted control blocks:
– BGVT address - z/OS Global Vector table
– ASR Table and ASR Table entries - Active Server Resposity information

v ASID(asid-number)

Formats and displays address space information for the daemon, the controller (region), or the servant
(region). This display includes the following formatted control blocks:
– BACB - z/OS address space control block

296 Troubleshooting and support

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

– BTRC,TBUFSET,TBUF - z/OS Component trace control blocks
– BOAM,BOAMX - z/OS BOA control blocks
– ACRW queue - Application Controller Work element control blocks
– BTCB queues - z/OS control information

Along with ASID(asid-number), IBM service personnel might direct you to specify one of the following
parameters, to include additional information in the dump display:
– BTCB(btcb_address)

Formats and displays the specified BTCB and ORB information for the WebSphere Application
Server for z/OS TCB.

– COMMDATA

Formats and displays session information.
– CONFIG

Formats and displays configuration information for the address space.
– OBJADDR(object_address) and OBJTYPE(object_type_ID)

Formats and displays information for the specified object of the specified type. IBM service personnel
will provide the values for you to supply for these parameters.

– ORBDATA

Formats and displays ORB information.
– TCB(tcb_address)

Formats and displays request summary information for the specified task.
– TRACEBACK

Formats and displays ORB information.
v SUMMARY

Summarizes information from some of the other BBORDATA optional parameters. For example, for the
GLOBAL parameter, specifying SUMMARY produces a list of active servers.

Example: Output from the command ip VERBEXIT BBORDATA 'ASID(xx) TCB(yyyyyyyy)':

command ===> ip VERBX BBORDATA ’ASID(xx) TCB(xxxxxxxx)’
********************************* TOP OF DATA *******************************
COMPON=WEBSPHERE Z/OS,COMPID=5655A9801,ISSUER=BBORMCDP,ERRNO=04006006

BBOR0012I Formatting Clssname
Clssname: 2BE6947E
+0000 D9859496 A385E685 82C39695 A3818995 |RemoteWebContain|................|
+0010 859900 |er. |... |
BBOR0012I Formatting MethodNm
MethodNm: 2BE69472
+0000 88A3A397 998598A4 85A2A300 00000000 |httprequest.....|.........?......|
BBOR0012I Formatting ComRtInf
ComRtInf: 2BE69212
+0000 89974081 8484997E F94BF5F6 4BF4F24B |ip addr=9.56.42.|..@....~.K..K..K|
+0010 F1F6F840 979699A3 7EF1F0F8 F500 |168 port=1085. |...@....~..... |
BBOR0026I GMT Time Request was received into CTL region
TODCLOCK: 00000000

04/08/2003 12:58:02.926136
BBOR0026I GMT Time Request was Queued to WLM in CTL region
TODCLOCK: 00000000

04/08/2003 12:58:02.926263
BBOR0026I GMT Time Request will be Expired (approximated)
TODCLOCK: 00000000

04/08/2003 13:08:01.663032
BBOR0026I GMT Time Request was received into SR region
TODCLOCK: 00000000

04/08/2003 12:58:02.927729

Chapter 19. Troubleshooting help from IBM 297

Trace controls for IBM Support
Use these settings to view or modify your trace settings.

To view or set your trace settings, in the administrative console:

v Click Environment > WebSphere variables.

v On the Configuration Tab check for any of these properties in the name field and observe the property
settings in the value field.

v To change or set a property, specify the property name in the name field and specify the setting in the
value field. You can also describe the setting in the description field on this tab.

Note:

v If you use any level of tracing, including setting the ras_trace_defaultTracingLevel property to 1,
verify that you set the ras_trace_outputLocation property to BUFFER.

When the ras_trace_defaultTracingLevel property is set to 1, exceptions are written to the trace
log, as well as to the ERROR log.

v Set the ras_trace_BufferCount property to 4, and the ras_trace_BufferSize property to 128.

These settings reserve 512KB of storage for the trace buffers, which is the minimum amount of
storage that can be used, and reduces memory requirements.

v It is best to trace to CTRACE.

If you are tracing to SYSPRINT with the ras_trace_defaultTracingLevel property set to 3, you
might experience an almost 100% throughput degradation. If you are tracing to CTRACE,
however, you might only experience a 15% degradation in throughput.

v Make sure you disable JRAS tracing.

To disable JRAS tracing, find the following lines in the trace.dat file that is pointed to by the JVM
properties file:
com.ibm.ejs.*=all=disable

com.ibm.ws390.orb.*=all=disable

Ensure that both lines are set to disable, or delete the two lines. If the ras_trace_outputLocation
property is set, you might be tracing and not know it.

ras_trace_defaultTracingLevel= n
Specifies the default tracing level for the product.

Table 97. Valid values and their meanings. Choose a valid value from the following table:

0 No tracing

1 Exception tracing

2 Basic and exception tracing

3 Detailed tracing, including basic and exception tracing

Use this property, together with the ras_trace_basic and ras_trace_detail properties, to set tracing
levels for the product subcomponents.Specifies the default tracing level for the product.

Default: 1

Example:
ras_trace_defaultTracingLevel=2

ras_trace_basic=n | (n,...)
Specifies tracing overrides for particular subcomponents.

Subcomponents, specified by numbers, receive basic and exception traces. If IBM Support directs
you to specify more than one subcomponent, use parentheses and separate the numbers with
commas. IBM Support provides the subcomponent numbers and their meanings.

298 Troubleshooting and support

Other parts of the product receive tracing as specified on the ras_trace_defaultTracingLevel
variable.

Valid values for this property are:
v 0: RAS
v 1: Common Utilities
v 2: COS/Naming
v 3: COMM
v 4: ORB
v 5: IM
v 6: OTS
v 7: Shasta
v 8: Systems Management
v 9: z/OS Wrappers
v A: Daemon
v B: IR
v C: Test
v D: COS/Query
v E: Security
v F: Externalization
v G: Adapter
v H: Lifecycle
v I: Identity
v J: JRAS (internal tracing--via direction from IBM support)
v K: Reference collections
v L: J2EE
v M: Logging
v N: GlueCode

Default: (no default value)

Example:
ras_trace_basic=3

ras_trace_detail=n | (n,...)
Specifies tracing overrides for particular subcomponents.

Subcomponents, specified by numbers, receive detailed traces. If IBM Support directs you to
specify more than one subcomponent, use parentheses and separate the numbers with commas.
IBM Support provides the subcomponent numbers and their meanings.

Other parts of the product receive tracing as specified on the ras_trace_defaultTracingLevel
variable.

Valid values for this property are:
v 0: RAS
v 1: Common Utilities
v 2: COS/Naming
v 3: COMM
v 4: ORB
v 5: IM
v 6: OTS
v 7: Shasta
v 8: Systems Management
v 9: OS/390 Wrappers
v A: Daemon
v B: IR
v C: Test
v D: COS/Query
v E: Security

Chapter 19. Troubleshooting help from IBM 299

v F: Externalization
v G: Adapter
v H: Lifecycle
v I: Identity
v J: JRAS (internal tracing--via direction from IBM support)
v K: Reference collections
v L: J2EE
v M: Logging
v N: GlueCode

Default: (no default value)

Examples:
ras_trace_detail=3

ras_trace_detail=(3,4)
ras_trace_specific=n | (n,...)

Specifies tracing overrides for specific product trace points.

Trace points are specified by 8-digit, hexadecimal numbers. If IBM Support directs you to specify
more than one trace point, use parentheses and separate the numbers with commas. You also
can specify a property name by enclosing the name in single quotes. The value of the is handled
as if you had specified that value on the ras_trace_specific property.

Default: (no default value)

Examples:
ras_trace_specific=03004020

ras_trace_specific=(03004020,04005010)

ras_trace_specific=’xyz’

[where xyz is an environment variable name]
ras_trace_specific=(’xyz’,’abc’,03004021)

[where xyz and abc are environment variable names]
ras_trace_exclude_specific=n | (n,...)

Specifies product trace points to exclude from tracing activity.

Trace points are specified by 8-digit, hexadecimal numbers. If IBM Support directs you to specify
more than one trace point, use parentheses and separate the numbers with commas. You also
can specify a property name by enclosing the name in single quotes. The value of the property is
handled as if you had specified that value on the ras_trace_exclude_specific property.

Default: (no default value)

Examples:
ras_trace_exclude_specific=03004020

ras_trace_exclude_specific=(03004020,04005010)

ras_trace_exclude_specific=’xyz’

where xyz is a property name]
ras_trace_exclude_specific=(’xyz’,’abc’,03004021)

where xyz and abc are property names

Dump controls for IBM service
Use these controls to gather information that can be used by IBM service.
ras_minorcode_action= value

Determines the default behavior for gathering documentation about system exception minor codes.

300 Troubleshooting and support

CEEDUMP
Captures callback and offsets.

Tip: It takes time for the system to take CEEDUMPs and this may cause transaction timeouts. For
instance, if the WebSphere variable transaction_defaultTimeout is set to 30 seconds, your
application transaction may time out because processing a CEEDUMP can take longer than 30
seconds. To prevent this from happening, either:
v Increase the transaction timeout value, or
v Code ras_minorcode_action=NODIAGNOSTICDATA and make sure the

ras_trace_minorCodeTraceBacks variable is not specified.
TRACEBACK

Captures Language Environment and z/OS UNIX traceback data.
SVCDUMP

Captures an MVS dump (but will not produce a dump in the client).
NODIAGNOSTICDATA

Specifies that no diagnostic data will be collected, even if CEEDUMP, TRACEBACK, or
SVCDUMP processing occurs because of another WebSphere variable setting. For example, if
you code both of the following variables, traceback processing occurs but none of the traceback
data is collected: ras_minorcode_action=NODIAGNOSTICDATA and
ras_trace_minorCodeTraceBacks=ALL

Default: NODIAGNOSTICDATA

Example:
ras_minorcode_action=SVCDUMP

ras_trace_minorCodeTraceBacks= value
Enables traceback of system exception minor codes. Values are:
ALL|all

Enables traceback for all system exception minor codes.

Enables traceback of system exception minor codes. Values are:
v minor_code Enables traceback for a specific minor code.

Example: Type
1234

for minor code
C9C21234

v (null value) The default. This setting will not cause gathering of a traceback.

Default: (null value)

Example:
ras_trace_minorCodeTraceBacks=all

Chapter 19. Troubleshooting help from IBM 301

302 Troubleshooting and support

Chapter 20. Collecting Java dumps and core files using the
administrative console

You can use the Java runtime environment to create dump and core files to help with troubleshooting. You
can use the administrative console to trigger the creation of these dumps and core files.

About this task

Note: The Java virtual machine (JVM) is capable of producing Java dump and core files to aid in
troubleshooting. You can use heap dump and system dump files to help you diagnose
memory-related problems, such as memory leaks. You can use Java core files to help you diagnose
problems where the CPU is persistently 100% busy, when threads are hanging, or where threads
are in a deadlock.

Note: The process of generating dump and core files can have a noticeable performance impact on your
system that can last for many seconds or minutes. If necessary, use your test and development
environments to better understand the impact of generating dump and core files.

Procedure
1. In the navigation pane, click Troubleshooting > Java dumps and cores.

2. Select the server or servers you need to collect a dump or core from.

3. Click System Dump or Java Core or Heap Dump depending on your need.

Results

The system dump or heap dump or Java core is created and stored in the profile root directory of the
server from which you requested the dump or core.

Java dump and core collection
Use this page to generate various Java dumps and cores from within the administrative console.

To view this administrative console page, click Troubleshooting > Java dumps and cores.

Select one or more of the listed servers, and click one of the following buttons to generate dumps. You
can analyze dumps and cores using problem determination tools available for the IBM Support Assistant.

Heap dump
A heap dump is a snapshot of JVM memory. It shows live objects in the memory and references
between them.

You can use this option to debug conditions such as memory leaks, heap fragmentation or to
investigate what objects are consuming the largest part of the memory.

Java core
Use this button to investigate why a server is hanging or investigate messages in the logs that
indicate a thread has not completed its work in the expected amount of time.

System dump
Use this button to generate system native dumps of the server process. These dumps can be
quite large.

© Copyright IBM Corp. 2011 303

304 Troubleshooting and support

Chapter 21. Directory conventions

References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations - z/OS

app_server_root
Refers to the top directory for a WebSphere Application Server node.

The node may be of any type—application server, deployment manager, or unmanaged for
example. Each node has its own app_server_root. Corresponding product variables are
was.install.root and WAS_HOME.

The default varies based on node type. Common defaults are configuration_root/AppServer and
configuration_root/DeploymentManager.

configuration_root
Refers to the mount point for the configuration file system (formerly, the configuration HFS) in
WebSphere Application Server for z/OS.

The configuration_root contains the various app_server_root directories and certain symbolic links
associated with them. Each different node type under the configuration_root requires its own
cataloged procedures under z/OS.

The default is /wasv8config/cell_name/node_name.

plug-ins_root
Refers to the installation root directory for Web Server Plug-ins.

profile_root
Refers to the home directory for a particular instantiated WebSphere Application Server profile.

Corresponding product variables are server.root and user.install.root.

In general, this is the same as app_server_root/profiles/profile_name. On z/OS, this will always
be app_server_root/profiles/default because only the profile name "default" is used in
WebSphere Application Server for z/OS.

smpe_root
Refers to the root directory for product code installed with SMP/E or IBM Installation Manager.

The corresponding product variable is smpe.install.root.

The default is /usr/lpp/zWebSphere/V8R0.

© Copyright IBM Corp. 2011 305

306 Troubleshooting and support

Appendix. Directory conventions

References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations - z/OS

app_server_root
Refers to the top directory for a WebSphere Application Server node.

The node may be of any type—application server, deployment manager, or unmanaged for
example. Each node has its own app_server_root. Corresponding product variables are
was.install.root and WAS_HOME.

The default varies based on node type. Common defaults are configuration_root/AppServer and
configuration_root/DeploymentManager.

configuration_root
Refers to the mount point for the configuration file system (formerly, the configuration HFS) in
WebSphere Application Server for z/OS.

The configuration_root contains the various app_server_root directories and certain symbolic links
associated with them. Each different node type under the configuration_root requires its own
cataloged procedures under z/OS.

The default is /wasv8config/cell_name/node_name.

plug-ins_root
Refers to the installation root directory for Web Server Plug-ins.

profile_root
Refers to the home directory for a particular instantiated WebSphere Application Server profile.

Corresponding product variables are server.root and user.install.root.

In general, this is the same as app_server_root/profiles/profile_name. On z/OS, this will always
be app_server_root/profiles/default because only the profile name "default" is used in
WebSphere Application Server for z/OS.

smpe_root
Refers to the root directory for product code installed with SMP/E or IBM Installation Manager.

The corresponding product variable is smpe.install.root.

The default is /usr/lpp/zWebSphere/V8R0.

© IBM Corporation 2005 307

308 Troubleshooting and support

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of IBM's intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by IBM, is the user's
responsibility.

APACHE INFORMATION. This information may include all or portions of information which IBM obtained
under the terms and conditions of the Apache License Version 2.0, January 2004. The information may
also consist of voluntary contributions made by many individuals to the Apache Software Foundation. For
more information on the Apache Software Foundation, please see http://www.apache.org. You may obtain
a copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Intellectual Property & Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA
Attention: Information Requests

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 2011 309

310 Troubleshooting and support

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. For
a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site
(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2011 311

http://www.ibm.com/legal/copytrade.shtml

312 Troubleshooting and support

Index

D
directory

installation
conventions 305, 307

© Copyright IBM Corp. 2011 313

	Contents
	How to send your comments
	Changes to serve you more quickly
	Chapter 1. How do I troubleshoot?
	Chapter 2. Debugging applications
	Attaching a Rational tool to a remote debug session
	Unit testing with DB2
	Debugging Service details
	Enable service at server startup
	JVM debug port
	JVM debug arguments
	Debug class filters

	Chapter 3. Adding logging and tracing to your application
	Using Java logging in an application
	Using a logger
	Loggers
	Log handlers
	Log levels
	Log filters
	Log formatters

	Java logging
	Configuring the logger hierarchy
	Creating log resource bundles and message files
	Logger.properties file for configuring logger settings

	Configuring applications to use Jakarta Commons Logging
	Jakarta Commons Logging
	Configurations for the WebSphere Application Server logger

	Programming with the JRas framework
	JRas logging toolkit
	JRas Extensions
	JRas extension classes
	JRas framework (deprecated)
	Programming model summary

	JRas messages and trace event types
	Instrumenting an application with JRas extensions
	Creating JRas resource bundles and message files
	JRas manager and logger instances
	Setting up for integrated JRas operation
	Setting up for combined JRas operation
	Setting up for stand-alone JRas operation

	Logging messages and trace data for Java server applications
	Message location best practices
	System performance when logging messages and trace data
	Issuing application messages in the MVS master console

	Logging Common Base Events in WebSphere Application Server
	The Common Base Event in WebSphere Application Server
	Types of problem determination events
	Common Base Event structure
	Sample Common Base Event instance
	Sample Common Base Event template
	Component identification for problem determination

	Logging with Common Base Event API and the Java logging API
	Generate Common Base Event content with the default event factory
	Common Base Event content handler
	Creating custom Common Base Event content handlers
	Common Base Event factory home
	Creating custom Common Base Event factory homes
	Common Base Event factory context
	Common Base Event factory

	java.util.logging -- Java logging programming interface
	Logger.properties file
	Logging Common Base Events in WebSphere Application Server
	Showlog commands for Common Base Events

	Chapter 4. Configuring Java logging using the administrative console
	Log streams and expected output
	Log level settings
	Changing the message IDs used in log files
	Converting log files to use IBM unique Message IDs
	convertlog command
	MessageConverter class

	HTTP error, FRCA, and NCSA access log settings
	Enable logging service at server start-up
	Enable FRCA access logging
	FRCA log file path
	FRCA log maximum size
	Maximum number of historical files
	FRCA log format
	Enable NCSA access logging
	NCSA access log file path
	NCSA access log maximum size
	Maximum number of historical files
	NCSA access log format
	Enable error logging
	Error log file path
	Error log maximum size
	Maximum number of historical files
	Error log level

	Chapter 5. Using HPEL to troubleshoot applications
	High Performance Extensible Logging (HPEL)
	Basic mode and HPEL mode

	Changing from basic mode to HPEL logging and tracing
	Changing from HPEL to basic mode logging and tracing
	Configuring HPEL
	Configuring HPEL with wsadmin scripting
	HPEL logging and trace settings
	Configure HPEL logging
	Configure HPEL trace
	Configure HPEL text log
	View HPEL logs and trace
	Change log detail levels
	Change log and trace mode
	Manage process logs

	HPEL log configuration settings
	Directory path
	Enable log record buffering
	Start new log file daily at <time>
	Begin cleanup of oldest records
	Out of space action
	Save runtime changes to configuration as well

	HPEL trace configuration settings
	Trace to a directory
	Enable log record buffering
	Start new log file daily at <time>
	Begin cleanup of oldest records
	Out of space action
	Trace to a memory buffer
	Memory buffer size
	Dump button
	Directory to use for tracing and dumping memory buffer
	Save runtime changes to configuration as well

	HPEL text log configuration settings
	Enable Text Log
	Directory path
	Enable log record buffering
	Start new log file daily at <time>
	Begin cleanup of oldest records
	Out of space action
	Text Output Format
	Include trace records
	Save runtime changes to configuration as well

	Log viewer settings
	Log view table
	Content and filtering details
	Server instance
	View contents
	System Out
	System Error
	Logs and trace
	Filtering
	Include loggers
	Exclude loggers
	Message contents
	Event timing
	From
	On (first occurrence)
	Until
	On (second occurrence)

	LogViewer command-line tool
	Developing log and trace reading applications
	Determining which of basic mode and HPEL mode is enabled

	Chapter 6. Using sensitive log and trace guard
	Sensitive log and trace guard
	Enabling and disabling sensitive log and trace guard
	Maintaining sensitive log and trace guard lists

	Chapter 7. Diagnosing problems (using diagnosis tools)
	Chapter 8. Diagnosing problems with message logs
	Viewing JVM logs
	JVM log interpretation
	Monitoring application logging using JMX notifications
	Setting up the error log
	Viewing the service log
	Generating messages in Common Base Event format
	Logstream size considerations

	Chapter 9. Working with trace
	Enabling trace on client and stand-alone applications
	Tracing and logging configuration
	Enabling trace at server startup
	Enabling trace on a running server
	Diagnostic trace service settings
	Trace Output
	Runtime tab
	Trace Output

	Select a server to configure logging and tracing
	Server
	Node
	Host name
	Version
	Type
	Status

	Log and trace settings
	Switch to HPEL Mode button
	Diagnostic Trace
	Change Log Level Details
	NCSA access and HTTP error logging

	Setting up component trace (CTRACE)
	Preparing CTRACE controls and resources
	Starting CTRACE as part of WebSphere Application Server for z/OS initialization
	Starting CTRACE while WebSphere Application Server for z/OS servers are active
	CTRACE to collect trace data for Java server applications

	Chapter 10. Troubleshooting class loaders
	Class loading exceptions
	Class loader viewer service settings
	Enable service at server startup

	Enterprise application topology
	Enterprise applications topology

	Class loader viewer settings
	Class Loader

	Search settings
	Search type
	Search terms

	Chapter 11. Choosing and using diagnosis tools and controls on z/OS
	Troubleshooting using WebSphere variables
	Types of configuration variables
	Log output destinations and characteristics
	Trace control settings
	Trace log stream record output
	Dump control settings
	Timeout properties summary

	Run-time environment: Best practices for maintaining the runtime environment
	System controls: Best practices for using system controls
	Performance diagnosis information
	Updating the CFRM policy
	Error Dump and Cleanup interface
	Displaying information about current application server work

	Chapter 12. Using RMF
	Chapter 13. Collecting job-related information with the System Management Facility (SMF)
	Enabling SMF recording
	Using the administrative console to enable properties for specific SMF record types
	Editing the SMFPRMxx parmlib member
	Writing records to DASD

	Formatting the output data set
	Viewing the output data set
	Disabling SMF recording for WebSphere Application Server
	Disabling SMF recording for the entire MVS system
	Using SMF type 80 - preparing for audit support
	Audit support

	SMF settings
	SMF record type 120: overview
	SMF record type 120 (78) - WebSphere Application Server performance statistics
	Triplets
	SMF record splitting
	Record environment and mapping

	Chapter 14. Choosing diagnostic information sources
	CEEDUMPs in the job log
	SVC dumps
	Formatting CTRACE data with an IPCS dialog
	Formatting CTRACE data in batch mode with IPCS
	Sample JCL to display WebSphere for z/OS trace data

	ICPS CTRACE command
	IPCS CTRACE subname query

	Viewing error log contents through the Log Browse Utility (BBORBLOG)
	Using the log browse utility (BBORBLOG)
	Error log stream record output

	z/OS display command
	Hexadecimal conversion of Java error codes
	Managing operator message routing

	Chapter 15. Configuring the hang detection policy
	Hung threads in Java Platform, Enterprise Edition applications
	Example: Adjusting the thread monitor to affect server hang detection

	Chapter 16. Automation and recovery scenarios and guidelines
	APPC automation and recovery scenarios
	WLM automation and recovery scenarios
	RACF automation and recovery scenarios
	RRS automation and recovery scenarios
	UNIX System Services automation and recovery scenarios
	TCP/IP automation and recovery scenarios
	DB2 automation and recovery scenarios
	CICS automation and recovery scenarios
	IMS automation and recovery scenarios
	WebSphere Application Server for z/OS (Daemon) automation and recovery scenarios
	Web server (servlet) automation and recovery scenarios

	Chapter 17. Working with troubleshooting tools
	First failure data capture (FFDC)
	Configuring first failure data capture log file purges

	Chapter 18. Working with Diagnostic Providers
	Diagnostic Providers
	Diagnostic Provider IDs
	Diagnostic Provider configuration dumps, state dumps, and self tests
	Diagnostic Provider registered attributes and registered tests
	Diagnostic Provider names
	The simpler interfaces provided by the Diagnostic Service MBean

	Creating a Diagnostic Provider
	Diagnostic Provider Extensible Markup Language
	Choosing a Diagnostic Provider name
	Implementing a Diagnostic Provider
	Diagnostic Provider method implementation

	Creating a Diagnostic Provider registration XML file

	Associating a Diagnostic Provider ID with a logger
	Static Assignment
	Dynamic Assignment

	Using Diagnostic Providers from wsadmin scripts
	Viewing the run time configuration of a component using Diagnostic Providers
	Configuration data quick link or server selection
	Quick link using Diagnostic Provider ID
	Server selection topology

	Diagnostic Providers (selection)
	Diagnostic Providers

	Configuration data
	Node
	Server
	Name
	Value
	Description

	Viewing the run time state data or configuring the state data collection specifications for a Diagnostic Provider
	Diagnostic Provider State Collection Specification
	State Data Quick Link or Server Selection
	Quick link using Diagnostic Provider ID
	Server selection topology

	State data
	Node
	Server
	Name
	Value
	Description

	Detailed state specification
	Attribute
	Description

	Change state specification
	Name

	Modifying the State Collection Specification from wsadmin scripts

	Running a self diagnostic on a Diagnostic Provider
	Tests Quick Link or Server Selection
	Quick link using Diagnostic Provider ID
	Server selection topology

	Test selection
	Test identification
	Test description

	Test Results
	Server
	Node
	Severity
	Message

	Test result details
	Name
	Value
	Description

	Chapter 19. Troubleshooting help from IBM
	Problem determination skills
	Diagnosing and fixing problems: Resources for learning
	Using IBM Support Assistant
	Diagnosing problems using IBM Support Assistant tooling
	IBM service call preparation
	IPCS VERBEXIT subcommand to display diagnostic data
	Trace controls for IBM Support
	Dump controls for IBM service

	Chapter 20. Collecting Java dumps and core files using the administrative console
	Java dump and core collection

	Chapter 21. Directory conventions
	Appendix. Directory conventions
	Notices
	Trademarks and service marks
	Index
	D

