
IBM WebSphere eXtreme Scale
Version 8.5

Programming Guide
April 27, 2012

���

This edition applies to version 8, release 5, of WebSphere eXtreme Scale and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2009, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About the Programming Guide ix

Chapter 1. Tutorials 1
Tutorial: Querying a local in-memory data grid . . . 1

ObjectQuery tutorial - step 1 1
ObjectQuery tutorial - step 2 2
ObjectQuery tutorial - step 3 3
ObjectQuery tutorial - step 4 5

Tutorial: Storing order information in entities . . . 9
Entity manager tutorial: Creating an entity class . 9
Entity manager tutorial: Forming entity
relationships 10
Entity manager tutorial: Order Entity Schema . . 12
Entity manager tutorial: Updating entries . . . 15
Entity manager tutorial: Updating and removing
entries with an index 16
Entity manager tutorial: Updating and removing
entries by using a query 17

Tutorial: Running eXtreme Scale bundles in the
OSGi framework 17

Introduction: Starting and configuring the
eXtreme Scale server and container to run
plug-ins in the OSGi framework 18
Module 1: Preparing to install and configure
eXtreme Scale server bundles 19
Module 2: Installing and starting eXtreme Scale
bundles in the OSGi framework 23
Module 3: Running the eXtreme Scale sample
client 29
Module 4: Querying and upgrading the sample
bundle 31

Chapter 2. Scenarios. 35
Using an OSGi environment to develop and run
eXtreme Scale plug-ins 35

OSGi framework overview 35
Installing the Eclipse Equinox OSGi framework
with Eclipse Gemini for clients and servers . . . 36
Running eXtreme Scale containers with
non-dynamic plug-ins in an OSGi environment . 40
Administering eXtreme Scale servers and
applications in an OSGi environment 41
Building and running eXtreme Scale dynamic
plug-ins for use in an OSGi environment . . . 42
Running eXtreme Scale containers with dynamic
plug-ins in an OSGi environment 49

Using JCA to connect transactional applications to
eXtreme Scale clients 58

Transaction processing in Java EE applications. . 59
Installing an eXtreme Scale resource adapter . . 61

Configuring eXtreme Scale connection factories 63
Configuring Eclipse environments to use eXtreme
Scale connection factories 64
Configuring applications to connect with eXtreme
Scale. 65
Securing J2C client connections 65
Developing eXtreme Scale client components to
use transactions 67
Administering J2C client connections 70

Chapter 3. Getting started 73
Tutorial: Getting started with WebSphere eXtreme
Scale. 73

Getting started tutorial lesson 1: Defining data
grids with configuration files 73
Getting started tutorial lesson 2: Creating a client
application 75
Getting started tutorial lesson 3: Running the
getting started sample client application 76
Getting started tutorial lesson 4: Monitor your
environment 78

Getting started with developing applications . . . 81

Chapter 4. Planning 83
Planning the topology 83

Local in-memory cache 83
Peer-replicated local cache 85
Embedded cache 87
Distributed cache 88
Database integration: Write-behind, in-line, and
side caching 90
Planning multiple data center topologies . . . 104

Planning to develop WebSphere eXtreme Scale
applications 116

API overview 116
Plug-ins overview 117
REST data services overview 119
Spring framework overview 121
Class loader and classpath considerations . . . 122
Relationship management 122
Cache key considerations 123
Data for different time zones 124

Chapter 5. Developing applications 125
Setting up the development environment 125

Setting up a stand-alone development
environment. 125
Running a WebSphere eXtreme Scale client or
server application with Apache Tomcat in
Rational Application Developer 126
Running an integrated client or server
application with WebSphere Application Server
in Rational Application Developer 129

Accessing data with client applications 130

© Copyright IBM Corp. 2009, 2012 iii

Connecting to distributed ObjectGrid instances
programmatically 130
Tracking map updates by an application . . . 132
Interacting with an ObjectGrid using the
ObjectGridManager interface 135
Accessing data with indexes (Index API) . . . 142
Using Sessions to access data in the grid . . . 145
Caching objects with no relationships involved
(ObjectMap API) 152
Caching objects and their relationships
(EntityManager API) 164
Retrieving entities and objects (Query API) . . 190
Programming for transactions 214
Configuring clients programmatically 253

Accessing data with the REST data service . . . 255
Operations with the REST data service 255
Optimistic concurrency in the REST data service 257
Request protocols for the REST data service . . 258

System APIs and plug-ins 279
Managing plug-in life cycles 279
Plug-ins for multimaster replication 282
Plug-ins for versioning and comparing cache
objects. 284
Plug-ins for serializing cached objects 288
Plug-ins for providing event listeners 296
Plug-ins for indexing data 304
Plug-ins for communicating with databases . . 313
Plug-ins for managing transaction life cycle
events 351

Programming to use the OSGi framework 361
Building eXtreme Scale dynamic plug-ins . . . 361

Programming for JPA integration 365
JPA Loaders 365
Developing client-based JPA loaders 367
Example: Using the Hibernate plug-in to
preload data into the ObjectGrid cache 375
Starting the JPA time-based updater 375

Developing applications with the Spring
framework 379

Spring framework overview 380
Managing transactions with Spring 381
Spring managed extension beans 382
Spring extension beans and namespace support 383
Starting a container server with Spring 386
Configuring clients in the Spring framework 388

Chapter 6. Tuning performance. . . . 391
Tuning the cache sizing agent for accurate memory
consumption estimates 391

Cache memory consumption sizing 392
Tuning and performance for application
development 395

Tuning the copy mode 395

Tuning evictors 404
Tuning locking performance 405
Tuning serialization performance 407
Tuning query performance 409
Tuning EntityManager interface performance 420

Chapter 7. Security 425
Configuring security profiles for the xscmd utility 425
Securing J2C client connections 426
Programming for security 427

Security API 427
Client authentication programming 429
Client authorization programming 446
Data grid authentication. 454
Local security programming 454

Chapter 8. Troubleshooting 461
Troubleshooting and support for WebSphere
eXtreme Scale 461

Techniques for troubleshooting problems . . . 461
Searching knowledge bases 463
Getting fixes. 464
Contacting IBM Support. 465
Exchanging information with IBM 466
Subscribing to Support updates 467

Enabling logging 468
Collecting trace. 469

Trace options 470
Analyzing log and trace data 472

Log analysis overview 473
Running log analysis 473
Creating custom scanners for log analysis . . . 475
Troubleshooting log analysis 476

Troubleshooting client connectivity 477
Troubleshooting cache integration 478
Troubleshooting the JPA cache plug-in 479
Troubleshooting IBM eXtremeMemory and IBM
eXtremeIO 479
Troubleshooting administration 480
Troubleshooting multiple data center
configurations 481
Troubleshooting loaders 481
Troubleshooting deadlocks 483
IBM Support Assistant for WebSphere eXtreme
Scale 488

Notices 491

Trademarks 493

Index 495

iv IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Figures

1. Order Schema 6
2. Order Entity Schema 12
3. Eclipse Equinox process for including all

configuration and metadata in an OSGi bundle 52
4. Eclipse Equinox process for specify

configuration and metadata outside of an
OSGi bundle 53

5. Local in-memory cache scenario. 84
6. Peer-replicated cache with changes that are

propagated with JMS 85
7. Peer-replicated cache with changes that are

propagated with the high availability manager. 86
8. Embedded cache 87
9. Distributed cache 89

10. Near cache 89
11. ObjectGrid as a database buffer 91
12. ObjectGrid as a side cache 91
13. Side cache 92
14. In-line cache 93
15. Read-through caching 94
16. Write-through caching 94
17. Write-behind caching 95
18. Write-behind caching 96

19. Loader 97
20. Loader plug-in 99
21. Client loader 100
22. Periodic refresh 101
23. Microsoft WCF Data Services 119
24. WebSphere eXtreme Scale REST data service 120
25. The interaction of the query with the

ObjectGrid object maps and how a schema is
defined for classes and associated with an
ObjectGrid map. 196

26. The interaction of the query with the
ObjectGrid object maps and how the entity
schema is defined and associated with an
ObjectGrid map. 201

27. Loader 314
28. Write-behind caching 331
29. JPA Loader architecture 366
30. Client loader that uses JPA implementation to

load the ObjectGrid 368
31. Periodic refresh 379
32. Flow of client authentication and

authorization 428

© Copyright IBM Corp. 2009, 2012 v

vi IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Tables

1. Custom properties for configuring connection
factories. 63

2. Arbitration approaches 112
3. Other methods. 193
4. Key to BNF summary. 212
5. Lock mode compatibility matrix 235
6. Support for range index 308
7. Status value and response 326
8. Commit sequence on the primary 327
9. Synchronous commit processing 328

10. Some write-behind options 330
11. Client loader modes 369
12. List of methods and the required

MapPermission 448

13. List of methods and the required
ObjectGridPermission 449

14. Permissions to a server-hosted ObjectMap 449
15. Single key deadlocks scenario 484
16. Single key deadlocks, continued 485
17. Single key deadlocks, continued 485
18. Single key deadlocks, continued 485
19. Ordered multiple key deadlock scenario 486
20. Ordered multiple key deadlock scenario,

continued 486
21. Out of order with U lock scenario. 487

© Copyright IBM Corp. 2009, 2012 vii

viii IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

About the Programming Guide

The WebSphere® eXtreme Scale documentation set includes three volumes that
provide the information necessary to use, program for, and administer the
WebSphere eXtreme Scale product.

WebSphere eXtreme Scale library

The WebSphere eXtreme Scale library contains the following books:
v The Product Overview contains a high-level view of WebSphere eXtreme Scale

concepts, including use case scenarios, and tutorials.
v The Installation Guide describes how to install common topologies of WebSphere

eXtreme Scale.
v The Administration Guide contains the information necessary for system

administrators, including how to plan application deployments, plan for
capacity, install and configure the product, start and stop servers, monitor the
environment, and secure the environment.

v The Programming Guide contains information for application developers on how
to develop applications for WebSphere eXtreme Scale using the included API
information.

To download the books, go to the WebSphere eXtreme Scale library page.

You can also access the same information in this library in the WebSphere eXtreme
Scale Version 8.5 information center..

Using the books offline

All of the books in the WebSphere eXtreme Scale library contain links to the
information center, with the following root URL: http://publib.boulder.ibm.com/
infocenter/wxsinfo/v8r5. These links take you directly to related information.
However, if you are working offline and encounter one of these links, you can
search for the title of the link in the other books in the library. The API
documentation, glossary, and messages reference are not available in PDF books.

Who should use this book

This book is intended primarily for application developers.

Getting updates to this book

You can get updates to this book by downloading the most recent version from the
WebSphere eXtreme Scale library page.

How to send your comments

Contact the documentation team. Did you find what you needed? Was it accurate
and complete? Send your comments about this documentation by e-mail to
wasdoc@us.ibm.com.

© Copyright IBM Corp. 2009, 2012 ix

http://www-01.ibm.com/software/webservers/appserv/extremescale/library/index.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/index.jsp
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/index.jsp
http://www-01.ibm.com/software/webservers/appserv/extremescale/library/index.html
mailto:wasdoc@us.ibm.com?subject=WebSphere eXtreme Scale

x IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Chapter 1. Tutorials
You can use tutorials to help you understand product usage scenarios, including
entity manager, queries, and security.

Tutorial: Querying a local in-memory data grid
You can develop a local in-memory ObjectGrid that can store order information for
a website, and use the ObjectQuery API to query the data grid.

Before you begin

Be sure to have objectgrid.jar file in the classpath.

About this task

Each step in the tutorial builds on the previous step. Follow each of the steps to
build a simple Java Platform, Standard Edition Version 5 or later application that
uses an in-memory, local data grid.

ObjectQuery tutorial - step 1
With the following steps, you can continue to develop a local, in-memory
ObjectGrid that stores order information for an online retail store using the
ObjectMap APIs. You define a schema for the map and run a query against the
map.

Procedure
1. Create an ObjectGrid with a map schema.

Create an ObjectGrid with one map schema for the map, then insert an object
into the cache and later retrieve it using a simple query.
OrderBean.java

public class OrderBean implements Serializable {
String orderNumber;
java.util.Date date;
String customerName;
String itemName;
int quantity;
double price;

}

2. Define the primary key.
The previous code shows an OrderBean object. This object implements the
java.io.Serializable interface because all objects in the cache must (by default) be
Serializable.
The orderNumber attribute is the primary key of the object. The following
example program can be run in stand-alone mode. You should follow this
tutorial in an Eclipse Java project that has the objectgrid.jar file added to the
class path.
Application.java

© Copyright IBM Corp. 2009, 2012 1

package querytutorial.basic.step1;

import java.util.Iterator;

import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.ObjectMap;
import com.ibm.websphere.objectgrid.Session;
import com.ibm.websphere.objectgrid.config.QueryConfig;
import com.ibm.websphere.objectgrid.config.QueryMapping;
import com.ibm.websphere.objectgrid.query.ObjectQuery;

public class Application
{

static public void main(String [] args) throws Exception
{

ObjectGrid og = ObjectGridManagerFactory.getObjectGridManager().createObjectGrid();
og.defineMap("Order");

// Define the schema
QueryConfig queryCfg = new QueryConfig();
queryCfg.addQueryMapping(new QueryMapping("Order", OrderBean.class.getName(),

"orderNumber", QueryMapping.FIELD_ACCESS));
og.setQueryConfig(queryCfg);

Session s = og.getSession();
ObjectMap orderMap = s.getMap("Order");

s.begin();
OrderBean o = new OrderBean();
o.customerName = "John Smith";
o.date = new java.util.Date(System.currentTimeMillis());
o.itemName = "Widget";
o.orderNumber = "1";
o.price = 99.99;
o.quantity = 1;
orderMap.put(o.orderNumber, o);
s.commit();

s.begin();
ObjectQuery query = s.createObjectQuery("SELECT o FROM Order o WHERE o.itemName=’Widget’");
Iterator result = query.getResultIterator();
o = (OrderBean) result.next();
System.out.println("Found order for customer: " + o.customerName);
s.commit();

// Close the session (optional in Version 7.1.1 and later) for improved performance
s.close();
}
}

This eXtreme Scale application first initializes a local ObjectGrid with an
automatically generated name. Next, the application creates a BackingMap and
a QueryConfig that defines what Java type is associated with the map, the
name of the field that is the primary key for the map, and how to access the
data in the object. You then obtain a Session to get the ObjectMap instance and
insert an OrderBean object into the map in a transaction.
After the data is committed into the cache, you can use ObjectQuery to find the
OrderBean using any of the persistent fields in the class. Persistent fields are
those that do not have the transient modifier. Because you did not define any
indexes on the BackingMap, ObjectQuery must scan each object in the map
using Java reflection.

What to do next

“ObjectQuery tutorial - step 2” demonstrates how an index can be used to
optimize the query.

ObjectQuery tutorial - step 2
With the following steps, you can continue to create an ObjectGrid with one map
and an index, along with a schema for the map. Then you can insert an object into
the cache and later retrieve it using a simple query.

2 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Before you begin

Be sure that you have completed “ObjectQuery tutorial - step 1” on page 1 before
proceeding with this step of the tutorial.

Procedure

Schema and index
Application.java

// Create an index
HashIndex idx= new HashIndex();
idx.setName("theItemName");
idx.setAttributeName("itemName");
idx.setRangeIndex(true);
idx.setFieldAccessAttribute(true);
orderBMap.addMapIndexPlugin(idx);

}

The index must be a com.ibm.websphere.objectgrid.plugins.index.HashIndex
instance with the following settings:
v The Name is arbitrary, but must be unique for a given BackingMap.
v The AttributeName is the name of the field or bean property which the indexing

engine uses to introspect the class. In this case, it is the name of the field for
which you will create an index.

v RangeIndex must always be true.
v FieldAccessAttribute should match the value set in the QueryMapping object

when the query schema was created. In this case, the Java object is accessed
using the fields directly.

When a query runs that filters on the itemName field, the query engine
automatically uses the defined index. Using the index allows the query to run
much faster and a map scan is not needed. The next step demonstrates how an
index can be used to optimize the query.
Next step

ObjectQuery tutorial - step 3
With the following step, you can create an ObjectGrid with two maps and a
schema for the maps with a relationship, then insert objects into the cache and
later retrieve them using a simple query.

Before you begin

Be sure you have completed “ObjectQuery tutorial - step 2” on page 2 prior to
proceeding with this step.

About this task

In this example, there are two maps, each with a single Java type mapped to it.
The Order map has OrderBean objects and the Customer map has CustomerBean
objects in it.

Procedure

Define maps with a relationship.

Chapter 1. Tutorials 3

OrderBean.java

public class OrderBean implements Serializable {
String orderNumber;
java.util.Date date;
String customerId;
String itemName;
int quantity;
double price;

}

The OrderBean no longer has the customerName in it. Instead, it has the
customerId, which is the primary key for the CustomerBean object and the
Customer map.
CustomerBean.java

public class CustomerBean implements Serializable{
private static final long serialVersionUID = 1L;
String id;
String firstName;
String surname;
String address;
String phoneNumber;

}

The relationship between the two types or Maps follows:
Application.java

public class Application
{

static public void main(String [] args)
throws Exception

{
ObjectGrid og = ObjectGridManagerFactory.getObjectGridManager().createObjectGrid();
og.defineMap("Order");
og.defineMap("Customer");

// Define the schema
QueryConfig queryCfg = new QueryConfig();
queryCfg.addQueryMapping(new QueryMapping(

"Order", OrderBean.class.getName(), "orderNumber", QueryMapping.FIELD_ACCESS));
queryCfg.addQueryMapping(new QueryMapping(

"Customer", CustomerBean.class.getName(), "id", QueryMapping.FIELD_ACCESS));
queryCfg.addQueryRelationship(new QueryRelationship(

OrderBean.class.getName(), CustomerBean.class.getName(), "customerId", null));
og.setQueryConfig(queryCfg);

Session s = og.getSession();
ObjectMap orderMap = s.getMap("Order");
ObjectMap custMap = s.getMap("Customer");

s.begin();
CustomerBean cust = new CustomerBean();
cust.address = "Main Street";
cust.firstName = "John";
cust.surname = "Smith";
cust.id = "C001";
cust.phoneNumber = "5555551212";
custMap.insert(cust.id, cust);

OrderBean o = new OrderBean();
o.customerId = cust.id;
o.date = new java.util.Date();
o.itemName = "Widget";
o.orderNumber = "1";
o.price = 99.99;
o.quantity = 1;
orderMap.insert(o.orderNumber, o);
s.commit();

s.begin();
ObjectQuery query = s.createObjectQuery(

"SELECT c FROM Order o JOIN o.customerId as c WHERE o.itemName=’Widget’");
Iterator result = query.getResultIterator();
cust = (CustomerBean) result.next();

4 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

System.out.println("Found order for customer: " + cust.firstName + " " + cust.surname);
s.commit();

// Close the session (optional in Version 7.1.1 and later) for improved performance
s.close();

}
}

The equivalent XML in the ObjectGrid deployment descriptor follows:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="CompanyGrid">

<backingMap name="Order"/>
<backingMap name="Customer"/>

<querySchema>
<mapSchemas>

<mapSchema
mapName="Order"
valueClass="com.mycompany.OrderBean"
primaryKeyField="orderNumber"
accessType="FIELD"/>

<mapSchema
mapName="Customer"
valueClass="com.mycompany.CustomerBean"
primaryKeyField="id"
accessType="FIELD"/>

</mapSchemas>
<relationships>

<relationship
source="com.mycompany.OrderBean"
target="com.mycompany.CustomerBean"
relationField="customerId"/>

</relationships>
</querySchema>

</objectGrid>
</objectGrids>

</objectGridConfig>

What to do next

“ObjectQuery tutorial - step 4,” expands the current step by including field and
property access objects and additional relationships.

ObjectQuery tutorial - step 4
The following step shows how to create an ObjectGrid with four maps and a
schema for the maps. Some of the maps maintain a one-to-one (unidirectional) and
one-to-many (bidirectional) relationship. After creating the maps, you can then run
the sample Application.java program to insert objects into the cache and run
queries to retrieve these objects.

Before you begin

Be sure to have completed “ObjectQuery tutorial - step 3” on page 3 prior to
continuing with the current step.

About this task

You are required to create four JAVA classes. These are the maps for the
ObjectGrid:

Chapter 1. Tutorials 5

v OrderBean.java
v OrderLineBean.java
v CustomerBean.java
v ItemBean.java

After creating these JAVA classes with these relationships, you can then run the
sample Application.java program. This program lets you insert objects into the
cache and retrieve these using several queries.

Procedure
1. Create the following JAVA classes:

OrderBean.java

public class OrderBean implements Serializable {
String orderNumber;
java.util.Date date;
String customerId;
String itemName;
List<Integer> orderLines;

}

OrderLineBean.java

public class OrderLineBean implements Serializable {
int lineNumber;
int quantity;
String orderNumber;
String itemId;

}

CustomerBean.java

public class CustomerBean implements Serializable{
String id;
String firstName;

Figure 1. Order Schema. An Order schema has a one-to-one relationship with Customer and a one-to-many
relationship with OrderLine. The OrderLine map has a one-to-one relationship with Item and includes the quantity
ordered.

6 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

String surname;
String address;
String phoneNumber;

}

ItemBean.java

public class ItemBean implements Serializable {
String id;
String description;
long quantityOnHand;
double price;

}

2. After creating the classes, you can run the sample Application.java:
Application.java

public class Application static public void main(String [] args)throws Exception
// Configure programatically

objectGrid og = ObjectGridManagerFactory.getObjectGridManager().createObjectGrid();
og.defineMap("Order");
og.defineMap("Customer");
og.defineMap("OrderLine");
og.defineMap("Item");

// Define the schema
QueryConfig queryCfg = new QueryConfig();
queryCfg.addQueryMapping(new QueryMapping("Order", OrderBean.class.getName(), "orderNumber", QueryMapping.FIELD_ACCESS));
queryCfg.addQueryMapping(new QueryMapping("Customer", CustomerBean.class.getName(), "id", QueryMapping.FIELD_ACCESS));
queryCfg.addQueryMapping(new QueryMapping("OrderLine", OrderLineBean.class.getName(), "lineNumber", QueryMapping.FIELD_ACCESS));
queryCfg.addQueryMapping(new QueryMapping("Item", ItemBean.class.getName(), "id", QueryMapping.FIELD_ACCESS));
queryCfg.addQueryRelationship(new QueryRelationship(OrderBean.class.getName(), CustomerBean.class.getName(), "customerId", null));
queryCfg.addQueryRelationship(new QueryRelationship(OrderBean.class.getName(), OrderLineBean.class.getName(),

"orderLines", "lineNumber"));
queryCfg.addQueryRelationship(new QueryRelationship(OrderLineBean.class.getName(), ItemBean.class.getName(), "itemId", null));
og.setQueryConfig(queryCfg);

// Get session and maps;
Session s = og.getSession();
ObjectMap orderMap = s.getMap("Order");
ObjectMap custMap = s.getMap("Customer");
ObjectMap itemMap = s.getMap("Item");
ObjectMap orderLineMap = s.getMap("OrderLine");

// Add data
s.begin();
CustomerBean aCustomer = new CustomerBean();
aCustomer.address = "Main Street";
aCustomer.firstName = "John";
aCustomer.surname = "Smith";
aCustomer.id = "C001";
aCustomer.phoneNumber = "5555551212";
custMap.insert(aCustomer.id, aCustomer);

// Insert an order with a reference to the customer, but without any OrderLines yet.
// Because we are using CopyMode.COPY_ON_READ_AND_COMMIT, the
// insert won’t be copied into the backing map until commit time, so
// the reference is still good.

OrderBean anOrder = new OrderBean();
anOrder.customerId = aCustomer.id;
anOrder.date = new java.util.Date();
anOrder.itemName = "Widget";
anOrder.orderNumber = "1";
anOrder.orderLines = new ArrayList();
orderMap.insert(anOrder.orderNumber, anOrder);

ItemBean anItem = new ItemBean();
anItem.id = "AC0001";
anItem.description = "Description of widget";
anItem.quantityOnHand = 100;
anItem.price = 1000.0;
itemMap.insert(anItem.id, anItem);

// Create the OrderLines and add the reference to the Order
OrderLineBean anOrderLine = new OrderLineBean();
anOrderLine.lineNumber = 99;
anOrderLine.itemId = anItem.id;
anOrderLine.orderNumber = anOrder.orderNumber;
anOrderLine.quantity = 500;
orderLineMap.insert(anOrderLine.lineNumber, anOrderLine);
anOrder.orderLines.add(Integer.valueOf(anOrderLine.lineNumber));

anOrderLine = new OrderLineBean();
anOrderLine.lineNumber = 100;

Chapter 1. Tutorials 7

anOrderLine.itemId = anItem.id;
anOrderLine.orderNumber = anOrder.orderNumber;
anOrderLine.quantity = 501;
orderLineMap.insert(anOrderLine.lineNumber, anOrderLine);
anOrder.orderLines.add(Integer.valueOf(anOrderLine.lineNumber));
s.commit();

s.begin();
// Find all customers who have ordered a specific item.
ObjectQuery query = s.createObjectQuery("SELECT c FROM Order o JOIN o.customerId as c WHERE o.itemName=’Widget’");
Iterator result = query.getResultIterator();
aCustomer = (CustomerBean) result.next();
System.out.println("Found order for customer: " + aCustomer.firstName + " " + aCustomer.surname);
s.commit();

s.begin();
// Find all OrderLines for customer C001.
// The query joins are expressed on the foreign keys.
query = s.createObjectQuery("SELECT ol FROM Order o JOIN o.customerId as c JOIN o.orderLines as ol WHERE c.id=’C001’");
result = query.getResultIterator();
System.out.println("Found OrderLines:");
while(result.hasNext()) {

anOrderLine = (OrderLineBean) result.next();
System.out.println(anOrderLine.lineNumber + ", qty=" + anOrderLine.quantity);

}
// Close the session (optional in Version 7.1.1 and later) for improved performance
s.close();
}

}

3. Using the XML configuration below (in the ObjectGrid deployment descriptor)
is equivalent to the programmatic approach above.

<?xml version="1.0" encoding="UTF-8"?><objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://ibm.com/ws/objectgrid/config
../objectGrid.xsd"xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="CompanyGrid">
<backingMap name="Order"/>
<backingMap name="Customer"/>
<backingMap name="OrderLine"/>
<backingMap name="Item"/>

<querySchema>
<mapSchemas>
<mapSchema
mapName="Order"
valueClass="com.mycompany.OrderBean"
primaryKeyField="orderNumber"
accessType="FIELD"/>
<mapSchema
mapName="Customer"
valueClass="com.mycompany.CustomerBean"
primaryKeyField="id"
accessType="FIELD"/>
<mapSchema
mapName="OrderLine"
valueClass="com.mycompany.OrderLineBean"
primaryKeyField="
lineNumber"
accessType="FIELD"/>
<mapSchema
mapName="Item"
valueClass="com.mycompany.ItemBean"
primaryKeyField="id"
accessType="FIELD"/>
</mapSchemas>

<relationships>
<relationship
source="com.mycompany.OrderBean"
target="com.mycompany.CustomerBean"
relationField="customerId"/>
<relationship
source="com.mycompany.OrderBean"
target="com.mycompany.OrderLineBean"
relationField="orderLines"
invRelationField="lineNumber"/>
<relationship
source="com.mycompany.OrderLineBean"
target="com.mycompany.ItemBean"
relationField="itemId"/>
</relationships>
</querySchema>
</objectGrid>
</objectGrids>
</objectGridConfig>

8 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Tutorial: Storing order information in entities
The tutorial for the entity manager shows you how to use WebSphere eXtreme
Scale to store order information on a Web site. You can create a simple Java
Platform, Standard Edition 5 application that uses an in-memory, local eXtreme
Scale. The entities use Java SE 5 annotations and generics.

Before you begin

Ensure that you have met the following requirements before you begin the tutorial:
v You must have Java SE 5.
v You must have the objectgrid.jar file in your classpath.

Entity manager tutorial: Creating an entity class
Create a local ObjectGrid with one entity by creating an Entity class, registering the
entity type, and storing an entity instance into the cache.

Procedure
1. Create the Order object. To identify the object as an ObjectGrid entity, add the

@Entity annotation. When you add this annotation, all serializable attributes in
the object are automatically persisted in eXtreme Scale, unless you use
annotations on the attributes to override the attributes. The orderNumber
attribute is annotated with @Id to indicate that this attribute is the primary key.
An example of an Order object follows:
Order.java

@Entity
public class Order
{

@Id String orderNumber;
Date date;
String customerName;
String itemName;
int quantity;
double price;

}

2. Run the eXtreme Scale Hello World application to demonstrate the entity
operations. The following example program can be issued in stand-alone mode
to demonstrate the entity operations. Use this program in an Eclipse Java
project that has the objectgrid.jar file added to the class path. An example of
a simple Hello world application that uses eXtreme Scale follows:
Application.java

package emtutorial.basic.step1;

import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.Session;
import com.ibm.websphere.objectgrid.em.EntityManager;

public class Application
{

static public void main(String [] args)
throws Exception

{
ObjectGrid og =

ObjectGridManagerFactory.getObjectGridManager().createObjectGrid();
og.registerEntities(new Class[] {Order.class});

Session s = og.getSession();
EntityManager em = s.getEntityManager();

em.getTransaction().begin();

Order o = new Order();

Chapter 1. Tutorials 9

o.customerName = "John Smith";
o.date = new java.util.Date(System.currentTimeMillis());
o.itemName = "Widget";
o.orderNumber = "1";
o.price = 99.99;
o.quantity = 1;

em.persist(o);
em.getTransaction().commit();

em.getTransaction().begin();
o = (Order)em.find(Order.class, "1");
System.out.println("Found order for customer: " + o.customerName);
em.getTransaction().commit();

}
}

This example application performs the following operations:
a. Initializes a local eXtreme Scale with an automatically generated name.
b. Registers the entity classes with the application by using the registerEntities

API, although using the registerEntities API is not always necessary.
c. Retrieves a Session and a reference to the entity manager for the Session.
d. Associates each eXtreme Scale Session with a single EntityManager and

EntityTransaction. The EntityManager is now used.
e. The registerEntities method creates a BackingMap object that is called

Order, and associates the metadata for the Order object with the
BackingMap object. This metadata includes the key and non-key attributes,
along with the attribute types and names.

f. A transaction starts and creates an Order instance. The transaction is
populated with some values. The transaction is then persisted by using the
EntityManager.persist method, which identifies the entity as waiting to be
included in the associated map.

g. The transaction is then committed, and the entity is included in the
ObjectMap instance.

h. Another transaction is made, and the Order object is retrieved by using the
key 1. The type cast on the EntityManager.find method is necessary. The
Java SE 5 capability is not used to ensure that the objectgrid.jar file works
on a Java SE Version 5 and later Java virtual machine.

Entity manager tutorial: Forming entity relationships
Create a simple relationship between entities by creating two entity classes with a
relationship, registering the entities with the ObjectGrid, and storing the entity
instances into the cache.

Procedure
1. Create the customer entity, which is used to store customer details

independently from the Order object. An example of the customer entity
follows:
Customer.java
@Entity
public class Customer
{

@Id String id;
String firstName;
String surname;
String address;
String phoneNumber;

}

This class includes information about the customer such as name, address, and
phone number.

10 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

2. Create the Order object, which is similar to the Order object in the “Entity
manager tutorial: Creating an entity class” on page 9 topic. An example of the
order object follows:
Order.java

@Entity
public class Order
{

@Id String orderNumber;
Date date;
@ManyToOne(cascade=CascadeType.PERSIST) Customer customer;
String itemName;
int quantity;
double price;

}

In this example, a reference to a Customer object replaces the customerName
attribute. The reference has an annotation that indicates a many-to-one
relationship. A many-to-one relationship indicates that each order has one
customer, but multiple orders might reference the same customer. The cascade
annotation modifier indicates that if the entity manager persists the Order
object, it must also persist the Customer object. If you choose to not set the
cascade persist option, which is the default option, you must manually persist
the Customer object with the Order object.

3. Using the entities, define the maps for the ObjectGrid instance. Each map is
defined for a specific entity, and one entity is named Order and the other is
named Customer. The following example application illustrates how to store
and retrieve a customer order:
Application.java

public class Application
{

static public void main(String [] args)
throws Exception

{
ObjectGrid og =

ObjectGridManagerFactory.getObjectGridManager().createObjectGrid();
og.registerEntities(new Class[] {Order.class});

Session s = og.getSession();
EntityManager em = s.getEntityManager();

em.getTransaction().begin();

Customer cust = new Customer();
cust.address = "Main Street";
cust.firstName = "John";
cust.surname = "Smith";
cust.id = "C001";
cust.phoneNumber = "5555551212";

Order o = new Order();
o.customer = cust;
o.date = new java.util.Date();
o.itemName = "Widget";
o.orderNumber = "1";
o.price = 99.99;
o.quantity = 1;

em.persist(o);
em.getTransaction().commit();

em.getTransaction().begin();
o = (Order)em.find(Order.class, "1");
System.out.println("Found order for customer: "

+ o.customer.firstName + " " + o.customer.surname);
em.getTransaction().commit();

// Close the session (optional in Version 7.1.1 and later) for improved performance
s.close();

}
}

Chapter 1. Tutorials 11

This application is similar to the example application that is in the previous
step. In the preceding example, only a single class Order is registered.
WebSphere eXtreme Scale detects and automatically includes the reference to
the Customer entity, and a Customer instance for John Smith is created and
referenced from the new Order object. As a result, the new customer is
automatically persisted, because the relationship between two orders includes
the cascade modifier, which requires that each object be persisted. When the
Order object is found, the entity manager automatically finds the associated
Customer object and inserts a reference to the object.

Entity manager tutorial: Order Entity Schema
Create four entity classes by using both single and bidirectional relationships,
ordered lists, and foreign key relationships. The EntityManager APIs are used to
persist and find the entities. Building on the Order and Customer entities that are
in the previous parts of the tutorial, this tutorial step adds two more entities: the
Item and OrderLine entities.

About this task

Procedure
1. Create the customer entity, which is similar to the previous examples.

Customer.java
@Entity
public class Customer
{

@Id String id;
String firstName;
String surname;
String address;
String phoneNumber;

}

2. Create the Item entity, which holds information about a product that is
included in the store's inventory, such as the product description, quantity, and
price.

Figure 2. Order Entity Schema. An Order entity has a reference to one customer and zero or more OrderLines. Each
OrderLine entity has a reference to a single item and includes the quantity ordered.

12 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Item.java
@Entity
public class Item
{

@Id String id;
String description;
long quantityOnHand;
double price;

}

3. Create the OrderLine entity. Each Order has zero or more OrderLines, which
identify the quantity of each item in the order. The key for the OrderLine is a
compound key that consists of the Order that owns the OrderLine and an
integer that assigns the order line a number. Add the cascade persist modifier
to every relationship on your entities.
OrderLine.java
@Entity
public class OrderLine
{

@Id @ManyToOne(cascade=CascadeType.PERSIST) Order order;
@Id int lineNumber;
@OneToOne(cascade=CascadeType.PERSIST) Item item;
int quantity;
double price;

}

4. Create the final Order Object, which has a reference to the Customer for the
order and a collection of OrderLine objects.
Order.java
@Entity
public class Order
{

@Id String orderNumber;
java.util.Date date;
@ManyToOne(cascade=CascadeType.PERSIST) Customer customer;
@OneToMany(cascade=CascadeType.ALL, mappedBy="order")
@OrderBy("lineNumber") List<OrderLine> lines;

}

The cascade ALL is used as the modifier for lines. This modifier signals the
EntityManager to cascade both the PERSIST operation and the REMOVE
operation. For example, if the Order entity is persisted or removed, then all
OrderLine entities are also persisted or removed.
If an OrderLine entity is removed from the lines list in the Order object, the
reference is then broken. However, the OrderLine entity is not removed from
the cache. You must use the EntityManager remove API to remove entities from
the cache. The REMOVE operation is not used on the customer entity or the
item entity from OrderLine. As a result, the customer entity remains even
though the order or item is removed when the OrderLine is removed.
The mappedBy modifier indicates an inverse relationship with the target entity.
The modifier identifies which attribute in the target entity references the source
entity, and the owning side of a one-to-one or many-to-many relationship.
Typically, you can omit the modifier. However, an error is displayed to indicate
that it must be specified if WebSphere eXtreme Scale cannot discover it
automatically. An OrderLine entity that contains two of type Order attributes in
a many-to-one relationship typically causes the error.
The @OrderBy annotation specifies the order in which each OrderLine entity
should be in the lines list. If the annotation is not specified, then the lines
display in an arbitrary order. Although the lines are added to the Order entity
by issuing ArrayList, which preserves the order, the EntityManager does not
necessarily recognize the order. When you issue the find method to retrieve the
Order object from the cache, the list object is not an ArrayList object.

Chapter 1. Tutorials 13

5. Create the application. The following example illustrates the final Order object,
which has a reference to the Customer for the order and a collection of
OrderLine objects.
a. Find the Items to order, which then become Managed entities.
b. Create the OrderLine and attach it to each Item.
c. Create the Order and associate it with each OrderLine and the customer.
d. Persist the order, which automatically persists each OrderLine.
e. Commit the transaction, which detaches each entity and synchronizes the

state of the entities with the cache.
f. Print the order information. The OrderLine entities are automatically sorted

by the OrderLine ID.
Application.java

static public void main(String [] args)
throws Exception

{
...

// Add some items to our inventory.
em.getTransaction().begin();
createItems(em);
em.getTransaction().commit();

// Create a new customer with the items in his cart.
em.getTransaction().begin();
Customer cust = createCustomer();
em.persist(cust);

// Create a new order and add an order line for each item.
// Each line item is automatically persisted since the

// Cascade=ALL option is set.
Order order = createOrderFromItems(em, cust, "ORDER_1",

new String[]{"1", "2"}, new int[]{1,3});
em.persist(order);
em.getTransaction().commit();

// Print the order summary
em.getTransaction().begin();
order = (Order)em.find(Order.class, "ORDER_1");
System.out.println(printOrderSummary(order));
em.getTransaction().commit();

}

public static Customer createCustomer() {
Customer cust = new Customer();
cust.address = "Main Street";
cust.firstName = "John";
cust.surname = "Smith";
cust.id = "C001";
cust.phoneNumber = "5555551212";
return cust;

}

public static void createItems(EntityManager em) {
Item item1 = new Item();
item1.id = "1";
item1.price = 9.99;
item1.description = "Widget 1";
item1.quantityOnHand = 4000;
em.persist(item1);

Item item2 = new Item();
item2.id = "2";

14 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

item2.price = 15.99;
item2.description = "Widget 2";
item2.quantityOnHand = 225;
em.persist(item2);

}

public static Order createOrderFromItems(EntityManager em,
Customer cust, String orderId, String[] itemIds, int[] qty) {

Item[] items = getItems(em, itemIds);

Order order = new Order();
order.customer = cust;
order.date = new java.util.Date();
order.orderNumber = orderId;
order.lines = new ArrayList<OrderLine>(items.length);

for(int i=0;i<items.length;i++){
OrderLine line = new OrderLine();

line.lineNumber = i+1;
line.item = items[i];
line.price = line.item.price;
line.quantity = qty[i];
line.order = order;
order.lines.add(line);

}
return order;

}

public static Item[] getItems(EntityManager em, String[] itemIds) {
Item[] items = new Item[itemIds.length];
for(int i=0;i<items.length;i++){

items[i] = (Item) em.find(Item.class, itemIds[i]);
}
return items;

}

The next step is to delete an entity. The EntityManager interface has a remove
method that marks an object as deleted. The application should remove the
entity from any relationship collections before calling the remove method. Edit
the references and issue the remove method, or em.remove(object), as a final
step.

Entity manager tutorial: Updating entries
If you want to change an entity, you can find the instance, update the instance and
any referenced entities, and commit the transaction.

Procedure

Update entries. The following example demonstrates how to find the Order
instance, change it and any referenced entities, and commit the transaction.
public static void updateCustomerOrder(EntityManager em) {

em.getTransaction().begin();
Order order = (Order) em.find(Order.class, "ORDER_1");
processDiscount(order, 10);
Customer cust = order.customer;
cust.phoneNumber = "5075551234";
em.getTransaction().commit();

}

public static void processDiscount(Order order, double discountPct) {
for(OrderLine line : order.lines) {

line.price = line.price * ((100-discountPct)/100);
}

}

Chapter 1. Tutorials 15

Flushing the transaction synchronizes all managed entities with the cache. When a
transaction is committed, a flush automatically occurs. In this case, the Order
becomes a managed entity. Any entities that are referenced from the Order,
Customer, and OrderLine also become managed entities. When the transaction is
flushed, each of the entities are checked to determine if they have been modified.
Those that are modified are updated in the cache. After the transaction completes,
by either being committed or rolled back, the entities become detached and any
changes that are made in the entities are not reflected in the cache.

Entity manager tutorial: Updating and removing entries with
an index

You can use an index to find, update, and remove entities.

Procedure

Update and remove entities by using an index. Use an index to find, update, and
remove entities. In the following examples, the Order entity class is updated to use
the @Index annotation. The @Index annotation signalsWebSphere eXtreme Scale to
create a range index for an attribute. The name of the index is the same name as
the name of the attribute and is always a MapRangeIndex index type.
Order.java
@Entity
public class Order
{

@Id String orderNumber;
@Index java.util.Date date;
@OneToOne(cascade=CascadeType.PERSIST) Customer customer;
@OneToMany(cascade=CascadeType.ALL, mappedBy="order")
@OrderBy("lineNumber") List<OrderLine> lines; }

The following example demonstrates how to cancel all orders that are submitted
within the last minute. Find the order by using an index, add the items in the
order back into the inventory, and remove the order and the associated line items
from the system.
public static void cancelOrdersUsingIndex(Session s)
throws ObjectGridException {
// Cancel all orders that were submitted 1 minute ago
java.util.Date cancelTime = new
java.util.Date(System.currentTimeMillis() - 60000);
EntityManager em = s.getEntityManager();
em.getTransaction().begin();
MapRangeIndex dateIndex = (MapRangeIndex)
s.getMap("Order").getIndex("date");
Iterator<Tuple> orderKeys = dateIndex.findGreaterEqual(cancelTime);

while(orderKeys.hasNext()) {
Tuple orderKey = orderKeys.next();
// Find the Order so we can remove it.
Order curOrder = (Order) em.find(Order.class, orderKey);
// Verify that the order was not updated by someone else.
if(curOrder != null && curOrder.date.getTime() >= cancelTime.getTime()) {
for(OrderLine line : curOrder.lines) {
// Add the item back to the inventory.
line.item.quantityOnHand += line.quantity;
line.quantity = 0;
}
em.remove(curOrder);
}
}
em.getTransaction().commit();
}

16 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Entity manager tutorial: Updating and removing entries by
using a query

You can update and remove entities by using a query.

Procedure

Update and remove entities by using a query.
Order.java
@Entity
public class Order
{

@Id String orderNumber;
@Index java.util.Date date;
@OneToOne(cascade=CascadeType.PERSIST) Customer customer;
@OneToMany(cascade=CascadeType.ALL, mappedBy="order")
@OrderBy("lineNumber") List<OrderLine> lines;

}

The order entity class is the same as it is in the previous example. The class still
provides the @Index annotation, because the query string uses the date to find the
entity. The query engine uses indices when they can be used.
public static void cancelOrdersUsingQuery(Session s) {

// Cancel all orders that were submitted 1 minute ago
java.util.Date cancelTime =

new java.util.Date(System.currentTimeMillis() - 60000);
EntityManager em = s.getEntityManager();
em.getTransaction().begin();

// Create a query that will find the order based on date. Since
// we have an index defined on the order date, the query

// will automatically use it.
Query query = em.createQuery("SELECT order FROM Order order

WHERE order.date >= ?1");
query.setParameter(1, cancelTime);
Iterator<Order> orderIterator = query.getResultIterator();

while(orderIterator.hasNext()) {
Order order = orderIterator.next();
// Verify that the order wasn’t updated by someone else.
// Since the query used an index, there was no lock on the row.
if(order != null && order.date.getTime() >= cancelTime.getTime()) {
for(OrderLine line : order.lines) {
// Add the item back to the inventory.
line.item.quantityOnHand += line.quantity;
line.quantity = 0;
}
em.remove(order);

}
}
em.getTransaction().commit();

}

Like the previous example, the cancelOrdersUsingQuery method intends to cancel
all orders that were submitted in the past minute. To cancel the order, you find the
order using a query, add the items in the order back into the inventory, and
remove the order and associated line items from the system.

Tutorial: Running eXtreme Scale bundles in the OSGi framework
The OSGi sample builds on the Google Protocol Buffers serializer samples. When
you complete this set of lessons, you will have run the serializer sample plug-ins
in the OSGi framework.

Chapter 1. Tutorials 17

Learning objectives

This sample demonstrates the OSGi bundles. The serializer plug-in is incidental
and is not required. The OSGi sample is available on the WebSphere eXtreme Scale
samples gallery. You must download the sample, and extract it into the
wxs_home/samples directory. The root directory for the OSGi sample is
wxs_home/samples/OSGiProto.

The command examples in this tutorial assume that you are running on the UNIX
operating system. You must adjust the command example to run on a Windows
operating system.

After completing the lessons in this tutorial, you will understand the OSGi sample
concepts and know how to complete the following objectives:
v Install the WebSphere eXtreme Scale server bundle into the OSGi container to

start the eXtreme Scale server.
v Set up your eXtreme Scale development environment to run the sample client.
v Use the xscmd command to query the service ranking of the sample bundle,

upgrade it to a new service ranking, and verify the new service ranking.

Time required

This module takes approximately 60 minutes to complete.

Prerequisites

In addition to downloading and extracting the serializer samples, this tutorial also
has the following prerequisites:
v Install and extract the eXtreme Scale product
v Set up the Eclipse Equinox Environment

Introduction: Starting and configuring the eXtreme Scale
server and container to run plug-ins in the OSGi framework

In this tutorial you start an eXtreme Scale server in the OSGi framework, start an
eXtreme Scale container, and wire the sample plug-ins with eXtreme Scale runtime
environment.

Learning objectives

After completing the lessons in this tutorial you will understand the OSGi sample
concepts and know how to complete the following objectives:
v Install the WebSphere eXtreme Scale server bundle into the OSGi container to

start the eXtreme Scale server.
v Set up your eXtreme Scale development environment to run the sample client.
v Use the xscmd command to query the service ranking of the sample bundle,

upgrade it to a new service ranking, and verify the new service ranking.

Time required

This tutorial takes approximately 60 minutes to finish. If you explore other
concepts related to this tutorial, it might take longer to complete.

18 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://www.ibm.com/developerworks/wikis/x/I4G4Bg
http://www.ibm.com/developerworks/wikis/x/I4G4Bg
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsinstalling.html

Skill level

Intermediate.

Audience

Developers and administrators who want to build, install, and run eXtreme Scale
bundles into the OSGi framework.

System requirements
v Luminis OSGi Configuration Admin command line client, version 0.2.5
v Apache Felix File Install, version 3.0.2
v When using Eclipse Gemini as the Blueprint container provider, the following

are required:
– Eclipse Gemini Blueprint, version 1.0.0
– Spring Framework, version 3.0.5
– SpringSource AOP Alliance API, version 1.0.0
– SpringSource Apache Commons Logging, version 1.1.1

v When using Apache Aries as the Blueprint Container provider, you must have
the following requirements:
– Apache Aries, latest snapshot
– ASM library
– PAX logging

Prerequisites

To complete this tutorial, you must download the sample, and extracted it into the
wxs_home/samples directory. The root directory for the OSGi sample is
wxs_home/samples/OSGiProto.

Expected results

When you complete this tutorial, you will have installed the sample bundles and
run an eXtreme Scale client to insert data into the grid. You can also expect to
query and update those sample bundles using the dynamic capabilities that the
OSGi container provides.

Module 1: Preparing to install and configure eXtreme Scale
server bundles

Complete this module to explore OSGi sample bundles and examine configuration
files that you use to configure the eXtreme Scale server.

Learning objectives

After completing the lessons in this module, you will understand the concepts and
know how to complete the following objectives:
v Locate and explore the bundles that are included in the OSGi sample.
v Examine configuration files that are used to configure the eXtreme Scale grid

and server.

Chapter 1. Tutorials 19

https://opensource.luminis.net/wiki/display/SITE/OSGi+Configuration+Admin+command+line+client
http://felix.apache.org/site/index.html
http://www.eclipse.org/gemini/blueprint/
http://www.springsource.com/products/spring-community-download
http://ebr.springsource.com/repository/app/bundle/version/detail?name=com.springsource.org.aopalliance&version=1.0.0
http://ebr.springsource.com/repository/app/bundle/version/detail?name=com.springsource.org.apache.commons.logging&version=1.1.1
https://builds.apache.org//job/Aries/lastStableBuild
http://asm.ow2.org/download/index.html
http://mvnrepository.com/artifact/org.ops4j.pax.logging

Lesson 1.1: Understand the OSGi sample bundles
Complete this lesson to locate and explore the bundles that are provided in the
OSGi sample.

OSGi sample bundles:

Other than the bundles that are configured in the config.ini file, which is shown
in the topic about setting up the Eclipse Equinox environment, the following
additional bundles are used in the OSGi sample:

objectgrid.jar
The WebSphere eXtreme Scale server runtime bundle. This bundle is
located in the wxs_home/lib directory.

com.google.protobuf_2.4.0a.jar
The Google Protocol Buffers, version 2.4.0a bundle. This bundle is located
in the wxs_sample_osgi_root/lib directory.

ProtoBufSamplePlugins-1.0.0.jar
Version 1.0.0 of the user plug-in bundle with sample
ObjectGridEventListener and MapSerializerPlugin plug-in implementations.
This bundle is located in the wxs_sample_osgi_root/lib directory. The
services are configured with service ranking 1.

This version uses the standard Blueprint XML to configure the eXtreme
Scale plug-in services. The service class is a user-implemented class for
WebSphere eXtreme Scale interface,
com.ibm.websphere.objectgrid.plugins.osgi.PluginServiceFactory. The
user-implemented class creates a bean for each request and works similar
to a prototype-scoped bean.

ProtoBufSamplePlugins-2.0.0.jar
Version 2.0.0 of the user plug-in bundle with sample
ObjectGridEventListener and MapSerializerPlugin plug-in implementations.
This bundle is located in the wxs_sample_osgi_root/lib directory. The
services are configured with service ranking 2.

This version uses the standard Blueprint XML to configure the eXtreme
Scale plug-in services. The service class is using a WebSphere eXtreme
Scale, built-in class,
com.ibm.websphere.objectgrid.plugins.osgi.PluginServiceFactoryImpl,
which uses the BlueprintContainer service. Using the standard Blueprint
XML configuration, the beans can be configured either as a prototype
scope or singleton scope. The bean is not configured as a shard scope.

ProtoBufSamplePlugins-Gemini-3.0.0.jar
Version 3.0.0 of the user plug-in bundle with sample
ObjectGridEventListener and MapSerializerPlugin plug-in implementations.
This bundle is located in the wxs_sample_osgi_root/lib directory. The
services are configured with service ranking 3.

This version uses the Eclipse Gemini-specific Blueprint XML to configure
the eXtreme Scale plug-in services. The service class is using a WebSphere
eXtreme Scale built-in class,
com.ibm.websphere.objectgrid.plugins.osgi.PluginServiceFactoryImpl,
which uses the BlueprintContainer service. The way to configure a shard
scope bean is using a Gemini-specific approach. This version configures the
myShardListener bean as a shard scope bean by providing
{http://www.ibm.com/schema/objectgrid}shard as the scope value, and
configuring a dummy attribute so that the custom scope is recognized by

20 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Gemini. This is due to the following Eclipse issue: https://
bugs.eclipse.org/bugs/show_bug.cgi?id=348776

ProtoBufSamplePlugins-Aries-4.0.0.jar
Version 4.0.0 of the user plug-in bundle with sample
ObjectGridEventListener and MapSerializerPlugin plug-in implementations.
This bundle is located in the wxs_sample_osgi_root/lib directory. The
services are configured with service ranking 4.

This version uses standard Blueprint XML to configure the eXtreme Scale
plug-in services. The service class is using a WebSphere eXtreme Scale,
built-in class,
com.ibm.websphere.objectgrid.plugins.osgi.PluginServiceFactoryImpl,
which uses the BlueprintContainer service. Using the standard Blueprint
XML configuration, the beans can be configured using a custom scope.
This version configures the myShardListenerbean as a shard scoped bean
by providing {http://www.ibm.com/schema/objectgrid}shard as the scope
value.

ProtoBufSamplePlugins-Activator-5.0.0.jar
Version 5.0.0 of the user plug-in bundle with sample
ObjectGridEventListener and MapSerializerPlugin plug-in implementations.
This bundle is located in the wxs_sample_osgi_root/lib directory. The
services are configured with service ranking 5.

This version does not use Blueprint container at all. In this version, the
services are registered using OSGi service registration. The service class is
a user-implemented class for the WebSphere eXtreme Scale interface,
com.ibm.websphere.objectgrid.plugins.osgi.PluginServiceFactory. The
user-implemented class creates a bean for each request. It works similar to
a prototype-scoped bean.

Lesson checkpoint:

By exploring the bundles that are provided with the OSGi sample, you can better
understand how to develop your own implementations that will run in the OSGi
container.

You learned:
v About bundles that included with the OSGi sample
v The location of those bundles
v The service ranking that each bundle has been configured with

Lesson 1.2: Understand the OSGi configuration files
The OSGi sample includes configuration files that you use to start and configure
the WebSphere eXtreme Scale grid and server.

OSGi configuration files:

In this lesson, you will explore the following configuration files that are included
with the OSGI sample:
v collocated.server.properties

v protoBufObjectGrid.xml

v protoBufDeployment.xml

v blueprint.xml

Chapter 1. Tutorials 21

https://bugs.eclipse.org/bugs/show_bug.cgi?id=348776
https://bugs.eclipse.org/bugs/show_bug.cgi?id=348776

collocated.server.properties

A server configuration is required to start a server. When the eXtreme Scale server
bundle is started, it does not start a server. It waits for the configuration PID,
com.ibm.websphere.xs.server, to be created with a server property file. This server
property file specifies the server name, port number, and other server properties.

In most cases, you create a configuration to set the server property file. In rare
cases, you might want only to start a server, with every property set to a default
value. In that case, you can create a configuration called
com.ibm.websphere.xs.server with value set to default.

For more details about the server property file, see the Server properties file topic.

The OSGi sample server properties file starts a single catalog. This sample property
file starts a single catalog service and a container server in the OSGi framework
process. eXtreme Scale clients connect to port 2809 and JMX clients connect to port
1099. The content of the sample server property file is:
serverName=collocatedServer
isCatalog=true
catalogClusterEndPoints=collocatedServer:localhost:6601:6602
traceSpec=ObjectGridOSGi=all=enabled
traceFile=logs/trace.log
listenerPort=2809
JMXServicePort=1099

protoBufObjectGrid.xml

The sample protoBufObjectGrid.xml ObjectGrid descriptor XML file contains the
following content, with comments removed.
<objectGridConfig

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="Grid" txTimeout="15">

<bean id="ObjectGridEventListener"
osgiService="myShardListener"/>

<backingMap name="Map" readOnly="false"
lockStrategy="PESSIMISTIC" lockTimeout="5"
copyMode="COPY_TO_BYTES"
pluginCollectionRef="serializer"/>

</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="serializer">

<bean id="MapSerializerPlugin"
osgiService="myProtoBufSerializer"/>"/>

</backingMapPluginCollection>
</backingMapPluginCollections>

</objectGridConfig>

There are two plug-ins configured in this ObjectGrid descriptor XML file:

ObjectGridEventListener
The shard-level plug-in. For each ObjectGrid instance, there is an instance
of ObjectGridEventListener. It is configured to use the OSGi service
myShardListener. That means when the grid is created, the
ObjectGridEventListener plug-in uses the OSGi service myShardListener
with the highest service ranking available.

22 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxscontprops.html

MapSerializerPlugin
The map-level plug-in. For the backing map namedMap, there is a
MapSerializerPlugin plug-in configured. It is configured to use the OSGI
service myProtoBufSerializer. That means when the map is created, the
MapSerializerPlugin plug-in uses the service, myProtoBufSerializer, with
the highest ranked service ranking available.

protoBufDeployment.xml

The deployment descriptor XML file describes the deployment policy for the grid
named Grid, which uses five partitions. See the following code example of the
XML file:
<deploymentPolicy

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy ../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="Grid">
<mapSet name="MapSet" numberOfPartitions="5">
<map ref="Map"/>

</mapSet>
</objectgridDeployment>

</deploymentPolicy>

blueprint.xml

As an alternative to using the collocated.server.properties file in conjunction
with configuration PID, com.ibm.websphere.xs.server, you can include the
ObjectGrid XML and deployment XML files in an OSGi bundle, along with a
Blueprint XML file as shown in the following example:
<blueprint

xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:objectgrid="http://www.ibm.com/schema/objectgrid"
default-activation="lazy">

<objectgrid:server id="server" isCatalog="true"
name="server"
tracespec="ObjectGridOSGi=all=enabled"
tracefile="C:/Temp/logs/trace.log"
workingDirectory="C:/Temp/working"
jmxport="1099">

<objectgrid:catalog host="localhost" port="2809"/>
</objectgrid:server>

<objectgrid:container id="container"
objectgridxml="/META-INF/objectgrid.xml"

deploymentxml="/META-INF/deployment.xml"
server="server"/>

</blueprint>

Lesson checkpoint:

In this lesson, you learned about the configuration files that are used in the OSGi
sample. Now, when you start and configure the eXtreme Scale grid and server, you
will understand which files are being used in these processes and how these files
interact with your plug-ins in the OSGi framework.

Module 2: Installing and starting eXtreme Scale bundles in the
OSGi framework

Use the lessons in this module to install the eXtreme Scale server bundle into the
OSGi container, and start the WebSphere eXtreme Scale server.

Chapter 1. Tutorials 23

Starting the server in the OSGi framework does not mean that your OSGi bundles
are ready to run. You must configure the server properties and containers so that
the OSGi bundles that you install are recognized and can run correctly.

Learning objectives

After completing the lessons in this module, you will understand the concepts and
know how to complete the following tasks:
v Install eXtreme Scale bundles using the Equinox OSGi console.
v Configure the eXtreme Scale server.
v Configure the eXtreme Scale container.
v Install and start eXtreme Scale sample bundles.

Prerequisites

To complete this module, the following tasks are required before you begin:
v Install and extract the eXtreme Scale product
v Set up the Eclipse Equinox Environment

You must also prepare to access the following files to complete the lessons in this
module:
v objectgrid.jar bundle. You install this eXtreme Scale bundle.
v collocated.server.properties file. You add the server properties to this

configuration file.

You can expect to install and start the following bundles:
v protobuf-java-2.4.0a-bundle.jar bundle
v ProtoBufSamplePlugins-1.0.0.jar bundle

Lesson 2.1: Start the console and install the eXtreme Scale
server bundle
In this lesson, you use the Equinox OSGi console to install the WebSphere eXtreme
Scale server bundle.
1. Use the following command to start the Equinox OSGi console:

cd equinox_root
java -jar plugins\org.eclipse.osgi_3.6.1.R36x_v20100806.jar -console

2. After the OSGi console is started, issue the ss command in the console, and the
following bundles are started:
Attention: If you completed the task, Installing eXtreme Scale bundles, then
the bundle has already been activated. If the bundle is started, then stop the
bundle before you complete this step.
�Eclipse Gemini output:�
osgi> ss
Framework is launched.
id State Bundle
0 ACTIVE org.eclipse.osgi_3.6.1.R36x_v20100806
1 ACTIVE org.eclipse.osgi.services_3.2.100.v20100503
2 ACTIVE org.eclipse.osgi.util_3.2.100.v20100503
3 ACTIVE org.eclipse.equinox.cm_1.0.200.v20100520
4 ACTIVE com.springsource.org.apache.commons.logging_1.1.1
5 ACTIVE com.springsource.org.aopalliance_1.0.0
6 ACTIVE org.springframework.aop_3.0.5.RELEASE
7 ACTIVE org.springframework.asm_3.0.5.RELEASE
8 ACTIVE org.springframework.beans_3.0.5.RELEASE
9 ACTIVE org.springframework.context_3.0.5.RELEASE

24 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsinstalling.html

10 ACTIVE org.springframework.core_3.0.5.RELEASE
11 ACTIVE org.springframework.expression_3.0.5.RELEASE
12 ACTIVE org.apache.felix.fileinstall_3.0.2
13 ACTIVE net.luminis.cmc_0.2.5
14 ACTIVE org.eclipse.gemini.blueprint.core_1.0.0.RELEASE
15 ACTIVE org.eclipse.gemini.blueprint.extender_1.0.0.RELEASE
16 ACTIVE org.eclipse.gemini.blueprint.io_1.0.0.RELEASE

�Apache Aries output:�
osgi> ss
Framework is launched.
id State Bundle
0 ACTIVE org.eclipse.osgi_3.6.1.R36x_v20100806
1 ACTIVE org.eclipse.osgi.services_3.2.100.v20100503
2 ACTIVE org.eclipse.osgi.util_3.2.100.v20100503
3 ACTIVE org.eclipse.equinox.cm_1.0.200.v20100520
4 ACTIVE org.ops4j.pax.logging.pax-logging-api_1.6.3
5 ACTIVE org.ops4j.pax.logging.pax-logging-service_1.6.3
6 ACTIVE org.objectweb.asm.all_3.3.0
7 ACTIVE org.apache.aries.blueprint_0.3.2.SNAPSHOT
8 ACTIVE org.apache.aries.util_0.4.0.SNAPSHOT
9 ACTIVE org.apache.aries.proxy_0.4.0.SNAPSHOT
10 ACTIVE org.apache.felix.fileinstall_3.0.2
11 ACTIVE net.luminis.cmc_0.2.5

3. Install the objectgrid.jar bundle. To start a server in the Java virtual machine
(JVM), you need to install an eXtreme Scale server bundle. This eXtreme Scale
server bundle can start a server and create containers. Use the following
command to install the objectgrid.jar file:
osgi> install file:///wxs_home/lib/objectgrid.jar

See the following example:
osgi> install file:///opt/wxs/ObjectGrid/lib/objectgrid.jar

Equinox displays its bundle ID; for example:
Bundle id is 19

Remember: Your bundle ID might be different. The file path must be an
absolute URL to the bundle path. Relative paths are not supported.

Lesson checkpoint:

In this lesson, you used the Equinox OSGi console to install the objectgrid.jar
bundle, which you will use to start a server and create a container later in this
tutorial.

Lesson 2.2: Customize and configure the eXtreme Scale server
Use this lesson to customize and add the server properties to the WebSphere
eXtreme Scale server.
1. Edit the wxs_sample_osgi_root/projects/server/properties/

collocated.server.properties file.
a. Change the traceFile property to equinox_root/logs/trace.log.

2. Save the file.
3. Enter the following lines of code in the OSGI console to create the server

configuration from the file. The following example is displayed on multiple
lines for publication purposes.

osgi> cm create com.ibm.websphere.xs.server

osgi> cm put com.ibm.websphere.xs.server objectgrid.server.props wxs_sample_osgi_root/projects/server/properties/collocated
.server.properties

4. To view the configuration, run the following command:

Chapter 1. Tutorials 25

osgi> cm get com.ibm.websphere.xs.server
Configuration for service (pid) "com.ibm.websphere.xs.server"
(bundle location = null)
key value
---- ----
objectgrid.server.props wxs_sample_osgi_root/projects/server/properties/collocated.server.properties
service.pid com.ibm.websphere.xs.server

Lesson checkpoint:

In this lesson, you edited the wxs_sample_osgi_root/projects/server/properties/
collocated.server.properties file to specify server settings, such as the working
directory and the location for the trace log files.

Lesson 2.3: Configure the eXtreme Scale container
Complete this lesson to configure a container, which includes the WebSphere
eXtreme Scale ObjectGrid descriptor XML file and ObjectGrid deployment XML
file. These files include the configuration for the grid and its topology.

To create a container, first create a configuration service using the managed service
factory process identification number (PID), com.ibm.websphere.xs.container. The
service configuration is a managed service factory, so you can create multiple
service PIDs from the factory PID. Then, to start the container service, set the
objectgridFile and deploymentPolicyFile PIDs to each service PID.

Complete the following steps to customize and add the server properties to the
OSGi framework:
1. In the OSGI console, enter the following command to create the container from

the file:
osgi> cm createf com.ibm.websphere.xs.container
PID: com.ibm.websphere.xs.container-1291179621421-0

2. Enter the following commands to bind the newly created PID to the ObjectGrid
XML files.

Remember: The PID number will be different from what is included in this
example.

osgi> cm put com.ibm.websphere.xs.container-1291179621421-0 objectgridFile wxs_sample_osgi_root/projects/server/META-INF/protoBufObjectgrid.xml

osgi> cm put com.ibm.websphere.xs.container-1291179621421-0 deploymentPolicyFile wxs_sample_osgi_root/projects/server/META-INF/protoBufDeployment.xml

3. Use the following command to display the configuration:
osgi> cm get com.ibm.websphere.xs.container-1291760127968-0
Configuration for service (pid) "com.ibm.websphere.xs.container-1291760127968-0"
(bundle location = null)

key value
------ ------
deploymentPolicyFile /opt/wxs/ObjectGrid/samples/OSGiProto/server/META-INF/protoBufDeployment.xml
objectgridFile /opt/wxs/ObjectGrid/samples/OSGiProto/server/META-INF/protoBufObjectgrid.xml
service.factoryPid com.ibm.websphere.xs.container
service.pid com.ibm.websphere.xs.container-1291760127968-0

Lesson checkpoint:

In this lesson, you created a configuration service, which you used to create an
eXtreme Scale container. Since the ObjectGrid XML files contain the configuration
for the grid and its topology, you had to bind the container that you created to
those ObjectGrid XML files. With this configuration, the eXtreme Scale container
can recognize the OSGi bundles that you will run later in this tutorial.

26 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Lesson 2.4: Install the Google Protocol Buffers and sample
plug-in bundles
Complete this tutorial to install the protobuf-java-2.4.0a-bundle.jar bundle and
the ProtoBufSamplePlugins-1.0.0.jar plug-in bundle using the Equinox OSGi
console.

Install the Google Protocol Buffers plug-in:

Complete the following steps to install the Google Protocol Buffers plug-in.

In the OSGI console, enter the following command to install the plug-in:
osgi> install file:///wxs_sample_osgi_root/lib/com.google.protobuf_2.4.0a.jar

The following output is displayed:
Bundle ID is 21

Sample plug-in bundles overview:

The OSGi sample includes five sample bundles that include eXtreme Scale
plug-ins, including a custom ObjectGridEventListener and MapSerializerPlugin
plug-in. The MapSerializerPlugin plug-in uses the Google Protocol Buffers sample
and messages provided by the MapSerializerPlugin sample.

The following bundles are located in wxs_sample_osgi_root/lib directory:
ProtoBufSamplePlugins-1.0.0.jar and the ProtoBufSamplePlugins-2.0.0.jar.

The blueprint.xml file has the following content with comments removed:
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
<bean id="myShardListener" class="com.ibm.websphere.samples.xs.proto.osgi.MyShardListenerFactory"/>
<service ref="myShardListener" interface="com.ibm.websphere.objectgrid.plugins.osgi.PluginServiceFactory" ranking="1">
</service>

<bean id="myProtoBufSerializer" class="com.ibm.websphere.samples.xs.proto.osgi.ProtoMapSerializerFactory">
<property name="keyType" value="com.ibm.websphere.samples.xs.serializer.app.proto.DataObjects1$OrderKey" />
<property name="valueType" value="com.ibm.websphere.samples.xs.serializer.app.proto.DataObjects1$Order" />
</bean>

<service ref="myProtoBufSerializer" interface="com.ibm.websphere.objectgrid.plugins.osgi.PluginServiceFactory"
ranking="1">
</service>
</blueprint>

The Blueprint XML file exports two services, myShardListener and
myProtoBufSerializer. These two services are referenced in the
protoBufObjectgrid.xml file.

Install the sample plug-in bundle:

Complete the following steps to install the ProtoBufSamplePlugins-1.0.0.jar
bundle.

Run the following command in the Equinox OSGi console to install the
ProtoBufSamplePlugins-1.0.0.jar plugin bundle:
osgi> install file:///wxs_sample_osgi_root/lib/ProtoBufSamplePlugins-1.0.0.jar

The following output is displayed:
Bundle ID is 22

Lesson checkpoint:

Chapter 1. Tutorials 27

In this lesson, you installed the protobuf-java-2.4.0a-bundle.jar bundle and the
ProtoBufSamplePlugins-1.0.0.jar plug-in bundle.

Lesson 2.5: Start the OSGi bundles
The WebSphere eXtreme Scale server is packaged as an OSGi server bundle.
Complete this lesson to install the eXtreme Scale server bundle as well as other
OSGi bundles that you have installed.
1. Run the ss command to view the IDs for each bundle.

osgi> ss

Framework is launched.

id State Bundle
0 ACTIVE org.eclipse.osgi_3.6.1.R36x_v20100806
1 ACTIVE org.eclipse.osgi.services_3.2.100.v20100503
2 ACTIVE org.eclipse.osgi.util_3.2.100.v20100503
3 ACTIVE org.eclipse.equinox.cm_1.0.200.v20100520
4 ACTIVE com.springsource.org.apache.commons.logging_1.1.1
5 ACTIVE com.springsource.org.aopalliance_1.0.0
6 ACTIVE org.springframework.aop_3.0.5.RELEASE
7 ACTIVE org.springframework.asm_3.0.5.RELEASE
8 ACTIVE org.springframework.beans_3.0.5.RELEASE
9 ACTIVE org.springframework.context_3.0.5.RELEASE
10 ACTIVE org.springframework.core_3.0.5.RELEASE
11 ACTIVE org.springframework.expression_3.0.5.RELEASE
12 ACTIVE org.apache.felix.fileinstall_3.0.2
13 ACTIVE net.luminis.cmc_0.2.5
15 ACTIVE org.eclipse.gemini.blueprint.core_1.0.0.RELEASE
16 ACTIVE org.eclipse.gemini.blueprint.extender_1.0.0.RELEASE
17 ACTIVE org.eclipse.gemini.blueprint.io_1.0.0.RELEASE
19 RESOLVED com.ibm.websphere.xs.server_7.1.1
21 RESOLVED Google_ProtoBuf_2.4.0
22 RESOLVED ProtoBufPlugins_1.0.0

2. Start each bundle that you have installed. You must start the bundles in a
specific order. See the order of the bundle IDs from the previous example.
a. Start the sample plug-in bundle, ProtoBufPlugins_1.0.0. Run the following

command in the Equinox OSGi console to start the bundle. In this example,
the bundle ID of the sample plug-in is 22.
osgi> start 22

b. Start the Google Protocol Buffers bundle, Google_ProtoBuf_2.4.0. Run the
following command in the Equinox OSGi console to start the bundle. In this
example, the bundle ID of the Google Protocol Buffers plug-in is 21.
osgi> start 21

c. Start the server bundle, com.ibm.websphere.xs.server_7.1.1. Run the
following command in the OSGi console to start the server. In this example,
the bundle ID of the eXtreme Scale server bundle is 19.
osgi> start 19

After you start the server, the MyShardListener event listener is started and ready
to insert or update records. You can see the following output on the OSGi console
to confirm that the plug-in bundle has started successfully:
SystemOut O MyShardListener@1253853884(version=1.0.0) order
com.ibm.websphere.samples.xs.serializer.proto.DataObjects1$Order$Builder
@1aba1aba(22) inserted

Lesson checkpoint:

28 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

In this lesson, you started two plug-in bundles and the server bundle in the
eXtreme Scale container that you configured for the OSGi framework.

Module 3: Running the eXtreme Scale sample client
The WebSphere eXtreme Scale server is now running in an OSGi environment.
Complete the steps in this module to run an WebSphere eXtreme Scale client that
inserts data into the grid.

Learning objectives

After completing the lessons in this module you will know how to complete the
following tasks:
v Run a client application that connects to the grid and inserts and retrieves some

data from it.
v Start an order using a non-OSGi client application.

Prerequisites

Complete Module 2: Installing and starting eXtreme Scale bundles in the OSGi
framework.

Lesson 3.1: Set up Eclipse to run the client and build the
samples
Complete this lesson to import the Eclipse project that you will use to run the
client and build the sample plug-ins.

The sample includes a Java SE client program that connects to the grid and inserts
and retrieves data from it. It also includes projects that you can use to build and
redeploy the OSGi bundles.

The provided project has been tested with Eclipse 3.x and later, and requires only
the standard Java development project perspective. Complete the following steps
to set up of your WebSphere eXtreme Scale development environment.
1. Open Eclipse to a new or existing workspace.
2. From the File menu, select Import.
3. Expand the General folder. Select Existing Projects into Workspace, and click

Next.
4. In the Select root directory field, type or browse to the wxs_sample_osgi_root

directory. Click Finish. Several new projects are displayed in your workspace.
Build errors will be fixed by defining two user libraries. Complete the next
steps to define the user libraries.

5. From the Window menu, select Preferences.
6. Expand the Java > Build Path branch, and select User Libraries.
7. Define the eXtreme Scale user library.

a. Click New.
b. Type eXtremeScale in the User Library Name field, and click OK.
c. Select the new user library, and click Add JARs.

1) Browse and select the objectgrid.jar file from the wxs_install_root/
lib directory. Click OK.

2) To include API documentation for the ObjectGrid APIs, select the API
documentation location for the objectgrid.jar file that you added in
the previous step. Click Edit.

Chapter 1. Tutorials 29

3) In the location path box for the API documentation, select the
Javadoc.zip file that is included in the following directory:
wxs_install_root/docs/javadoc.zip.

8. Define the Google Protocol Buffers user library.
a. Click New.
b. Type com.google.protobuf in the User Library Name field, and click OK.
c. Select the new user library, and click Add JARs.

1) Browse and select the com.google.protobuf_2.4.0.a.jar file from the
wxs_sample_osgi_root/lib directory. Click OK.

Lesson checkpoint:

In this lesson, you imported the sample Eclipse project and defined the user
libraries that fixed any build errors.

Lesson 3.2: Start a client and insert data into the grid
Complete this lesson to start a non-OSGi client and run a client application.

The Java client application is com.ibm.websphere.samples.xs.proto.client.Client.
The Eclipse project, wxs.sample.osgi.protobuf.client, contains the Java client
application. The main class file is
com.ibm.websphere.samples.xs.proto.client.Client.

This client uses a client override, ObjectGrid descriptor XML file to override the
OSGi configuration, so that the client can run in a non-OSGi environment. See the
following content of the file with comments and headers removed. Some lines of
code are displayed on multiple lines for formatting purposes.
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="Grid" txTimeout="15">

<bean id="ObjectGridEventListener" className="" osgiService=""/>
<backingMap name="Map" readOnly="false"

lockStrategy="PESSIMISTIC" lockTimeout="5"
copyMode="COPY_TO_BYTES" pluginCollectionRef="serializer"/>

</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="serializer">

<bean id="MapSerializer"
className="com.ibm.websphere.samples.xs.serializer.proto.ProtoMapSerializer"

osgiService="">
<property name="keyType" type="java.lang.String"

value="com.ibm.websphere.samples.xs.serializer.proto.DataObjects2$OrderKey" />
<property name="valueType" type="java.lang.String"

value="com.ibm.websphere.samples.xs.serializer.proto.DataObjects2$Order" />
</bean>
</backingMapPluginCollection>
</backingMapPluginCollections>

</objectGridConfig>

Click Run As > Java Application to run the client application.

When you run the application, the following message is displayed. The message
indicates that an order was inserted:

order
com.ibm.websphere.samples.xs.serializer.proto.DataObjects1$Order$Builder@5d165d16(5000000) inserted

30 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Lesson checkpoint:

In this lesson, you started the com.ibm.websphere.samples.xs.proto.client.Client
application, which produced an order.

Module 4: Querying and upgrading the sample bundle
Complete the lessons in this module to use the xscmd command to query the
service ranking of the sample bundle, upgrade it to a new service ranking, and
verify the new service ranking.

Learning objectives

After completing the lessons in this module you will know how to complete the
tasks:
v Query the current service ranking for a service.
v Query the current ranking for all services.
v Query all available rankings for a service.
v Query all available service rankings.
v Use the xscmd tool to verify whether specific service rankings are available.
v Update service rankings for sample OSGi services.

Prerequisites

Complete Module 3: Running the eXtreme Scale sample client.

Lesson 4.1: Query service rankings
Complete this lesson to query current service rankings as well as those service
rankings that are available for upgrade.
v Query the current service ranking for a service. Enter the following command to

query the current service ranking being used for service, myShardListener,
which is used by the ObjectGrid named Grid and map set named MapSet.
1. Switch to the following directory:

cd wxs_home/bin

2. Enter the following command to query the current service ranking for the
service, myShardListener.
./xscmd.sh -c osgiCurrent -g Grid -ms MapSet -sn myShardListener

The following output is displayed:
OSGi Service Name: myShardListener
ObjectGrid Name MapSet Name Server Name Current Ranking
--------------- ----------- ----------- ---------------
Grid MapSet collocatedServer 1

CWXSI0040I: The command osgiCurrent has completed successfully.

v Query the current ranking for all services. Enter the following command to
query the current service ranking for all services that are used by the ObjectGrid
named Grid and map set named MapSet.
1. Switch to the following directory:

cd wxs_home/bin

2. Enter the following command to query the current service ranking for all
services.
./xscmd.sh -c osgiCurrent -g Grid -ms MapSet

Chapter 1. Tutorials 31

The following output is displayed:
OSGi Service Name Current Ranking ObjectGrid Name MapSet Name Server Name
----------------- --------------- --------------- ----------- -----------
myProtoBufSerializer 1 Grid MapSet collocatedServer
myShardListener 1 Grid MapSet collocatedServer

CWXSI0040I: The command osgiCurrent has completed successfully.

v Query all available rankings for a service. Enter the following command to
query all of the available service rankings for the service named
myShardListener.
1. Switch to the following directory:

cd wxs_home/bin

2. Enter the following command to query all available rankings for a service.
./xscmd.sh -c osgiAll -sn myShardListener

The following output is displayed:
Server: collocatedServer

OSGi Service Name Available Rankings
----------------- ------------------
myShardListener 1

Summary - All servers have the same service rankings.

CWXSI0040I: The command osgiAll has completed successfully.

The output is grouped by the server. In this example, only the following
server exists: collocatedServer.

v Query all available service rankings. Enter the following command to query all
of the available service rankings for all services.
1. Switch to the following directory:

cd wxs_home/bin

2. Enter the following command to query all available service rankings.
./xscmd.sh -c osgiAll

The following output is displayed:
Server: collocatedServer

OSGi Service Name Available Rankings
----------------- ------------------
myProtoBufSerializer 1
myShardListener 1

Summary - All servers have the same service rankings.

v Install and start Version 2 of the plug-in bundle. In the server OSGi console,
install a new bundle that contains a new version of the Order class and the
MapSerializerPlugin plug-in. See Lesson 2.4: Install the Google Protocol Buffers
and sample plug-in bundles for details about how to install the
ProtoBufSamplePlugins-2.0.0.jar bundle.
1. After the installation, start the new bundle. The services for your new bundle

are available, but they are not used by the eXtreme Scale server yet. You
must run a service update request to use a service with a specific version.

v Now when you query all the available service rankings again, the service
ranking 2 is added in the output.
1. Switch to the following directory:

cd wxs_home/bin

2. Enter the following command to query all available service rankings.

32 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

./xscmd.sh -c osgiAll

The following output is displayed:
Server: collocatedServer

OSGi Service Name Available Rankings
----------------- ------------------
myProtoBufSerializer 1, 2
myShardListener 1, 2

Summary - All servers have the same service rankings.

Lesson checkpoint:

In this tutorial, you queried currently specified and all available service rankings.
You also displayed the service ranking for a new bundle that you installed and
started.

Lesson 4.2: Determine whether specific service rankings are
available
Complete this lesson to determine whether specific service rankings are available
for the service names that you specify.
1. Enter the following command to determine whether the service named

myShardListener, with service ranking 2 and service named
myProtoBufSerializer, with service ranking 2 are available. The service ranking
list is passed in using -sr option.
a. Switch to the following directory:

cd wxs_home/bin

b. Enter the following command to determine whether the services are
available:
./xscmd.sh -c osgiCheck -sr "myShardListener;2,myProtoBufSerializer;2"

The following output is displayed:
CWXSI0040I: The command osgiCheck has completed successfully.

2. Enter the following command to determine whether the service named
myShardListener, with service ranking 2 and the service named
myProtoBufSerializer, with service ranking 3 are available.
a. Switch to the following directory:

cd wxs_home/bin

b. Enter the following command to determine whether the services are
available:
./xscmd.sh -c osgiCheck -sr "myShardListener;2,myProtoBufSerializer;3"

The following output is displayed:
Server OSGi Service Unavailable Rankings
------ ------------ --------------------
collocatedServer myProtoBufSerializer 3

Lesson checkpoint:

In this lesson, you specified the services myShardListener and
myProtoBufSerializer, along with specific service rankings to determine whether
those rankings were available.

Lesson 4.3: Update the service rankings
Complete this lesson to update current service rankings that you queried.

Chapter 1. Tutorials 33

1. Update the service rankings of the services, myShardListener and
myProtoBufSerializer, to service ranking 2. The service ranking list is passed in
using -sr option.
a. Switch to the following directory:

cd wxs_home/bin

b. Enter the following command to update the service rankings:
./xscmd.sh -c osgiUpdate -g Grid -ms MapSet -sr "myShardListener;2,myProtoBufSerializer;2"

The following output is displayed:
Update succeeded for the following service rankings:
Service Ranking
------- -------
myProtoBufSerializer 2
myShardListener 2

CWXSI0040I: The command osgiUpdate has completed successfully.

The following output is displayed on the OSGi console:
SystemOut O MyShardListener@326505334(version=2.0.0) order
com.ibm.websphere.samples.xs.serializer.proto.DataObjects2$Order$Builder@
22342234(34) updated

Notice that the MyShardListener service is now version 2.0.0, which has
service ranking 2.

2. Run the xscmd command to query the current service ranking for all services
that are used by the ObjectGrid named Grid and the map set named MapSet.
a. Switch to the following directory:

cd wxs_home/bin

b. Enter the following command to query the service rankings for all services
that are used by Grid and MapSet:
./xscmd.sh -c osgiCurrent -g Grid -ms MapSet

The following output is displayed:
OSGi Service Name Current Ranking ObjectGrid Name MapSet Name Server Name
----------------- --------------- --------------- ----------- -----------
myProtoBufSerializer 2 Grid MapSet collocatedServer
myShardListener 2 Grid MapSet collocatedServer

CWXSI0040I: The command osgiCurrent has completed successfully.

Lesson checkpoint:

In this lesson, you updated the service rankings for services myShardListener and
myProtoBufSerializer.

.

34 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Chapter 2. Scenarios
Scenarios include real-world information to build a complete picture. Complete a
scenario to understand new concepts or to accomplish common WebSphere
eXtreme Scale tasks.

Using an OSGi environment to develop and run eXtreme Scale
plug-ins

Use these scenarios to complete common tasks in an OSGi environment. For
example, the OSGi framework is ideal for starting servers and clients in an OSGi
container, which allows you to dynamically add and update WebSphere eXtreme
Scale plug-ins to the runtime environment.

Before you begin

Read the “OSGi framework overview” topic to learn more about OSGi support and
the benefits that it can offer.

About this task

The following scenarios are about building and running dynamic plug-ins, which
allows you to dynamically install, start, stop, modify, and uninstall plug-ins. You
might also complete another likely scenario, which allows you to use the OSGi
framework without dynamic capabilities. You can still package your applications as
bundles, which are defined by and communicated through services. These
service-based bundles offer multiple benefits, which include more efficient
development and deployment capabilities.

Scenario goals

After completing this scenario, you will know how to complete the goals:
v Build eXtreme Scale dynamic plug-ins to use in an OSGi environment.
v Run eXtreme Scale containers in an OSGi environment without dynamic

capabilities.

OSGi framework overview
OSGi defines a dynamic module system for Java. The OSGi service platform has a
layered architecture, and is designed to run on various standard Java profiles. You
can start WebSphere eXtreme Scale servers and clients in an OSGi container.

Benefits of running applications in the OSGi container

WebSphere eXtreme Scale OSGi support allows you to deploy the product in the
Eclipse Equinox OSGi framework. Previously, if you wanted to update the plug-ins
used by eXtreme Scale, you had to restart the Java virtual machine (JVM) to apply
the new versions of the plug-ins. With the dynamic update capability that the
OSGi framework provides, now you can update the plug-in classes without
restarting the JVM. These plug-ins are exported by user bundles as services.
WebSphere eXtreme Scale accesses the service or services by looking them up the
OSGi registry.

© Copyright IBM Corp. 2009, 2012 35

eXtreme Scale containers can be configured to start more easily and dynamically
using either the OSGi configuration admin service or with OSGi Blueprint. If you
want to deploy a new data grid with its placement strategy, you can do so by
creating an OSGi configuration or by deploying a bundle with eXtreme Scale
descriptor XML files. With OSGi support, application bundles containing eXtreme
Scale configuration data can be installed, started, stopped, updated, and
uninstalled without restarting the whole system. With this capability, you can
upgrade the application without disrupting the data grid.

Plug-in beans and services can be configured with custom shard scopes, allowing
sophisticated integration options with other services running in the data grid. Each
plug-in can use OSGi Blueprint rankings to verify that every instance of the
plug-in is activated is at the correct version. An OSGi-managed bean (MBean) and
xscmd utility are provided, which allow you to query the eXtreme Scale plug-in
OSGi services and their rankings.

This capability allows administrators to quickly recognize potential configuration
and administration errors and upgrade the plug-in service rankings in use by
eXtreme Scale .

OSGi bundles

To interact with and deploy plug-ins in the OSGi framework, you must use
bundles. In the OSGi service platform, a bundle is a Java archive (JAR) file that
contains Java code, resources, and a manifest that describes the bundle and its
dependencies. The bundle is the unit of deployment for an application. The
eXtreme Scale product supports the following bundle types:

Server bundle
The server bundle is the objectgrid.jar file and is installed with the
eXtreme Scale stand-alone server installation and is required for running
eXtreme Scale servers and can also be used for running eXtreme Scale
clients, or local, in-memory caches. The bundle ID for the objectgrid.jar
file is com.ibm.websphere.xs.server_<version>, where the version is in the
format: <Version>.<Release>.<Modification>. For example, the server
bundle for eXtreme Scale version 7.1.1 is
com.ibm.websphere.xs.server_7.1.1.

Client bundle
The client bundle is the ogclient.jar file and is installed with the eXtreme
Scale stand-alone and client installations and is used to run eXtreme Scale
clients or local, in-memory caches. The bundle ID for the ogclient.jar file
is com.ibm.websphere.xs.client_version, where the version is in the format:
<Version>.<Release>.<Modification>. For example, the client bundle for
eXtreme Scale version 7.1.1 is com.ibm.websphere.xs.client_7.1.1.

Limitations

You cannot restart the eXtreme Scale bundle because you cannot restart the object
request broker (ORB). To restart the eXtreme Scale server, you must restart the
OSGi framework.

Installing the Eclipse Equinox OSGi framework with Eclipse
Gemini for clients and servers

If you want to deploy WebSphere eXtreme Scale in the OSGi framework, then you
must set up the Eclipse Equinox Environment.

36 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

About this task

The task requires that you download and install the Blueprint framework, which
allows you to later configure JavaBeans and expose them as services. The use of
services is important because you can expose plug-ins as OSGi services so they can
be used by the eXtreme Scale run time environment. The product supports two
blueprint containers within the Eclipse Equinox core OSGi framework: Eclipse
Gemini and Apache Aries. Use this procedure to set up the Eclipse Gemini
container.

Procedure
1. Download Eclipse Equinox SDK Version 3.6.1 or later from the Eclipse

website. Create a directory for the Equinox framework, for example:
/opt/equinox. These instructions refer to this directory as equinox_root.
Extract the compressed file in the equinox_root directory.

2. Download the gemini-blueprint incubation 1.0.0 compressed file from the
Eclipse website. Extract the file contents into a temporary directory, and copy
the following extracted files to the equinox_root/plugins directory:
dist/gemini-blueprint-core-1.0.0.jar
dist/gemini-blueprint-extender-1.0.0.jar
dist/gemini-blueprint-io-1.0.0.jar

Attention: Depending on the location where you download the compressed
Blueprint file, the extracted files might have the extension, RELEASE.jar, much
like the Spring framework JAR files in the next step. You must verify that the
file names match the file references in the config.ini file.

3. Download the Spring Framework Version 3.0.5 from the following
SpringSource web page: http://www.springsource.com/download/
community. Extract it into a temporary directory, and copy the following
extracted files to the equinox_root/plugins directory:
org.springframework.aop-3.0.5.RELEASE.jar
org.springframework.asm-3.0.5.RELEASE.jar
org.springframework.beans-3.0.5.RELEASE.jar
org.springframework.context-3.0.5.RELEASE.jar
org.springframework.core-3.0.5.RELEASE.jar
org.springframework.expression-3.0.5.RELEASE.jar

4. Download the AOP Alliance Java archive (JAR) file from the SpringSource
web page. Copy the com.springsource.org.aopalliance-1.0.0.jar to the
equinox_root/plugins directory.

5. Download the Apache commons logging 1.1.1 JAR file from the SpringSource
web page. Copy the com.springsource.org.apache.commons.logging-
1.1.1.jar file to the equinox_root/plugins directory.

6. Download the Luminis OSGi Configuration Admin command-line client. Use
this bundle to manage OSGi administrative configurations. You can download
the JAR file from the following web page: https://opensource.luminis.net/
wiki/display/SITE/OSGi+Configuration+Admin+command+line+client. Copy
the net.luminis.cmc-0.2.5.jar to the equinox_root/plugins directory.

7. Download the Apache Felix file installation Version 3.0.2 bundle from the
following web page: http://felix.apache.org/site/index.html. Copy the
org.apache.felix.fileinstall-3.0.2.jar file to the equinox_root/plugins
directory.

8. Create a configuration directory inside equinox_root/plugins directory; for
example:
mkdir equinox_root/plugins/configuration

Chapter 2. Scenarios 37

http://download.eclipse.org/equinox/drops/R-3.6.1-201009090800/index.php
http://download.eclipse.org/equinox/drops/R-3.6.1-201009090800/index.php
http://www.eclipse.org/downloads/download.php?file=/blueprint/gemini-blueprint-1.0.0.RELEASE.zip
http://www.springsource.com/download/community
http://www.springsource.com/download/community
http://ebr.springsource.com/repository/app/bundle/version/detail?name=com.springsource.org.aopalliance&version=1.0.0
http://ebr.springsource.com/repository/app/bundle/version/detail?name=com.springsource.org.aopalliance&version=1.0.0
http://ebr.springsource.com/repository/app/bundle/version/detail?name=com.springsource.org.apache.commons.logging&version=1.1.1
http://ebr.springsource.com/repository/app/bundle/version/detail?name=com.springsource.org.apache.commons.logging&version=1.1.1
https://opensource.luminis.net/wiki/display/SITE/OSGi+Configuration+Admin+command+line+client
https://opensource.luminis.net/wiki/display/SITE/OSGi+Configuration+Admin+command+line+client
http://felix.apache.org/site/index.html

9. Create the following config.ini file in the equinox_root/plugins/
configuration directory, replacing equinox_root with the absolute path to your
equinox_root directory and removing all trailing spaces after the backslash on
each line. You must include a blank line at the end of the file; for example:
osgi.noShutdown=true
osgi.java.profile.bootdelegation=none
org.osgi.framework.bootdelegation=none
eclipse.ignoreApp=true
osgi.bundles=\
org.eclipse.osgi.services_3.2.100.v20100503.jar@1:start, \
org.eclipse.osgi.util_3.2.100.v20100503.jar@1:start, \
org.eclipse.equinox.cm_1.0.200.v20100520.jar@1:start, \
com.springsource.org.apache.commons.logging-1.1.1.jar@1:start, \
com.springsource.org.aopalliance-1.0.0.jar@1:start, \
org.springframework.aop-3.0.5.RELEASE.jar@1:start, \
org.springframework.asm-3.0.5.RELEASE.jar@1:start, \
org.springframework.beans-3.0.5.RELEASE.jar@1:start, \
org.springframework.context-3.0.5.RELEASE.jar@1:start, \
org.springframework.core-3.0.5.RELEASE.jar@1:start, \
org.springframework.expression-3.0.5.RELEASE.jar@1:start, \
org.apache.felix.fileinstall-3.0.2.jar@1:start, \
net.luminis.cmc-0.2.5.jar@1:start, \
gemini-blueprint-core-1.0.0.jar@1:start, \
gemini-blueprint-extender-1.0.0.jar@1:start, \
gemini-blueprint-io-1.0.0.jar@1:start

If you have already set up the environment, you can clean up the Equinox
plug-in repository by removing the following directory: equinox_root\
plugins\configuration\org.eclipse.osgi.

10. Run the following commands to start equinox console.
If you are running a different version of Equinox, then your JAR file name is
different from the one in the following example:
java -jar plugins\org.eclipse.osgi_3.6.1.R36x_v20100806.jar -console

Installing eXtreme Scale bundles
WebSphere eXtreme Scale includes bundles that can be installed into an Eclipse
Equinox OSGi framework. These bundles are required to start eXtreme Scale
servers or use eXtreme Scale clients in OSGi. You can install the eXtreme Scale
bundles using the Equinox console or using the config.ini configuration file.

Before you begin

This task assumes that you have installed the following products:
v Eclipse Equinox OSGi framework
v eXtreme Scale stand-alone client or server

About this task

eXtreme Scale includes two bundles. Only one of the following bundles is required
in an OSGi framework:

objectgrid.jar
The server bundle is the objectgrid.jar file and is installed with the
eXtreme Scale stand-alone server installation and is required for running
eXtreme Scale servers and can also be used for running eXtreme Scale
clients, or local, in-memory caches. The bundle ID for the objectgrid.jar
file is com.ibm.websphere.xs.server_<version>, where the version is in the
format: <Version>.<Release>.<Modification>. For example, the server
bundle for this release is com.ibm.websphere.xs.server_8.5.0.

ogclient.jar
The ogclient.jar bundle is installed with the eXtreme Scale stand-alone
and client installations and is used to run eXtreme Scale clients or local,
in-memory caches. The bundle ID for ogclient.jar file is
com.ibm.websphere.xs.client_<version>, where the version is in the format:

38 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

<Version>_<Release>_<Modification. For example, the client bundle for
this release is com.ibm.websphere.xs.server_8.5.0.

For more information about developing eXtreme Scale plug-ins, see the System
APIs and Plug-ins topic.

Install the eXtreme Scale client or server bundle into the Eclipse Equinox OSGi
framework using the Equinox console:
Procedure

1. Start the Eclipse Equinox framework with the console enabled; for example:
java_home/bin/java -jar <equinox_root>/plugins/
org.eclipse.osgi_3.6.1.R36x_v20100806.jar -console

2. Install the eXtreme Scale client or server bundle in the Equinox console:
osgi> install file:///<path to bundle>

3. Equinox displays the bundle ID for the newly installed bundle:
Bundle id is 25

4. Start the bundle in the Equinox console, where <id> is the bundle ID assigned
when the bundle was installed:
osgi> start <id>

5. Retrieve the service status in the Equinox console to verify that the bundle has
started; for example:
osgi> ss

When the bundle starts successfully, the bundle displays the ACTIVE state; for
example:
25 ACTIVE com.ibm.websphere.xs.server_8.5.0

Install the eXtreme Scale client or server bundle into the Eclipse Equinox OSGi
framework using the config.ini file:
Procedure

1. Copy the eXtreme Scale client or server (objectgrid.jar or ogclient.jar) bundle
from the <wxs_install_root>/ObjectGrid/lib to the Eclipse Equinox plug-ins
directory; for example: <equinox_root>/plugins

2. Edit the Eclipse Equinox config.ini configuration file, and add the bundle to
the osgi.bundles property; for example:
osgi.bundles=\
org.eclipse.osgi.services_3.2.100.v20100503.jar@1:start, \
org.eclipse.osgi.util_3.2.100.v20100503.jar@1:start, \
org.eclipse.equinox.cm_1.0.200.v20100520.jar@1:start, \
objectgrid.jar@1:start

Important: Verify that a blank line exists after the last bundle name. Each
bundle is separated by a comma.

3. Start the Eclipse Equinox framework with the console enabled; for example:
java_home/bin/java -jar <equinox_root>/plugins/
org.eclipse.osgi_3.6.1.R36x_v20100806.jar -console

4. Retrieve the service status in the Equinox console to verify that the bundle has
started:
osgi> ss

When the bundle starts successfully, the bundle displays the ACTIVE state; for
example:
25 ACTIVE com.ibm.websphere.xs.server_8.5.0

Chapter 2. Scenarios 39

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html

Results

The eXtreme Scale server or client bundle is installed and started in your Eclipse
Equinox OSGi framework.

Running eXtreme Scale containers with non-dynamic plug-ins
in an OSGi environment

If you do not need to use the dynamic capability of an OSGi environment, you can
still take advantage of tighter coupling, declarative packaging, and service
dependencies that the OSGi framework offers.

Before you begin
1. Develop your application using WebSphere eXtreme Scale APIs and plug-ins.
2. Package the application in one or more OSGi bundles with the appropriate

import or export dependencies that are declared in one or more bundle
manifests. Ensure that all classes or packages that are required for the plug-ins,
agents, data objects, and so on, are exported.

About this task

With dynamic plug-ins, you can upgrade your plug-ins without stopping the grid.
To use this capability, the original and new plug-ins must be compatible. If you do
not need to update plug-ins, or can afford to stop the grid to upgrade them, then
you may not need the complexity of dynamic plug-ins. However, there are still
good reasons to run your eXtreme Scale application in an OSGi environment.
These reasons include the tighter coupling, declarative package, service
dependencies, and so on.

One concern with hosting the grid or client in an OSGi environment without using
dynamic plug-ins (more specifically, without declaring the plug-ins using OSGi
services) is how the eXtreme Scale bundle loads the plug-in classes. The eXtreme
Scale bundle relies on OSGi services to load plug-in classes, which allows the
bundle to invoke object methods on classes in other bundles without directly
importing the packages of those classes.

When the plug-ins are not made available via OSGi services, the eXtreme Scale
bundle must be able to load the plug-in classes directly. Rather than modifying the
manifest of the eXtreme Scale bundle to import user classes and packages, create a
bundle fragment that adds the necessary package imports. The fragment can also
import the classes needed for other non-plug-in user classes, such as data objects
and agent classes.

Procedure
1. Create an OSGi fragment that uses the eXtreme Scale bundle (client or server,

depending on the intended deployment environment) as its host. The fragment
declares dependencies (Import-Package) on all of the packages that one or more
plug-ins must load. For example, if you are installing a serializer plug-in whose
classes reside in the com.mycompany.myapp.serializers package and depends
on classes in the com.mycompany.myapp.common package, then your fragment
META-INF/MANIFEST.MF file resembles the following example:
Bundle-ManifestVersion: 2
Bundle-Name: Plug-in fragment for XS serializers
Bundle-SymbolicName: com.mycompany.myapp.myfragment; singleton:=true
Bundle-Version: 1.0.0
Fragment-Host: com.ibm.websphere.xs.server; bundle-version=7.1.1

40 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Manifest-Version: 1.0
Import-Package: com.mycompany.myapp.serializers,
com.mycompany.myapp.common
...

This manifest must be packaged in a fragment JAR file, which in this example
is com.mycompany.myapp.myfragment_1.0.0.jar.

2. Deploy both the newly created fragment, the eXtreme Scale bundle, and
application bundles to your OSGi environment. Now, start the bundles.

Results

You can now test and run your application in the OSGi environment without using
OSGi services to load user classes, such as plug-ins and agents.

Administering eXtreme Scale servers and applications in an
OSGi environment

Use this topic to install the WebSphere eXtreme Scale server bundle, an optional
fragment that allows loading of your application bundles and non-dynamic user
classes, such as plug-ins, agents, data objects, and so on.

Before you begin
1. Install and start a supported OSGi framework. Currently Equinox is the only

supported OSGi implementation. If your application uses Blueprint, make sure
to install and start a supported Blueprint implementation. Apache Aries and
Eclipse Gemini are both supported.

2. Open the OSGi console.

Procedure
1. Install the eXtreme Scale server bundle. You must know the file URL of the

bundle Java archive (JAR) file. For example:
osgi> install file:///home/user1/myOsgiEnv/plugins/objectgrid.jar
Bundle id is 41

osgi>

The eXtreme Scale bundle is now installed, but not yet resolved.
2. If the eXtreme Scale server must load user classes directly, rather than using

dynamic plug-ins exposed via OSGi services, then you must also install a
user-developed fragment that either provides those classes or imports them. If
you are using dynamic plug-ins and not using agents, you can skip this step.
Here is an example of how to install a custom fragment:
osgi> install file:///home/user1/myOsgiEnv/plugins/myFragment.jar
Bundle id is 42

osgi> ss

Framework is launched.

id State Bundle
...
41 INSTALLED com.ibm.websphere.xs.server_7.1.1
42 INSTALLED com.mycompany.myfragment_1.0.0

osgi>

Chapter 2. Scenarios 41

Now the eXtreme Scale server bundle and the custom fragment that attaches to
the bundle are both installed.

3. Start the eXtreme Scale server bundle; for example:
osgi> start 41

osgi> ss

Framework is launched.

id State Bundle
...
41 ACTIVE com.ibm.websphere.xs.server_7.1.1

Fragments=42
42 RESOLVED com.mycompany.myfragment_1.0.0

Master=41

osgi>

4. Now install and start all user application bundles using the same previously
mentioned commands. To start a grid on this server, the server and container
definition must be declared using Blueprint, or the application must start the
server and container programmatically from a bundle activator or some other
mechanism.

Results

The eXtreme Scale server bundle and application are deployed, started, and ready
to accept work.

Building and running eXtreme Scale dynamic plug-ins for use
in an OSGi environment

All eXtreme Scale plug-ins can be configured for an OSGi environment. The
primary benefit of dynamic plug-ins is that they allow you to upgrade them
without shutting down the grid. This allows you to evolve an application without
restarting the grid container processes.

About this task

WebSphere eXtreme Scale OSGi support allows you to deploy the product in an
OSGi framework, such as Eclipse Equinox. Previously, if you wanted to update the
plug-ins used by eXtreme Scale, you had to restart the Java virtual machine (JVM)
to apply the new versions of the plug-ins. With the dynamic plug-in support
provided by eXtreme Scale and the ability to update bundles that the OSGi
framework provides, you can now update the plug-in classes without restarting
the JVM. These plug-ins are exported by bundles as services. WebSphere eXtreme
Scale accesses the service by looking up the OSGi registry. In the OSGi service
platform, a bundle is a Java archive (JAR) file that contains Java code, resources,
and a manifest that describes the bundle and its dependencies. The bundle is the
unit of deployment for an application.

Procedure
1. Build eXtreme Scale dynamic plug-ins.
2. Configure eXtreme Scale plug-ins with OSGi Blueprint.
3. Install and starting OSGi-enabled plug-ins.

42 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Building eXtreme Scale dynamic plug-ins
WebSphere eXtreme Scale includes ObjectGrid and BackingMap plug-ins. These
plug-ins are implemented in Java and are configured using the ObjectGrid
descriptor XML file. To create a dynamic plug-in that can be dynamically
upgraded, they need to be aware of ObjectGrid and BackingMap life cycle events
because they might need to complete some actions during an update. Enhancing a
plug-in bundle with life cycle callback methods, event listeners, or both allows the
plug-in to complete those actions at the appropriate times.

Before you begin

This topic assumes that you have built the appropriate plug-in. For more
information about developing eXtreme Scale plug-ins, see the System APIs and
plug-ins topic.

About this task

All eXtreme Scale plug-ins apply to either a BackingMap or ObjectGrid instance.
Many plug-ins also interact with other plug-ins. For example, a Loader and
TransactionCallback plug-in work together to properly interact with a database
transaction and the various database JDBC calls. Some plug-ins might also need to
cache configuration data from other plug-ins to improve performance.

The BackingMapLifecycleListener and ObjectGridLifecycleListener plug-ins provide
life cycle operations for the respective BackingMap and ObjectGrid instances. This
process allows plug-ins to be notified when the parent BackingMap or ObjectGrid
and their respective plug-ins might be changed. BackingMap plug-ins implement
the BackingMapLifecyleListener interface, and ObjectGrid plug-ins implement the
ObjectGridLifecycleListener interface. These plug-ins are automatically invoked
when the life cycle of the parent BackingMap or ObjectGrid changes. For more
information about life cycle plug-ins, see the “Managing plug-in life cycles” on
page 279 topic.

You can expect to enhance bundles using the life cycle methods or event listeners
in the following common tasks:
v Starting and stopping resources, such as threads or messaging subscribers.
v Specifying that a notification occur when peer plug-ins have been updated,

allowing direct access to the plug-in and detecting any changes.

Whenever you access another plug-in directly, access that plug-in through the
OSGi container to ensure that all parts of the system reference the correct plug-in.
If, for example, some component in the application directly references, or caches,
an instance of a plug-in, it will maintain its reference to that version of the plug-in,
even after that plug-in has been dynamically updated. This behavior can cause
application-related problems as well as memory leaks. Therefore, write code that
depends on dynamic plug-ins that obtain its reference using OSGi, getService()
semantics. If the application must cache one or more plug-ins, it listens for life
cycle events using ObjectGridLifecycleListener and BackingMapLifecycleListener
interfaces. The application must also be able to refresh its cache when necessary, in
a thread safe manner.

All eXtreme Scale plug-ins used with OSGi must also implement the respective
BackingMapPlugin or ObjectGridPlugin interfaces. New plug-ins such as the
MapSerializerPlugin interface enforce this practice. These interfaces provide the

Chapter 2. Scenarios 43

eXtreme Scale runtime environment and OSGi a consistent interface for injecting
state into the plug-in and controlling its life cycle.

Use this task to specify that a notification occurs when peer plug-ins are updated,
you might create a listener factory that produces a listener instance.

Procedure
v Update the ObjectGrid plug-in class to implement the ObjectGridPlugin

interface. This interface includes methods that allow eXtreme Scale to initialize,
set the ObjectGrid instance and destroy the plug-in. See the following code
example:
package com.mycompany;
import com.ibm.websphere.objectgrid.plugins.ObjectGridPlugin;
...

public class MyTranCallback implements TransactionCallback, ObjectGridPlugin {

private ObjectGrid og = null;

private enum State {
NEW, INITIALIZED, DESTROYED

}

private State state = State.NEW;

public void setObjectGrid(ObjectGrid grid) {
this.og = grid;

}

public ObjectGrid getObjectGrid() {
return this.og;

}
void initialize() {

// Handle any plug-in initialization here. This is called by
// eXtreme Scale, and not the OSGi bean manager.
state = State.INITIALIZED;

}
boolean isInitialized() {

return state == State.INITIALIZED;
}

public void destroy() {
// Destroy the plug-in and release any resources. This
// can be callsed by the OSGi Bean Manager or by eXtreme Scale.
state = State.DESTROYED;

}

public boolean isDestroyed() {
return state == State.DESTROYED;

}
}

v Update the ObjectGrid plug-in class to implement the
ObjectGridLifecycleListener interface. See the following code example:
package com.mycompany;
import com.ibm.websphere.objectgrid.plugins.ObjectGridLifecycleListener;

import com.ibm.websphere.objectgrid.plugins.ObjectGridLifecycleListener.LifecycleEvent;
...

public class MyTranCallback implements TransactionCallback, ObjectGridPlugin, ObjectGridLifecycleListener{
public void objectGridStateChanged(LifecycleEvent event) {

switch(event.getState()) {
case NEW:
case DESTROYED:
case DESTROYING:
case INITIALIZING:

break;
case INITIALIZED:

// Lookup a Loader or MapSerializerPlugin using
// OSGi or directly from the ObjectGrid instance.
lookupOtherPlugins()
break;

case STARTING:
case PRELOAD:

break;
case ONLINE:

if (event.isWritable()) {
startupProcessingForPrimary();

} else {
startupProcessingForReplica();

}
break;

case QUIESCE:
if (event.isWritable()) {

44 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

quiesceProcessingForPrimary();
} else {

quiesceProcessingForReplica();
}
break;

case OFFLINE:
shutdownShardComponents();
break;

}
}
...

}

v Update a BackingMap plug-in. Update the BackingMap plug-in class to
implement the BackingMap plu-in interface. This interface includes methods that
allow eXtreme Scale to initialize, set the BackingMap instance, and destroy the
plug-in. See the following code example:
package com.mycompany;
import com.ibm.websphere.objectgrid.plugins.BackingMapPlugin;
...

public class MyLoader implements Loader, BackingMapPlugin {

private BackingMap bmap = null;

private enum State {
NEW, INITIALIZED, DESTROYED

}

private State state = State.NEW;

public void setBackingMap(BackingMap map) {
this.bmap = map;

}

public BackingMap getBackingMap() {
return this.bmap;

}
void initialize() {

// Handle any plug-in initialization here. This is called by
// eXtreme Scale, and not the OSGi bean manager.
state = State.INITIALIZED;

}
boolean isInitialized() {

return state == State.INITIALIZED;
}

public void destroy() {
// Destroy the plug-in and release any resources. This
// can be callsed by the OSGi Bean Manager or by eXtreme Scale.
state = State.DESTROYED;

}

public boolean isDestroyed() {
return state == State.DESTROYED;

}
}

v Update the BackingMap plug-in class to implement the
BackingMapLifecycleListener interface. See the following code example:
package com.mycompany;

import com.ibm.websphere.objectgrid.plugins.BackingMapLifecycleListener;
import com.ibm.websphere.objectgrid.plugins.BackingMapLifecycleListener.LifecycleEvent;
...

public class MyLoader implements Loader, ObjectGridPlugin, ObjectGridLifecycleListener{
...
public void backingMapStateChanged(LifecycleEvent event) {

switch(event.getState()) {
case NEW:
case DESTROYED:
case DESTROYING:
case INITIALIZING:

break;
case INITIALIZED:

// Lookup a MapSerializerPlugin using
// OSGi or directly from the ObjectGrid instance.
lookupOtherPlugins()
break;

case STARTING:
case PRELOAD:

break;
case ONLINE:

if (event.isWritable()) {
startupProcessingForPrimary();

} else {
startupProcessingForReplica();

}
break;

Chapter 2. Scenarios 45

case QUIESCE:
if (event.isWritable()) {

quiesceProcessingForPrimary();
} else {

quiesceProcessingForReplica();
}
break;

case OFFLINE:
shutdownShardComponents();
break;

}
}
...

}

Results

By implementing the ObjectGridPlugin or BackingMapPlugin interface, eXtreme
Scale can control the life cycle of your plug-in at the right times.

By implementing the ObjectGridLifecycleListener or BackingMapLifecycleListener
interface, the plug-in is automatically registered as a listener of the associated
ObjectGrid or BackingMap life cycle events. The INITIALIZING event is used to
signal that all of the ObjectGrid and BackingMap plug-ins have been initialized
and are available for lookup and use. The ONLINE event is used to signal that the
ObjectGrid is online and ready to start processing events.

Configuring eXtreme Scale plug-ins with OSGi Blueprint
All eXtreme Scale ObjectGrid and BackingMap plug-ins can be defined as OSGi
beans and services using the OSGi Blueprint Service available with Eclipse Gemini
or Apache Aries.

Before you begin

Before you can configure your plug-ins as OSGi services, you must first package
your plug-ins in an OSGi bundle, and understand the fundamental principles of
the required plug-ins. The bundle must import the WebSphere eXtreme Scale
server or client packages and other dependent packages required by the plug-ins,
or create a bundle dependency on the eXtreme Scale server or client bundles This
topic describes how to configure the Blueprint XML to create plug-in beans and
expose them as OSGi services for eXtreme Scale to use.

About this task

Beans and services are defined in a Blueprint XML file, and the Blueprint container
discovers, creates, and wires the beans together and exposes them as services. The
process makes the beans available to other OSGi bundles, including the eXtreme
Scale server and client bundles.

When creating custom plug-in services for use with eXtreme Scale, the bundle that
is to host the plug-ins, must be configured to use Blueprint. In addition, a
Blueprint XML file must be created and stored within the bundle. Read about
building OSGi applications with the Blueprint Container specification for a general
understanding of the specification.

Procedure
1. Create a Blueprint XML file. You can name the file anything. However, you

must include the blueprint namespace:
<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
...
</blueprint>

46 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://www.ibm.com/developerworks/opensource/library/os-osgiblueprint/

2. Create bean definitions in the Blueprint XML file for each eXtreme Scale
plug-in.
Beans are defined using the <bean> element and can be wired to other bean
references and can include initialization parameters.

Important: When defining a bean, you must use the correct scope. Blueprint
supports the singleton and prototype scopes. eXtreme Scale also supports a
custom shard scope.
Define most eXtreme Scale plug-ins as prototype or shard-scoped beans, since
all of the beans must be unique for each ObjectGrid shard or BackingMap
instance it is associated with. Shard-scoped beans can be useful when using the
beans in other contexts to allow retrieving the correct instance.
To define a prototype-scoped bean, use the scope="prototype" attribute on the
bean:
<bean id="myPluginBean" class="com.mycompany.MyBean" scope="prototype">
...
</bean>

To define a shard-scoped bean, you must add the objectgrid namespace to the
XML schema, and use the scope="objectgrid:shard" attribute on the bean:
<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:objectgrid="http://www.ibm.com/schema/objectgrid"

xsi:schemaLocation="http://www.ibm.com/schema/objectgrid
http://www.ibm.com/schema/objectgrid/objectgrid.xsd">

<bean id="myPluginBean" class="com.mycompany.MyBean"
scope="objectgrid:shard">
...
</bean>

...

3. Create PluginServiceFactory bean definitions for each plug-in bean. All eXtreme
Scale beans must have a PluginServiceFactory bean defined so that the correct
bean scope can be applied. eXtreme Scale includes a BlueprintServiceFactory
that you can use. It includes two properties that must be set. You must set the
blueprintContainer property to the blueprintContainer reference, and the
beanId property must be set to the bean identifier name. When eXtreme Scale
looks up the service to instantiate the appropriate beans, the server looks up
the bean component instance using the Blueprint container.
bean id="myPluginBeanFactory"

class="com.ibm.websphere.objectgrid.plugins.osgi.BluePrintServiceFactory">
<property name="blueprintContainer" ref="blueprintContainer" />
<property name="beanId" value="myPluginBean" />

</bean>

4. Create a service manager for each PluginServiceFactory bean. Each service
manager exposes the PluginServiceFactory bean, using the <service> element.
The service element identifies the name to expose to OSGi, the reference to the
PluginServiceFactory bean, the interface to expose, and the ranking of the
service. eXtreme Scale uses the service manager ranking to perform service
upgrades when the eXtreme Scale grid is active. If the ranking is not specified,
the OSGi framework assumes a ranking of 0. Read about updating service
rankings for more information.
Blueprint includes several options for configuring service managers. To define a
simple service manager for a PluginServiceFactory bean, create a <service>
element for each PluginServiceFactory bean:

Chapter 2. Scenarios 47

<service ref="myPluginBeanFactory"
interface="com.ibm.websphere.objectgrid.plugins.osgi.PluginServiceFactory"
ranking="1">

</service>

5. Store the Blueprint XML file in the plug-ins bundle. The Blueprint XML file
must be stored in the OSGI-INF/blueprint directory for the Blueprint container
to be discovered.
To store the Blueprint XML file in a different directory, you must specify the
following Bundle-Blueprint manifest header:
Bundle-Blueprint: OSGI-INF/blueprint.xml

Results

The eXtreme Scale plug-ins are now configured to be exposed in an OSGi
Blueprint container, In addition, the ObjectGrid descriptor XML file is configured
to reference the plug-ins using the OSGi Blueprint service.

Installing and starting OSGi-enabled plug-ins
In this task, you install the dynamic plug-in bundle into the OSGi framework.
Then, you start the plug-in.

Before you begin

This topic assumes that the following tasks have been completed:
v The eXtreme Scale server or client bundle has been installed into the Eclipse

Equinox OSGi framework. See “Installing eXtreme Scale bundles” on page 38.
v One or more dynamic BackingMap or ObjectGrid plug-ins have been

implemented. See “Building eXtreme Scale dynamic plug-ins” on page 43.
v The dynamic plug-ins have been packaged as OSGi services in OSGi bundles.

About this task

This task describes how to install the bundle using the Eclipse Equinox console.
The bundle can be installed using several different methods, including modifying
the config.ini configuration file. Products that embed Eclipse Equinox include
alternative methods for managing bundles. For more information on how to add
bundles in the config.ini file in Eclipse Equinox, see the Eclipse runtime options.

OSGi allows bundles to be started that have duplicate services. WebSphere
eXtreme Scale uses the latest service ranking. When starting multiple OSGi
frameworks in an eXtreme Scale data grid, you must make sure that the correct
service rankings are started on each server. Failure to do so causes the grid to be
started with a mixture of different versions.

To see which versions are in-use by the data grid, use the xscmd utility to check
the current and available rankings. For more information about available service
rankings see Updating OSGi services for eXtreme Scale plug-ins with xscmd.

Procedure

Install the plug-in bundle into the Eclipse Equinox OSGi framework using the
OSGi console.
1. Start the Eclipse Equinox framework with the console enabled; for example:

<java_home>/bin/java -jar <equinox_root>/plugins/org.eclipse.osgi_3.6.1.R36x_v20100806.jar -console

2. Install the plug-in bundle in the Equinox console.

48 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://help.eclipse.org/helios/topic/org.eclipse.platform.doc.isv/reference/misc/runtime-options.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsadminosgi.html

osgi> install file:///<path to bundle>

Equinox displays the bundle ID for the newly installed bundle:
Bundle id is 17

3. Enter the following line to start the bundle in the Equinox console, where <id>
is the bundle ID assigned when the bundle was installed:
osgi> start <id>

4. Retrieve the service status in the Equinox console to verify that the bundle has
started:
osgi> ss

When the bundle has started successfully, the bundle displays the ACTIVE
state; for example:
17 ACTIVE com.mycompany.plugin.bundle_VRM

Install the plug-in bundle into the Eclipse Equonix OSGi framework using the
config.ini file.
5. Copy the plug-in bundle into the Eclipse Equinox plug-ins directory; for

example:
<equinox_root>/plugins

6. Edit the Eclipse Equinox config.ini configuration file, and add the bundle to
the osgi.bundles property; for example:
osgi.bundles=\
org.eclipse.osgi.services_3.2.100.v20100503.jar@1:start, \
org.eclipse.osgi.util_3.2.100.v20100503.jar@1:start, \
org.eclipse.equinox.cm_1.0.200.v20100520.jar@1:start, \
com.mycompany.plugin.bundle_VRM.jar@1:start

Important: Verify there is a blank line after the last bundle name. Each bundle
is separated by a comma.

7. Start the Eclipse Equinox framework with the console enabled; for example:
<java_home>/bin/java -jar <equinox_root>/plugins/org.eclipse.osgi_3.6.1.R36x_v20100806.jar -console

8. Retrieve the service status in the Equinox console to verify that the bundle has
started; for example:
osgi> ss

When the bundle has started successfully, the bundle displays the ACTIVE
state; for example:
17 ACTIVE com.mycompany.plugin.bundle_VRM

Results

The plug-in bundle is now installed and started. The eXtreme Scale container or
client can now be started. For more information on developing eXtreme Scale
plug-ins, see the System APIs and Plug-ins topic.

Running eXtreme Scale containers with dynamic plug-ins in
an OSGi environment

If your application is hosted in the Eclipse Equinox OSGi framework with Eclipse
Gemini or Apache Aries, then you can use this task to help you install and
configure your WebSphere eXtreme Scale application in OSGi.

Chapter 2. Scenarios 49

Before you begin

Before you start this task, be sure to complete the following tasks:
v Install the Eclipse Equinox OSGi framework with Eclipse Gemini
v Build and run eXtreme Scale dynamic plug-ins for use in an OSGi environment

About this task

With dynamic plug-ins, you can dynamically upgrade the plug-in while the grid is
still active. This allows you to update an application without restarting the grid
container processes. For more information about developingeXtreme Scale plug-ins,
see System APIs and Plug-ins.

Procedure
1. Configure OSGi-enabled plug-ins using the ObjectGrid descriptor XML file.
2. Start eXtreme Scale container servers using the Eclipse Equinox OSGi

framework.
3. Administer OSGi services for eXtreme Scale plug-ins with the xscmd utility.
4. Configure servers with OSGi Blueprint.

Configuring OSGi-enabled plug-ins using the ObjectGrid
descriptor XML file
In this task, you add existing OSGi services to a descriptor XML file so that
WebSphere eXtreme Scale containers can recognize and load the OSGi-enabled
plug-ins correctly.

Before you begin

To configure your plug-ins, be sure to:
v Create your package, and enable dynamic plug-ins for OSGi deployment.
v Have the names of the OSGi services that represent your plug-ins available.

About this task

You have created an OSGi service to wrap your plug-in. Now, these services must
be defined in the objectgrid.xml file so that eXtreme Scale containers can load and
configure the plug-in or plug-ins successfully.

Procedure
1. Any grid-specific plug-ins, such as TransactionCallback, must be specified

under the objectGrid element. See the following example from the
objectgrid.xml file:
<?xml version="1.0" encoding="UTF-8"?>

<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="MyGrid" txTimeout="60">

<bean id="myTranCallback" osgiService="myTranCallbackFactory"/>
...

</objectGrid>

50 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

...
</objectGrids>
...

/objectGridConfig>

Important: The osgiService attribute value must match the ref attribute value
that is specified in the blueprint XML file, where the service was defined for
myTranCallback PluginServiceFactory.

2. Any map-specific plug-ins, such as loaders or serializers, for example, must be
specified in the backingMapPluginCollections element and referenced from the
backingMap element. See the following example from the objectgrid.xml file:
<?xml version="1.0" encoding="UTF-8"?>

objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="MyGrid" txTimeout="60">
<backingMap name="MyMap1" lockStrategy="PESSIMISTIC"

copyMode="COPY_TO_BYTES" nullValuesSupported="false"
pluginCollectionRef="myPluginCollectionRef1"/>

<backingMap name="MyMap2" lockStrategy="PESSIMISTIC"
copyMode="COPY_TO_BYTES" nullValuesSupported="false"
pluginCollectionRef="myPluginCollectionRef2"/>

...
</objectGrid>
...

</objectGrids>
...
<backingMapPluginCollections>

<backingMapPluginCollection id="myPluginCollectionRef1">
<bean id="MapSerializerPlugin" osgiService="mySerializerFactory"/>

</backingMapPluginCollection>
<backingMapPluginCollection id="myPluginCollectionRef2">

<bean id="MapSerializerPlugin" osgiService="myOtherSerializerFactory"/>
<bean id="Loader" osgiService="myLoader"/>

</backingMapPluginCollection>
...

</backingMapPluginCollections>
...

</objectGridConfig>

Results

The objectgrid.xml file in this example tells eXtreme Scale to create a grid called
MyGrid with two maps, MyMap1 and MyMap2. The MyMap1 map uses the serializer
wrapped by the OSGi service, mySerializerFactory. The MyMap2 map uses a
serializer from the OSGi service, myOtherSerializerFactory, and a loader from the
OSGi service, myLoader.

Starting eXtreme Scale servers using the Eclipse Equinox OSGi
framework
WebSphere eXtreme Scale container servers can be started in an Eclipse Equinox
OSGi framework using several methods.

Before you begin

Before you can start an eXtreme Scale container, you must have completed the
following tasks:
1. The WebSphere eXtreme Scale server bundle must be installed into Eclipse

Equinox.
2. Your application must be packaged as an OSGi bundle.
3. Your WebSphere eXtreme Scale plug-ins (if any) must be packaged as an OSGi

bundle. They can be bundled in the same bundle as your application or as
separate bundles.

Chapter 2. Scenarios 51

About this task

This task describes how to start an eXtreme Scale container server in an Eclipse
Equinox OSGi framework. You can use any of the following methods to start
container servers using the Eclipse Equinox implementation:
v OSGi Blueprint service

You can include all configuration and metadata in an OSGi bundle. See the
following image to understand the Eclipse Equinox process for this method:

v OSGi Configuration Admin service
You can specify configuration and metadata outside of an OSGi bundle. See the
following image to understand the Eclipse Equinox process for this method:

Eclipse Equinox OSGi Framework Process

Bundle:
com.mycompany.container

1.0.0

Blueprint XML

ObjectGrid XML

Deployment XML

Bundle:
com.ibm.websphere.xs.server

eXtreme Scale Server

eXtreme ScaleS Container

Figure 3. Eclipse Equinox process for including all configuration and metadata in an OSGi bundle

52 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

v Programmatically
Supports customized configuration solutions.

In each case, an eXtreme Scale server singleton is configured and one or more
containers are configured.

The eXtreme Scale server bundle, objectgrid.jar, includes all of the required
libraries to start and run an eXtreme Scale grid container in an OSGi framework.
The server runtime environment communicates with user-supplied plug-ins and
data objects using the OSGi service manager.

Important: After an eXtreme Scale server bundle is started and the eXtreme Scale
server is initialized, it cannot be restarted . The Eclipse Equinox process must be
restarted to restart an eXtreme Scale server.

You can use eXtreme Scale support for Spring namespace to configure eXtreme
Scale container servers in a Blueprint XML file. When the server and container
XML elements are added to the Blueprint XML file, the eXtreme Scale namespace
handler automatically starts a container server using the parameters that are
defined in the Blueprint XML file when the bundle is started. The handle stops the
container when the bundle is stopped.

To configure eXtreme Scale container servers with Blueprint XML, complete the
following steps:

Procedure
v Start an eXtreme Scale container server using OSGi blueprint.

1. Create a container bundle.
2. Install the container bundle into the Eclipse Equinox OSGi framework. See

“Installing and starting OSGi-enabled plug-ins” on page 48.

eXtreme Scale Container

Configuration Administration Service

ManagedService PID
com.ibm.websphere.xs.server

ManagedServiceFactory PID
com.ibm.websphere.xs.container

Server PropertiesBundle:
com.ibm.websphere.xs.server

ObjectGrid XML

Deployment XML

eXtreme Scale Server

Eclipse Equinox OSGi Framework Process

Figure 4. Eclipse Equinox process for specify configuration and metadata outside of an OSGi bundle

Chapter 2. Scenarios 53

3. Start the container bundle.
v Start an eXtreme Scale container server using OSGi configuration admin.

1. Configure the server and container using config admin.
2. When the eXtreme Scale server bundle is started, or the persistent identifiers

are created with config admin, the server and container automatically start.
v Start an eXtreme Scale container server using the ServerFactory API. See the

server API documentation.
1. Create an OSGi bundle activator class, and use the eXtreme Scale

ServerFactory API to start a server.

Administering OSGi-enabled services using the xscmd utility
You can use the xscmd utility to complete administrator tasks, such as viewing
services and their rankings that are being used by each container, and updating the
runtime environment to use new versions of the bundles.

About this task

With the Eclipse Equinox OSGi framework, you can install multiple versions of the
same bundle, and you can update those bundles during run time. WebSphere
eXtreme Scale is a distributed environment that runs the container servers in many
OSGi framework instances.

Administrators are responsible for manually copying, installing, and starting
bundles into the OSGi framework. eXtreme Scale includes an OSGi
ServiceTrackerCustomizer to track any services that have been identified as
eXtreme Scale plug-ins in the ObjectGrid descriptor XML file. Use the xscmd utility
to validate which version of the plug-in is used, which versions are available to be
used, and to perform bundle upgrades.

eXtreme Scale uses the service ranking number to identify the version of each
service. When two or more services are loaded with the same reference, eXtreme
Scale automatically uses the service with the highest ranking.

Procedure
v Run the osgiCurrent command, and verify that each eXtreme Scale server is

using the correct plug-in service ranking.
Since eXtreme Scale automatically chooses the service reference with the highest
ranking, it is possible that the data grid may start with multiple rankings of a
plug-in service.
If the command detects a mismatch of rankings or if it is unable to find a
service, a non-zero error level is set. If the command completed successfully then
the error level is set to 0.
The following example shows the output of the osgiCurrent command when
two plug-ins are installed in the same grid on four servers. The loaderPlugin
plug-in is using ranking 1, and the txCallbackPlugin is using ranking 2.
OSGi Service Name Current Ranking ObjectGrid Name MapSet Name Server Name
----------------- --------------- --------------- ----------- -----------
loaderPlugin 1 MyGrid MapSetA server1
loaderPlugin 1 MyGrid MapSetA server2
loaderPlugin 1 MyGrid MapSetA server3
loaderPlugin 1 MyGrid MapSetA server4
txCallbackPlugin 2 MyGrid MapSetA server1
txCallbackPlugin 2 MyGrid MapSetA server2
txCallbackPlugin 2 MyGrid MapSetA server3
txCallbackPlugin 2 MyGrid MapSetA server4

54 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsconfigcontainerservers.html

The following example shows the output of the osgiCurrent command when
server2 was started with a newer ranking of the loaderPlugin:
OSGi Service Name Current Ranking ObjectGrid Name MapSet Name Server Name
----------------- --------------- --------------- ----------- -----------
loaderPlugin 1 MyGrid MapSetA server1
loaderPlugin 2 MyGrid MapSetA server2
loaderPlugin 1 MyGrid MapSetA server3
loaderPlugin 1 MyGrid MapSetA server4
txCallbackPlugin 2 MyGrid MapSetA server1
txCallbackPlugin 2 MyGrid MapSetA server2
txCallbackPlugin 2 MyGrid MapSetA server3
txCallbackPlugin 2 MyGrid MapSetA server4

v Run the osgiAll command to verify that the plug-in services have been correctly
started on each eXtreme Scale container server.
When bundles start that contain services that an ObjectGrid configuration is
referencing, the eXtreme Scale runtime environment automatically tracks the
plug-in, but does not immediately use it. The osgiAll command shows which
plug-ins are available for each server.
When run without any parameters, all services are shown for all grids and
servers. Additional filters, including the -serviceName <service_name> filter can
be specified to limit the output to a single service or a subset of the data grid.
The following example shows the output of the osgiAll command when two
plug-ins are started on two servers. The loaderPlugin has both rankings 1 and 2
started and the txCallbackPlugin has ranking 1 started. The summary message at
the end of the output confirms that both servers see the same service rankings:
Server: server1

OSGi Service Name Available Rankings
----------------- ------------------
loaderPlugin 1, 2
txCallbackPlugin 1

Server: server2
OSGi Service Name Available Rankings
----------------- ------------------
loaderPlugin 1, 2
txCallbackPlugin 1

Summary - All servers have the same service rankings.

The following example shows the output of the osgiAll command when the
bundle that includes the loaderPlugin with ranking 1 is stopped on server1. The
summary message at the bottom of the output confirms that server1 is now
missing the loaderPlugin with ranking 1:
Server: server1

OSGi Service Name Available Rankings
----------------- ------------------
loaderPlugin 2
txCallbackPlugin 1

Server: server2
OSGi Service Name Available Rankings
----------------- ------------------
loaderPlugin 1, 2
txCallbackPlugin 1

Summary - The following servers are missing service rankings:
Server OSGi Service Name Missing Rankings
------ ----------------- ----------------
server1 loaderPlugin 1

The following example shows the output if the service name is specified with
the -sn argument, but the service does not exist:

Chapter 2. Scenarios 55

Server: server2
OSGi Service Name Available Rankings
----------------- ------------------
invalidPlugin No service found

Server: server1
OSGi Service Name Available Rankings
----------------- ------------------
invalidPlugin No service found

Summary - All servers have the same service rankings.

v Run the osgiCheck command to check sets of plug-in services and rankings to
see if they are available.
The osgiCheck command accepts one or more sets of service rankings in the
form: -serviceRankings <service name>;<ranking>[,<serviceName>;<ranking>]

When the rankings are all available, the method returns with an error level of 0.
If one or more rankings are not available, a non-zero error level is set. A table of
all of the servers that do not include the specified service rankings is displayed.
Additional filters can be used to limit the service check to a subset of the
available servers in the eXtreme Scale domain.
For example, if the specified ranking or service is absent, the following message
is displayed:
Server OSGi Service Unavailable Rankings
------ ------------ --------------------
server1 loaderPlugin 3
server2 loaderPlugin 3

v Run the osgiUpdate command to update the ranking of one or more plug-ins for
all servers in a single ObjectGrid and MapSet in a single operation.
The command accepts one or more sets of service rankings in the form:
-serviceRankings <service name>;<ranking>[,<serviceName>;<ranking>] -g
<grid name> -ms <mapset name>

With this command, you can complete the following operations:
– Verify that the specified services are available for updating on each of the

servers.
– Change the state of the grid to offline using the StateManager interface. See

Managing ObjectGrid availability for more information. This process quiesces
the grid and waits until any running transactions have completed and
prevents any new transactions from starting. This process also signals any
ObjectGridLifecycleListener and BackingMapLifecycleListener plug-ins to
discontinue any transactional activity. See “Plug-ins for providing event
listeners” on page 296 for information about event listener plug-ins.

– Update each eXtreme Scale container running in an OSGi framework to use
the new service versions.

– Changes the state of the grid to online, allowing transactions to continue.
The update process is idempotent so that if a client fails to complete any one
task, it results in the operation being rolled back. If a client is unable to perform
the rollback or is interrupted during the update process, the same command can
be issued again, and it continues at the appropriate step.
If the client is unable to continue, and the process is restarted from another
client, use the -force option to allow the client to perform the update. The
osgiUpdate command prevents multiple clients from updating the same map set
concurrently. For more details about the osgiUpdate command, see Updating
OSGi services for eXtreme Scale plug-ins with xscmd.

56 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txssetavail.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsadminosgi.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsadminosgi.html

Configuring servers with OSGi Blueprint
You can configure WebSphere eXtreme Scale container servers using an OSGi
blueprint XML file, allowing simplified packaging and development of
self-contained server bundles.

Before you begin

This topic assumes that the following tasks have been completed:
v The Eclipse Equinox OSGi framework has been installed and started with either

the Eclipse Gemini or Apache Aries blueprint container.
v The eXtreme Scale server bundle has been installed and started.
v The eXtreme Scale dynamic plug-ins bundle has been created.
v The eXtreme Scale ObjectGrid descriptor XML file and deployment policy XML

file have been created.

About this task

This task describes how to configure an eXtreme Scale server with a container
using a blueprint XML file. The result of the procedure is a container bundle.
When the container bundle is started, the eXtreme Scale server bundle will track
the bundle, parse the server XML and start a server and container.

A container bundle can optionally be combined with the application and eXtreme
Scale plug-ins when dynamic plug-in updates are not required or the plug-ins do
not support dynamic updating.

Procedure
1. Create a Blueprint XML file with the objectgrid namespace included. You can

name the file anything. However, it must include the blueprint namespace:
<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance
xmlns:objectgrid="http://www.ibm.com/schema/objectgrid"
xsi:schemaLocation="http://www.ibm.com/schema/objectgrid

http://www.ibm.com/schema/objectgrid/objectgrid.xsd">
...
</blueprint>

2. Add the XML definition for the eXtreme Scale server with the appropriate
server properties. See the Spring descriptor XML file for details on all available
configuration properties. See the following example of the XML definition:
<objectgrid:server id="xsServer" tracespec="ObjectGridOSGi=all=enabled"
tracefile="logs/osgi/wxsserver/trace.log" jmxport="1199" listenerPort="2909">
<objectgrid:catalog host="catserver1.mycompany.com" port="2809" />
<objectgrid:catalog host="catserver2.mycompany.com" port="2809" />
</objectgrid:server>

3. Add the XML definition for the eXtreme Scale container with the reference to
the server definition and the ObjectGrid descriptor XML and ObjectGrid
deployment XML files embedded in the bundle; for example:
<objectgrid:container id="container"

objectgridxml="/META-INF/objectGrid.xml"
deploymentxml="/META-INF/objectGridDeployment.xml"
server="xsServer" />

4. Store the Blueprint XML file in the container bundle. The Blueprint XML must
be stored in the OSGI-INF/blueprint directory for the Blueprint container to be
found.

Chapter 2. Scenarios 57

To store the Blueprint XML in a different directory, you must specify the
Bundle-Blueprint manifest header; for example:
Bundle-Blueprint: OSGI-INF/blueprint.xml

5. Package the files into a single bundle JAR file. See the following example of a
bundle directory hierarchy:
MyBundle.jar

/META-INF/manifest.mf
/META-INF/objectGrid.xml
/META-INF/objectGridDeployment.xml
/OSGI-INF/blueprint/blueprint.xml

Results

An eXtreme Scale container bundle is now created and can be installed in Eclipse
Equinox. When the container bundle is started, the eXtreme Scale server runtime
environment in the eXtreme Scale server bundle, will automatically start the
singleton eXtreme Scale server using the parameters defined in the bundle, and
starts a container server. The bundle can be stopped and started, which results in
the container stopping and starting. The server is a singleton and does not stop
when the bundle is started the first time.

Using JCA to connect transactional applications to eXtreme Scale
clients

The following scenario is about connecting clients to applications that participate
in transactions.

Before you begin

Read the Transaction processing in the Java EE applications overview topic to learn
more about transaction support.

About this task

The Java EE Connector Architecture (JCA) provides support for clients that are
using Java Transaction API (JTA). Through JTA, client management is simplified
and accomplished using Java Platform, Enterprise Edition (Java EE). The JCA
specification also supports resource adapters that you can use to connect
applications to eXtreme Scale clients. A resource adapter is a system-level software
driver that a Java application uses to connect to an enterprise information system
(EIS). A resource adapter plugs into an application server and provides
connectivity between the EIS, the application server, and the enterprise application.
WebSphere eXtreme Scale provides it own resource adapter, which you can install
without any required configuration.

As with previous versions of the product, you can use transactions to process a
single unit of work to the data grid. With the support of JCA, when you commit
those transactions you can enlist resources for that transaction in one-phase
commit, which has the following benefits:
v Simplified eXtreme Scale application development. Previously, developers

coordinated eXtreme Scale transactions with resources, such as enterprise beans,
servlets, and web containers. Because no rollback mechanism existed, developers
had no simple way to recover failures.

v Tighter integration exists with WebSphere Application Server, which includes
last participant support to enlist in global transactions if necessary.

58 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Scenario goals

After completing this scenario, you will know how to complete the following
goals:
v Use Java Transaction API (JTA) support to develop application components that

use transactions.
v Connect your applications with eXtreme Scale clients.

Transaction processing in Java EE applications
WebSphere eXtreme Scale provides its own resource adapter that you can use to
connect applications to the data grid and process local transactions.

Through support from the eXtreme Scale resource adapter, Java Platform,
Enterprise Edition (Java EE) applications can look up eXtreme Scale client
connections and demarcate local transactions using Java EE local transactions or
using the eXtreme Scale APIs. When the resource adapter is configured, you can
complete the following actions with your Java EE applications:
v Look up or inject eXtreme Scale resource adapter connection factories within a

Java EE application component.
v Obtain standard connection handles to the eXtreme Scale client and share them

between application components using Java EE conventions.
v Demarcate eXtreme Scale transactions using either the

javax.resource.cci.LocalTransaction API or the
com.ibm.websphere.objectgrid.Session interface.

v Use the entire eXtreme Scale client API, such as the ObjectMap API and
EntityManager API.

The following additional capabilities are available with WebSphere Application
Server:
v Enlist eXtreme Scale connections with a global transaction as a last participant

with other two-phase commit resources. The eXtreme Scale resource adapter
provides local transaction support, with a single-phase commit resource. With
WebSphere Application Server, your applications can enlist one, single-phase
commit resource into a global transaction through last participant support.

v Automatic resource adapter installation when the profile is augmented.
v Automatic security principal propagation.

Administrator responsibilities

The eXtreme Scale resource adapter is installed into the Java EE application server
or embedded with the application. After you install the resource adapter, the
administrator creates one or more resource adapter connection factories for each
catalog service domain and optionally each data grid instance. The connection
factory identifies the properties that are required to communicate with the data
grid.

Applications reference the connection factory, which establishes the connection to
the remote data grid. Each connection factory hosts a single eXtreme Scale client
connection that is reused for all application components.

Chapter 2. Scenarios 59

Important: Because the eXtreme Scale client connection might include a near
cache, applications must not share a connection. A connection factory must exist
for a single application instance to avoid problems sharing objects between
applications.

The connection factory hosts an eXtreme Scale client connection, which is shared
between all referencing application components. You can use a managed bean
(MBean) to access information about the client connection or to reset the
connection when it is no longer needed.

Application developer responsibilities

An application developer creates resource references for managed connection
factories in the application deployment descriptor or with annotations. Each
resource reference includes a local reference for the eXtreme Scale connection
factory, as well as the resource-sharing scope.

Important: Enabling resource sharing is important because it allows the local
transaction to be shared between application components.

Applications can inject the connection factory into the Java EE application
component, or it can look up the connection factory using Java Naming Directory
Interface (JNDI). The connection factory is used to obtain connection handles to the
eXtreme Scale client connection. The eXtreme Scale client connection is managed
independently from the resource adapter connection and is established on first use,
and reused for all subsequent connections.

After finding the connection, the application retrieves an eXtreme Scale session
reference. With the eXtreme Scale session reference, the application can use the
entire eXtreme Scale client APIs and features.

You can demarcate transactions in one of the following ways:
v Use the com.ibm.websphere.objectgrid.Session transaction demarcation methods.
v Use the javax.resource.cci.LocalTransaction local transaction.
v Use a global transaction, when you use WebSphere Application Server with last

participant support enabled. When you select this approach for demarcation,
you must:
– Use an application-managed global transaction with the

javax.transaction.UserTransaction.
– Use a container-managed transaction.

Application deployer responsibilities

The application deployer binds the local reference to the resource adapter
connection factory that the application developer defines to the resource adapter
connection factories that the administrator defines. The application deployer must
assign the correct connection factory type and scope to the application and ensure
that the connection factory is not shared between applications to avoid Java object
sharing. The application deployer is also responsible for configuring and mapping
other appropriate configuration information that is common to all connection
factories.

60 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Installing an eXtreme Scale resource adapter
The WebSphere eXtreme Scale resource adapter is Java Connector Architecture
(JCA) 1.5 compatible and can be installed on a Java 2 Platform, Enterprise Edition
(J2EE) 1.4 or later application server such as WebSphere Application Server.

Before you begin

The resource adapter is in the wxsra.rar resource adapter archive (RAR) file,
which is available in all installations of eXtreme Scale. The RAR file is in the
following directories:
v For WebSphere Application Server installations: wxs_install_root/

optionalLibraries/ObjectGrid

v For stand-alone installations: wxs_install_root/ObjectGrid/lib directory

The resource adapter is coupled with the eXtreme Scale runtime environment. It
requires the eXtreme Scale runtime JAR files in the correct classpath. In general,
you can upgrade the eXtreme Scale runtime environment without updating the
resource adapter. Upgrading the eXtreme Scale runtime environment also upgrades
the resource adapter runtime environment. The resource adapter supports version
8.5 and up to two versions later of the eXtreme Scale runtime environment. Later
versions of the resource adapter might require later versions of the eXtreme Scale
runtime environment as they become available.

The wxsra.rar file requires one of the eXtreme Scale client runtime JAR files to
operate. For details about which client runtime JAR file is appropriate, see Runtime
files for WebSphere eXtreme Scale stand-alone installation and Runtime files for
WebSphere eXtreme Scale integrated with WebSphere Application Server, which
include details about the available runtime JAR files.

About this task

You can install the eXtreme Scale resource adapter using several options that allow
for flexible deployment scenarios. The resource adapter can be embedded with the
Java Platform, Enterprise Edition (Java EE) application, or it can be installed as a
stand-alone RAR file that is shared between applications.

Embedding the resource adapter with the application simplifies deployment
because connection factories are only created within the scope of the application
and cannot be shared between applications. With the resource adapter embedded
in the application, you can also embed the cache objects and ObjectGrid client
plug-in classes within the application. Embedding the resource adapter also
protects the application from inadvertently sharing cache objects between
applications, which can result in java.lang.ClassCastExceptions exceptions.

By installing the wxsra.rar file as a stand-alone resource adapter, you can create
resource manager connection factories at the node scope. This option is useful in
the following situations:
v When it is not practical to embed the wxsra.rar file inside the application
v When the version of eXtreme Scale is not known at build time
v When you want to share an eXtreme Scale client connection with multiple

applications

Important: In multiple versions of WebSphere Application Server, up to Version
8.0.2, you cannot install the eXtreme Scale resource adapter in an application EAR

Chapter 2. Scenarios 61

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsinstsandalonejars.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsinstsandalonejars.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsinstallwasjars.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsinstallwasjars.html

file and in the stand-alone server simultaneously. The result, when you use the
enterprise archive (EAR) file that also has the RAR file installed, is that the
application experiences an exception, such as ClassCastException:
com.ibm.websphere.xs.ra.XSConnectionFactory incompatible with
com.ibm.websphere.xs.ra.XSConnectionFactory. The following example WebSphere
Application Server message and call stack for this error are displayed when a
servlet encounters this exception:
SRVE0068E: An exception was thrown by one of the service methods of the servlet [ClientServlet]
in application [JTASampleClientEAR]. Exception created : [java.lang.ClassCastException:
com.ibm.websphere.xs.ra.XSConnectionFactory incompatible with com.ibm.websphere.xs.ra.XSConnectionFactory
at com.ibm.websphere.xs.sample.jtasample.WXSClientServlet.connectClient(WXSClientServlet.java:484)
at com.ibm.websphere.xs.sample.jtasample.WXSClientServlet.doGet(WXSClientServlet.java:200)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:575)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:668)
at com.ibm.ws.webcontainer.servlet.ServletWrapper.service(ServletWrapper.java:1214)
at com.ibm.ws.webcontainer.servlet.ServletWrapper.handleRequest(ServletWrapper.java:774)
at com.ibm.ws.webcontainer.servlet.ServletWrapper.handleRequest(ServletWrapper.java:456)

Procedure
v Install an embedded eXtreme Scale resource adapter. When the wxsra.rar file

is embedded in the application EAR file, the resource adapter must have access
to the eXtreme Scale runtime libraries.
For applications that run in WebSphere Application Server, the following choices
and subsequent actions are available:

Option Description

If eXtreme Scale is integrated with the
WebSphere Application Server node

The runtime library files are already
available in the system classpath, and no
other action is required.

If eXtreme Scale is not integrated with the
WebSphere Application Server node

You must include the wsogclient.jar file in
the wxsra.rar classpath.

For applications that do not run in WebSphere Application Server, the client
runtime library file, ogclient.jar, or the server runtime library file,
objectgrid.jar, must be in the classpath of the RAR file.

v Install a stand-alone eXtreme Scale resource adapter. When you install the
wxsra.rar file as a stand-alone resource adapter, it must have access to the
eXtreme Scale runtime libraries.
For applications that run in WebSphere Application Server, the following choices
and subsequent actions are available:

Option Description

If eXtreme Scale is integrated with the
WebSphere Application Server node

The runtime library files are already
available in the system classpath, and no
other action is required.

If eXtreme Scale is not integrated with the
WebSphere Application Server node

You must include the wsogclient.jar file in
the wxsra.rar classpath.

For applications that do not run in WebSphere Application Server, the client
runtime library file, ogclient.jar, or the server runtime library file,
objectgrid.jar, must be in the classpath of the RAR file.
1. Give the resource adapter access to any shared classes. All ObjectGrid

plug-in classes and the applications that use them must share a class loader.
Since the resource adapter is shared by multiple applications, all classes must
be accessible by the same class loader. You can create this access by using a
shared library between all applications that interact with the resource
adapter.

62 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

What to do next

Now that you have installed the eXtreme Scale resource adapter, you can configure
connection factories so that your Java EE applications can connect to a remote
eXtreme Scale data grid.

Configuring eXtreme Scale connection factories
An eXtreme Scale connection factory allows Java EE applications to connect to a
remote WebSphere eXtreme Scale data grid. Use custom properties to configure
resource adapters.

Before you begin

Before you create the connection factories, you must install the resource adapter.

About this task

After you install the resource adapter, you can create one or more resource adapter
connection factories that represent eXtreme Scale client connections to remote data
grids. Complete the following steps to configure a resource adapter connection
factory and use it within an application.

You can create an eXtreme Scale connection factory at the node scope for
stand-alone resource adapters or within the application for embedded resource
adapters. See the related topics for information about how to create connection
factories in WebSphere Application Server.

Procedure
1. Using the WebSphere Application Server administrative console to create an

eXtreme Scale connection factory that represents an eXtreme Scale client
connection. See Configuring Java EE Connector connection factories in the
administrative console. After you specify properties for the connection factory
in the General Properties panel, you must click Apply for the Custom
properties link to become active.

2. Click Custom properties in the administrative console. Set the following
custom properties to configure the client connection to the remote data grid.

Table 1. Custom properties for configuring connection factories
Property Name Type Description

ConnectionName String The name of the eXtreme Scale client connection.

The ConnectionName helps identify the connection when exposed as a managed
bean. This property is optional. If not specified, the ConnectionName is undefined.

CatalogServiceEndpoints String The catalog service domain end points in the format:
<host>:<port>[,<host><port>]. For more information, see Catalog service domain
settings.

This property is required if the catalog service domain is not set.

CatalogServiceDomain String The catalog service domain name that is defined in WebSphere Application Server.
For more information, see Configuring catalog servers and catalog service domains.

This property is required if the CatalogServiceEndpoints property is not set.

ObjectGridName String (Optional) The name of the data grid that this connection factory connects to. If not
specified, then the application must supply the name when obtaining the
connection from the connection factory.

ObjectGridURL String (Optional) The URL of the client data grid, override XML file. This property is not
valid if the ObjectGridResource is also specified. For more information, see
Configuring clients.

Chapter 2. Scenarios 63

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/was_helps/catalogservers/ucatalogservicedomain.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/was_helps/catalogservers/ucatalogservicedomain.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsconfigcsdomains.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsconfigclient.html

Table 1. Custom properties for configuring connection factories (continued)
Property Name Type Description

ObjectGridResource String The resource path of the client data grid, override XML file. This property is
optional and invalid if ObjectGridURL is also specified. For more information, see
Configuring clients.

ClientPropertiesURL String (Optional) The URL of the client properties file. This property is not valid if the
ClientPropertiesResource is also specified. For more information, see Client
properties file for more information.

ClientPropertiesResource String (Optional) The resource path of the client properties file. This property is not valid
if the ClientPropertiesURL is also specified. For more information, see Client
properties file for more information.

WebSphere Application Server also allows other configuration options for
adjusting connection pools and managing security. See the related information
for links to WebSphere Application Server Information Center topics.

What to do next

Create an eXtreme Scale connection factory reference in the application. See
“Configuring applications to connect with eXtreme Scale” on page 65 for more
information.

Configuring Eclipse environments to use eXtreme Scale
connection factories

The eXtreme Scale resource adapter includes custom connection factories. To use
these interfaces in your eXtreme Scale Java Platform, Enterprise Edition (Java EE)
applications, you must import the wxsra.rar file into your workspace and link it to
your application project.

Before you begin
v You must install Rational® Application Developer Version 7 or later or Eclipse

Java EE IDE for Web Developers Version 1.4 or later.
v A server runtime environment must be configured.

Procedure
1. Import the wxsra.rar file into your project by selecting File > Import. The

Import window is displayed.
2. Select Java EE > RAR file. The Connector Import window is displayed.
3. To specify the connector file, click Browse to locate the wxsra.rar file. The

wxsra.rar file is installed when you install a resource adapter. You can find the
resource adapter archive (RAR) file in the following location:
v For WebSphere Application Server installations: wxs_install_root/

optionalLibraries/ObjectGrid

v For stand-alone installations: wxs_install_root/ObjectGrid/lib directory

4. Create a name for the new connector project in the Connector project field. You
can use wxsra, which is the default name.

5. Choose a Target runtime, which references a Java EE server runtime
environment.

6. Optionally select Add project to EAR to embed the RAR into an existing EAR
project.

Results

The RAR file is now imported into your Eclipse workspace.

64 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsconfigclient.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxscliprops.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxscliprops.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxscliprops.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxscliprops.html

What to do next

You can reference the RAR project from your other Java EE projects using the
following steps:
1. Right click on the project and click Properties.
2. Select Java Build Path.
3. Select the Projects tab.
4. Click Add.
5. Select the wxsra connector project, and click OK.
6. Click OK again to close the Properties window.

The eXtreme Scale resource adapter classes are now in the classpath. To install
product runtime JAR files using the Eclipse console, see “Setting up a stand-alone
development environment” on page 125 for more information.

Configuring applications to connect with eXtreme Scale
Applications use an eXtreme Scale connection factory to create connection handles
to an eXtreme Scale client connection. You can configure resource adapter
connection factory references using this task.

Before you begin

Create a Java Platform, Enterprise Edition (Java EE) application component, such
as an Enterprise JavaBeans (EJB) container or servlet.

Procedure

Create a javax.resource.cci.ConnectionFactory resource reference in the application
component. Resource references are declared in the deployment descriptor by the
application provider. The connection factory represents an eXtreme Scale client
connection that can be used to communicate with one or more named data grids
that are available in the catalog service domain.

Securing J2C client connections
Use the Java 2 Connector (J2C) architecture to secure connections between
WebSphere eXtreme Scale clients and your applications.

About this task

Applications reference the connection factory, which establishes the connection to
the remote data grid. Each connection factory hosts a single eXtreme Scale client
connection that is reused for all application components.

Important: Since the eXtreme Scale client connection might include a near cache, it
is important that applications do not share a connection. A connection factory must
exist for a single application instance to avoid problems sharing objects between
applications.

You can set the credential generator with the API or in the client properties file. In
the client properties file, the securityEnabled and credentialGenerator properties
are used. The following code example is displayed on multiple lines for
publication purposes:

Chapter 2. Scenarios 65

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsinstallwasjars.html

securityEnabled=true
credentialGeneratorClass=com.ibm.websphere.objectgrid.security.plugins.builtins.

UserPasswordCredentialGenerator
credentialGeneratorProps=operator XXXXXX

The credential generator and credential in the client properties file are used for the
eXtreme Scale connect operation and the default J2C credentials. Therefore, the
credentials that are specified with the API are used at J2C connect time for the J2C
connection. However, if no credentials are specified at J2C connect time, then the
credential generator in the client properties file is used.

Procedure
1. Set up secure access where the J2C connection represents the eXtreme Scale

client. Use the ClientPropertiesResource connection factory property or the
ClientPropertiesURL connection factory property to configure client
authentication.

2. Configure the client security properties to use the connection factory that
references the appropriate credential generator object for eXtreme Scale. These
properties are also compatible with eXtreme Scale server security. For example,
use the WSTokenCredentialGenerator credential generator for WebSphere
credentials when eXtreme Scale is installed with WebSphere Application Server.
Alternatively, use the UserPasswordCredentialGenerator credential generator
when you run the eXtreme Scale in a stand-alone environment. In the following
example, credentials are passed programmatically using the API call instead of
using the configuration in the client properties:
XSConnectionSpec spec = new XSConnectionSpec();
spec.setCredentialGenerator(new UserPasswordCredentialGenerator("operator", "xxxxxx"));
Connection conn = connectionFactory.getConnection(spec);

3. (Optional) Disable the near cache, if required.
All J2C connections from a single connection factory share a single near cache.
Grid entry permissions and map permissions are validated on the server, but
not on the near cache. When an application uses multiple credentials to create
J2C connections, and the configuration uses specific permissions for grid entries
and maps for those credentials, then disable the near cache. Disable the near
cache using the connection factory property, ObjectGridResource or
ObjectGridURL. Set the numberOfBuckets property to 0.

4. (Optional) Set security policy settings, if required.
If the J2EE application contains the embedded eXtreme Scale resource adapter
archive (RAR) file configuration, you might be required to set additional
security policy settings in the security policy file for the application. For
example, these policies are required:
permission com.ibm.websphere.security.WebSphereRuntimePermission "accessRuntimeClasses";
permission java.lang.RuntimePermission "accessDeclaredMembers";
permission javax.management.MBeanTrustPermission "register";
permission java.lang.RuntimePermission "getClassLoader";

Additionally, any property or resource files used by connection factories require
file or other permissions, such as permission java.io.FilePermission
"filePath";. For WebSphere Application Server, the policy file is
META-INF/was.policy, and it is located in the J2EE EAR file.

Results

The client security properties that you configured on the catalog service domain
are used as default values. The values that you specify override any properties that
are defined in the client.properties files.

66 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

What to do next

Use eXtreme Scale data access APIs to develop client components that you want to
use transactions.

Developing eXtreme Scale client components to use
transactions

The WebSphere eXtreme Scale resource adapter provides client connection
management and local transaction support. With this support, Java Platform,
Enterprise Edition (Java EE) applications can look up eXtreme Scale client
connections and demarcate local transactions with Java EE local transactions or the
eXtreme Scale APIs.

Before you begin

Create an eXtreme Scale connection factory resource reference.

About this task

There are several options for working with eXtreme Scale data access APIs. In all
cases, the eXtreme Scale connection factory must be injected into the application
component, or looked up in Java Naming Directory Interface (JNDI). After the
connection factory is looked up, you can demarcate transactions and create
connections to access the eXtreme Scale APIs.

You can optionally cast the javax.resource.cci.ConnectionFactory instance to a
com.ibm.websphere.xs.ra.XSConnectionFactory that provides additional options for
retrieving connection handles. The resulting connection handles must be cast to the
com.ibm.websphere.xs.ra.XSConnection interface, which provides the getSession
method. The getSession method returns a com.ibm.websphere.objectgrid.Session
object handle that allows applications to use any of the eXtreme Scale data access
APIs, such as the ObjectMap API and EntityManager API.

The Session handle and any derived objects are valid for the life of the
XSConnection handle.

The following procedures can be used to demarcate eXtreme Scale transactions.
You cannot mix each of the procedures. For example, you cannot mix global
transaction demarcation and local transaction demarcation in the same application
component context.

Procedure
v Use autocommit, local transactions. Use the following steps to automatically

commit data access operations or operations that do not support an active
transaction:
1. Retrieve a com.ibm.websphere.xs.ra.XSConnection connection outside of the

context of a global transaction.
2. Retrieve and use the com.ibm.websphere.objectgrid.Session session to interact

with the data grid.
3. Invoke any data access operation that supports autocommit transactions.
4. Close the connection.

v Use an ObjectGrid session to demarcate a local transaction. Use the following
steps to demarcate an ObjectGrid transaction using the Session object:

Chapter 2. Scenarios 67

1. Retrieve a com.ibm.websphere.xs.ra.XSConnection connection.
2. Retrieve the com.ibm.websphere.objectgrid.Session session.
3. Use the Session.begin() method to start the transaction.
4. Use the session to interact with the data grid.
5. Use the Session.commit() or rollback() methods to end the transaction.
6. Close the connection.

v Use a javax.resource.cci.LocalTransction transaction to demarcate a local
transaction. Use the following steps to demarcate an ObjectGrid transaction
using the javax.resource.cci.LocalTransaction interface:
1. Retrieve a com.ibm.websphere.xs.ra.XSConnection connection.
2. Retrieve the javax.resource.cci.LocalTransaction transaction using the

XSConnection.getLocalTransaction() method.
3. Use the LocalTransaction.begin() method to start the transaction.
4. Retrieve and use the com.ibm.websphere.objectgrid.Session session to interact

with the data grid.
5. Use the LocalTransaction.commit() or rollback() methods to end the

transaction.
6. Close the connection.

v Enlist the connection in a global transaction. This procedure also applies to
container-managed transactions:
1. Begin the global transaction through the javax.transaction.UserTransaction

interface or with a container-managed transaction.
2. Retrieve a com.ibm.websphere.xs.ra.XSConnection connection.
3. Retrieve and use the com.ibm.websphere.objectgrid.Session session.
4. Close the connection.
5. Commit or roll back the global transaction.

Example

See the following code example, which demonstrates the previous steps for
demarcating eXtreme Scale transactions.

// (C) Copyright IBM Corp. 2001, 2012.
// All Rights Reserved. Licensed Materials - Property of IBM.
package com.ibm.ws.xs.ra.test.ee;

import javax.naming.InitialContext;
import javax.resource.cci.Connection;
import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.LocalTransaction;
import javax.transaction.Status;
import javax.transaction.UserTransaction;

import junit.framework.TestCase;

import com.ibm.websphere.objectgrid.ObjectMap;
import com.ibm.websphere.objectgrid.Session;
import com.ibm.websphere.xs.ra.XSConnection;

/**
* This sample requires that it runs in a J2EE context in your
* application server. For example, using the JUnitEE framework servlet.
*
* The code in these test methods would typically reside in your own servlet,
* EJB, or other web component.
*
* The sample depends on a configured WebSphere eXtreme Scale connection
* factory registered at of JNDI Name of "eis/embedded/wxscf" that defines
* a connection to a grid containing a Map with the name "Map1".
*

68 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

* The sample does a direct lookup of the JNDI name and does not require
* resource injection.
*/
public class DocSampleTests extends TestCase {

public final static String CF_JNDI_NAME = "eis/embedded/wxscf";
public final static String MAP_NAME = "Map1";

Long key = null;
Long value = null;
InitialContext ctx = null;
ConnectionFactory cf = null;

public DocSampleTests() {
}
public DocSampleTests(String name) {

super(name);
}
protected void setUp() throws Exception {

ctx = new InitialContext();
cf = (ConnectionFactory)ctx.lookup(CF_JNDI_NAME);
key = System.nanoTime();
value = System.nanoTime();

}
/**
* This example runs when not in the context of a global transaction
* and uses autocommit.
*/
public void testLocalAutocommit() throws Exception {

Connection conn = cf.getConnection();
try {

Session session = ((XSConnection)conn).getSession();
ObjectMap map = session.getMap(MAP_NAME);
map.insert(key, value); // Or various data access operations

}
finally {

conn.close();
}

}

/**
* This example runs when not in the context of a global transaction
* and demarcates the transaction using session.begin()/session.commit()
*/
public void testLocalSessionTransaction() throws Exception {

Session session = null;
Connection conn = cf.getConnection();
try {

session = ((XSConnection)conn).getSession();
session.begin();
ObjectMap map = session.getMap(MAP_NAME);
map.insert(key, value); // Or various data access operations
session.commit();

}
finally {

if (session != null && session.isTransactionActive()) {
try { session.rollback(); }
catch (Exception e) { e.printStackTrace(); }

}
conn.close();

}
}

/**
* This example uses the LocalTransaction interface to demarcate
* transactions.
*/
public void testLocalTranTransaction() throws Exception {

LocalTransaction tx = null;
Connection conn = cf.getConnection();
try {

tx = conn.getLocalTransaction();
tx.begin();
Session session = ((XSConnection)conn).getSession();
ObjectMap map = session.getMap(MAP_NAME);
map.insert(key, value); // Or various data access operations
tx.commit(); tx = null;

}
finally {

if (tx != null) {

Chapter 2. Scenarios 69

try { tx.rollback(); }
catch (Exception e) { e.printStackTrace(); }

}
conn.close();

}
}

/**
* This example depends on an externally managed transaction,
* the externally managed transaction might typically be present in
* an EJB with its transaction attributes set to REQUIRED or REQUIRES_NEW.
* NOTE: If there is NO global transaction active, this example runs in auto-commit
* mode because it doesn’t verify a transaction exists.
*/
public void testGlobalTransactionContainerManaged() throws Exception {

Connection conn = cf.getConnection();
try {

Session session = ((XSConnection)conn).getSession();
ObjectMap map = session.getMap(MAP_NAME);
map.insert(key, value); // Or various data access operations

}
catch (Throwable t) {

t.printStackTrace();
UserTransaction tx = (UserTransaction)ctx.lookup("java:comp/UserTransaction");
if (tx.getStatus() != Status.STATUS_NO_TRANSACTION) {

tx.setRollbackOnly();
}

}
finally {

conn.close();
}

}

/**
* This example demonstrates starting a new global transaction using the
* UserTransaction interface. Typically the container starts the global
* transaction (for example in an EJB with a transaction attribute of
* REQUIRES_NEW), but this sample will also start the global transaction
* using the UserTransaction API if it is not currently active.
*/
public void testGlobalTransactionTestManaged() throws Exception {

boolean started = false;
UserTransaction tx = (UserTransaction)ctx.lookup("java:comp/UserTransaction");
if (tx.getStatus() == Status.STATUS_NO_TRANSACTION) {

tx.begin();
started = true;

}
// else { called with an externally/container managed transaction }
Connection conn = null;
try {

conn = cf.getConnection(); // Get connection after the global tran starts
Session session = ((XSConnection)conn).getSession();
ObjectMap map = session.getMap(MAP_NAME);
map.insert(key, value); // Or various data access operations
if (started) {

tx.commit(); started = false; tx = null;
}

}
finally {

if (started) {
try { tx.rollback(); }
catch (Exception e) { e.printStackTrace(); }

}
if (conn != null) { conn.close(); }

}
}

}

Administering J2C client connections
The WebSphere eXtreme Scale connection factory includes an eXtreme Scale client
connection that can be shared between applications and persisted through
application restarts.

70 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

About this task

The client connection includes a management bean that provides connection status
information and lifecycle management operations.

Procedure

Maintain client connections. When the first connection is obtained from the
XSConnectionFactory connection factory object, an eXtreme Scale client connection
is established to the remote data grid and the ObjectGridJ2CConnection MBean is
created. The client connection is maintained for the life of the process. To end a
client connection, invoke one of the following events::
v Stop the resource adapter. A resource adapter can be stopped, for example, when

it is embedded in an application and the application is stopped.
v Invoke the resetConnection MBean operation on the ObjectGridJ2CConnection

MBean. When the connection is reset, all connections are invalidated,
transactions completed, and the ObjectGrid client connection is destroyed.
Subsequent calls to the getConnection methods on the connection factory result
in a new client connection.

WebSphere Application Server also provides additional management beans for
managing J2C connections, monitoring connection pools, and performance.

Chapter 2. Scenarios 71

72 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Chapter 3. Getting started
After you install the product, you can use the getting started sample to test the
installation and use the product for the first time.

Tutorial: Getting started with WebSphere eXtreme Scale
After you install WebSphere eXtreme Scale in a stand-alone environment, you can
use the getting started sample application as a simple introduction to its capability
as an in-memory data grid. The getting started sample application is only included
in full (client and server) installations of WebSphere eXtreme Scale.

Learning objectives
v Learn about the ObjectGrid descriptor XML file and deployment policy

descriptor XML files that you use to configure your environment
v Start catalog and container servers using the configuration files
v Learn about developing a client application
v Run the client application to insert data into the data grid
v Monitor your data grids with the Web console

Time required

60 minutes

Getting started tutorial lesson 1: Defining data grids with
configuration files

The objectgrid.xml and deployment.xml files are required to start container
servers.

The sample uses the objectgrid.xml and deployment.xml files that are in the
wxs_install_root/ObjectGrid/gettingstarted/xml directory. These files are passed to
the start commands to start container servers and a catalog server. The
objectgrid.xml file is the ObjectGrid descriptor XML file. The deployment.xml file
is the ObjectGrid deployment policy descriptor XML file. These files together
define a distributed topology.

ObjectGrid descriptor XML file

An ObjectGrid descriptor XML file is used to define the structure of the ObjectGrid
that is used by the application. It includes a list of backing map configurations.
These backing maps store the cache data. The following example is a sample
objectgrid.xml file. The first few lines of the file include the required header for
each ObjectGrid XML file. This example file defines the Grid ObjectGrid with Map1
and Map2 backing maps.
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="Grid">

© Copyright IBM Corp. 2009, 2012 73

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html

<backingMap name="Map1" />
<backingMap name="Map2" />

</objectGrid>
</objectGrids>

</objectGridConfig>

Deployment policy descriptor XML file

The deployment policy descriptor XML file is intended to be paired with the
corresponding ObjectGrid XML, the objectgrid.xml file. In the following example,
the first few lines of the deployment.xml file include the required header for each
deployment policy XML file. The file defines the objectgridDeployment element for
the Grid ObjectGrid that is defined in the objectgrid.xml file. Both the Map1 and
Map2 BackingMaps that are defined within the Grid ObjectGrid are included in the
mapSet mapSet that has the numberOfPartitions, minSyncReplicas, and
maxSyncReplicas attributes configured.
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy
../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="Grid">
<mapSet name="mapSet" numberOfPartitions="13" minSyncReplicas="0"

maxSyncReplicas="1" >
<map ref="Map1"/>
<map ref="Map2"/>

</mapSet>
</objectgridDeployment>

</deploymentPolicy>

The numberOfPartitions attribute of the mapSet element specifies the number of
partitions for the mapSet. It is an optional attribute and the default is 1. The
number should be appropriate for the anticipated capacity of the data grid.

The minSyncReplicas attribute of mapSet is to specify the minimum number of
synchronous replicas for each partition in the mapSet. It is an optional attribute
and the default is 0. Primary and replica are not placed until the domain can
support the minimum number of synchronous replicas. To support the
minSyncReplicas value, you need one more container than the value of
minSyncReplicas. If the number of synchronous replicas falls below the value of
minSyncReplicas, write transactions are no longer allowed for that partition.

The maxSyncReplicas attribute of mapSet is to specify the maximum number of
synchronous replicas for each partition in the mapSet. It is an optional attribute
and the default is 0. No other synchronous replicas are placed for a partition after
a domain reaches this number of synchronous replicas for that specific partition.
Adding containers that can support this ObjectGrid can result in an increased
number of synchronous replicas if your maxSyncReplicas value has not already
been met. The sample set the maxSyncReplicas to 1 means the domain will at most
place one synchronous replica. If you start more than one container server instance,
there will be only one synchronous replica placed in one of the container server
instances.

Lesson checkpoint

In this lesson, you learned:
v How to define maps that store the data in the ObjectGrid descriptor XML file.

74 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

v How to use the deployment descriptor XML file to define the number of
partitions and replicas for the data grid.

Getting started tutorial lesson 2: Creating a client application
To insert, delete, update, and retrieve data from your data grid, you must write a
client application. The getting started sample includes a client application that you
can use to learn about creating your own client application.

The Client.java file in the wxs_install_root/ObjectGrid/gettingstarted/client/
src/ directory is the client program that demonstrates how to connect to a catalog
server, obtain the ObjectGrid instance, and use the ObjectMap API. The ObjectMap
API stores data as key-value pairs and is ideal for caching objects that have no
relationships involved. The following steps discuss the contents of the Client.java
file.

If you need to cache objects that have relationships, use the EntityManager API.
1. Connect to the catalog service by obtaining a ClientClusterContext instance.

To connect to the catalog server, use the connect method of ObjectGridManager
API. The connect method that is used requires only the catalog server endpoint
in the format of hostname:port. You can indicate multiple catalog server
endpoints by separating the list of hostname:port values with commas. The
following code snippet demonstrates how to connect to a catalog server and
obtain a ClientClusterContext instance:
ClientClusterContext ccc = ObjectGridManagerFactory.getObjectGridManager().connect("localhost:2809", null, null);

If the connections to the catalog servers succeed, the connect method returns a
ClientClusterContext instance. The ClientClusterContext instance is required to
obtain the ObjectGrid from ObjectGridManager API.

2. Obtain an ObjectGrid instance.
To obtain ObjectGrid instance, use the getObjectGrid method of the
ObjectGridManager API. The getObjectGrid method requires both the
ClientClusterContext instance and the name of the data grid instance. The
ClientClusterContext instance is obtained during the connection to catalog
server. The name of ObjectGrid instance is Grid that is specified in the
objectgrid.xml file. The following code snippet demonstrates how to obtain
the data grid by calling the getObjectGrid method of the ObjectGridManager
API.
ObjectGrid grid = ObjectGridManagerFactory.getObjectGridManager().getObjectGrid(ccc, “Grid”);

3. Get a Session instance.
You can get a Session from the obtained ObjectGrid instance. A Session instance
is required to get the ObjectMap instance, and perform transaction demarcation.
The following code snippet demonstrates how to get a Session instance by
calling the getSession method of the ObjectGrid API.
Session sess = grid.getSession();

4. Get an ObjectMap instance.
After getting a Session, you can get an ObjectMap instance from a Session
instance by calling getMap method of the Session API. You must pass the name
of map as parameter to getMap method to get the ObjectMap instance. The
following code snippet demonstrates how to obtain ObjectMap by calling the
getMap method of the Session API.
ObjectMap map1 = sess.getMap("Map1");

5. Use the ObjectMap methods.

Chapter 3. Getting started 75

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html

After an ObjectMap instance is obtained, you can use the ObjectMap API.
Remember that the ObjectMap interface is a transactional map and requires
transaction demarcation by using the begin and commit methods of the Session
API. If there is no explicit transaction demarcation in the application, the
ObjectMap operations run with auto-commit transactions.
The following code snippet demonstrates how to use the ObjectMap API with
an auto-commit transaction.
map1.insert(key1, value1);

The following code snippet demonstrates how to use the ObjectMap API with
explicit transaction demarcation.
sess.begin();
map1.insert(key1, value1);
sess.commit();

6. Optional: Close the Session. After all of the Session and ObjectMap operations
are complete, close the session with the Session.close() method. Running this
method returns the resources that were being used by the session.
sess.close();

As a result, subsequent getSession() method calls return faster, and fewer
Session objects are in the heap.

Lesson checkpoint

In this lesson, you learned how to create a simple client application for performing
data grid operations.

Getting started tutorial lesson 3: Running the getting started
sample client application

Use the following steps to start your first data grid and run a client to interact
with the data grid. The catalog server, container server, and client all run on a
single server in this example.

The env.sh|bat script is called by the other scripts to set needed environment
variables. Normally you do not need to change this script.

v UNIX Linux ./env.sh

v Windows env.bat

To run the application, you must first start the catalog service process. The catalog
service is the control center of the data grid. The catalog service tracks the
locations of container servers, and controls the placement of data to host container
servers. After the catalog service starts, you can start the container servers, which
store the application data for the data grid. To store multiple copies of the data,
you can start multiple container servers. When all the servers are started, you can
run the client application to insert, update, remove, and get data from the data
grid.
1. Open a terminal session or command-line window.
2. Use the following command to navigate to the gettingstarted directory:

cd wxs_install_root/ObjectGrid/gettingstarted

3. Run the following script to start a catalog service process on localhost:

v UNIX Linux ./runcat.sh

v Windows runcat.bat

76 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html

The catalog service process runs in the current terminal window.
You can also start the catalog service with the startOgServer command. Run
the startOgServer from the wxs_install_root/ObjectGrid/bin directory:

v UNIX Linux ./startOgServer.sh cs0 -catalogServiceEndPoints
cs0:localhost:6600:6601 -listenerPort 2809

v Windows startOgServer.bat cs0 -catalogServiceEndPoints
cs0:localhost:6600:6601 -listenerPort 2809

4. Open another terminal session or command-line window, and run the
following command to start a container server instance:

v UNIX Linux ./runcontainer.sh server0

v Windows runcontainer.bat server0

The container server runs in the current terminal window. If you want to start
more container server instances to support replication, you can repeat this step
with a different server name.
You can also start container servers with the startOgServer command. Run the
startOgServer from the wxs_install_root/ObjectGrid/bin directory:

v UNIX Linux ./startOgServer.sh c0 -catalogServiceEndPoints
localhost:2809 -objectgridFile gettingstarted\xml\objectgrid.xml
-deploymentPolicyFile gettingstarted/xml/deployment.xml

v Windows startOgServer.bat c0 -catalogServiceEndPoints
localhost:2809 -objectgridFile gettingstarted\xml\objectgrid.xml
-deploymentPolicyFile gettingstarted\xml\deployment.xml

5. Open another terminal session or command-line window to run client
commands.
The runclient.sh|bat script runs the simple create, retrieve, update, and delete
(CRUD) client and starts the specified operation. The runclient.sh|bat script is
run with the following parameters:

v UNIX Linux ./runclient.sh command value1 value2

v Windows runclient.bat command value1 value2

For command, use one of the following options:
v Specify as i to insert value2 into data grid with key value1

v Specify as u to update object keyed by value1 to value2

v Specify as d to delete object keyed by value1

v Specify as g to retrieve and display object keyed by value1

a. Add data to the data grid.

Important: If your system is using double byte character sets (DBCS), you
might see garbled or corrupted text when you insert data into the data grid
with the runClient script. This text can display in the output or in the
cache. To work around this issue, update the Java call in the runClient
script to include the -Xargencoding argument, and then specify the DBCS as
a Unicode character set. For example, use the command: \u runClient i
key\u2e81 Hello\2e84World

v UNIX Linux ./runclient.sh i key1 helloWorld

v Windows runclient.bat i key1 helloWorld

b. Search and display the value:

v UNIX Linux ./runclient.sh g key1

Chapter 3. Getting started 77

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html

v Windows runclient.bat g key1

c. Update the value:

v UNIX Linux ./runclient.sh u key1 goodbyeWorld

v Windows runclient.bat u key1 goodbyeWorld

d. Delete the value:

v UNIX Linux ./runclient.sh d key1

v Windows runclient.bat d key1

Lesson checkpoint

In this lesson, you learned:
v How to start catalog servers and container servers
v How to run the sample client application

Getting started tutorial lesson 4: Monitor your environment
You can use the xscmd utility and web console tools to monitor your data grid
environment.

Monitoring with the web console
With the web console, you can chart current and historical statistics. This console
provides some preconfigured charts for high-level overviews, and has a custom
reports page that you can use to build charts from the available statistics. You can
use the charting capabilities in the monitoring console of WebSphere eXtreme Scale
to view the overall performance of the data grids in your environment.

Install the web console as an optional feature when you run the installation
wizard.
1. Start the console server. The startConsoleServer.bat|sh script for starting the

console server is in the wxs_install_root/ObjectGrid/bin directory of your
installation.

2. Log on to the console.
a. From your web browser, go to https://your.console.host:7443, replacing

your.console.host with the host name of the server onto which you
installed the console.

b. Log on to the console.
v User ID: admin

v Password: admin

The console welcome page is displayed.
3. Edit the console configuration. Click Settings > Configuration to review the

console configuration. The console configuration includes information such as:
v Trace string for the WebSphere eXtreme Scale client, such as *=all=disabled

v The Administrator name and password
v The Administrator email address

4. Establish and maintain connections to catalog servers that you want to monitor.
Repeat the following steps to add each catalog server to the configuration.
a. Click Settings > eXtreme Scale Catalog Servers.
b. Add a new catalog server.

78 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html

1) Click the add icon () to register an existing catalog server.
2) Provide information, such as the host name and listener port. See

Planning for network ports for more information about port
configuration and defaults.

3) Click OK.
4) Verify that the catalog server has been added to the navigation tree.

5. Group the catalog servers that you created into a catalog service domain. You
must create a catalog service domain when security is enabled in your catalog
servers because security settings are configured in the catalog service domain.
a. Click Settings > eXtreme Scale Domains page.
b. Add a new catalog service domain.

1) Click the add icon () to register a catalog service domain. Enter
a name for the catalog service domain.

2) After you create the catalog service domain, you can edit the properties.
The catalog service domain properties follow:

Name Indicates the host name of the domain, as assigned by the
administrator.

Catalog servers
Lists one or more catalog servers that belong to the selected
domain. You can add the catalog servers that you created in the
previous step.

Generator class
Specifies the name of the class that implements the
CredentialGenerator interface. This class is used to get
credentials for clients. If you specify a value in this field, the
value overrides the crendentialGeneratorClass property in the
client.properties file.

Generator properties
Specifies the properties for the CredentialGenerator
implementation class. The properties are set to the object with
the setProperties(String) method. The credentialGeneratorprops
value is used only if the value of the credentialGeneratorClass
property is not null. If you specify a value in this field, the
value overrides the credentialGeneratorProps property in the
client.properties file.

eXtreme Scale client properties path
Specifies the path to the client properties file that you edited to
include security properties in a previous step. For example, you
might indicate the c:\ObjectGridProperties\
sampleclient.properties file. If you want to stop the console
from trying to use secure connections, you can delete the value
in this field. After you set the path, the console uses an
unsecured connection.

3) Click OK.
4) Verify that the domain has been added to the navigation tree.

Chapter 3. Getting started 79

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/cxsadmport.html

To view information about an existing catalog service domain, click the name of
the catalog service domain in the navigation tree on the Settings > eXtreme
Scale Domains page.

6. View the connection status. The Current domain field indicates the name of the
catalog service domain that is currently being used to display information in
the web console. The connection status displays next to the name of the catalog
service domain.

7. View statistics for the data grids and servers, or create a custom report.

Monitoring with the xscmd utility
1. Optional: If client authentication is enabled: Open a command-line window. On

the command line, set appropriate environment variables.
a. Set the CLIENT_AUTH_LIB environment variable:

v Windows set CLIENT_AUTH_LIB=<path_to_security_JAR_or_classes>

v UNIX set CLIENT_AUTH_LIB=<path_to_security_JAR_or_classes>
export CLIENT_AUTH_LIB

2. Go to the wxs_home/bin directory.
cd wxs_home/bin

3. Run various commands to display information about your environment.
v Show all the online container servers for the Grid data grid and the mapSet

map set:
xscmd -c showPlacement -g Grid -ms mapSet

v Display the routing information for the data grid.
xscmd -c routetable -g Grid

v Display the number of map entries in the data grid.
xscmd -c showMapSizes -g Grid -ms mapSet

Stopping the servers
After you are done using the client application and monitoring the getting started
sample environment, you can stop the servers.
v If you used the script files to start the servers, use <ctrl+c> to stop the catalog

service process and container servers in the respective windows.
v If you used the startOgServer command to start your servers, use the

stopOgServer command to stop the servers.

Stop the container server:

– UNIX Linux stopOgServer.sh c0 -catalogServiceEndPoints
localhost:2809

– Windows stopOgServer.bat c0 -catalogServiceEndPoints
localhost:2809

Stop the catalog server:

– UNIX Linux stopOgServer.sh cs1 -catalogServiceEndPoints
localhost:2809

– Windows stopOgServer.bat cs1 -catalogServiceEndPoints
localhost:2809

Lesson checkpoint

In this lesson, you learned:
v How to start the web console and connect it to the catalog server

80 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html

v How to monitor data grid and server statistics
v How to stop the servers

Getting started with developing applications
To begin developing WebSphere eXtreme Scale applications, set up a development
environment in Eclipse.

About this task

When you are developing WebSphere eXtreme Scale applications, you can use the
embedded server APIs to create and start servers, ObjectGrid instances, and to
insert data into the data grid. You can unit test your application and the associated
configuration directly in the Eclipse environment.

When you are ready to move your application to a broader environment, you can
create configuration XML files that you import to create your deployment.

Procedure
1. Set up a development environment in Eclipse.

By adding the WebSphere eXtreme Scale Java archive (JAR) files to the
development environment you can begin to use the APIs to develop your
applications.
More information:“Setting up a stand-alone development environment” on
page 125

2. Create a simple application that starts servers, creates an ObjectGrid instance,
and inserts data into the data grid.
a. Use the ServerFactory API to start and stop servers.

More information:Using the embedded server API to start and stop servers
b. Use the ObjectGridManager API to retrieve the ObjectGrid instance that you

created.
More information: “Interacting with an ObjectGrid using the
ObjectGridManager interface” on page 135

c. Use the ObjectMap API to insert data into the data grid.
More information: “Caching objects with no relationships involved
(ObjectMap API)” on page 152The ObjectMap API is the simplest way to
access and write data to the data grid. If your objects have complex
relationships, you can use the following APIs to read, write, and update
data:
v “Accessing data with indexes (Index API)” on page 142
v “Caching objects and their relationships (EntityManager API)” on page

164
v “Retrieving entities and objects (Query API)” on page 190
v “Accessing data with the REST data service” on page 255

For more information about choosing between the different APIs, see
Chapter 5, “Developing applications,” on page 125.

3. Unit test your application.
You can also use the xscmd utility to display information about the running
servers, replicas, and so on. See Administering with the xscmd utility for more
information.

Chapter 3. Getting started 81

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsadminapi.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsxscmd.html

4. When you are satisfied with your application within the development
environment, create XML configuration files and update your application to use
the configuration. The Getting Started sample application provides examples of
these configuration files and a simple Java application that uses the
configuration files.
More information:“Tutorial: Getting started with WebSphere eXtreme Scale” on
page 73

5. Run your application using the XML configuration files. How you start your
servers depends on the environment that you are using.
You can run your application in one of the following containers:
v Stand-alone Java virtual machine (JVM)
v Tomcat
v WebSphere Application Server
v OSGi

82 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsstart.html

Chapter 4. Planning
Before you install WebSphere eXtreme Scale and deploy your data grid
applications, you must decide on your caching topology, complete capacity
planning, review the hardware and software requirements, networking and
tuning settings, and so on. You can also use the operational checklist to ensure
that your environment is ready to have an application deployed.

For a discussion of the best practices that you can use when you are designing
your WebSphere eXtreme Scale applications, read the following article on
developerWorks®: Principles and best practices for building high performing and
highly resilient WebSphere eXtreme Scale applications.

Planning the topology
With WebSphere eXtreme Scale, your architecture can use local in-memory data
caching or distributed client-server data caching. The architecture can have varied
relationships with your databases. You can also configure the topology to span
multiple data centers.

WebSphere eXtreme Scale requires minimal additional infrastructure to operate.
The infrastructure consists of scripts to install, start, and stop a Java Platform,
Enterprise Edition application on a server. Cached data is stored in the container
servers, and clients remotely connect to the server.

In-memory environments

When you deploy in a local, in-memory environment, WebSphere eXtreme Scale
runs within a single Java virtual machine and is not replicated. To configure a local
environment you can use an ObjectGrid XML file or the ObjectGrid APIs.

Distributed environments

When you deploy in a distributed environment, WebSphere eXtreme Scale runs
across a set of Java virtual machines, increasing the performance, availability and
scalability. With this configuration, you can use data replication and partitioning.
You can also add additional servers without restarting your existing eXtreme Scale
servers. As with a local environment, an ObjectGrid XML file, or an equivalent
programmatic configuration, is needed in a distributed environment. You must also
provide a deployment policy XML file with configuration details

You can create either simple deployments or large, terabyte-sized deployments in
which thousands of servers are needed.

Local in-memory cache
In the simplest case, WebSphere eXtreme Scale can be used as a local
(non-distributed) in-memory data grid cache. The local case can especially benefit
high-concurrency applications where multiple threads need to access and modify
transient data. The data kept in a local data grid can be indexed and retrieved
using queries. Queries help you to work with large in memory data sets. The
support provided with the Java virtual machine (JVM), although it is ready to use,
has a limited data structure.

© Copyright IBM Corp. 2009, 2012 83

http://www.ibm.com/developerworks/websphere/techjournal/1004_brown/1004_brown.html
http://www.ibm.com/developerworks/websphere/techjournal/1004_brown/1004_brown.html

The local in-memory cache topology for WebSphere eXtreme Scale is used to
provide consistent, transactional access to temporary data within a single Java
virtual machine.

Advantages
v Simple setup: An ObjectGrid can be created programmatically or declaratively

with the ObjectGrid deployment descriptor XML file or with other frameworks
such as Spring.

v Fast: Each BackingMap can be independently tuned for optimal memory
utilization and concurrency.

v Ideal for single-Java virtual machine topologies with small dataset or for caching
frequently accessed data.

v Transactional. BackingMap updates can be grouped into a single unit of work
and can be integrated as a last participant in 2-phase transactions such as Java
Transaction Architecture (JTA) transactions.

Disadvantages
v Not fault tolerant.
v The data is not replicated. In-memory caches are best for read-only reference

data.
v Not scalable. The amount of memory required by the database might overwhelm

the Java virtual machine.
v Problems occur when adding Java virtual machines:

– Data cannot easily be partitioned
– Must manually replicate state between Java virtual machines or each cache

instance could have different versions of the same data.
– Invalidation is expensive.
– Each cache must be warmed up independently. The warm-up is the period of

loading a set of data so that the cache gets populated with valid data.

When to use

The local, in-memory cache deployment topology should only be used when the
amount of data to be cached is small (can fit into a single Java virtual machine)
and is relatively stable. Stale data must be tolerated with this approach. Using
evictors to keep most frequently or recently used data in the cache can help keep
the cache size low and increase relevance of the data.

ObjectGrid

JVM

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Thread

Application

Figure 5. Local in-memory cache scenario

84 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Peer-replicated local cache
You must ensure the cache is synchronized if multiple processes with independent
cache instances exist. To ensure that the cache instances are synchronized, enable a
peer-replicated cache with Java Message Service (JMS).

WebSphere eXtreme Scale includes two plug-ins that automatically propagate
transaction changes between peer ObjectGrid instances. The
JMSObjectGridEventListener plug-in automatically propagates eXtreme Scale
changes using JMS.

If you are running a WebSphere Application Server environment, the
TranPropListener plug-in is also available. The TranPropListener plug-in uses the
high availability (HA) manager to propagate the changes to each peer cache
instance.

JMS

ObjectGrid

JVM

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Thread

Application

ObjectGrid

JVM

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Thread

Application

Figure 6. Peer-replicated cache with changes that are propagated with JMS

Chapter 4. Planning 85

Advantages
v The data is more valid because the data is updated more often.
v With the TranPropListener plug-in, like the local environment, the eXtreme Scale

can be created programmatically or declaratively with the eXtreme Scale
deployment descriptor XML file or with other frameworks such as Spring.
Integration with the high availability manager is done automatically.

v Each BackingMap can be independently tuned for optimal memory utilization
and concurrency.

v BackingMap updates can be grouped into a single unit of work and can be
integrated as a last participant in 2-phase transactions such as Java Transaction
Architecture (JTA) transactions.

v Ideal for few-JVM topologies with a reasonably small dataset or for caching
frequently accessed data.

v Changes to the eXtreme Scale are replicated to all peer eXtreme Scale instances.
The changes are consistent as long as a durable subscription is used.

Disadvantages
v Configuration and maintenance for the JMSObjectGridEventListener can be

complex. eXtreme Scale can be created programmatically or declaratively with
the eXtreme Scale deployment descriptor XML file or with other frameworks
such as Spring.

v Not scalable: The amount of memory required by the database may overwhelm
the JVM.

v Functions improperly when adding Java virtual machines:
– Data cannot easily be partitioned
– Invalidation is expensive.
– Each cache must be warmed-up independently

When to use

Use deployment topology only when the amount of data to be cached is small, can
fit into a single JVM, and is relatively stable.

HA Manager

ObjectGrid

JVM

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Thread

Application

ObjectGrid

JVM

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Thread

Application

Figure 7. Peer-replicated cache with changes that are propagated with the high availability manager

86 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Embedded cache
WebSphere eXtreme Scale grids can run within existing processes as embedded
eXtreme Scale servers or you can manage them as external processes.

Embedded grids are useful when you are running in an application server, such as
WebSphere Application Server. You can start eXtreme Scale servers that are not
embedded by using command line scripts and run in a Java process.

Advantages

v Simplified administration since there are less processes to manage.
v Simplified application deployment since the grid is using the client application

classloader.
v Supports partitioning and high availability.

Disadvantages

v Increased the memory footprint in client process since all of the data is
collocated in the process.

v Increase CPU utilization for servicing client requests.
v More difficult to handle application upgrades since clients are using the same

application Java archive files as the servers.
v Less flexible. Scaling of clients and grid servers cannot increase at the same rate.

When servers are externally defined, you can have more flexibility in managing
the number of processes.

When to use

JVM

JVM

JVM

JVM

ObjectGrid

ObjectGrid
Container

Thread

Application

Thread

Application

Thread

Application

Thread

Application

ObjectGrid
Container

ObjectGrid
Container

ObjectGrid
Container

Figure 8. Embedded cache

Chapter 4. Planning 87

Use embedded grids when there is plenty of memory free in the client process for
grid data and potential failover data.

For more information, see the topic on enabling the client invalidation mechanism
in the Administration Guide.

Distributed cache
WebSphere eXtreme Scale is most often used as a shared cache, to provide
transactional access to data to multiple components where a traditional database
would otherwise be used. The shared cache eliminates the need configure a
database.

Coherency of the cache

The cache is coherent because all of the clients see the same data in the cache. Each
piece of data is stored on exactly one server in the cache, preventing wasteful
copies of records that could potentially contain different versions of the data. A
coherent cache can also hold more data as more servers are added to the data grid,
and scales linearly as the grid grows in size. Because clients access data from this
data grid with remote procedural calls, it can also be known as a remote cache, or
far cache. Through data partitioning, each process holds a unique subset of the
total data set. Larger data grids can both hold more data and service more requests
for that data. Coherency also eliminates the need to push invalidation data around
the data grid because no stale data exists. The coherent cache only holds the latest
copy of each piece of data.

If you are running a WebSphere Application Server environment, the
TranPropListener plug-in is also available. The TranPropListener plug-in uses the
high availability component (HA Manager) of WebSphere Application Server to
propagate the changes to each peer ObjectGrid cache instance.

88 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Near cache

Clients can optionally have a local, in-line cache when eXtreme Scale is used in a
distributed topology. This optional cache is called a near cache, an independent
ObjectGrid on each client, serving as a cache for the remote, server-side cache. The
near cache is enabled by default when locking is configured as optimistic or none
and cannot be used when configured as pessimistic.

A near cache is very fast because it provides in-memory access to a subset of the
entire cached data set that is stored remotely in the eXtreme Scale servers. The near
cache is not partitioned and contains data from any of the remote eXtreme Scale
partitions.WebSphere eXtreme Scale can have up to three cache tiers as follows.
1. The transaction tier cache contains all changes for a single transaction. The

transaction cache contains a working copy of the data until the transaction is
committed. When a client transaction requests data from an ObjectMap, the
transaction is checked first

JVM

JVM

JVM

JVM

ObjectGrid

ObjectGrid
Container

Thread

Application

Thread

Application

Thread

Application

Thread

Application

ObjectGrid
Container

ObjectGrid
Container

ObjectGrid
Container

Figure 9. Distributed cache

ObjectGrid

JVM

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

Map

Key1

Key2

Value1

Value2

ObjectGrid

Thread

Application

Figure 10. Near cache

Chapter 4. Planning 89

2. The near cache in the client tier contains a subset of the data from the server
tier. When the transaction tier does not have the data, the data is fetched from
the client tier, if available and inserted into the transaction cache

3. The data grid in the server tier contains the majority of the data and is shared
among all clients. The server tier can be partitioned, which allows a large
amount of data to be cached. When the client near cache does not have the
data, it is fetched from the server tier and inserted into the client cache. The
server tier can also have a Loader plug-in. When the grid does not have the
requested data, the Loader is invoked and the resulting data is inserted from
the backend data store into the grid.

To disable the near cache, set the numberOfBuckets attribute to 0 in the client
override eXtreme Scale descriptor configuration. See the topic on map entry
locking for details on eXtreme Scale lock strategies. The near cache can also be
configured to have a separate eviction policy and different plug-ins using a client
override eXtreme Scale descriptor configuration.

Advantage

v Fast response time because all access to the data is local. Looking for the data in
the near cache first saves a trip to the grid of servers, thus making even the
remote data locally accessible.

Disadvantages

v Increases duration of stale data because the near cache at each tier may be out of
synch with the current data in the data grid.

v Relies on an evictor to invalidate data to avoid running out of memory.

When to use

Use when response time is important and stale data can be tolerated.

Database integration: Write-behind, in-line, and side caching
WebSphere eXtreme Scale is used to front a traditional database and eliminate read
activity that is normally pushed to the database. A coherent cache can be used
with an application directly or indirectly using an object relational mapper. The
coherent cache can then offload the database or backend from reads. In a slightly
more complex scenario, such as transactional access to a data set where only some
of the data requires traditional persistence guarantees, filtering can be used to
offload even write transactions.

You can configure WebSphere eXtreme Scale to function as a highly flexible
in-memory database processing space. However, WebSphere eXtreme Scale is not
an object relational mapper (ORM). It does not know where the data in the data
grid came from. An application or an ORM can place data in an eXtreme Scale
server. It is the responsibility of the source of the data to make sure that it stays
consistent with the database where data originated. This means eXtreme Scale
cannot invalidate data that is pulled from a database automatically. The application
or mapper must provide this function and manage the data stored in eXtreme
Scale.

90 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Sparse and complete cache
WebSphere eXtreme Scale can be used as a sparse cache or a complete cache. A
sparse cache only keeps a subset of the total data, while a complete cache keeps all
of the data. and can be populated lazily, as the data is needed. Sparse caches are
normally accessed using keys (instead of indexes or queries) because the data is
only partially available.

Database

ObjectGrid

Figure 11. ObjectGrid as a database buffer

Database

ObjectGrid

Figure 12. ObjectGrid as a side cache

Chapter 4. Planning 91

Sparse cache

When a key is not present in a sparse cache, or the data is not available and a
cache miss occurs, the next tier is invoked. The data is fetched, from a database for
example, and is inserted into the data grid cache tier. If you are using a query or
index, only the currently loaded values are accessed and the requests are not
forwarded to the other tiers.

Complete cache

A complete cache contains all of the required data and can be accessed using
non-key attributes with indexes or queries. A complete cache is preloaded with
data from the database before the application tries to access the data. A complete
cache can function as a database replacement after data is loaded. Because all of
the data is available, queries and indexes can be used to find and aggregate data.

Side cache
When WebSphere eXtreme Scale is used as a side cache, the back end is used with
the data grid.

Side cache

You can configure the product as a side cache for the data access layer of an
application. In this scenario, WebSphere eXtreme Scale is used to temporarily store
objects that would normally be retrieved from a back-end database. Applications
check to see if the data grid contains the data. If the data is in the data grid, the
data is returned to the caller. If the data does not exist, the data is retrieved from
the back-end database. The data is then inserted into the data grid so that the next
request can use the cached copy. The following diagram illustrates how WebSphere
eXtreme Scale can be used as a side-cache with an arbitrary data access layer such
as OpenJPA or Hibernate.

Side cache plug-ins for Hibernate and OpenJPA

Cache plug-ins for both OpenJPA and Hibernate are included inWebSphere
eXtreme Scale, so you can use the product as an automatic side-cache. Using
WebSphere eXtreme Scale as a cache provider increases performance when reading
and querying data and reduces load to the database. There are advantages

Database

Data Access Layer
(OpenJPA or Hibernate)

Server Core Cache
(BackingMap)

Transactional Cache
(ObjectMap)

O
b
je

c
tG

ri
d

Application

Figure 13. Side cache

92 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

thatWebSphere eXtreme Scale has over built-in cache implementations because the
cache is automatically replicated between all processes. When one client caches a
value, all other clients can use the cached value.

In-line cache
You can configure in-line caching for a database back end or as a side cache for a
database. In-line caching uses eXtreme Scale as the primary means for interacting
with the data. When eXtreme Scale is used as an in-line cache, the application
interacts with the back end using a Loader plug-in.

In-line cache

When used as an in-line cache, WebSphere eXtreme Scale interacts with the back
end using a Loader plug-in. This scenario can simplify data access because
applications can access the eXtreme Scale APIs directly. Several different caching
scenarios are supported in eXtreme Scale to make sure the data in the cache and
the data in the back end are synchronized. The following diagram illustrates how
an in-line cache interacts with the application and back end.

The in-line caching option simplifies data access because it allows applications to
access the eXtreme Scale APIs directly. WebSphere eXtreme Scale supports several
in-line caching scenarios, as follows.
v Read-through
v Write-through
v Write-behind

Read-through caching scenario

A read-through cache is a sparse cache that lazily loads data entries by key as they
are requested. This is done without requiring the caller to know how the entries
are populated. If the data cannot be found in the eXtreme Scale cache, eXtreme
Scale will retrieve the missing data from the Loader plug-in, which loads the data

Database

Back End
(Loader)

Server Core Cache
(BackingMap)

Transactional Cache
(ObjectMap)

O
b
je

c
tG

ri
d

Application

Figure 14. In-line cache

Chapter 4. Planning 93

from the back-end database and inserts the data into the cache. Subsequent
requests for the same data key will be found in the cache until it is removed,
invalidated or evicted.

Write-through caching scenario

In a write-through cache, every write to the cache synchronously writes to the
database using the Loader. This method provides consistency with the back end,
but decreases write performance since the database operation is synchronous. Since
the cache and database are both updated, subsequent reads for the same data will
be found in the cache, avoiding the database call. A write-through cache is often
used in conjunction with a read-through cache.

DatabaseLoader

Application

K1

Select v1

v1

K1 V1

K1 K1 V1

v1get (k1)

v1get (k1)

Figure 15. Read-through caching

DatabaseLoader

Application

insert into

K1 V1

K1 V1

batchUpdate
insert: k1,v1

insert (k1,v1)

Figure 16. Write-through caching

94 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Write-behind caching scenario

Database synchronization can be improved by writing changes asynchronously.
This is known as a write-behind or write-back cache. Changes that would normally
be written synchronously to the loader are instead buffered in eXtreme Scale and
written to the database using a background thread. Write performance is
significantly improved because the database operation is removed from the client
transaction and the database writes can be compressed.

Write-behind caching
You can use write-behind caching to reduce the overhead that occurs when
updating a database you are using as a back end.

Write-behind caching overview

Write-behind caching asynchronously queues updates to the Loader plug-in. You
can improve performance by disconnecting updates, inserts, and removes for a
map, the overhead of updating the back-end database. The asynchronous update is
performed after a time-based delay (for example, five minutes) or an entry-based
delay (1000 entries).

DatabaseLoader

Application

insert into

K1 V1

K1 V1

batchUpdate
insert: k1,v1

insert (k1,v1)

Queue Map

Write
Timer

Figure 17. Write-behind caching

Chapter 4. Planning 95

The write-behind configuration on a BackingMap creates a thread between the
loader and the map. The loader then delegates data requests through the thread
according to the configuration settings in the BackingMap.setWriteBehind method.
When an eXtreme Scale transaction inserts, updates, or removes an entry from a
map, a LogElement object is created for each of these records. These elements are
sent to the write-behind loader and queued in a special ObjectMap called a queue
map. Each backing map with the write-behind setting enabled has its own queue
maps. A write-behind thread periodically removes the queued data from the queue
maps and pushes them to the real back-end loader.

The write-behind loader only sends insert, update, and delete types of LogElement
objects to the real loader. All other types of LogElement objects, for example,
EVICT type, are ignored.

Write-behind support is an extension of the Loader plug-in, which you use to
integrate eXtreme Scale with the database. For example, consult the Configuring
JPA loaders information about configuring a JPA loader.

Benefits

Enabling write-behind support has the following benefits:
v Back end failure isolation: Write-behind caching provides an isolation layer

from back end failures. When the back-end database fails, updates are queued in
the queue map. The applications can continue driving transactions to eXtreme
Scale. When the back end recovers, the data in the queue map is pushed to the
back-end.

v Reduced back end load: The write-behind loader merges the updates on a key
basis so only one merged update per key exists in the queue map. This merge
decreases the number of updates to the back-end database.

DatabaseLoader

Application

insert into

K1 V1

K1 V1

batchUpdate
insert: k1,v1

insert (k1,v1)

Queue Map

Write
Timer

Figure 18. Write-behind caching

96 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsjpaload.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsjpaload.html

v Improved transaction performance: Individual eXtreme Scale transaction times
are reduced because the transaction does not need to wait for the data to be
synchronized with the back-end.

Loaders
With a Loader plug-in, a data grid map can behave as a memory cache for data
that is typically kept in a persistent store on either the same system or another
system. Typically, a database or file system is used as the persistent store. A remote
Java virtual machine (JVM) can also be used as the source of data, allowing
hub-based caches to be built using eXtreme Scale. A loader has the logic for
reading and writing data to and from a persistent store.

Overview

Loaders are backing map plug-ins that are invoked when changes are made to the
backing map or when the backing map is unable to satisfy a data request (a cache
miss). The Loader is invoked when the cache is unable to satisfy a request for a
key, providing read-through capability and lazy-population of the cache. A loader
also allows updates to the database when cache values change. All changes within
a transaction are grouped together to allow the number of database interactions to
be minimized. A TransactionCallback plug-in is used in conjunction with the loader
to trigger the demarcation of the backend transaction. Using this plug-in is
important when multiple maps are included in a single transaction or when
transaction data is flushed to the cache without committing.

The loader can also use overqualified updates to avoid keeping database locks. By
storing a version attribute in the cache value, the loader can see the before and
after image of the value as it is updated in the cache. This value can then be used
when updating the database or back end to verify that the data has not been
updated. A Loader can also be configured to preload the data grid when it is

Database

Loader

Server Core Cache
(BackingMap)

Transactional Cache
(ObjectMap)

O
b
je

c
tG

ri
d

Transactional Cache
(ObjectMap)

Primary Shard

JVM

S
e
rv

e
r

P
ro

c
e
s
s

Figure 19. Loader

Chapter 4. Planning 97

started. When partitioned, a Loader instance is associated with each partition. If
the "Company" Map has ten partitions, there are ten Loader instances, one per
primary partition. When the primary shard for the Map is activated, the
preloadMap method for the loader is invoked synchronously or asynchronously
which allows loading the map partition with data from the back-end to occur
automatically. When invoked synchronously, all client transactions are blocked,
preventing inconsistent access to the data grid. Alternatively, a client preloader can
be used to load the entire data grid.

Two built-in loaders can greatly simplify integration with relational database back
ends. The JPA loaders utilize the Object-Relational Mapping (ORM) capabilities of
both the OpenJPA and Hibernate implementations of the Java Persistence API (JPA)
specification. See “JPA Loaders” on page 365 for more information.

If you are using loaders in a multiple data center configuration, you must consider
how revision data and cache consistency is maintained between the data grids. For
more information, see “Loader considerations in a multi-master topology” on page
109.

Loader configuration

To add a Loader into the BackingMap configuration, you can use programmatic
configuration or XML configuration. A loader has the following relationship with a
backing map.
v A backing map can have only one loader.
v A client backing map (near cache) cannot have a loader.
v A loader definition can be applied to multiple backing maps, but each backing

map has its own loader instance.

Data pre-loading and warm-up
In many scenarios that incorporate the use of a loader, you can prepare your data
grid by pre-loading it with data.

When used as a complete cache, the data grid must hold all of the data and must
be loaded before any clients can connect to it. When you are using a sparse cache,
you can warm up the cache with data so that clients can have immediate access to
data when they connect.

Two approaches exist for pre-loading data into the data grid: Using a Loader
plug-in or using a client loader, as described in the following sections.

Loader plug-in

The loader plug-in is associated with each map and is responsible for
synchronizing a single primary partition shard with the database. The preloadMap
method of the loader plug-in is invoked automatically when a shard is activated.
For example, if you have 100 partitions, 100 loader instances exist, each loading the
data for its partition. When run synchronously, all clients are blocked until the
preload has completed.

98 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Client loader

A client loader is a pattern for using one or more clients to load the grid with data.
Using multiple clients to load grid data can be effective when the partition scheme
is not stored in the database. You can invoke client loaders manually or
automatically when the data grid starts. Client loaders can optionally use the
StateManager to set the state of the data grid to pre-load mode, so that clients are
not able to access the grid while it is pre-loading the data. WebSphere eXtreme
Scale includes a Java Persistence API (JPA)-based loader that you can use to
automatically load the data grid with either the OpenJPA or Hibernate JPA
providers. For more information about cache providers, see JPA level 2 (L2) cache
plug-in.

Database

Loader

Server Core Cache
(BackingMap)

Transactional Cache
(ObjectMap)

O
b
je

c
tG

ri
d

Transactional Cache
(ObjectMap)

Primary Shard

JVM

S
e
rv

e
r

P
ro

c
e
s
s

Figure 20. Loader plug-in

Chapter 4. Planning 99

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/cxsjpacache.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/cxsjpacache.html

Database synchronization techniques
When WebSphere eXtreme Scale is used as a cache, applications must be written to
tolerate stale data if the database can be updated independently from an eXtreme
Scale transaction. To serve as a synchronized in-memory database processing space,
eXtreme Scale provides several ways of keeping the cache updated.

Database synchronization techniques

Periodic refresh

The cache can be automatically invalidated or updated periodically using the Java
Persistence API (JPA) time-based database updater.The updater periodically queries
the database using a JPA provider for any updates or inserts that have occurred
since the previous update. Any changes identified are automatically invalidated or
updated when used with a sparse cache. If used with a complete cache, the entries
can be discovered and inserted into the cache. Entries are never removed from the
cache.

Database

Partition 0

S
e
rv

e
r

P
ro

c
e
s
s

Server Core Cache
(BackingMap)

ObjectGrid

Server Core Cache
(BackingMap)

Partition 1

S
e
rv

e
r

P
ro

c
e
s
s

Server Core Cache
(BackingMap)

ObjectGrid

Server Core Cache
(BackingMap)

Partition 2

S
e
rv

e
r

P
ro

c
e
s
s

Server Core Cache
(BackingMap)

ObjectGrid

Server Core Cache
(BackingMap)

JPA Client Loader

ObjectGrid

JPA Provider

C
lie

n
t
P

ro
c
e
s
s

Figure 21. Client loader

100 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Eviction

Sparse caches can utilize eviction policies to automatically remove data from the
cache without affecting the database. There are three built-in policies included in
eXtreme Scale: time-to-live, least-recently-used, and least-frequently-used. All three
policies can optionally evict data more aggressively as memory becomes
constrained by enabling the memory-based eviction option.

Event-based invalidation

Sparse and complete caches can be invalidated or updated using an event
generator such as Java Message Service (JMS). Invalidation using JMS can be
manually tied to any process that updates the back-end using a database trigger. A
JMS ObjectGridEventListener plug-in is provided in eXtreme Scale that can notify
clients when the server cache has any changes. This can decrease the amount of
time the client can see stale data.

Programmatic invalidation

The eXtreme Scale APIs allow manual interaction of the near and server cache
using the Session.beginNoWriteThrough(), ObjectMap.invalidate() and
EntityManager.invalidate() API methods. If a client or server process no longer
needs a portion of the data, the invalidate methods can be used to remove data
from the near or server cache. The beginNoWriteThrough method applies any
ObjectMap or EntityManager operation to the local cache without calling the
loader. If invoked from a client, the operation applies only to the near cache (the
remote loader is not invoked). If invoked on the server, the operation applies only
to the server core cache without invoking the loader.

Data invalidation
To remove stale cache data, you can use an administrative, event-based or
programmatic invalidation mechanism.

Administrative invalidation

You can use the web console or the xscmd utility to invalidate data based on the
key. You can filter the cache data with a regular expression and then invalidate the
data based on the regular expression.

DatabaseJPA Provider

select...

K1 V1

find (k1)

Read
Timer

v1

v1

insert (k1,v1)

Figure 22. Periodic refresh

Chapter 4. Planning 101

Event-based invalidation

Sparse and complete caches can be invalidated or updated using an event
generator such as Java Message Service (JMS). Invalidation using JMS can be
manually tied to any process that updates the back-end using a database trigger. A
JMS ObjectGridEventListener plug-in is provided in eXtreme Scale that can notify
clients when the server cache changes. This type of notification decreases the
amount of time the client can see stale data.

Event-based invalidation normally consists of the following three components.
v Event queue: An event queue stores the data change events. It could be a JMS

queue, a database, an in-memory FIFO queue, or any kind of manifest as long as
it can manage the data change events.

v Event publisher: An event publisher publishes the data change events to the
event queue. An event publisher is usually an application you create or an
eXtreme Scale plug-in implementation. The event publisher knows when the
data is changed or it changes the data itself. When a transaction commits, events
are generated for the changed data and the event publisher publishes these
events to the event queue.

v Event consumer: An event consumer consumes data change events. The event
consumer is usually an application to ensure the target grid data is updated
with the latest change from other grids. This event consumer interacts with the
event queue to get the latest data change and applies the data changes in the
target grid. The event consumers can use eXtreme Scale APIs to invalidate stale
data or update the grid with the latest data.

For example, JMSObjectGridEventListener has an option for a client-server model,
in which the event queue is a designated JMS destination. All server processes are
event publishers. When a transaction commits, the server gets the data changes
and publishes them to the designated JMS destination. All the client processes are
event consumers. They receive the data changes from the designated JMS
destination and apply the changes to the client's near cache.

See the topic on enabling the client invalidation mechanism in the Administration
Guide for more information.

Programmatic invalidation

The WebSphere eXtreme Scale APIs allow manual interaction of the near and
server cache using the Session.beginNoWriteThrough(), ObjectMap.invalidate() and
EntityManager.invalidate() API methods. If a client or server process no longer
needs a portion of the data, the invalidate methods can be used to remove data
from the near or server cache. The beginNoWriteThrough method applies any
ObjectMap or EntityManager operation to the local cache without calling the
loader. If invoked from a client, the operation applies only to the near cache (the
remote loader is not invoked). If invoked on the server, the operation applies only
to the server core cache without invoking the loader.

You can use programmatic invalidation with other techniques to determine when
to invalidate the data. For example, this invalidation method uses event-based
invalidation mechanisms to receive the data change events, and then uses APIs to
invalidate the stale data.

102 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Indexing
Use the MapIndexPlugin plug-in to build an index or several indexes on a
BackingMap to support non-key data access.

Index types and configuration

The indexing feature is represented by the MapIndexPlugin plug-in or Index for
short. The Index is a BackingMap plug-in. A BackingMap can have multiple Index
plug-ins configured, as long as each one follows the Index configuration rules.

You can use the indexing feature to build one or more indexes on a BackingMap.
An index is built from an attribute or a list of attributes of an object in the
BackingMap. This feature provides a way for applications to find certain objects
more quickly. With the indexing feature, applications can find objects with a
specific value or within a range of values of indexed attributes.

Two types of indexing are possible: static and dynamic. With static indexing, you
must configure the index plug-in on the BackingMap before initializing the
ObjectGrid instance. You can do this configuration with XML or programmatic
configuration of the BackingMap. Static indexing starts building an index during
ObjectGrid initialization. The index is always synchronized with the BackingMap
and ready for use. After the static indexing process starts, the maintenance of the
index is part of the eXtreme Scale transaction management process. When
transactions commit changes, these changes also update the static index, and index
changes are rolled back if the transaction is rolled back.

With dynamic indexing, you can create an index on a BackingMap before or after
the initialization of the containing ObjectGrid instance. Applications have life cycle
control over the dynamic indexing process so that you can remove a dynamic
index when it is no longer needed. When an application creates a dynamic index,
the index might not be ready for immediate use because of the time it takes to
complete the index building process. Because the amount of time depends upon
the amount of data indexed, the DynamicIndexCallback interface is provided for
applications that want to receive notifications when certain indexing events occur.
These events include ready, error, and destroy. Applications can implement this
callback interface and register with the dynamic indexing process.

If a BackingMap has an index plug-in configured, you can obtain the application
index proxy object from the corresponding ObjectMap. Calling the getIndex
method on the ObjectMap and passing in the name of the index plug-in returns
the index proxy object. You must cast the index proxy object to an appropriate
application index interface, such as MapIndex, MapRangeIndex, or a customized
index interface. After obtaining the index proxy object, you can use methods
defined in the application index interface to find cached objects.

The steps to use indexing are summarized in the following list:
v Add either static or dynamic index plug-ins into the BackingMap.
v Obtain an application index proxy object by issuing the getIndex method of the

ObjectMap.
v Cast the index proxy object to an appropriate application index interface, such as

MapIndex, MapRangeIndex, or a customized index interface.
v Use methods that are defined in application index interface to find cached

objects.

Chapter 4. Planning 103

The HashIndex class is the built-in index plug-in implementation that can support
both of the built-in application index interfaces: MapIndex and MapRangeIndex.
You also can create your own indexes. You can add HashIndex as either a static or
dynamic index into the BackingMap, obtain either MapIndex or MapRangeIndex
index proxy object, and use the index proxy object to find cached objects.

Default index

If you want to iterate through the keys in a local map, you can use the default
index. This index does not require any configuration, but it must be used against
the shard, using an agent or an ObjectGrid instance retrieved from the
ShardEvents.shardActivated(ObjectGrid shard) method.

Data quality consideration

The results of index query methods only represent a snapshot of data at a point of
time. No locks against data entries are obtained after the results return to the
application. Application has to be aware that data updates may occur on a
returned data set. For example, the application obtains the key of a cached object
by running the findAll method of MapIndex. This returned key object is associated
with a data entry in the cache. The application should be able to run the get
method on ObjectMap to find an object by providing the key object. If another
transaction removes the data object from the cache just before the get method is
called, the returned result will be null.

Indexing performance considerations

One of the main objectives of the indexing feature is to improve overall
BackingMap performance. If indexing is not used properly, the performance of the
application might be compromised. Consider the following factors before using
this feature.
v The number of concurrent write transactions: Index processing can occur every

time a transaction writes data into a BackingMap. Performance degrades if many
transactions are writing data into the map concurrently when an application
attempts index query operations.

v The size of the result set that is returned by a query operation: As the size of
the resultset increases, the query performance declines. Performance tends to
degrade when the size of the result set is 15% or more of the BackingMap.

v The number of indexes built over the same BackingMap: Each index consumes
system resources. As the number of the indexes built over the BackingMap
increases, performance decreases.

The indexing function can improve BackingMap performance drastically. Ideal
cases are when the BackingMap has mostly read operations, the query result set is
of a small percentage of the BackingMap entries, and only few indexes are built
over the BackingMap.

Planning multiple data center topologies
Using multi-master asynchronous replication, two or more data grids can become
exact copies of each other. Each data grid is hosted in an independent catalog
service domain, with its own catalog service, container servers, and a unique
name. With multi-master asynchronous replication, you can use links to connect a
collection of catalog service domains. The catalog service domains are then
synchronized using replication over the links. You can construct almost any
topology through the definition of links between the catalog service domains.

104 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Topologies for multimaster replication
You have several different options when choosing the topology for your
deployment that incorporates multimaster replication.

Links connecting catalog service domains

A replication data grid infrastructure is a connected graph of catalog service
domains with bidirectional links among them. With a link, two catalog service
domains can communicate data changes. For example, the simplest topology is a
pair of catalog service domains with a single link between them. The catalog
service domains are named alphabetically: A, B, C, and so on, from the left. A link
can cross a wide area network (WAN), spanning large distances. Even if the link is
interrupted, you can still change data in either catalog service domain. The
topology reconciles changes when the link reconnects the catalog service domains.
Links automatically try to reconnect if the network connection is interrupted.

A B

After you set up the links, the product first tries to make every catalog service
domain identical. Then, eXtreme Scale tries to maintain the identical conditions as
changes occur in any catalog service domain. The goal is for each catalog service
domain to be an exact mirror of every other catalog service domain connected by
the links. The replication links between the catalog service domains help ensure
that any changes made in one catalog service domain are copied to the other
catalog service domains.

Line topologies

Although it is such a simple deployment, a line topology demonstrates some
qualities of the links. First, it is not necessary for a catalog service domain to be
connected directly to every other catalog service domain to receive changes. The
catalog service domain B pulls changes from catalog service domain A. The catalog
service domain C receives changes from catalog service domain A through catalog
service domain B, which connects catalog service domains A and C. Similarly,
catalog service domain D receives changes from the other catalog service domains
through catalog service domain C. This ability spreads the load of distributing
changes away from the source of the changes.

A B C D

Notice that if catalog service domain C fails, the following actions would occur:
1. catalog service domain D would be orphaned until catalog service domain C

was restarted
2. catalog service domain C would synchronize itself with catalog service domain

B, which is a copy of catalog service domain A

Chapter 4. Planning 105

3. catalog service domain D would use catalog service domain C to synchronize
itself with changes on catalog service domain A and B. These changes initially
occurred while catalog service domain D was orphaned (while catalog service
domain C was down).

Ultimately, catalog service domains A, B, C, and D would all become identical to
one other again.

Ring topologies

Ring topologies are an example of a more resilient topology. When a catalog
service domain or a single link fails, the surviving catalog service domains can still
obtain changes. The catalog service domains travel around the ring, away from the
failure. Each catalog service domain has at most two links to other catalog service
domains, no matter how large the ring topology. The latency to propagate changes
can be large. Changes from a particular catalog service domain might need to
travel through several links before all the catalog service domains have the
changes. A line topology has the same characteristic.

You can also deploy a more sophisticated ring topology, with a root catalog service
domain at the center of the ring. The root catalog service domain functions as the
central point of reconciliation. The other catalog service domains act as remote
points of reconciliation for changes occurring in the root catalog service domain.
The root catalog service domain can arbitrate changes among the catalog service
domains. If a ring topology contains more than one ring around a root catalog
service domain, the catalog service domain can only arbitrate changes among the
innermost ring. However, the results of the arbitration spread throughout the
catalog service domains in the other rings.

Hub-and-spoke topologies

With a hub-and-spoke topology, changes travel through a hub catalog service
domain. Because the hub is the only intermediate catalog service domain that is

106 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

specified, hub-and-spoke topologies have lower latency. The hub catalog service
domain is connected to every spoke catalog service domain through a link. The
hub distributes changes among the catalog service domains. The hub acts as a
point of reconciliation for collisions. In an environment with a high update rate,
the hub might require run on more hardware than the spokes to remain
synchronized. WebSphere eXtreme Scale is designed to scale linearly, meaning you
can make the hub larger, as needed, without difficulty. However, if the hub fails,
then changes are not distributed until the hub restarts. Any changes on the spoke
catalog service domains will be distributed after the hub is reconnected.

A

B

C

HubD

You can also use a strategy with fully replicated clients, a topology variation which
uses a pair of servers that are running as a hub. Every client creates a
self-contained single container data grid with a catalog in the client JVM. A client
uses its data grid to connect to the hub catalog. This connection causes the client to
synchronize with the hub as soon as the client obtains a connection to the hub.

Any changes made by the client are local to the client, and are replicated
asynchronously to the hub. The hub acts as an arbitration catalog service domain,
distributing changes to all connected clients. The fully replicated clients topology
provides a reliable L2 cache for an object relational mapper, such as OpenJPA.
Changes are distributed quickly among client JVMs through the hub. If the cache
size can be contained within the available heap space, the topology is a reliable
architecture for this style of L2.

Use multiple partitions to scale the hub catalog service domain on multiple JVMs,
if necessary. Because all of the data still must fit in a single client JVM, multiple
partitions increase the capacity of the hub to distribute and arbitrate changes.
However, having multiple partitions does not change the capacity of a single
catalog service domain.

Chapter 4. Planning 107

Tree topologies

You can also use an acyclic directed tree. An acyclic tree has no cycles or loops,
and a directed setup limits links to existing only between parents and children.
This configuration is useful for topologies that have many catalog service domains.
In these topologies, it is not practical to have a central hub that is connected to
every possible spoke. This type of topology can also be useful when you must add
child catalog service domains without updating the root catalog service domain.

A tree topology can still have a central point of reconciliation in the root catalog
service domain. The second level can still function as a remote point of
reconciliation for changes occurring in the catalog service domain beneath them.
The root catalog service domain can arbitrate changes between the catalog service
domains on the second level only. You can also use N-ary trees, each of which
have N children at each level. Each catalog service domain connects out to n links.

Fully replicated clients

This topology variation involves a pair of servers that are running as a hub. Every
client creates a self-contained single container data grid with a catalog in the client
JVM. A client uses its data grid to connect to the hub catalog, causing the client to
synchronize with the hub as soon as the client obtains a connection to the hub.

Any changes made by the client are local to the client, and are replicated
asynchronously to the hub. The hub acts as an arbitration catalog service domain,
distributing changes to all connected clients. The fully replicated clients topology
provides a good L2 cache for an object relational mapper, such as OpenJPA.
Changes are distributed quickly among client JVMs through the hub. As long as
the cache size can be contained within the available heap space of the clients, this
topology is a good architecture for this style of L2.

Use multiple partitions to scale the hub catalog service domain on multiple JVMs,
if necessary. Because all of the data still must fit in a single client JVM, using
multiple partitions increases the capacity of the hub to distribute and arbitrate
changes, but it does not change the capacity of a single catalog service domain.

108 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Configuration considerations for multi-master topologies
Consider the following issues when you are deciding whether and how to use
multi-master replication topologies.
v Map set requirements

Map sets must have the following characteristics to replicate changes across
catalog service domain links:
– The ObjectGrid name and map set name within a catalog service domain

must match the ObjectGrid name and map set name of other catalog service
domains. For example, ObjectGrid "og1" and map set "ms1" must be
configured in catalog service domain A and catalog service domain B to
replicate the data in the map set between the catalog service domains.

– Is a FIXED_PARTITION data grid. PER_CONTAINER data grids cannot be
replicated.

– Has the same number of partitions in each catalog service domain. The map
set might or might not have the same number and types of replicas.

– Has the same data types being replicated in each catalog service domain.
– Contains the same maps and dynamic map templates in each catalog service

domain.
– Does not use entity manager. A map set containing an entity map is not

replicated across catalog service domains.
– Does not use write-behind caching support. A map set containing a map that

is configured with write-behind support is not replicated across catalog
service domains.

Any map sets with the preceding characteristics begin to replicate after the
catalog service domains in the topology have been started.

v Class loaders with multiple catalog service domains

Catalog service domains must have access to all classes that are used as keys
and values. Any dependencies must be reflected in all class paths for data grid
container Java virtual machines (JVM) for all domains. If a CollisionArbiter
plug-in retrieves the value for a cache entry, then the classes for the values must
be present for the domain that is starting the arbiter.

Loader considerations in a multi-master topology
When you are using loaders in a multi-master topology, you must consider the
possible collision and revision information maintenance challenges. The data grid
maintains revision information about the items in the data grid so that collisions
can be detected when other primary shards in the configuration write entries to the
data grid. When entries are added from a loader, this revision information is not
included and the entry takes on a new revision. Because the revision of the entry
seems to be a new insert, a false collision could occur if another primary shard also
changes this state or pulls the same information in from a loader.

Replication changes invoke the get method on the loader with a list of the keys
that are not already in the data grid but are going to be changed during the
replication transaction. When the replication occurs, these entries are collision
entries. When the collisions are arbitrated and the revision is applied then a batch
update is called on the loader to apply the changes to the database. All of the
maps that were changed in the revision window are updated in the same
transaction.

Chapter 4. Planning 109

Preload conundrum

Consider a two data center topology with data center A and data center B. Both
data centers have independent databases, but only data center A is has a data grid
that is running. When you establish a link between the data centers for a
multi-master configuration, the data grids in data center A begin pushing data to
the new data grids in data center B, causing a collision with every entry. Another
major issue that occurs is with any data that is in the database in data center B but
not in the database in data center A. These rows are not populated and arbitrated,
resulting in inconsistencies that are not resolved.

Solution to the preload conundrum

Because data that resides only in the database cannot have revisions, you must
always fully preload the data grid from the local database before establishing the
multi-master link. Then, both data grids can revision and arbitrate the data,
eventually reaching a consistent state.

Sparse cache conundrum

With a sparse cache, the application first attempts to find data in the data grid. If
the data is not in the data grid, the data is searched for in the database using the
loader. Entries are evicted from the data grid periodically to maintain a small cache
size.

This cache type can be problematic in a multi-master configuration scenario
because the entries within the data grid have revisioning metadata that help detect
when collisions occur and which side has made changes. When links between the
data centers are not working, one data center can update an entry and then
eventually update the database and invalidate the entry in the data grid. When the
link recovers, the data centers attempt to synchronize revisions with each
other. However, because the database was updated and the data grid entry was
invalidated, the change is lost from the perspective of the data center that went
down. As a result, the two sides of the data grid are out of synch and are not
consistent.

Solution to the sparse cache conundrum

Hub and spoke topology:

You can run the loader only in the hub of a hub and spoke topology, maintaining
consistency of the data while scaling out the data grid. However, if you are
considering this deployment, note that the loaders can allow the data grid to be
partially loaded, meaning that an evictor has been configured. If the spokes of
your configuration are sparse caches but have no loader, then any cache misses
have no way to retrieve data from the database. Because of this restriction, you
should use a fully populated cache topology with a hub and spoke configuration.

Invalidations and eviction

Invalidation creates inconsistency between the data grid and the database. Data
can be removed from the data grid either programmatically or with eviction. When
you develop your application, you must be aware that revision handling does not
replicate changes that are invalidated, resulting in inconsistencies between primary
shards.

110 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Invalidation events are not cache state changes and do not result in replication.
Any configured evictors run independently from other evictors in the
configuration. For example, you might have one evictor configured for a memory
threshold in one catalog service domain, but a different type of less aggressive
evictor in your other linked catalog service domain. When data grid entries are
removed due to the memory threshold policy, the entries in the other catalog
service domain are not affected.

Database updates and data grid invalidation

Problems occur when you update the database directly in the background while
calling the invalidation on the data grid for the updated entries in a multi-master
configuration. This problem occurs because the data grid cannot replicate the
change to the other primary shards until some type of cache access moves the
entry into the data grid.

Multiple writers to a single logical database

When you are using a single database with multiple primary shards that are
connected through a loader, transactional conflicts result. Your loader
implementation must specially handle these types of scenarios.

Mirroring data using multi-master replication

You can configure independent databases that are connected to independent
catalog service domains. In this configuration, the loader can push changes from
one data center to the other data center.

Design considerations for multi-master replication
When implementing multi-master replication, you must consider aspects in your
design such as: arbitration, linking, and performance.

Arbitration considerations in topology design

Change collisions might occur if the same records can be changed simultaneously
in two places. Set up each catalog service domain to have about the same amount
of processor, memory, network resources. You might observe that catalog service
domains performing change collision handling (arbitration) use more resources
than other catalog service domains. Collisions are detected automatically. They are
handled with one of two mechanisms:
v Default collision arbiter: The default protocol is to use the changes from the

lexically lowest named catalog service domain. For example, if catalog service
domain A and B generate a conflict for a record, then the change from catalog
service domain B is ignored. Catalog service domain A keeps its version and the
record in catalog service domain B is changed to match the record from catalog
service domain A. This behavior applies as well for applications where users or
sessions are normally bound or have affinity with one of the data grids.

v Custom collision arbiter: Applications can provide a custom arbiter. When a
catalog service domain detects a collision, it starts the arbiter. For information
about developing a useful custom arbiter, see “Developing custom arbiters for
multi-master replication” on page 283.

For topologies in which collisions are possible, consider implementing a
hub-and-spoke topology or a tree topology. These two topologies are conducive to
avoiding constant collisions, which can happen in the following scenarios:

Chapter 4. Planning 111

1. Multiple catalog service domains experience a collision
2. Each catalog service domain handles the collision locally, producing revisions
3. The revisions collide, resulting in revisions of revisions

To avoid collisions, choose a specific catalog service domain, called an arbitration
catalog service domain as the collision arbiter for a subset of catalog service domains.
For example, a hub-and-spoke topology might use the hub as the collision handler.
The spoke collision handler ignores any collisions that are detected by the spoke
catalog service domains. The hub catalog service domain creates revisions,
preventing unexpected collision revisions. The catalog service domain that is
assigned to handle collisions must link to all of the domains for which it is
responsible for handling collisions. In a tree topology, any internal parent domains
handle collisions for their immediate children. In contrast, if you use a ring
topology, you cannot designate one catalog service domain in the ring as the
arbiter.

The following table summarizes the arbitration approaches that are most
compatible with various topologies.

Table 2. Arbitration approaches. This table states whether application arbitration is
compatible with various technologies.

Topology
Application
Arbitration? Notes

A line of two catalog
service domains

Yes Choose one catalog service domain as the
arbiter.

A line of three catalog
service domains

Yes The middle catalog service domain must be
the arbiter. Think of the middle catalog
service domain as the hub in a simple
hub-and-spoke topology.

A line of more than three
catalog service domains

No Application arbitration is not supported.

A hub with N spokes Yes Hub with links to all spokes must be the
arbitration catalog service domain.

A ring of N catalog
service domains

No Application arbitration is not supported.

An acyclic, directed tree
(n-ary tree)

Yes All root nodes must rate their direct
descendants only.

Linking considerations in topology design

Ideally, a topology includes the minimum number of links while optimizing
trade-offs among change latency, fault tolerance, and performance characteristics.
v Change latency

Change latency is determined by the number of intermediate catalog service
domains a change must go through before arriving at a specific catalog service
domain.
A topology has the best change latency when it eliminates intermediate catalog
service domains by linking every catalog service domain to every other catalog
service domain. However, a catalog service domain must perform replication
work in proportion to its number of links. For large topologies, the sheer
number of links to be defined can cause an administrative burden.

112 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

The speed at which a change is copied to other catalog service domains depends
on additional factors, such as:
– Processor and network bandwidth on the source catalog service domain
– The number of intermediate catalog service domains and links between the

source and target catalog service domain
– The processor and network resources available to the source, target, and

intermediate catalog service domains
v Fault tolerance

Fault tolerance is determined by how many paths exist between two catalog
service domains for change replication.
If you have only one link between a given pair of catalog service domains, a link
failure disallows propagation of changes. Similarly, changes are not propagated
between catalog service domains if any of the intermediate domains experiences
link failure. Your topology could have a single link from one catalog service
domain to another such that the link passes through intermediate domains. If so,
then changes are not propagated if any of the intermediate catalog service
domains is down.
Consider the line topology with four catalog service domains A, B, C, and D:

A B C D

If any of these conditions hold, Domain D does not see any changes from A:
– Domain A is up and B is down
– Domains A and B are up and C is down
– The link between A and B is down
– The link between B and C is down
– The link between C and D is down

In contrast, with a ring topology, each catalog service domain can receive
changes from either direction.

Chapter 4. Planning 113

For example, if a given catalog service in your ring topology is down, then the
two adjacent domains can still pull changes directly from each other.
All changes are propagated through the hub. Thus, as opposed to the line and
ring topologies, the hub-and-spoke design is susceptible to break drown if the
hub fails.

A

B

C

HubD

114 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

A single catalog service domain is resilient to a certain amount of service loss.
However, larger failures such as wide network outages or loss of links between
physical data centers can disrupt any of your catalog service domains.

v Linking and performance

The number of links defined on a catalog service domain affects performance.
More links use more resources and replication performance can drop as a result.
The ability to retrieve changes for a domain A through other domains effectively
offloads domain A from replicating its transactions everywhere. The change
distribution load on a domain is limited by the number of links it uses, not how
many domains are in the topology. This load property provides scalability, so the
domains in the topology can share the burden of change distribution.
A catalog service domain can retrieve changes indirectly through other catalog
service domains. Consider a line topology with five catalog service domains.
A <=> B <=> C <=> D <=> E

– A pulls changes from B, C, D, and E through B
– B pulls changes from A and C directly, and changes from D and E through C
– C pulls changes from B and D directly, and changes from A through B and E

through D
– D pulls changes from C and E directly, and changes from A and B through C
– E pulls changes from D directly, and changes from A, B, and C through D
The distribution load on catalog service domains A and E is lowest, because they
each have a link only to a single catalog service domain. Domains B, C, and D
each have a link to two domains. Thus, the distribution load on domains B, C,
and D is double the load on domains A and E. The workload depends on the
number of links in each domain, not on the overall number of domains in the
topology. Thus, the described distribution of loads would remain constant, even
if the line contained 1000 domains.

Multi-master replication performance considerations

Take the following limitations into account when using multi-master replication
topologies:
v Change distribution tuning, as discussed in the previous section.
v Replication link performance WebSphere eXtreme Scale creates a single TCP/IP

socket between any pair of JVMs. All traffic between the JVMs occurs through
the single socket, including traffic from multi-master replication. Catalog service
domains are hosted on at least n container JVMs, providing at least n TCP links
to peer catalog service domains. Thus, the catalog service domains with larger
numbers of containers have higher replication performance levels. More
containers require more processor and network resources.

v TCP sliding window tuning and RFC 1323 RFC 1323 support on both ends of a
link yields more data for a round trip. This support results in higher throughput,
expanding the capacity of the window by a factor of about 16,000.
Recall that TCP sockets use a sliding window mechanism to control the flow of
bulk data. This mechanism typically limits the socket to 64 KB for a round-trip
interval. If the round-trip interval is 100 ms, then the bandwidth is limited to
640 KB/second without additional tuning. Fully using the bandwidth available
on a link might require tuning that is specific to an operating system. Most
operating systems include tuning parameters, including RFC 1323 options, to
enhance throughput over high-latency links.
Several factors can affect replication performance:
– The speed at which eXtreme Scale retrieves changes.

Chapter 4. Planning 115

http://www.ietf.org/rfc/rfc1323.txt

– The speed at which eXtreme Scale can service retrieve replication requests.
– The sliding window capacity.
– With network buffer tuning on both sides of a link, eXtreme Scale retrieves

changes over the socket efficiently.
v Object Serialization All data must be serializable. If a catalog service domain is

not using COPY_TO_BYTES, then the catalog service domain must use Java
serialization or ObjectTransformers to optimize serialization performance.

v Compression WebSphere eXtreme Scale compresses all data sent between
catalog service domains by default. Disabling compression is not currently
available.

v Memory tuning The memory usage for a multi-master replication topology is
largely independent of the number of catalog service domains in the topology.
Multi-master replication adds a fixed amount of processing per Map entry to
handle versioning. Each container also tracks a fixed amount of data for each
catalog service domain in the topology. A topology with two catalog service
domains uses approximately the same memory as a topology with 50 catalog
service domains. WebSphere eXtreme Scale does not use replay logs or similar
queues in its implementation. Thus, there is no recovery structure ready in the
case that a replication link is unavailable for a substantial period and later
restarts.

Planning to develop WebSphere eXtreme Scale applications
Set up your development environment and learn where to find details about
available programming interfaces.

API overview
WebSphere eXtreme Scale provides several features that are accessed
programmatically using the Java programming language through application
programming interfaces (APIs) and system programming interfaces.

WebSphere eXtreme Scale APIs

When you are using eXtreme Scale APIs, you must distinguish between
transactional and non-transactional operations. A transactional operation is an
operation that is performed within a transaction. ObjectMap, EntityManager,
Query, and DataGrid API are transactional APIs that are contained inside the
Session that is a transactional container. Non-transactional operations have nothing
to do with a transaction, such as configuration operations.

The ObjectGrid, BackingMap, and plug-in APIs are non-transactional. The
ObjectGrid, BackingMap, and other configuration APIs are categorized as
ObjectGrid Core API. Plug-ins are for customizing the cache to achieve the
functions that you want, and are categorized as the System Programming API. A
plug-in in eXtreme Scale is a component that provides a certain type of function to
the pluggable eXtreme Scale components that include ObjectGrid and BackingMap.
A feature represents a specific function or characteristic of an eXtreme Scale
component, including ObjectGrid, Session, BackingMap, ObjectMap, and so on.
Typically, features are configurable with configuration APIs. Plug-ins can be
built-in, but might require that you develop your own plug-ins in some situations.

You can normally configure the ObjectGrid and BackingMap to meet your
application requirements. When the application has special requirements, consider
using specialized plug-ins. WebSphere eXtreme Scale might have built-in plug-ins

116 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

that meet your requirements. For example, if you need a peer-to-peer replication
model between two local ObjectGrid instances or two distributed eXtreme Scale
grids, the built-in JMSObjectGridEventListener is available. If none of the built-in
plug-ins can solve your business problems, refer to the System Programming API
to provide your own plug-ins.

ObjectMap is a simple map-based API. If the cached objects are simple and no
relationship is involved, the ObjectMap API is ideal for your application. If object
relationships are involved, use the EntityManager API, which supports graph-like
relationships.

Query is a powerful mechanism for finding data in the ObjectGrid. Both Session
and EntityManager provide the traditional query capability.

The DataGrid API is a powerful computing capability in a distributed eXtreme
Scale environment that involves many machines, replicas, and partitions.
Applications can run business logic in parallel in all of the nodes in the distributed
eXtreme Scale environment. The application can obtain the DataGrid API through
the ObjectMap API.

The WebSphere eXtreme Scale REST data service is a Java HTTP service that is
compatible with Microsoft WCF Data Services (formally ADO.NET Data Services)
and implements the Open Data Protocol (OData). The REST data service allows
any HTTP client to access an eXtreme Scale grid. It is compatible with the WCF
Data Services support that is supplied with the Microsoft .NET Framework 3.5 SP1.
RESTful applications can be developed with the rich tooling provided by Microsoft
Visual Studio 2008 SP1. For more details, refer to the eXtreme Scale REST data
service user guide.

Plug-ins overview
A WebSphere eXtreme Scale plug-in is a component that provides a certain type of
function to the pluggable components that include ObjectGrid and BackingMap.
WebSphere eXtreme Scale provides several plug points to allow applications and
cache providers to integrate with various data stores, alternative client APIs and to
improve overall performance of the cache. The product ships with several default,
prebuilt plug-ins, but you can also build custom plug-ins with the application.

All plug-ins are concrete classes that implement one or more eXtreme Scale plug-in
interfaces. These classes are then instantiated and invoked by the ObjectGrid at
appropriate times. The ObjectGrid and BackingMaps each allow custom plug-ins to
be registered.

ObjectGrid plug-ins

The following plug-ins are available for an ObjectGrid instance. If the plug-in is
server side only, the plug-ins are removed on the client ObjectGrid and
BackingMap instances. The ObjectGrid and BackingMap instances are only on the
server.
v TransactionCallback: A TransactionCallback plug-in provides transaction life

cycle events. If the TransactionCallback plug-in is the built-in JPATxCallback
(com.ibm.websphere.objectgrid.jpa.JPATxCallback) class implementation, then the
plug-in is server side only. However, the subclasses of the JPATxCallback class
are not server side only.

v ObjectGridEventListener: An ObjectGridEventListener plug-in provides
ObjectGrid life cycle events for the ObjectGrid, shards, and transactions.

Chapter 4. Planning 117

ftp://public.dhe.ibm.com/software/webserver/appserv/library/v70/wxsrestservice.pdf
ftp://public.dhe.ibm.com/software/webserver/appserv/library/v70/wxsrestservice.pdf

v ObjectGridLifecycleListener: An ObjectGridLifecycleListener plug-in provides
ObjectGrid life cycle events for the ObjectGrid instance. The
ObjectGridLifecycleListener plug-in can be used as an optional mixin interface
for all other ObjectGrid plug-ins.

v ObjectGridPlugin: An ObjectGridPlugin is an optional mix-in interface that
provides extended life cycle management events for all other ObjectGrid
plug-ins.

v SubjectSource, ObjectGridAuthorization, SubjectValidation: eXtreme Scale
provides several security endpoints to allow custom authentication mechanisms
to be integrated with eXtreme Scale. (Server side only)

Common ObjectGrid plug-in requirements

The ObjectGrid instantiates and initializes plug-in instances using JavaBeans
conventions. All of the previous plug-in implementations have the following
requirements:
v The plug-in class must be a top-level public class.
v The plug-in class must provide a public, no-argument constructor.
v The plug-in class must be available in the class path for both servers and clients

(as appropriate).
v Attributes must be set using the JavaBeans style property methods.
v Plug-ins, unless specifically noted, are registered before ObjectGrid initializes

and cannot be changed after the ObjectGrid is initialized.

BackingMap plug-ins

The following plug-ins are available for a BackingMap:
v Evictor: An evictor plug-in is a default mechanism is provided for evicting cache

entries and a plug-in for creating custom evictors.

v ObjectTransformer: An ObjectTransformer plug-in allows you to serialize,
deserialize, and copy objects in the cache. The ObjectTransformer interface has
been replaced by the DataSerializer plug-ins, which you can use to efficiently
store arbitrary data in WebSphere eXtreme Scale so that existing product APIs
can efficiently interact with your data.

v OptimisticCallback: An OptimisticCallback plug-in allows you to
customize versioning and comparison operations of cache objects when you are
using the optimistic lock strategy. The OptimisticCallback plug-in has been
replaced by the ValueDataSerializer.Versionable interface, which you can
implement when you use the DataSerializer plug-in with the COPY_TO_BYTES
copy mode or when you use the @Version annotation with the EntityManager
API.

v MapEventListener: A MapEventListener plug-in provides callback notifications
and significant cache state changes that occur for a BackingMap.

v BackingMapLifecycleListener: A BackingMapLifecycleListener plug-in provides
BackingMap life cycle events for the BackingMap instance. The
BackingMapLifecycleListener plug-in can be used as an optional mix-in interface
for all other BackingMap plug-ins.

v BackingMapPlugin: A BackingMapPlugin is an optional mix-in interface that
provides extended life cycle management events for all other BackingMap
plug-ins.

118 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

v Indexing: Use the indexing feature, which is represented by the
MapIndexplug-in plug-in, to build an index or several indexes on a BackingMap
map to support non-key data access.

v Loader: A Loader plug-in on an ObjectGrid map acts as a memory cache for
data that is typically kept in a persistent store on either the same system or
some other system. (Server side only)

v MapSerializerPlugin: A MapSerializerPlugin allows you to serialize and inflate
Java objects and non-Java data in the cache. It is used with the DataSerializer
mix-in interfaces, allowing robust and flexible options for high-performance
applications.

REST data services overview
The WebSphere eXtreme Scale REST data service is a Java HTTP service that is
compatible with Microsoft WCF Data Services (formally ADO.NET Data Services)
and implements the Open Data Protocol (OData). Microsoft WCF Data Services is
compatible with this specification when using Visual Studio 2008 SP1 and the .NET
Framework 3.5 SP1.

Compatibility requirements

The REST data service allows any HTTP client to access a data grid. The REST
data service is compatible with the WCF Data Services support supplied with the
Microsoft .NET Framework 3.5 SP1. RESTful applications can be developed with
the rich tooling provided by Microsoft Visual Studio 2008 SP1. The figure provides
an overview of how WCF Data Services interacts with clients and databases.

WebSphere eXtreme Scale includes a function-rich API set for Java clients. As
shown in the following figure, the REST data service is a gateway between HTTP
clients and the WebSphere eXtreme Scale data grid, communicating with the grid
through an WebSphere eXtreme Scale client. The REST data service is a Java
servlet, which allows flexible deployments for common Java Platform, Enterprise
Edition (JEE) platforms, such as WebSphere Application Server. The REST data
service communicates with the WebSphere eXtreme Scale data grid using the
WebSphere eXtreme Scale Java APIs. It allows WCF Data Services clients or any
other client that can communicate with HTTP and XML.

.NET/WCF

More...

OData

HTTP Clients

AJAX

PHP

Database

REST Service

WCF DS

Figure 23. Microsoft WCF Data Services

Chapter 4. Planning 119

Refer to the Configuring REST data services, or use the following links to learn
more about WCF Data Services.
v Microsoft WCF Data Services Developer Center
v ADO.NET Data Services overview on MSDN
v Whitepaper: Using ADO.NET Data Services
v Atom Publish Protocol: Data Services URI and Payload Extensions
v Conceptual Schema Definition File Format
v Entity Data Model for Data Services Packaging Format
v Open Data Protocol
v Open Data Protocol FAQ

Features

This version of the eXtreme Scale REST data service supports the following
features:
v Automatic modeling of eXtreme Scale EntityManager API entities as WCF Data

Services entities, which includes the following support:
– Java data type to Entity Data Model type conversion
– Entity association support
– Schema root and key association support, which is required for partitioned

data grids

See Entity model for more information.
v Atom Publish Protocol (AtomPub or APP) XML and JavaScript Object Notation

(JSON) data payload format.
v Create, Read, Update and Delete (CRUD) operations using the respective HTTP

request methods: POST, GET, PUT and DELETE. In addition, the Microsoft
extension: MERGE is supported.

v Simple queries, using filters
v Batch retrieval and change set requests
v Partitioned data grid support for high availability
v Interoperability with eXtreme Scale EntityManager API clients
v Support for standard JEE Web servers
v Optimistic concurrency
v User authorization and authentication between the REST data service and the

eXtreme Scale data grid

Grid.NET/WCF

More...

OData

HTTP Clients

AJAX

PHP

Database

REST Service

WebSphere eXtreme Scale

Figure 24. WebSphere eXtreme Scale REST data service

120 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsreststart.html
http://msdn.microsoft.com/en-us/data/bb931106.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://www.odata.org/
http://msdn.microsoft.com/en-us/library/dd541474(PROT.10).aspx
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestconf.html
http://msdn.microsoft.com/en-us/library/dd541188(PROT.10).aspx

Known problems and limitations
v Tunneled requests are not supported.

Spring framework overview
Spring is a framework for developing Java applications. WebSphere eXtreme Scale
provides support to allow Spring to manage transactions and configure the clients
and servers comprising your deployed in-memory data grid.

Spring cache provider

ring Framework Version 3.1 introduced a new cache abstraction. With this new
abstraction, you can transparently add caching to an existing Spring application.
You can use WebSphere eXtreme Scale as the cache provider for the cache
abstraction. For more information, see Configuring a Spring cache provider.

Spring managed native transactions

Spring provides container-managed transactions that are similar to a Java Platform,
Enterprise Edition application server. However, the Spring mechanism can use
different implementations. WebSphere eXtreme Scale provides transaction manager
integration which allows Spring to manage the ObjectGrid transaction life cycles.
For more information, see “Managing transactions with Spring” on page 381.

Spring managed extension beans and namespace support

Also, eXtreme Scale integrates with Spring to allow Spring-style beans defined for
extension points or plug-ins. This feature provides more sophisticated
configurations and more flexibility for configuring the extension points.

In addition to Spring managed extension beans, eXtreme Scale provides a Spring
namespace called "objectgrid". Beans and built-in implementations are pre-defined
in this namespace, which makes it easier for users to configure eXtreme Scale.

Shard scope support

With the traditional style Spring configuration, an ObjectGrid bean can either be a
singleton type or prototype type. ObjectGrid also supports a new scope called the
"shard" scope. If a bean is defined as shard scope, then only one bean is created
per shard. All requests for beans with an ID or IDs matching that bean definition
in the same shard results in that one specific bean instance being returned by the
Spring container.

The following example shows that a
com.ibm.ws.objectgrid.jpa.plugins.JPAPropFactoryImpl bean is defined with scope
set to shard. Therefore, only one instance of the JPAPropFactoryImpl class is
created per shard.
<bean id="jpaPropFactory" class="com.ibm.ws.objectgrid.jpa.plugins.JPAPropFactoryImpl" scope="shard" />

Spring Web Flow

Spring Web Flow stores its session state in an HTTP session by default. If a web
application uses eXtreme Scale for session management, then Spring automatically
stores state with eXtreme Scale. Also, fault tolerance is enabled in the same manner
as the session.

Chapter 4. Planning 121

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsspringprovide.html

See the HTTP session management information in the Product Overview for further
details.

Packaging

The eXtreme Scale Spring extensions are in the ogspring.jar file. This Java archive
(JAR) file must be on the class path for Spring support to work. If a Java EE
application that is running in a WebSphere Extended Deployment augmented
WebSphere Application Server Network Deployment, put the spring.jar file and
its associated files in the enterprise archive (EAR) modules. You must also place
the ogspring.jar file in the same location.

Class loader and classpath considerations
Since eXtreme Scale stores Java objects in the cache by default, you must define
classes on the classpath wherever the data is accessed.

Specifically, eXtreme Scale client and container processes must include the classes
or JAR files in the classpath when starting the process. When you are designing an
application for use with eXtreme Scale, separate out any business logic from the
persistent data objects.

See Class loading in the WebSphere Application Server information center for more
information.

For considerations within a Spring Framework setting, see the packaging section
under the topic on integrating with Spring framework in the Programming Guide.

Relationship management
Object-oriented languages such as Java, and relational databases support
relationships or associations. Relationships decrease the amount of storage through
the use of object references or foreign keys.

When you are using relationships in a data grid, the data must be organized in a
constrained tree. One root type must exist in the tree and all children must be
associated to only one root. For example: Department can have many Employees
and an Employee can have many Projects. But a Project cannot have many
Employees that belong to different departments. Once a root is defined, all access
to that root object and its descendants are managed through the root. WebSphere
eXtreme Scale uses the hash code of the root object's key to choose a partition. For
example:
partition = (hashCode MOD numPartitions).

When all of the data for a relationship is tied to a single object instance, the entire
tree can be collocated in a single partition and can be accessed very efficiently
using one transaction. If the data spans multiple relationships, then multiple
partitions must be involved which involves additional remote calls, which can lead
to performance bottlenecks.

Reference data

Some relationships include look-up or reference data such as: CountryName. For
look-up or reference data, the data must exist in every partition. The data can be
accessed by any root key and the same result is returned. Reference data such as
this should only be used in cases where the data is fairly static. Updating this data

122 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/trun_classload.html

can be expensive because the data needs to be updated in every partition. The
DataGrid API is a common technique to keeping reference data up-to-date.

Costs and benefits of normalization

Normalizing the data using relationships can help reduce the amount of memory
used by the data grid since duplication of data is decreased. However, in general,
the more relational data that is added, the less it will scale out. When data is
grouped together, it becomes more expensive to maintain the relationships and to
keep the sizes manageable. Since the grid partitions data based on the key of the
root of the tree, the size of the tree isn't taken into account. Therefore, if you have
a lot of relationships for one tree instance, the data grid may become unbalanced,
causing one partition to hold more data than the others.

When the data is denormalized or flattened, the data that would normally be
shared between two objects is instead duplicated and each table can be partitioned
independently, providing a much more balanced data grid. Although this increases
the amount of memory used, it allows the application to scale since a single row of
data can be accessed that has all of the necessary data. This is ideal for read-mostly
grids since maintaining the data becomes more expensive.

For more information, see Classifying XTP systems and scaling.

Managing relationships using the data access APIs

The ObjectMap API is the fastest, most flexible and granular of the data access
APIs, providing a transactional, session-based approach at accessing data in the
grid of maps. The ObjectMap API allows clients to use common CRUD (create,
read, update and delete) operations to manage key-value pairs of objects in the
distributed data grid.

When using the ObjectMap API, object relationships must be expressed by
embedding the foreign key for all relationships in the parent object.

An example follows.
public class Department {
Collection<String> employeeIds;
}

The EntityManager API simplifies relationship management by extracting the
persistent data from the objects including the foreign keys. When the object is later
retrieved from the data grid, the relationship graph is rebuilt, as in the following
example.
@Entity
public class Department {
Collection<String> employees;
}

The EntityManager API is very similar to other Java object persistence technologies
such as JPA and Hibernate in that it synchronizes a graph of managed Java object
instances with the persistent store. In this case, the persistent store is an eXtreme
Scale data grid, where each entity is represented as a map and the map contains
the entity data rather than the object instances.

Cache key considerations
WebSphere eXtreme Scale uses hash maps to store data in the grid, where a Java
object is used for the key.

Chapter 4. Planning 123

http://www.devwebsphere.com/devwebsphere/2009/03/classifying-xtp-systems.html

Guidelines

When choosing a key, consider the following requirements:
v Keys can never change. If a portion of the key needs to change, then the cache

entry should be removed and reinserted.
v Keys should be small. Since keys are used in every data access operation, it's a

good idea to keep the key small so that it can be serialized efficiently and use
less memory.

v Implement a good hash and equals algorithm. The hashCode and equals(Object
o) methods must always be overridden for each key object.

v Cache the key's hashCode. If possible, cache the hash code in the key object
instance to speed up hashCode() calculations. Since the key is immutable, the
hashCode should be cacheable.

v Avoid duplicating the key in the value. When using the ObjectMap API, it is
convenient to store the key inside the value object. When this is done, the key
data is duplicated in memory.

Data for different time zones
When inserting data with calendar, java.util.Date, and timestamp attributes into an
ObjectGrid, you must ensure these date time attributes are created based on same
time zone, especially when deployed into multiple servers in various time zones.
Using the same time zone based date time objects can ensure the application is
time-zone safe and data can be queried by calendar, java.util.Date and timestamp
predicates.

Without explicitly specifying a time zone when creating date time objects, Java
uses the local time zone and may cause inconsistent date time values in clients and
servers.

Consider an example in a distributed deployment in which client1 is in time zone
[GMT-0] and client2 is in [GMT-6] and both want to create a java.util.Date object
with value '1999-12-31 06:00:00'. Then client1 will create java.util.Date object with
value '1999-12-31 06:00:00 [GMT-0]' and client2 will create java.util.Date object with
value '1999-12-31 06:00:00 [GMT-6]'. Both java.util.Date objects are not equal
because the time zone is different. A similar problem occurs when preloading data
into partitions residing in servers in different time zones if local time zone is used
to create date time objects.

To avoid the described problem, the application can choose a time zone such as
[GMT-0] as the base time zone for creating calendar, java.util.Date, and timestamp
objects.

124 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Chapter 5. Developing applications
Develop applications that use the data grid. The tasks for
developing applications include:

v Accessing data

v System APIs and plug-ins

v JPA integration

v Spring integration

Setting up the development environment
Before you begin developing applications, you must set up your development
environment.

Before you begin

See “Planning to develop WebSphere eXtreme Scale applications” on page 116 for
more information about the available programming interfaces and considerations.

Setting up a stand-alone development environment
Configure an Eclipse-based integrated development environment to build and run
a Java SE application with the stand-alone version of WebSphere eXtreme Scale.

Before you begin

Install the WebSphere eXtreme Scale product into a new or empty directory and
apply the latest WebSphere eXtreme Scale cumulative fix pack. You can also use
the WebSphere eXtreme Scale trial version by unzipping the zip file. For more
information on installation, see the information on installing the stand-alone
WebSphere eXtreme Scale or WebSphere eXtreme Scale Client in the Administration
Guide.

Procedure
v Configure Eclipse to build and run a Java SE application with WebSphere

eXtreme Scale.
1. Define a user library to allow your application to reference WebSphere

eXtreme Scale application programming interfaces.
a. In your Eclipse or IBM® Rational Application Developer environment,

click Window > Preferences.
b. Expand the Java > Build Path branch and select User Libraries. Click

New.
c. Select the eXtreme Scale user library. Click Add JARs.

1) Browse and select the objectgrid.jar or ogclient.jar files from the
wxs_root/lib directory. Click OK. Select the ogclient.jar file if you
are developing client applications or local, in-memory caches. If you
are developing and testing eXtreme Scale servers, use the
objectgrid.jar file.

© Copyright IBM Corp. 2009, 2012 125

2) To include Javadoc for the ObjectGrid APIs, select the Javadoc location
for the objectgrid.jar or ogclient.jar file that you added in the
previous step. Click Edit. In the Javadoc location path box, type the
following web address:
http://www.ibm.com/developerworks/wikis/extremescale/docs/api/

d. Click OK to apply the settings and close the Preferences window.

The eXtreme Scale libraries are now in the build path for the project.
2. Add the user library to your Java project.

a. From the package explorer, right-click the project and select Properties.
b. Select the Libraries tab.
c. Click Add Library.
d. Select User Library. Click Next.
e. Select the eXtreme Scale user library that you configured earlier.
f. Click OK to apply the changes and close the Properties window.

v Run a Java SE application with eXtreme Scale with Eclipse. Create a run
configuration to execute your application.
1. Configure Eclipse to build and run a Java SE application with eXtreme Scale.

From the Run menu select Run Configurations.
2. Right-click the Java Application category and select New.
3. Select the new run configuration, named New_Configuration.
4. Configure the profile.

– Project (on main tabbed page): your_project_name

– Main Class (on main tabbed page): your_main_class

– VM arguments (on arguments tabbed page):
-Djava.endorsed.dirs=wxs_root/lib/endorsed

Problems with the VM Arguments often occur because the path to
java.endorsed.dirs must be an absolute path with no variables or shortcuts.
Other common setup problems involve the Object Request Broker (ORB). You
might see the following error. Refer to Configuring a custom Object Request
Broker for more information:
Caused by: java.lang.RuntimeException: The ORB that comes
with the Sun Java implementation does not work with
ObjectGrid at this time.

If you do not have the objectGrid.xml or deployment.xml accessible to the
application, you might see the following error:
Exception in thread "P=211046:O=0:CT" com.ibm.websphere.objectgrid.

ObjectGridRuntimeException: Cannot start OG container at
Client.startTestServer(Client.java:161) at Client.
main(Client.java:82) Caused by: java.lang.IllegalArgumentException:
The objectGridXML must not be null at com.ibm.websphere.objectgrid.
deployment.DeploymentPolicyFactory.createDeploymentPolicy
(DeploymentPolicyFactory.java:55) at Client.startTestServer(Client.
java:154) .. 1 more

5. Click Apply and close the window, or click Run.

Running a WebSphere eXtreme Scale client or server
application with Apache Tomcat in Rational Application
Developer

Whether you have a client or server application, use the same basic steps to run
the application in Apache Tomcat in Rational Application Developer. For a client

126 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txscfgorb.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txscfgorb.html

application, you want to configure and run a web application to use a WebSphere
eXtreme Scale client in Rational Application Developer. Follow these instructions to
create a web project for running a WebSphere eXtreme Scale catalog service or
container. For a server application, you want to enable a Java EE application in
Rational Application Developer interface with a stand-alone installation of
WebSphere eXtreme Scale. Follow these instructions to configure a Java EE
application project for using the WebSphere eXtreme Scale client library.

Before you begin

Install the WebSphere eXtreme Scale Trial or full product.
v Install the stand-alone version of the WebSphere eXtreme Scale product.
v Download and extract the WebSphere eXtreme Scale trial version.
v Install Apache Tomcat Version 6.0 or later.
v Install Rational Application Developer and create a Java EE web application.

Procedure
1. Add WebSphere eXtreme Scale runtime library to your Java EE build path.

Client application In this scenario, you want to configure and run a web
application to use a WebSphere eXtreme Scale client in Rational Application
Developer.
a. Window > Preferences > Java > Build Path > User Libraries. Click New.
b. Enter a User library name of eXtremeScaleClient, and click OK.
c. Click Add Jars..., and navigate to and select the wxs_home/lib/ogclient.jar

file. Click Open.
d. Optional: (Optional) To add Javadoc, select Javadoc location and click

Edit.... In the Javadoc location path, you can either enter the URL of the API
documentation, or you can download the API documentation.
v To use the online API documentation, enter http://www.ibm.com/

developerworks/wikis/extremescale/docs/api/ in the Javadoc location
path.

v To download the API documentation, go to the WebSphere eXtreme Scale
API documentation download page. For the Javadoc location path, enter
your local download location.

e. Click OK.
f. Click OK to close out the User Libraries dialogue.
g. Click Project > Properties.
h. Click Java Build Path.
i. Click Add Library.
j. Select User Library. Click Next.
k. Check the eXtremeScaleClient library and click Finish.
l. Click OK to close the Project Properties dialog.
Server application In this scenario, you want to configure and run a web
application to run an embedded WebSphere eXtreme Scale server in Rational
Application Developer.
a. Click Window > Preferences > Java > Build Path > User Libraries. Click

New.
b. Enter a User library name of eXtremeScale, and click OK.
c. Click Add Jars..., and select wxs_home/lib/objectgrid.jar. Click Open.

Chapter 5. Developing applications 127

http://www.ibm.com/developerworks/wikis/x/x4K4Bg
http://www.ibm.com/developerworks/wikis/x/x4K4Bg
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html

d. (Optional) To add Javadoc, select Javadoc location and click Edit.... In the
Javadoc location path, Enter http://www.ibm.com/developerworks/wikis/
extremescale/docs/api/.

e. Click OK.
f. Click OK to close out the User Libraries dialogue.
g. Click Project > Properties.
h. Click Java Build Path.
i. Click Add Library.
j. Select User Library. Click Next.
k. Check the eXtremeScaleClient library and click Finish.
l. Click OK to close the Project Properties dialog.

2. Define Tomcat Server for our project.
a. Ensure that you are in the J2EE perspective and click the Servers tab in the

bottom pane. You can also click Window > Show View > Servers.
b. Right-click in the Servers pane, and choose New > Server.
c. Choose Apache, Tomcat v6.0 Server. Click Next.
d. Click Browse... Select tomcat_root. Click OK.
e. Click Next.
f. Select your Java EE application in the left Available pane and click Add > to

move it to the right Configured pane on the server, and click Finish.
3. Resolve any remaining errors for the Project. Use the following steps to

eliminate errors in the Problems pane:
a. Click Project > Clean > project_name. Click OK. Build the project.
b. Right-click on the Java EE project, and choose Build Path > Configure

Build Path.
c. Click the Libraries tab. Ensure that the path is configured properly:

v For client applications: Ensure that Apache Tomcat, eXtremeScaleClient,
and Java 1.5 JRE are on the path.

v For server applications: Ensure that Apache Tomcat, eXtremeScale, and
Java 1.5 JRE are on the path.

4. Create a run configuration to run your application.
a. From the Run menu, select Run Configurations.
b. Right-click the Java Application category and select New.
c. Select the new run configuration, named New_Configuration.
d. Configure the profile.

v Project (on main tabbed page): your_project_name

v Main Class (on main tabbed page): your_main_class

v VM arguments (on arguments tabbed page):
-Djava.endorsed.dirs=wxs_root/lib/endorsed

Problems with the VM Arguments often occur because the path to
java.endorsed.dirs must be an absolute path with no variables or
shortcuts.
Other common setup problems involve the Object Request Broker (ORB).
You might see the following error. See Configuring a custom Object Request
Broker for more information:
Caused by: java.lang.RuntimeException: The ORB that comes with the
Java implementation does not work with ObjectGrid at this time.

128 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txscfgorb.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txscfgorb.html

If you do not have the objectGrid.xml or deployment.xml files accessible to
the application, you might see the following error:

Exception in thread "P=211046:O=0:CT" com.ibm.websphere.objectgrid.ObjectGridRuntimeException:
Cannot start OG container
at Client.startTestServer(Client.java:161)
at Client.main(Client.java:82)
Caused by: java.lang.IllegalArgumentException: The objectGridXML must not be null
at com.ibm.websphere.objectgrid.deployment.DeploymentPolicyFactory.createDeploymentPolicy
(DeploymentPolicyFactory.java:55)
at Client.startTestServer(Client.java:154)
... 1 more

5. Click Apply and close the window, or click Run.

What to do next

After you configure and run a web application with WebSphere eXtreme Scale
client in Rational Application Developer, you can develop a servlet. This servlet
uses the WebSphere eXtreme Scale APIs to store and retrieve data from a remote
data grid.

After you enable a Java EE application in Rational Application Developer interface
with a stand-alone installation of WebSphere eXtreme Scale, you can develop a
servlet that uses the WebSphere eXtreme Scale system APIs to start and stop
catalog services.

Running an integrated client or server application with
WebSphere Application Server in Rational Application
Developer

Configure and run a Java EE application with aWebSphere eXtreme Scale client or
server with the WebSphere Application Server runtime embedded in Rational
Application Developer. If you are configuring a server, starting WebSphere
Application Server automatically starts WebSphere eXtreme Scale .

Before you begin

The following steps are for WebSphere Application Server Version 7.0 with
Rational Application Developer Version 7.5. The following steps might vary if you
are using different versions of these products.

Install Rational Application Developer with WebSphere Application Server Test
Environment extensions.

Install WebSphere eXtreme Scale client or server into the WebSphere Application
Server, Version 7.0 Test Environment in the rad_home\runtimes\base_v7 directory.
See Installing WebSphere eXtreme Scale or WebSphere eXtreme Scale Client with
WebSphere Application Server for more information.

Procedure
1. Define eXtreme Scale server that is integrated with WebSphere Application

Server for your project.
a. In the J2EE perspective, click Window > Show View > Servers.

b. Right-click in the Servers pane. Choose New > Server.
c. Choose IBM WebSphere Application Server v7.0. Click Next.
d. Select a profile to use. The default is was70profile1.
e. Enter the server name. The default is server1.

Chapter 5. Developing applications 129

http://publib.boulder.ibm.com/infocenter/radhelp/v7r5/index.jsp
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsinstallwas85.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsinstallwas85.html

f. Click Next.
g. Select your Java EE application in the Available pane. Click Add > to move

it to the Configured pane on the server. Click Finish.
2. To run the Java EE application, start the application server. Right-click

WebSphere Application Server v7.0 and select Start.

Accessing data with client applications
After you configure your development environment, you can begin to develop
applications that create, access, and manage the data in your data grid.

About this task

From the perspective of a client application, using WebSphere eXtreme Scale
involves the following main steps:
v Connecting to the catalog service by obtaining a ClientClusterContext instance.
v Obtaining a client ObjectGrid instance.
v Getting a Session instance.
v Getting an ObjectMap instance.
v Using the ObjectMap methods.

Connecting to distributed ObjectGrid instances
programmatically

You can connect to a distributed ObjectGrid with the connection end points for the
catalog service domain. You must have the host name and listener port of each
catalog server in the catalog service domain to which you want to connect.

Before you begin
v To connect to a distributed data grid, you must configure your server-side

environment with a catalog service and container servers.
v You must have the listener port for each catalog service. For more information,

see Planning for network ports.
v If the client application is running in WebSphere Application Server augmented

with eXtreme Scale, configure the catalog service domain using the WebSphere
Application Server administrative console or wsadmin.

About this task

When running in a Java EE application, consider using the eXtreme Scale resource
adapter. The resource adapter allows the application to look up a ObjectGrid
connection in Java Naming Directory Interface (JNDI) using a Java Connector
Architecture (JCA) connection factory, which significantly simplifies access to the
data grid and allows integration with Java Transaction API (JTA) transactions. For
more information, see “Using JCA to connect transactional applications to eXtreme
Scale clients” on page 58.

The ObjectGridManager.connect() methods connect to a catalog service domain
using the supplied connection end points and returns a ClientClusterContext object
that is used to retrieve ObjectGrid instances for the domain. The connection end
points are a comma-delimited list of host and port combinations for each catalog
server in the catalog service domain. See the following format of the catalog
service endpoints:

130 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/cxsadmport.html

catalogServiceEndpoints ::= <catalogServiceEndpoint> [,<catalogServiceEndpoint>]
catalogServiceEndpoint ::= <hostName> : <listenerPort>
hostName ::= The IP address or host name of a catalog service.
listenerPort ::= The listener port that the catalog service is configured to use.

After you connect to the catalog service domain, use the
ObjectGridManagerFactory.getObjectGrid(ClientClusterContext ccc, String
objectGridName) method to retrieve a named ObjectGrid client instance. This
ObjectGrid instance is a proxy for the named data grid and is cached in the client
application. The ObjectGrid instance represents a logical connection to the remote
data grid and is thread safe. All underlying physical connections to the data grid
are managed automatically and can tolerate failure events.

The connection steps vary depending on whether you are using a stand-alone
configuration or WebSphere Application Server.

Procedure
v Connect to a stand-alone distributed data grid using explicit catalog service end

points.
// Retrieve an ObjectGridManager instance.
ObjectGridManager ogm = ObjectGridManagerFactory.getObjectGridManager();

// Obtain a ClientClusterContext by connecting to a catalog
// service domain, manually suppling the catalog service endpoints,
// and optionally specifying the ClientSecurityConfiguration and
// client ObjectGrid override XML file URL.
String catalogServiceEndpoints = "host1:2809,host2:2809";
ClientClusterContext ccc = ogm.connect(catalogServiceEndpoints,

(ClientSecurityConfiguration) null, (URL) null);

// Obtain a distributed ObjectGrid using ObjectGridManager and providing
// the ClientClusterContext.
ObjectGrid og = ogm.getObjectGrid(ccc, "Mygrid");

v Connect to a catalog service domain from a client application that is hosted in
WebSphere Application Server, where the catalog service domain was configured
using the administrative console or admin task. The catalog service endpoints
can be retrieved from a named domain identifier or for the default domain using
the ObjectGridManager.
// Retrieve an ObjectGridManager instance.
ObjectGridManager ogm = ObjectGridManagerFactory.getObjectGridManager();

// Retrieve the domain by its ID (the name given to it in the admin console or wsadmin)
// The CatalogDomainManager also includes methods to retrieve all domains and the default domain.
CatalogDomainInfo di = ogm.getCatalogDomainManager().getDomainInfo("ProductionDomain");
if(di == null) throw new IllegalStateException("Domain not configured");

// Connect to the domain using the catalog service endpoints and the security configuration
// in the CatalogDomainInfo object. The client override ObjectGrid XML is optional
// and is manually supplied.
ClientClusterContext ccc = ogm.connect(di.getClientCatalogServiceAddresses(),
di.getClientSecurityConfiguration(), (URL) null);

// Obtain a distributed ObjectGrid using ObjectGridManager and by providing
// the ClientClusterContext.
ObjectGrid og = ogm.getObjectGrid(ccc, "MyGrid");

What to do next

If the catalog service domain is hosted in a WebSphere Application Server
deployment manager, clients outside of the cell, including Java Platform, Enterprise
Edition clients, must connect to the catalog service using the deployment manager
host name and the IIOP bootstrap port. When the catalog service runs in
WebSphere Application Server cells, and the clients run outside of the cells, look to
the eXtreme Scale domain configuration pages in the WebSphere Application

Chapter 5. Developing applications 131

Server administrative console for the information that you need to point a client to
the catalog service.

Tracking map updates by an application
When an application is making changes to a Map during a transaction, a
LogSequence object tracks those changes. If the application changes an entry in the
map, a corresponding LogElement object provides the details of the change.

Loaders are given a LogSequence object for a particular map whenever an
application calls for a flush or commit to the transaction. The Loader iterates over
the LogElement objects within the LogSequence object and applies each
LogElement object to the backend.

ObjectGridEventListener listeners that are registered with an ObjectGrid also use
LogSequence objects. These listeners are given a LogSequence object for each map
in a committed transaction. Applications can use these listeners to wait for certain
entries to change, like a trigger in a conventional database.

The following log-related interfaces or classes are provided by the eXtreme Scale
framework:
v com.ibm.websphere.objectgrid.plugins.LogElement
v com.ibm.websphere.objectgrid.plugins.LogSequence
v com.ibm.websphere.objectgrid.plugins.LogSequenceFilter
v com.ibm.websphere.objectgrid.plugins.LogSequenceTransformer

LogElement interface

A LogElement represents an operation on an entry during a transaction. A
LogElement object has several methods to get its various attributes. The most
commonly used attributes are the type and the current value attributes fetched by
getType() and getCurrentValue().

The type is represented by one of the constants defined in the LogElement
interface: INSERT, UPDATE, DELETE, EVICT, FETCH, or TOUCH.

The current value represents the new value for the operation if it is INSERT,
UPDATE or FETCH. If the operation is TOUCH, DELETE, or EVICT, then the
current value is null. This value can be cast to ValueProxyInfo when a
ValueInterface is in use.

See the API documentation for more details on the LogElement interface.

LogSequence interface

In most transactions, operations to more than one entry in a map occur, so
multiple LogElement objects are created. You should create an object that behaves
as a composite of multiple LogElement objects. The LogSequence interface serves
this purpose by containing a list of LogElement objects.

See the API documentation for more details on the LogSequence interface.

132 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Using LogElement and LogSequence

LogElement and LogSequence are widely used in eXtreme Scale and by ObjectGrid
plug-ins that are written by users when operations are propagated from one
component or server to another component or server. For example, a LogSequence
object can be used by the distributed ObjectGrid transaction propagation function
to propagate the changes to other servers, or it can be applied to the persistence
store by the loader. LogSequence is mainly used by the following interfaces.
v com.ibm.websphere.objectgrid.plugins.ObjectGridEventListener
v com.ibm.websphere.objectgrid.plugins.Loader
v com.ibm.websphere.objectgrid.plugins.Evictor
v com.ibm.websphere.objectgrid.Session

Loader example

This section demonstrates how the LogSequence and LogElement objects are used
in a Loader. A Loader is used to load data from and persist data into a persistent
store. The batchUpdate method of the Loader interface uses LogSequence object:
void batchUpdate(TxID txid, LogSequence sequence) throws

LoaderException, OptimisticCollisionException;

The batchUpdate method is called when an ObjectGrid needs to apply all current
changes to the Loader. The Loader is given a list of LogElement objects for the
map, encapsulated in a LogSequence object. The implementation of the
batchUpdate method must iterate over the changes and apply them to the
backend. The following code snippet demonstrates how a Loader uses a
LogSequence object. The snippet iterates over the set of changes and builds up
three batch Java database connectivity (JDBC) statements: inserts, updates, and
deletes:
public void batchUpdate(TxID tx, LogSequence sequence) throws LoaderException
{

// Get a SQL connection to use.
Connection conn = getConnection(tx);
try
{
// Process the list of changes and build a set of prepared
// statements for executing a batch update, insert, or delete
// SQL operations. The statements are cached in stmtCache.
Iterator iter = sequence.getPendingChanges();
while (iter.hasNext())
{

LogElement logElement = (LogElement)iter.next();
Object key = logElement.getCacheEntry().getKey();
Object value = logElement.getCurrentValue();
switch (logElement.getType().getCode())
{

case LogElement.CODE_INSERT:
buildBatchSQLInsert(key, value, conn);
break;

case LogElement.CODE_UPDATE:
buildBatchSQLUpdate(key, value, conn);
break;

case LogElement.CODE_DELETE:
buildBatchSQLDelete(key, conn);
break;

}
}
// Run the batch statements that were built by above loop.
Collection statements = getPreparedStatementCollection(tx, conn);
iter = statements.iterator();

Chapter 5. Developing applications 133

while (iter.hasNext())
{

PreparedStatement pstmt = (PreparedStatement) iter.next();
pstmt.executeBatch();

}
} catch (SQLException e)
{

LoaderException ex = new LoaderException(e);
throw ex;

}
}

The previous sample illustrates the high-level logic of processing the LogSequence
argument. However, the sample does not illustrate the details of how an SQL
insert, update, or delete statement is built. The getPendingChanges method is
called on the LogSequence argument to obtain an iterator of LogElement objects
that a Loader needs to process, and the LogElement.getType().getCode() method is
used to determine whether a LogElement is for an SQL insert, update, or delete
operation.

Evictor sample

You can also use LogSequence and LogElement objects with an Evictor. An Evictor
is used to evict the map entries from the backing map based on certain criteria.
The apply method of the Evictor interface uses LogSequence.
/**
* This is called during cache commit to allow the evictor to track object usage
* in a backing map. This will also report any entries that have been successfully
* evicted.
*
* @param sequence LogSequence of changes to the map
*/
void apply(LogSequence sequence);

LogSequenceFilter and LogSequenceTransformer interfaces

Sometimes, it is necessary to filter the LogElement objects so that only LogElement
objects with certain criteria are accepted, and reject other objects. For example, you
might want to serialize a certain LogElement based on some criterion.

LogSequenceFilter solves this problem with the following method.
public boolean accept (LogElement logElement);

This method returns true if the given LogElement should be used in the operation,
and returns false if the given LogElement should not be used.

LogSequenceTransformer is a class that uses the LogSequenceFilter function. It uses
the LogSequenceFilter to filter out some LogElement objects and then serialize the
accepted LogElement objects. This class has two methods. The first method
follows.
public static void serialize(Collection logSequences, ObjectOutputStream stream,

LogSequenceFilter filter, DistributionMode mode) throws IOException

This method allows the caller to provide a filter for determining which
LogElements to include in the serialization process. The DistributionMode
parameter allows the caller to control the serialization process. For example, if the
distribution mode is invalidation only, then there is no need to serialize the value.
The second method of this class is the inflate method, as follows.

134 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

public static Collection inflate(ObjectInputStream stream, ObjectGrid
objectGrid) throws IOException, ClassNotFoundException

The inflate method reads the log sequence serialized form, which was created by
the serialize method, from the provided object input stream.

Interacting with an ObjectGrid using the ObjectGridManager
interface

The ObjectGridManagerFactory class and the ObjectGridManager interface provide
a mechanism to create, access, and add data to ObjectGrid instances. The
ObjectGridManagerFactory class is a static helper class to access the
ObjectGridManager interface, a singleton. The ObjectGridManager interface
includes several convenience methods to create instances of an ObjectGrid object.
The ObjectGridManager interface also facilitates creation and caching of ObjectGrid
instances that can be accessed by several users.

Creating ObjectGrid instances with the ObjectGridManager
interface
Each of these methods creates a local instance of an ObjectGrid.

Local in-memory instance

The following code snippet illustrates how to obtain and configure a local
ObjectGrid instance with eXtreme Scale.
// Obtain a local ObjectGrid reference

// you can create a new ObjectGrid, or get configured ObjectGrid
// defined in ObjectGrid xml file
ObjectGridManager objectGridManager =

ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid ivObjectGrid =

objectGridManager.createObjectGrid("objectgridName");

// Add a TransactionCallback into ObjectGrid
HeapTransactionCallback tcb = new HeapTransactionCallback();
ivObjectGrid.setTransactionCallback(tcb);

// Define a BackingMap
// if the BackingMap is configured in ObjectGrid xml
// file, you can just get it.
BackingMap ivBackingMap = ivObjectGrid.defineMap("myMap");

// Add a Loader into BackingMap
Loader ivLoader = new HeapCacheLoader();
ivBackingMap.setLoader(ivLoader);

// initialize ObjectGrid
ivObjectGrid.initialize();

// Obtain a session to be used by the current thread.
// Session can not be shared by multiple threads
Session ivSession = ivObjectGrid.getSession();

// Obtaining ObjectMap from ObjectGrid Session
ObjectMap objectMap = ivSession.getMap("myMap");

Default shared configuration

The following code is a simple case of creating an ObjectGrid to share among
many users.

Chapter 5. Developing applications 135

import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.ObjectGridException;
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.ObjectGridManager;
final ObjectGridManager oGridManager=

ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid employees =
oGridManager.createObjectGrid("Employees",true);
employees.initialize();
employees.
/*sample continues..*/

The preceding Java code snippet creates and caches the Employees ObjectGrid. The
Employees ObjectGrid is initialized with the default configuration and is ready for
use. The second parameter in the createObjectGrid method is set to true, which
instructs the ObjectGridManager to cache the ObjectGrid instance it creates. If this
parameter is set to false, the instance is not cached. Every ObjectGrid instance has
a name, and the instance can be shared among many clients or users based on that
name.

If the objectGrid instance is used in peer-to-peer sharing, the caching must be set
to true. For more information on peer-to-peer sharing, see Distributing changes
between peer Java Virtual Machines.

XML configuration

WebSphere eXtreme Scale is highly configurable. The previous example
demonstrates how to create a simple ObjectGrid without any configuration. This
example shows you how to create a pre-configured ObjectdGrid instance that is
based on an XML configuration file. You can configure an ObjectGrid instance
programmatically or using an XML-based configuration file. You can also configure
ObjectGrid using a combination of both approaches. The ObjectGridManager
interface allows creation of an ObjectGrid instance based on the XML
configuration. The ObjectGridManager interface has several methods that take a
URL as an argument. Every XML file that is passed into the ObjectGridManager
must be validated against the schema. XML validation can be disabled only when
the file is previously validated and no changes have been made to the file since its
last validation. Disabling validation saves a small amount of overhead but
introduces the possibility of using an invalid XML file. The IBM Java Developer Kit
(JDK) Version 5 has support for XML validation. When using a JDK that does not
have this support, Apache Xerces might be required to validate the XML.

The following Java code snippet demonstrates how to pass in an XML
configuration file to create an ObjectGrid.
import java.net.MalformedURLException;
import java.net.URL;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.ObjectGridException;
import com.ibm.websphere.objectgrid.ObjectGridManager;
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
boolean validateXML = true; // turn XML validation on
boolean cacheInstance = true; // Cache the instance
String objectGridName="Employees"; // Name of Object Grid URL
allObjectGrids = new URL("file:test/myObjectGrid.xml");
final ObjectGridManager oGridManager=
ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid employees =
oGridManager.createObjectGrid(objectGridName, allObjectGrids,
bvalidateXML, cacheInstance);

136 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

The XML file can contain configuration information for several ObjectGrids. The
previous code snippet specifically returns ObjectGrid Employees, assuming that the
Employees configuration is defined in the file.

createObjectGrid methods

.
/**
* A simple factory method to return an instance of an
* Object Grid. A unique name is assigned.
* The instance of ObjectGrid is not cached.
* Users can then use {@link ObjectGrid#setName(String)} to change the
* ObjectGrid name.
*
* @return ObjectGrid an instance of ObjectGrid with a unique name assigned
* @throws ObjectGridException any error encountered during the
* ObjectGrid creation
*/
public ObjectGrid createObjectGrid() throws ObjectGridException;

/**
* A simple factory method to return an instance of an ObjectGrid with the
* specified name. The instances of ObjectGrid can be cached. If an ObjectGrid
* with the this name has already been cached, an ObjectGridException
* will be thrown.
*
* @param objectGridName the name of the ObjectGrid to be created.
* @param cacheInstance true, if the ObjectGrid instance should be cached
* @return an ObjectGrid instance
* @this name has already been cached or
* any error during the ObjectGrid creation.
*/
public ObjectGrid createObjectGrid(String objectGridName, boolean cacheInstance)

throws ObjectGridException;

/**
* Create an ObjectGrid instance with the specified ObjectGrid name. The
* ObjectGrid instance created will be cached.
* @param objectGridName the Name of the ObjectGrid instance to be created.
* @return an ObjectGrid instance
* @throws ObjectGridException if an ObjectGrid with this name has already
* been cached, or any error encountered during the ObjectGrid creation
*/
public ObjectGrid createObjectGrid(String objectGridName)

throws ObjectGridException;

/**
* Create an ObjectGrid instance based on the specified ObjectGrid name and the
* XML file. The ObjectGrid instance defined in the XML file with the specified
* ObjectGrid name will be created and returned. If such an ObjectGrid
* cannot be found in the xml file, an exception will be thrown.
*
* This ObjecGrid instance can be cached.
*
* If the URL is null, it will be simply ignored. In this case, this method behaves
* the same as {@link #createObjectGrid(String, boolean)}.
*
* @param objectGridName the Name of the ObjectGrid instance to be returned. It
* must not be null.
* @param xmlFile a URL to a wellformed xml file based on the ObjectGrid schema.
* @param enableXmlValidation if true the XML is validated
* @param cacheInstance a boolean value indicating whether the ObjectGrid
* instance(s)
* defined in the XML will be cached or not. If true, the instance(s) will
* be cached.

Chapter 5. Developing applications 137

*
* @throws ObjectGridException if an ObjectGrid with the same name
* has been previously cached, no ObjectGrid name can be found in the xml file,
* or any other error during the ObjectGrid creation.
* @return an ObjectGrid instance
* @see ObjectGrid
*/
public ObjectGrid createObjectGrid(String objectGridName, final URL xmlFile,
final boolean enableXmlValidation, boolean cacheInstance)
throws ObjectGridException;

/**
* Process an XML file and create a List of ObjectGrid objects based
* upon the file.
* These ObjecGrid instances can be cached.
* An ObjectGridException will be thrown when attempting to cache a
* newly created ObjectGrid
* that has the same name as an ObjectGrid that has already been cached.
*
* @param xmlFile the file that defines an ObjectGrid or multiple
* ObjectGrids
* @param enableXmlValidation setting to true will validate the XML
* file against the schema
* @param cacheInstances set to true to cache all ObjectGrid instances
* created based on the file
* @return an ObjectGrid instance
* @throws ObjectGridException if attempting to create and cache an
* ObjectGrid with the same name as
* an ObjectGrid that has already been cached, or any other error
* occurred during the
* ObjectGrid creation
*/
public List createObjectGrids(final URL xmlFile, final boolean enableXmlValidation,
boolean cacheInstances) throws ObjectGridException;

/** Create all ObjectGrids that are found in the XML file. The XML file will be
* validated against the schema. Each ObjectGrid instance that is created will
* be cached. An ObjectGridException will be thrown when attempting to cache a
* newly created ObjectGrid that has the same name as an ObjectGrid that has
* already been cached.
* @param xmlFile The XML file to process. ObjectGrids will be created based
* on what is in the file.
* @return A List of ObjectGrid instances that have been created.
* @throws ObjectGridException if an ObjectGrid with the same name as any of
* those found in the XML has already been cached, or
* any other error encounterred during ObjectGrid creation.
*/
public List createObjectGrids(final URL xmlFile) throws ObjectGridException;

/**
* Process the XML file and create a single ObjectGrid instance with the
* objectGridName specified only if an ObjectGrid with that name is found in
* the file. If there is no ObjectGrid with this name defined in the XML file,
* an ObjectGridException
* will be thrown. The ObjectGrid instance created will be cached.
* @param objectGridName name of the ObjectGrid to create. This ObjectGrid
* should be defined in the XML file.
* @param xmlFile the XML file to process
* @return A newly created ObjectGrid
* @throws ObjectGridException if an ObjectGrid with the same name has been
* previously cached, no ObjectGrid name can be found in the xml file,
* or any other error during the ObjectGrid creation.
*/
public ObjectGrid createObjectGrid(String objectGridName, URL xmlFile)

throws ObjectGridException;

138 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Retrieving a ObjectGrid instance with the ObjectGridManager
interface
Use the ObjectGridManager.getObjectGrid methods to retrieve cached instances.

Retrieving a cached instance

Since the Employees ObjectGrid instance was cached by the ObjectGridManager
interface, another user can access it with the following code snippet:
ObjectGrid myEmployees = oGridManager.getObjectGrid("Employees");

The following are the two getObjectGrid methods that return cached ObjectGrid
instances:
v Retrieving all cached instances

To obtain all of the ObjectGrid instances that have been previously cached, use
the getObjectGrids method, which returns a list of each instance. If no cached
instances exist, the method will return null.

v Retrieving a cached instance by name

To obtain a single cached instance of an ObjectGrid, use getObjectGrid(String
objectGridName), passing the name of the cached instance into the method. The
method either returns the ObjectGrid instance with the specified name or returns
null if there is no ObjectGrid instance with that name.

Note: You can also use the getObjectGrid method to connect to a distributed grid.
See “Connecting to distributed ObjectGrid instances programmatically” on page
130 for more information.

Removing ObjectGrid instances with the ObjectGridManager
interface
You can use two different removeObjectGrid methods to remove ObjectGrid
instances from the cache.

Remove an ObjectGrid instance

To remove ObjectGrid instances from the cache, use one of the removeObjectGrid
methods. The ObjectGridManager interface does not keep a reference of the
instances that are removed. Two remove methods exist. One method takes a
boolean parameter. If the boolean parameter is set to true, the destroy method is
called on the ObjectGrid. The call to the destroy method on the ObjectGrid shuts
down the ObjectGrid and frees up any resources the ObjectGrid is using. A
description of how to use the two removeObjectGrid methods follows:
/**
* Remove an ObjectGrid from the cache of ObjectGrid instances
*
* @param objectGridName the name of the ObjectGrid instance to remove
* from the cache
*
* @throws ObjectGridException if an ObjectGrid with the objectGridName
* was not found in the cache
*/
public void removeObjectGrid(String objectGridName) throws ObjectGridException;

/**
* Remove an ObjectGrid from the cache of ObjectGrid instances and
* destroy its associated resources
*
* @param objectGridName the name of the ObjectGrid instance to remove
* from the cache

Chapter 5. Developing applications 139

*
* @param destroy destroy the objectgrid instance and its associated
* resources
*
* @throws ObjectGridException if an ObjectGrid with the objectGridName
* was not found in the cache
*/
public void removeObjectGrid(String objectGridName, boolean destroy)
throws ObjectGridException;

Controlling the lifecycle of an ObjectGrid with the
ObjectGridManager interface
You can use the ObjectGridManager interface to control the lifecycle of an
ObjectGrid instance using either a startup bean or a servlet.

Managing lifecycle with a startup bean

A startup bean is used to control the lifecycle of an ObjectGrid instance. A startup
bean loads when an application starts. With a startup bean, code can run whenever
an application starts or stops as expected. To create a startup bean, use the home
com.ibm.websphere.startupservice.AppStartUpHome interface and use the remote
com.ibm.websphere.startupservice.AppStartUp interface. Implement the start and
stop methods on the bean. The start method is invoked whenever the application
starts up. The stop method is invoked when the application shuts down. The start
method is used to create ObjectGrid instances. The stop method is used to remove
ObjectGrid instances. A code snippet that demonstrates this ObjectGrid lifecycle
management in a startup bean follows:
public class MyStartupBean implements javax.ejb.SessionBean {

private ObjectGridManager objectGridManager;

/* The methods on the SessionBean interface have been
* left out of this example for the sake of brevity */

public boolean start(){
// Starting the startup bean
// This method is called when the application starts
objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
try {

// create 2 ObjectGrids and cache these instances
ObjectGrid bookstoreGrid = objectGridManager.createObjectGrid("bookstore", true);
bookstoreGrid.defineMap("book");
ObjectGrid videostoreGrid = objectGridManager.createObjectGrid("videostore", true);
// within the JVM,
// these ObjectGrids can now be retrieved from the
//ObjectGridManager using the getObjectGrid(String) method

} catch (ObjectGridException e) {
e.printStackTrace();
return false;

}

return true;
}

public void stop(){
// Stopping the startup bean
// This method is called when the application is stopped
try {

// remove the cached ObjectGrids and destroy them
objectGridManager.removeObjectGrid("bookstore", true);
objectGridManager.removeObjectGrid("videostore", true);

} catch (ObjectGridException e) {
e.printStackTrace();

}
}

}

After the start method is called, the newly created ObjectGrid instances are
retrieved from the ObjectGridManager interface. For example, if a servlet is
included in the application, the servlet accesses the eXtreme Scale using the
following code snippet:

140 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

ObjectGridManager objectGridManager =
ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid bookstoreGrid = objectGridManager.getObjectGrid("bookstore");
ObjectGrid videostoreGrid = objectGridManager.getObjectGrid("videostore");

Managing lifecycle with a servlet

To manage the lifecycle of an ObjectGrid in a servlet, you can use the init method
to create an ObjectGrid instance and the destroy method to remove the ObjectGrid
instance. If the ObjectGrid instance is cached, it is retrieved and manipulated in the
servlet code. Sample code that demonstrates ObjectGrid creation, manipulation,
and destruction within a servlet follows:
public class MyObjectGridServlet extends HttpServlet implements Servlet {

private ObjectGridManager objectGridManager;

public MyObjectGridServlet() {
super();

}

public void init(ServletConfig arg0) throws ServletException {
super.init();
objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
try {

// create and cache an ObjectGrid named bookstore
ObjectGrid bookstoreGrid =

objectGridManager.createObjectGrid("bookstore", true);
bookstoreGrid.defineMap("book");

} catch (ObjectGridException e) {
e.printStackTrace();

}
}

protected void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
ObjectGrid bookstoreGrid = objectGridManager.getObjectGrid("bookstore");
Session session = bookstoreGrid.getSession();
ObjectMap bookMap = session.getMap("book");
// perform operations on the cached ObjectGrid
// ...

// Close the session (optional in Version 7.1.1 and later) for improved performance
session.close();
}

public void destroy() {
super.destroy();
try {

// remove and destroy the cached bookstore ObjectGrid
objectGridManager.removeObjectGrid("bookstore", true);

} catch (ObjectGridException e) {
e.printStackTrace();

}
}

}

Accessing the ObjectGrid shard
WebSphere eXtreme Scale achieves high processing rates by moving the logic to
where the data is and returning only results back to the client.

Application logic in a client Java virtual machine (JVM) needs to pull data from
the server JVM that is holding the data and push it back when the transaction
commits. This process slows down the rate the data can be processed. If the
application logic was on the same JVM as the shard that is holding the data, then
the network latency and marshalling cost is eliminated and can provide a
significant performance boost.

Chapter 5. Developing applications 141

Local reference to shard data

The ObjectGrid APIs provide a Session to the server-side method. This session is a
direct reference to the data for that shard. No routing logic is on that path. The
application logic can work with the data for that shard directly. The session cannot
be used to access data in another partition because no routing logic exists.

A Loader plug-in also provides a way to receive an event when a shard becomes a
primary partition. An application can implement a Loader and implement the
ReplicaPreloadController interface. The check preload status method is only called
when a shard becomes a primary. The session provided to that method is a local
reference to the shards data. This approach is typically used if a partition primary
needs to start some threads or subscribe to a message fabric for partition-related
traffic. It might start a thread to listen for messages in a local Map using the
getNextKey API.

Collocated client-server optimization

If an application uses the client APIs to access a partition that happens to be
collocated with the JVM that contains the client, then the network is avoided but
some marshalling still occurs because of current implementation issues. If a
partitioned grid is used, then no impact on the performance of the application is
made because (N-1)/N number of calls route to a different JVM. If you need local
access always with a shard, then use the Loader or ObjectGrid APIs to invoke that
logic.

Accessing data with indexes (Index API)
Use indexing for more efficient data access.

About this task

The HashIndex class is the built-in index plug-in implementation that can support
both of the built-in application index interfaces: MapIndex and MapRangeIndex.
You also can create your own indexes. You can add HashIndex as either a static or
dynamic index into the backing map, obtain either MapIndex or MapRangeIndex
index proxy object, and use the index proxy object to find cached objects.

If you want to iterate through the keys in a local map, you can use the default
index. This index does not require any configuration, but it must be used against
the shard, using an agent or an ObjectGrid instance retrieved from the
ShardEvents.shardActivated(ObjectGrid shard) method.

Note: In a distributed environment, if the index object is obtained from a client
ObjectGrid, the index has a type client index object and all index operations run in
a remote server ObjectGrid. If the map is partitioned, the index operations run on
each partition remotely. The results from each partition are merged before
returning the results to the application. The performance is determined by the
number of partitions and the size of the result returned by each partition. Poor
performance might occur if both factors are high.

Procedure
1. If you want to use indexes other than the default local index, add index

plug-ins to the backing map.
v XML configuration:

142 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

<backingMapPluginCollection id="person">
<bean id="MapIndexplugin"

className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="CODE"

description="index name" />
<property name="RangeIndex" type="boolean" value="true"

description="true for MapRangeIndex" />
<property name="AttributeName" type="java.lang.String" value="employeeCode"

description="attribute name" />
</bean>

</backingMapPluginCollection>

In this XML configuration example, the built-in HashIndex class is used as
the index plug-in. The HashIndex class supports properties that users can
configure, such as Name, RangeIndex, and AttributeName in the previous
example.
– The Name property is configured as CODE, a string identifying this index

plug-in. The Name property value must be unique within the scope of the
BackingMap, and can be used to retrieve the index object by name from
the ObjectMap instance for the BackingMap.

– The RangeIndex property is configured as true, which means the
application can cast the retrieved index object to the MapRangeIndex
interface. If the RangeIndex property is configured as false, the
application can only cast the retrieved index object to the MapIndex
interface. A MapRangeIndex supports functions to find data using range
functions such as greater than, less than, or both, while a MapIndex only
supports equals functions. If the index is used by query, the RangeIndex
property must be configured to true on single-attribute indexes. For a
relationship index and composite index, the RangeIndex property must be
configured to false.

– The AttributeName property is configured as employeeCode, which means
the employeeCode attribute of the cached object is used to build a
single-attribute index. If an application needs to search for cached objects
with multiple attributes, the AttributeName property can be set to a
comma-delimited list of attributes, yielding a composite index.

v Programmatic configuration:

The BackingMap interface has two methods that you can use to add static
index plug-ins: addMapIndexplugin and setMapIndexplugins. For more
information, see the API documentation. The following example creates the
same configuration as the XML configuration example:
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.ObjectGridManager;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.BackingMap;

ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid ivObjectGrid = ogManager.createObjectGrid("grid");
BackingMap personBackingMap = ivObjectGrid.getMap("person");

// use the builtin HashIndex class as the index plugin class.
HashIndex mapIndexplugin = new HashIndex();
mapIndexplugin.setName("CODE");
mapIndexplugin.setAttributeName("EmployeeCode");
mapIndexplugin.setRangeIndex(true);
personBackingMap.addMapIndexplugin(mapIndexplugin);

2. Access map keys and values with indexes.
v Local index:

To iterate through the keys and values in a local map, you can use the
default index. The default index only works against the shard, using an
agent or using the ObjectGrid instance retrieved from the
ShardEvents.shardActivated(ObjectGrid shard) method. See the following
example:
MapIndex keyIndex = (MapIndex)
objMap.getIndex(MapIndexPlugin.SYSTEM_KEY_INDEX_NAME);
Iterator keyIterator = keyIndex.findAll();

Chapter 5. Developing applications 143

v Static indexes:

After a static index plug-in is added to a BackingMap configuration and the
containing ObjectGrid instance is initialized, applications can retrieve the
index object by name from the ObjectMap instance for the BackingMap. Cast
the index object to the application index interface. Operations that the
application index interface supports can now run.
Session session = ivObjectGrid.getSession();
ObjectMap map = session.getMap("person ");
MapRangeIndex codeIndex = (MapRangeIndex) m.getIndex("CODE");
Iterator iter = codeIndex.findLessEqual(new Integer(15));
while (iter.hasNext()) {

Object key = iter.next();
Object value = map.get(key);

}
// Close the session (optional in Version 7.1.1 and later) for improved performance
session.close();

v Dynamic indexes:

You can create and remove dynamic indexes from a BackingMap instance
programmatically at any time. A dynamic index differs from a static index in
that the dynamic index can be created even after the containing ObjectGrid
instance is initialized. Unlike static indexing, the dynamic indexing is an
asynchronous process and needs to be in ready state before you use it. This
method uses the same approach for retrieving and using the dynamic
indexes as static indexes. You can remove a dynamic index if it is no longer
needed. The BackingMap interface has methods to create and remove
dynamic indexes.
See the BackingMap API documentation for more information about the
createDynamicIndex and removeDynamicIndex methods.
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.ObjectGridManager;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.BackingMap;

ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid og = ogManager.createObjectGrid("grid");
BackingMap bm = og.getMap("person");
og.initialize();

// create index after ObjectGrid initialization without DynamicIndexCallback.
bm.createDynamicIndex("CODE", true, "employeeCode", null);

try {
// If not using DynamicIndexCallback, need to wait for the Index to be ready.
// The waiting time depends on the current size of the map
Thread.sleep(3000);

} catch (Throwable t) {
// ...

}

// When the index is ready, applications can try to get application index
// interface instance.
// Applications have to find a way to ensure that the index is ready to use,
// if not using DynamicIndexCallback interface.
// The following example demonstrates the way to wait for the index to be ready
// Consider the size of the map in the total waiting time.

Session session = og.getSession();
ObjectMap m = session.getMap("person");
MapRangeIndex codeIndex = null;

int counter = 0;
int maxCounter = 10;
boolean ready = false;
while (!ready && counter < maxCounter) {

try {
counter++;
codeIndex = (MapRangeIndex) m.getIndex("CODE");
ready = true;

} catch (IndexNotReadyException e) {
// implies index is not ready, ...
System.out.println("Index is not ready. continue to wait.");
try {

Thread.sleep(3000);
} catch (Throwable tt) {

// ...
}

} catch (Throwable t) {
// unexpected exception
t.printStackTrace();

}
}

if (!ready) {
System.out.println("Index is not ready. Need to handle this situation.");

}

144 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

// Use the index to peform queries
// Refer to the MapIndex or MapRangeIndex interface for supported operations.
// The object attribute on which the index is created is the EmployeeCode.
// Assume that the EmployeeCode attribute is Integer type: the
// parameter that is passed into index operations has this data type.

Iterator iter = codeIndex.findLessEqual(new Integer(15));

// remove the dynamic index when no longer needed

bm.removeDynamicIndex("CODE");
// Close the session (optional in Version 7.1.1 and later) for improved performance
session.close();

What to do next

You can use the DynamicIndexCallback interface to get notifications at the
indexing events. See “DynamicIndexCallback interface” for more information.

DynamicIndexCallback interface
The DynamicIndexCallback interface is designed for applications that want to get
notifications at the indexing events of ready, error, or destroy. The
DynamicIndexCallback is an optional parameter for the createDynamicIndex
method of the BackingMap. With a registered DynamicIndexCallback instance,
applications can run business logic upon receiving notification of an indexing
event.

Indexing events

For example, the ready event means that the index is ready for use. When a
notification for this event is received, an application can try to retrieve and use the
application index interface instance.

Example: Using the DynamicIndexCallback interface
BackingMap personBackingMap = ivObjectGrid.getMap("person");

DynamicIndexCallback callback = new DynamicIndexCallbackImpl();
personBackingMap.createDynamicIndex("CODE", true, "employeeCode", callback);

class DynamicIndexCallbackImpl implements DynamicIndexCallback {
public DynamicIndexCallbackImpl() {
}

public void ready(String indexName) {
System.out.println("DynamicIndexCallbackImpl.ready() -> indexName = " + indexName);

// Simulate what an application would do when notified that the index is ready.
// Normally, the application would wait until the ready state is reached and then proceed
// with any index usage logic.
if("CODE".equals(indexName)) {

ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid og = ogManager.createObjectGrid("grid");
Session session = og.getSession();
ObjectMap map = session.getMap("person");
MapIndex codeIndex = (MapIndex) map.getIndex("CODE");
Iterator iter = codeIndex.findAll(codeValue);

// Close the session (optional in Version 7.1.1 and later) for improved performance
session.close();

}
}

public void error(String indexName, Throwable t) {
System.out.println("DynamicIndexCallbackImpl.error() -> indexName = " + indexName);
t.printStackTrace();

}

public void destroy(String indexName) {
System.out.println("DynamicIndexCallbackImpl.destroy() -> indexName = " + indexName);

}
}

Using Sessions to access data in the grid
Applications can begin and end transactions through the Session interface. The
Session interface also provides access to the application-based ObjectMap and
JavaMap interfaces.

Chapter 5. Developing applications 145

Each ObjectMap or JavaMap instance is directly tied to a specific Session object.
Each thread that wants access to an eXtreme Scale must first obtain a Session from
the ObjectGrid object. A Session instance cannot be shared concurrently between
threads. WebSphere eXtreme Scale does not use any thread local storage, but
platform restrictions might limit the opportunity to pass a Session from one thread
to another.

Methods

Get method

An application obtains a Session instance from an ObjectGrid object using the
ObjectGrid.getSession method. The following example demonstrates how to obtain
a Session instance:
ObjectGrid objectGrid = ...; Session sess = objectGrid.getSession();

After a Session is obtained, the thread keeps a reference to the session for its own
use. Calling the getSession method multiple times returns a new Session object
each time.

Transactions and Session methods

A Session can be used to begin, commit, or rollback transactions. Operations
against BackingMaps using ObjectMaps and JavaMaps are most efficiently
performed within a Session transaction. After a transaction has started, any
changes to one or more BackingMaps in that transaction scope are stored in a
special transaction cache until the transaction is committed. When a transaction is
committed, the pending changes are applied to the BackingMaps and Loaders and
become visible to any other clients of that ObjectGrid.

WebSphere eXtreme Scale also supports the ability to automatically commit
transactions, also known as auto-commit. If any ObjectMap operations are
performed outside of the context of an active transaction, an implicit transaction is
started before the operation and the transaction is automatically committed before
returning control to the application.
Session session = objectGrid.getSession();
ObjectMap objectMap = session.getMap("someMap");
session.begin();
objectMap.insert("key1", "value1");
objectMap.insert("key2", "value2");
session.commit();
objectMap.insert("key3", "value3"); // auto−commit

Session.flush method

The Session.flush method only makes sense when a Loader is associated with a
BackingMap. The flush method invokes the Loader with the current set of changes
in the transaction cache. The Loader applies the changes to the backend. These
changes are not committed when the flush is invoked. If a Session transaction is
committed after a flush invocation, only updates that happen after the flush
invocation are applied to the Loader. If a Session transaction is rolled back after a
flush invocation, the flushed changes are discarded with all other pending changes
in the transaction. Use the Flush method sparingly because it limits the
opportunity for batch operations against a Loader. Following is an example of the
usage of the Session.flush method:

146 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Session session = objectGrid.getSession();
session.begin();
// make some changes
...
session.flush(); // push these changes to the Loader, but don’t commit yet
// make some more changes
...
session.commit();

NoWriteThrough method

Some maps are backed by a Loader, which provides persistent storage for the data
in the map. Sometimes it is useful to commit data just to the eXtreme Scale map
and not push data out to the Loader. The Session interface provides the
beginNoWriteThough method for this purpose. The beginNoWriteThrough method
starts a transaction like the begin method. With the beginNoWriteThrough method,
when the transaction is committed, the data is only committed to the in-memory
map and is not committed to the persistent storage that is provided by the Loader.
This method is very useful when performing data preload on the map.

When using a distributed ObjectGrid instance, the beginNoWriteThrough method
is useful for making changes to the near cache only, without modifying the far
cache on the server. If the data is known to be stale in the near cache, using the
beginNoWriteThrough method can allow entries to be invalidated on the near
cache without invalidating them on the server as well.

The Session interface also provides the isWriteThroughEnabled method to
determine what type of transaction is currently active.
Session session = objectGrid.getSession();
session.beginNoWriteThrough();
// make some changes ...
session.commit(); // these changes will not get pushed to the Loader

Obtain the TxID object method

The TxID object is an opaque object that identifies the active transaction. Use the
TxID object for the following purposes:
v For comparison when you are looking for a particular transaction.
v To store shared data between the TransactionCallback and Loader objects.

See TransactionCallback plug-in and Loaders for additional information about the
Object slot feature.

Performance monitoring method

If you are using eXtreme Scale within WebSphere Application Server, it might be
necessary to reset the transaction type for performance monitoring. You can set the
transaction type with the setTransactionType method. See Monitoring ObjectGrid
performance with WebSphere Application Server performance monitoring
infrastructure (PMI) for more information about the setTransactionType method.

Process a complete LogSequence method

WebSphere eXtreme Scale can propagate sets of map changes to ObjectGrid
listeners as a means of distributing maps from one Java virtual machine to another.
To make it easier for the listener to process the received LogSequences, the Session
interface provides the processLogSequence method. This method examines each

Chapter 5. Developing applications 147

LogElement within the LogSequence and performs the appropriate operation, for
example, insert, update, invalidate, and so on, against the BackingMap that is
identified by the LogSequence MapName. An ObjectGrid Session must be available
before the processLogSequence method is invoked. The application is also
responsible for issuing the appropriate commit or rollback calls to complete the
Session. Autocommit processing is not available for this method invocation.
Normal processing by the receiving ObjectGridEventListener at the remote JVM
would be to start a Session using the beginNoWriteThrough method, which
prevents endless propagation of changes, followed by a call to this
processLogSequence method, and then committing or rolling back the transaction.
// Use the Session object that was passed in during
//ObjectGridEventListener.initialization...
session.beginNoWriteThrough();
// process the received LogSequence
try {
session.processLogSequence(receivedLogSequence);
} catch (Exception e) {
session.rollback(); throw e;
}
// commit the changes
session.commit();

markRollbackOnly method

This method is used to mark the current transaction as "rollback only". Marking a
transaction "rollback only" ensures that even if the commit method is called by
application, the transaction is rolled back. This method is typically used by
ObjectGrid itself or by the application when it knows that data corruption could
occur if the transaction was allowed to be committed. After this method is called,
the Throwable object that is passed to this method is chained to the
com.ibm.websphere.objectgrid.TransactionException exception that results by the
commit method if it is called on a Session that was previously marked a "rollback
only". Any subsequent calls to this method for a transaction that is already marked
as "rollback only" is ignored. That is, only the first call that passes a non-null
Throwable reference is used. Once the marked transaction is completed, the
"rollback only" mark is removed so that the next transaction that is started by the
Session can be committed.

isMarkedRollbackOnly method

Returns if Session is currently marked as "rollback only". Boolean true is returned
by this method if and only if markRollbackOnly method was previously called on
this Session and the transaction started by the Session is still active.

setTransactionTimeout method

Set transaction timeout for next transaction started by this Session to a specified
number of seconds. This method does not affect the transaction timeout of any
transactions previously started by this Session. It only affects transactions that are
started after this method is called. If this method is never called, then the timeout
value that was passed to the setTxTimeout method of the
com.ibm.websphere.objectgrid.ObjectGrid method is used.

getTransactionTimeout method

This method returns the transaction timeout value in seconds. The last value that
was passed as the timeout value to the setTransactionTimeout method is returned

148 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

by this method. If the setTransactionTimeout method is never called, then the
timeout value that was passed to the setTxTimeout method of the
com.ibm.websphere.objectgrid.ObjectGrid method is used.

transactionTimedOut

This method returns boolean true if the current transaction that was started by this
Session has timed out.

isFlushing method

This method returns boolean true if and only if all transaction changes are being
flushed out to the Loader plug-in as a result of the flush method of Session
interface being invoked. A Loader plug-in may find this method useful when it
needs to know why its batchUpdate method was invoked.

isCommitting method

This method returns boolean true if and only if all transaction changes are being
committed as a result of the commit method of Session interface being invoked. A
Loader plug-in might find this method useful when it needs to know why its
batchUpdate method was invoked.

setRequestRetryTimeout method

This method sets the request retry timeout value for the session in milliseconds. If
the client set a request retry timeout, the session setting overrides the client value.

getRequestRetryTimeout method

This method gets the current request retry timeout setting on the session. A value
of -1 indicates that the timeout is not set. A value of 0 indicates it is in fail-fast
mode. A value greater than 0 indicates the timeout setting in milliseconds.

SessionHandle for routing
When you are using a per-container partition placement policy, you can use a
SessionHandle object. A SessionHandle object contains partition information for the
current Session and can be reused for a new Session.

A SessionHandle object includes information for the partition to which the current
Session is bound. SessionHandle is extremely useful for the per-container partition
placement policy and can be serialized with standard Java serialization.

If you have a SessionHandle object, you can apply that handle to a Session with
the setSessionHandle(SessionHandle target) method, passing the handle in as the
target. You can retrieve the SessionHandle object with the
Session.getSessionHandle method.

Because it is only applicable in a per-container placement scenario, getting the
SessionHandle object throws an IllegalStateException if a given data grid has
multiple per-container map sets or has no per-container map sets. If you do not
invoke the setSessionHandle method before calling the getSessionHandle method,
the appropriate SessionHandle object is selected based on your client properties
configuration.

Chapter 5. Developing applications 149

You can also use the SessionHandleTransformer helper class to convert the handle
into different formats. The methods of this class can change a handle's
representation from byte array to instance, string to instance, and vice versa for
both cases, and can also write the handle's contents into the output stream.

For an example on how you can use a SessionHandle object, see the zone-preferred
routing topic in the .

SessionHandle integration
A SessionHandle object includes the partition information for the Session to which
it is bound and facilitates request routing. SessionHandle objects apply to the
per-container partition placement scenario only.

SessionHandle object for request routing

You can bind a SessionHandle object to a Session in the following ways:

Tip: In each of the following method calls, after a SessionHandle object is bound
to a Session, the SessionHandle object can be obtained from the
Session.getSessionHandle method.
v Call the Session.getSessionHandle method: When this method is called, if no

SessionHandle object is bound to the Session, a SessionHandle object is selected
randomly and bound to the Session.

v Call transactional create, read, update, delete operations: When these methods
are called or at commit time, if no SessionHandle object is bound to the Session,
a SessionHandle object is selected randomly and bound to the Session.

v Call ObjectMap.getNextKey method: When this method is called, if no
SessionHandle object is bound to the Session, the operation request is randomly
routed to individual partitions until a key is obtained. If a key is returned from
a partition, a SessionHandle object that corresponds to that partition is bound to
the Session. If no key is found, no SessionHandle is bound to the Session.

v Call the QueryQueue.getNextEntity or QueryQueue.getNextEntities methods:
At the time this method is called, if no SessionHandle object is bound to the
Session, the operation request is randomly routed to individual partitions until
an object is obtained. If an object is returned from a partition, a SessionHandle
object that corresponds to that partition is bound to the Session. If no object is
found, no SessionHandle is bound to the Session.

v Set a SessionHandle with the Session.setSessionHandle(SessionHandle sh)
method: If a SessionHandle is obtained from the Session.getSessionHandle
method, the SessionHandle can be bound to a Session. Setting a SessionHandle
influences request routing within the scope of the Session to which it is bound.

The Session.getSessionHandle method always returns a SessionHandle object. The
method also automatically binds a SessionHandle on the Session if no
SessionHandle object is bound to the Session. If you want to verify whether a
Session has a SessionHandle object only , call the Session.isSessionHandleSet
method. If this method returns a value of false, no SessionHandle object is
currently bound to the Session.

Major operation types in the per-container placement scenario

A summary of the routing behavior of major operation types in the per-container
partition placement scenario with respect to SessionHandle objects follows.
v Session object with bound SessionHandle object

150 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

– Index - MapIndex and MapRangeIndex API: SessionHandle
– Query and ObjectQuery: SessionHandle
– Agent - MapGridAgent and ReduceGridAgent API: SessionHandle
– ObjectMap.Clear: SessionHandle
– ObjectMap.getNextKey: SessionHandle
– QueryQueue.getNextEntity, QueryQueue.getNextEntities: SessionHandle
– Transactional create, retrieve, update, and delete operations (ObjectMap API

and EntityManager API): SessionHandle
v Session object without bound SessionHandle object

– Index - MapIndex and MapRangeIndex API: All current active partitions
– Query and ObjectQuery: Specified partition with setPartition method of

Query and ObjectQuery
– Agent - MapGridAgent and ReduceGridAgent

- Not supported: ReduceGridAgent.reduce(Session s, ObjectMap map,
Collection keys) and MapGridAgent.process(Session s, ObjectMap map,
Object key) method.

- All current active partitions: ReduceGridAgent.reduce(Session s, ObjectMap
map) and MapGridAgent.processAllEntries(Session s, ObjectMap map)
method.

– ObjectMap.clear: All current active partitions.
– ObjectMap.getNextKey: Binds a SessionHandle to the Session if a key is

returned from one of the randomly selected partitions. If no key is returned,
the Session is not bound to a SessionHandle.

– QueryQueue: Specifies a partition with the QueryQueue.setPartition method.
If no partition is set, the method randomly selects a partition to return. If an
object is returned, the current Session is bound with the SessionHandle that is
bound to the partition that returns the object. If no object is returned, the
Session is not bound to a SessionHandle.

– Transactional create, retrieve, update, and delete operations (ObjectMap API
and EntityManager API): Randomly select a partition.

In most cases, use SessionHandle to control routing to a particular partition. You
can retrieve and cache the SessionHandle from the Session that inserts data.
After caching the SessionHandle, you can set it on another Session so that you
can route requests to the partition specified by the cached SessionHandle. To
perform operations such as ObjectMap.clear without SessionHandle, you can
temporarily set the SessionHandle to null by calling
Session.setSessionHandle(null). Without a specified SessionHandle, operations
run on all current active partitions.

v QueryQueue routing behavior

In the per-container partition placement scenario, you can use SessionHandle to
control routing of getNextEntity and getNextEntities methods of the
QueryQueue API. If the Session is bound to a SessionHandle, requests route to
the partition to which the SessionHandle is bound. If the Session is not bound to
a SessionHandle, requests are routed to the partition set with the
QueryQueue.setPartition method if a partition has been set in this way. If the
Session has no bound SessionHandle or partition, a randomly selected partition
are returned. If no such partition is found, the process stops and no
SessionHandle is bound to the current Session.

The following snippet of code shows how to use SessionHandle objects.

Chapter 5. Developing applications 151

Session ogSession = objectGrid.getSession();

// binding the SessionHandle
SessionHandle sessionHandle = ogSession.getSessionHandle();

ogSession.begin();
ObjectMap map = ogSession.getMap("planet");
map.insert("planet1", "mercury");

// transaction is routed to partition specified by SessionHandle
ogSession.commit();

// cache the SessionHandle that inserts data
SessionHandle cachedSessionHandle = ogSession.getSessionHandle();

// verify if SessionHandle is set on the Session
boolean isSessionHandleSet = ogSession.isSessionHandleSet();

// temporarily unbind the SessionHandle from the Session
if(isSessionHandleSet) {

ogSession.setSessionHandle(null);
}

// if the Session has no SessionHandle bound,
// the clear operation will run on all current active partitions
// and thus remove all data from the map in the entire grid
map.clear();

// after clear is done, reset the SessionHandle back,
// if the Session needs to use previous SessionHandle.
// Optionally, calling getSessionHandle can get a new SessionHandle
ogSession.setSessionHandle(cachedSessionHandle);

Application design considerations

In the per-container placement strategy scenario, use the SessionHandle object for
most operations. The SessionHandle object controls routing to partitions. To
retrieve data, the SessionHandle object that you bind to the Session must be same
SessionHandle object from any insert data transaction.

When you want to perform an operation without a SessionHandle set on the
Session, you can unbind a SessionHandle from a Session by making a
Session.setSessionHandle(null) method call.

When a Session is bound to a SessionHandle, all operation requests route to the
partition that is specified by the SessionHandle object. Without the SessionHandle
object set, operations route to either all partitions or a randomly selected partition.

Caching objects with no relationships involved (ObjectMap
API)

ObjectMaps are like Java Maps that allow data to be stored as key-value pairs.
ObjectMaps provide a simple and intuitive approach for the application to store
data. An ObjectMap is ideal for caching objects that have no relationships
involved. If object relationships are involved, then you should use the
EntityManager API.

For more information about the EntityManager API, see “Caching objects and their
relationships (EntityManager API)” on page 164.

152 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Applications typically obtain a WebSphere eXtreme Scale reference and then obtain
a Session object from the reference for each thread. Sessions cannot be shared
between threads. The getMap method of Session returns a reference to an
ObjectMap to use for this thread.

Routing cache objects to the same partition
When an eXtreme Scale configuration uses the fixed partition placement strategy, it
depends on hashing the key to a partition to insert, get, update, or remove the
value. The hashCode method is called on the key and it must be well defined if a
custom key is created. However, another option is to use the PartitionableKey
interface. With the PartitionableKey interface, you can use an object other than the
key to hash to a partition.

You can use the PartitionableKey interface in situations where there are multiple
maps and the data you commit is related and thus should be put on the same
partition. WebSphere eXtreme Scale does not support two-phase commit so
multiple map transactions should not be committed if they span multiple
partitions. If the PartitionableKey hashes to the same partition for keys in different
maps in the same map set, they can be committed together.

You can also use the PartitionableKey interface when groups of keys should be put
on the same partition, but not necessarily during a single transaction. If keys
should be hashed based on location, department, domain type, or some other type
of identifier, children keys can be given a parent PartitionableKey.

For example, employees should hash to the same partition as their department.
Each employee key would have a PartitionableKey object that belongs to the
department map. Then, both the employee and department would hash to the
same partition.

The PartitionableKey interface supplies one method, called ibmGetPartition. The
object returned from this method must implement the hashCode method. The
result returned from using the alternate hashCode will be used to route the key to
a partition.

Example

See the following example key that demonstrates how to use the PartitionableKey
interface and the hashCode method to clone an existing key, and route the
resulting keys to the same partition.
package com.ibm.websphere.cjtester;

import java.io.Serializable;

import com.ibm.websphere.objectgrid.plugins.PartitionableKey;

public class RoutableKey implements Serializable, Cloneable, PartitionableKey {
private static final long serialVersionUID = 1L;

// The data that makes up the actual data object key.
public final String realKey;

// The key of the data object you want to use for routing.
// This is typically the key of a parent object.
public final Object keyToRouteWith;

public RoutableKey(String realKey, Object keyToRouteWith) {
super();
this.realKey = realKey;

Chapter 5. Developing applications 153

this.keyToRouteWith = keyToRouteWith;
}

/**
* Return the hashcode of the key we are using for routing.
* If not supplied, eXtreme Scale will use the hashCode of THIS key.
*/
public Object ibmGetPartition() {

return new Integer(keyToRouteWith.hashCode());
}

@Override
public RoutableKey clone() throws CloneNotSupportedException {

return (RoutableKey) super.clone();
}

@Override
public int hashCode() {

final int prime = 31;
int result = 1;
result = prime * result + ((keyToRouteWith == null) ? 0 : keyToRouteWith.hashCode());
result = prime * result + ((realKey == null) ? 0 : realKey.hashCode());
return result;

}

@Override
public boolean equals(Object obj) {

if (this == obj) return true;
if (obj == null) return false;
if (getClass() != obj.getClass()) return false;
RoutableKey other = (RoutableKey) obj;
if (keyToRouteWith == null) {

if (other.keyToRouteWith != null) return false;
} else if (!keyToRouteWith.equals(other.keyToRouteWith)) return false;
if (realKey == null) {

if (other.realKey != null) return false;
} else if (!realKey.equals(other.realKey)) return false;
return true;

}
}

Introduction to ObjectMap
The ObjectMap interface is used for transactional interaction between applications
and BackingMaps.

Purpose

An ObjectMap instance is obtained from a Session object that corresponds to the
current thread. The ObjectMap interface is the main vehicle that applications use to
make changes to entries in a BackingMap.

Obtain an ObjectMap instance

An application gets an ObjectMap instance from a Session object using the
Session.getMap(String) method. The following code snippet demonstrates how to
obtain an ObjectMap instance:
ObjectGrid objectGrid = ...;
BackingMap backingMap = objectGrid.defineMap("mapA");
Session sess = objectGrid.getSession();
ObjectMap objectMap = sess.getMap("mapA");

Each ObjectMap instance corresponds to a particular Session object. Calling the
getMap method multiple times on a particular Session object with the same

154 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

BackingMap name always returns the same ObjectMap instance.

Automatically commit transactions

Operations against BackingMaps that use ObjectMaps and JavaMaps are performed
most efficiently within a Session transaction. WebSphere eXtreme Scale provides
autocommit support when methods on the ObjectMap and JavaMap interfaces are
called outside of a Session transaction. The methods start an implicit transaction,
perform the requested operation, and commit the implicit transaction.

Method semantics

An explanation of the semantics behind each method on the ObjectMap and
JavaMap interfaces follows.

containsKey method
The containsKey method determines if a key has a value in the
BackingMap or Loader. If null values are supported by an application, this
method can be used to determine if a null reference that is returned from a
get operation refers to a null value or indicates that the BackingMap and
Loader do not contain the key.

flush method
The flush method semantics are similar to the flush method on the Session
interface. The notable difference is that the Session flush applies the current
pending changes for all of the maps that are modified in the current
session. With this method, only the changes in this ObjectMap instance are
flushed to the loader.

get method
The get method fetches the entry from the BackingMap instance. If the
entry is not found in the BackingMap instance but a Loader is associated
with the BackingMap instance, the BackingMap instance attempts to fetch
the entry from the Loader. The getAll method is provided to allow batch
fetch processing.

getForUpdate method
The getForUpdate method is the same as the get method, but using the
getForUpdate method tells the BackingMap and Loader that the intention
is to update the entry. A Loader can use this hint to issue a SELECT for
UPDATE query to a database backend. If a pessimistic locking strategy is
defined for the BackingMap, the lock manager locks the entry. The
getAllForUpdate method is provided to allow batch fetch processing.

insert method
The insert method inserts an entry into the BackingMap and the Loader.
Using this method tells the BackingMap and Loader that you want to
insert an entry that did not previously exist. When you invoke this method
on an existing entry, an exception occurs when the method is invoked or
when the current transaction is committed.

invalidate method
The semantics of the invalidate method depend on the value of the
isGlobal parameter that is passed to the method. The invalidateAll
method is provided to allow batch invalidate processing.

Local invalidation is specified when the value false is passed as the
isGlobal parameter of the invalidate method. Local invalidation discards
any changes to the entry in the transaction cache. If the application issues a

Chapter 5. Developing applications 155

get method, the entry is fetched from the last committed value in the
BackingMap. If no entry is present in the BackingMap, the entry is fetched
from the last flushed or committed value in the Loader. When a transaction
is committed, any entries that are marked as locally invalidated have no
impact on the BackingMap. Any changes that were flushed to the Loader
are still committed even if the entry was invalidated.

Global invalidation is specified when true is passed as the isGlobal
parameter of the invalidate method. Global invalidation discards any
pending changes to the entry in the transaction cache and bypasses the
BackingMap value on subsequent operations that are performed on the
entry. When a transaction is committed, any entries that are marked as
globally invalidated are evicted from the BackingMap. Consider the
following use case for invalidation as an example: The BackingMap is
backed by a database table that has an auto increment column. Increment
columns are useful for assigning unique numbers to records. The
application inserts an entry. After the insert, the application needs to know
the sequence number for the inserted row. It knows that its copy of the
object is old, so it uses global invalidation to get the value from the Loader.
The following code demonstrates this use case:
Session sess = objectGrid.getSession();
ObjectMap map = sess.getMap("mymap");
sess.begin();
map.insert("Billy", new Person("Joe", "Bloggs", "Manhattan"));
sess.flush();
map.invalidate("Billy", true);
Person p = map.get("Billy");
System.out.println("Version column is: " + p.getVersion());
map.commit();
// Close the session (optional in Version 7.1.1 and later) for improved performance
session.close();

This code sample adds an entry for Billy. The version attribute of Person
is set using an auto-increment column in the database. The application first
performs an insert command. It then issues a flush, which causes the insert
to be sent to the Loader and database. The database sets the version
column to the next number in the sequence, which makes the Person object
in the transaction outdated. To update the object, the application is globally
invalidated. The next get method that is issued gets the entry from the
Loader, ignoring the transaction value. The entry is fetched from the
database with the updated version value.

put method
The semantics of the put method are dependent on whether a previous get
method was invoked in the transaction for the key. If the application issues
a get operation that returns an entry that exists in the BackingMap or
Loader, the put method invocation is interpreted as an update and returns
the previous value in the transaction. If a put method invocation ran
without a previous get method invocation, or a previous get method
invocation did not find an entry, the operation is interpreted as an insert.
The semantics of the insert and update methods apply when the put
operation is committed. The putAll method is provided to enable batch
insert and update processing.

remove method
The remove method removes the entry from the BackingMap and the
Loader, if a Loader is plugged in. The value of the object that was removed

156 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

is returned by this method. If the object does not exist, this method returns
a null value. The removeAll method is provided to enable batch deletion
processing without the return values.

setCopyMode method
The setCopyMode method specifies a CopyMode value for this ObjectMap.
With this method, an application can override the CopyMode value that is
specified on the BackingMap. The specified CopyMode value is in effect
until clearCopyMode method is invoked. Both methods are invoked
outside of transactional bounds. A CopyMode value cannot be changed in
the middle of a transaction.

touch method
The touch method updates the last access time for an entry. This method
does not retrieve the value from the BackingMap. Use this method in its
own transaction. If the provided key does not exist in the BackingMap
because of invalidation or removal, an exception occurs during commit
processing.

update method
The update method explicitly updates an entry in the BackingMap and the
Loader. Using this method indicates to the BackingMap and Loader that
you want to update an existing entry. An exception occurs if you invoke
this method on an entry that does not exist when the method is invoked or
during commit processing.

getIndex method
The getIndex method attempts to obtain a named index that is built on the
BackingMap. The index cannot be shared between threads and works on
the same rules as a Session. The returned index object should be cast to the
right application index interface such as the MapIndex interface, the
MapRangeIndex interface, or a custom index interface.

clear method
The clear method removes all cache entries from a map from all partitions.
This operation is an auto-commit function, so no active transaction should
be present when calling clear.

Note: The clear method only clears out the map on which it is called,
leaving any related entity maps unaffected. This method does not invoke
the Loader plug-in.

Dynamic maps
With dynamic maps, you can create maps after the data grid has already been
initialized.

In previous versions, WebSphere eXtreme Scale has required you to define maps
before initializing the ObjectGrid. As a result, you had to create all of the maps to
be used before running transactions against any of the maps.

Advantages of dynamic maps

The introduction of dynamic maps reduces the restriction of having to define all
maps before initialization. Through the use of template maps, you can create maps
after the ObjectGrid has been initialized.

Template maps are defined in the ObjectGrid XML file. Template comparisons are
run when a Session requests a map that has not been previously defined. If the
new map name matches the regular expression of a template map, the map is

Chapter 5. Developing applications 157

created dynamically and assigned the name of the requested map. This newly
created map inherits all of the settings of the template map as defined by the
ObjectGrid XML file.

Creating dynamic maps

Dynamic map creation is tied to the Session.getMap(String) method. Calls to this
method return an ObjectMap based on the BackingMap that was configured by the
ObjectGrid XML file.

Passing in a String that matches the regular expression of a template map results
in the creation of an ObjectMap and an associated BackingMap.

See the API documentation for more information about the Session.getMap(String
cacheName) method.

Defining a template map in XML is as simple as setting a template Boolean
attribute on the backingMap element. When template is set to true, the name of the
backingMap is interpreted as a regular expression.

WebSphere eXtreme Scale uses Java regular expression pattern matching. For more
information about the regular expression engine in Java, see the API
documentation for the java.util.regex package and classes.

Note: When you are defining template maps, verify that the map names are
unique enough so that the application can match to only one of the template maps
with the Session.getMap(String mapName) method. If the getMap() method
matches more than one template map pattern, an IllegalArgumentException
exception results.

A sample ObjectGrid XML file with a template map defined follows.
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="accounting">
<backingMap name="payroll" readOnly="false" />
<backingMap name="templateMap.*" template="true"
pluginCollectionRef="templatePlugins" lockStrategy="PESSIMISTIC" />

</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="templatePlugins">
<bean id="Evictor"
className="com.ibm.websphere.objectgrid.plugins.builtins.LFUEvictor" />

</backingMapPluginCollection>
</backingMapPluginCollections>
</objectGridConfig>

The previous XML file defines one template map and one non-template map. The
name of the template map is a regular expression: templateMap.*. When the
Session.getMap(String) method is called with a map name matching this regular
expression, the application creates a map.

158 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Example

Configuration of a template map is required in order to create a dynamic map.
Add the template Boolean to a backingMap in the ObjectGrid XML file.

<backingMap name="templateMap.*" template="true" />

The name of the template map is treated as a regular expression.

Calling the Session.getMap(String cacheName) method with a cacheName that is a
match for the regular expression results in the creation of the dynamic map. An
ObjectMap object is returned from this method call, and an associated BackingMap
object is created.
Session session = og.getSession();
ObjectMap map = session.getMap("templateMap1");

The newly created map is configured with all the attributes and plug-ins that were
defined on the template map definition. Consider again the previous ObjectGrid
XML file.

A dynamic map created based on the template map in this XML file would have
an evictor configured and its lock strategy would be pessimistic.

Note: A template is not an actual BackingMap. That is, the “accounting”
ObjectGrid does not contain an actual “templateMap.*” map. The template is only
used as a basis for dynamic map creation. However, you must include the dynamic
map in the mapRef element of the deployment policy XML file named exactly as in
the ObjectGrid XML. This element identifies which mapSet in which the dynamic
maps are defined.

Consider the change in behavior of the Session.getMap(String cacheName) method
when using template maps. Before WebSphere eXtreme Scale Version 7.0, all calls
to the Session.getMap(String cacheName) method resulted in an
UndefinedMapException exception if the map requested did not exist. With
dynamic maps, every name that matches the regular expression for a template map
results in map creation. Be sure to note the number of maps that your application
creates, particularly if your regular expression is generic.

Also, ObjectGridPermission.DYNAMIC_MAP is required for dynamic map creation
when eXtreme Scale security is enabled. This permission is checked when the
Session.getMap(String) method is called. For more information, see the information
about application client authorization in the Product Overview.

Additional examples

objectGrid.xml
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"

xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="session">

<backingMap name="objectgrid.session.metadata.dynamicmap.*" template="true"
lockStrategy="PESSIMISTIC" ttlEvictorType="LAST_ACCESS_TIME">

<backingMap name="objectgrid.session.attribute.dynamicmap.*"
template="true" lockStrategy="OPTIMISTIC"/>

<backingMap name="datagrid.session.global.ids.dynamicmap.*"

Chapter 5. Developing applications 159

lockStrategy="PESSIMISTIC"/>
</objectGrid>
</objectGrids>
</objectGridConfig>

objectGridDeployment.xml
<?xml version="1.0" encoding="UTF-8"?>
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy
../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">
<objectgridDeployment objectgridName="session">

<mapSet name="mapSet2" numberOfPartitions="5" minSyncReplicas="0"
maxSyncReplicas="0" maxAsyncReplicas="1" developmentMode="false"
placementStrategy="PER_CONTAINER">
<map ref="logical.name"/>
<map ref="objectgrid.session.metadata.dynamicmap.*"/>
<map ref="objectgrid.session.attribute.dynamicmap.*"/>
<map ref="datagrid.session.global.ids"/>
</mapSet>

</objectgridDeployment>

</deploymentPolicy>

Limitations and considerations

Limitations:
v The QuerySchema element does not support the template for mapName.
v You cannot use entities with dynamic maps.
v An entity BackingMap is implicitly defined, mapped to the entity through the

class name.

Considerations:
v Many plug-ins have no way of determining the map with which each plug-in is

associated.
v Other plug-ins differentiate themselves by using a map name or BackingMap

name as an argument.
v When you are defining template maps, verify that the map names are unique

enough so that the application can match to only one of the template maps
using the Session.getMap(String mapName) method. If the getMap() method
matches more than one template map pattern, an IllegalArgumentException
exception results.

ObjectMap and JavaMap
A JavaMap instance is obtained from an ObjectMap object. The JavaMap interface
has the same method signatures as ObjectMap, but with different exception
handling. JavaMap extends the java.util.Map interface, so all exceptions are
instances of the java.lang.RuntimeException class. Because JavaMap extends the
java.util.Map interface, it is easy to quickly use WebSphere eXtreme Scale with an
existing application that uses a java.util.Map interface for object caching.

Obtain a JavaMap instance

An application gets a JavaMap instance from an ObjectMap object using the
ObjectMap.getJavaMap method. The following code snippet demonstrates how to
obtain a JavaMap instance.

160 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

ObjectGrid objectGrid = ...;
BackingMap backingMap = objectGrid.defineMap("mapA");
Session sess = objectGrid.getSession();
ObjectMap objectMap = sess.getMap("mapA");
java.util.Map map = objectMap.getJavaMap();
JavaMap javaMap = (JavaMap) javaMap;

A JavaMap is backed by the ObjectMap from which it was obtained. Calling the
getJavaMap method multiple times using a particular ObjectMap always returns
the same JavaMap instance.

Methods

The JavaMap interface only supports a subset of the methods on the java.util.Map
interface. The java.util.Map interface supports the following methods:

containsKey(java.lang.Object) method

get(java.lang.Object) method

put(java.lang.Object, java.lang.Object) method

putAll(java.util.Map) method

remove(java.lang.Object) method

clear()

All other methods inherited from the java.util.Map interface result in a
java.lang.UnsupportedOperationException exception.

Maps as FIFO queues
With WebSphere eXtreme Scale, you can provide a first-in first-out (FIFO)
queue-like capability for all maps. WebSphere eXtreme Scale tracks the insertion
order for all maps. A client can ask a map for the next unlocked entry in a map in
the order of insertion and lock the entry. This process allows multiple clients to
consume entries from the map efficiently.

FIFO example

The following code snippet shows a client entering a loop to process entries from
the map until the map is exhausted. The loop starts a transaction, then calls the
ObjectMap.getNextKey(5000) method. This method returns the key of the next
available unlocked entry and locks it. If the transaction is blocked for more than
5000 milliseconds, then the method returns null.
Session session = ...;
ObjectMap map = session.getMap("xxx");
// this needs to be set somewhere to stop this loop
boolean timeToStop = false;

while(!timeToStop)
{

session.begin();
Object msgKey = map.getNextKey(5000);
if(msgKey == null)
{

// current partition is exhausted, call it again in
// a new transaction to move to next partition
session.rollback();
continue;

}
Message m = (Message)map.get(msgKey);
// now consume the message

Chapter 5. Developing applications 161

...
// need to remove it
map.remove(msgKey);
session.commit();

}

Local mode versus client mode

If the application is using a local core, that is, it is not a client, then the mechanism
works as described previously.

For client mode, if the Java virtual machine (JVM) is a client, then the client
initially connects to a random partition primary. If no work exists in that partition,
then the client moves to the next partition to look for work. The client either finds
a partition with entries or loops around to the initial random partition. If the client
loops around to the initial partition, then it returns a null value to the application.
If the client finds a partition with a map that has entries, then it consumes entries
from there until no entries are available for the timeout period. After the timeout
passes, then null is returned. This action means that when null is returned and a
partitioned map is used, then it you should start a new transaction and resume
listening. The previous code sample fragment has this behavior.

Example

When you are running as a client and a key is returned, that transaction is now
bound to the partition with the entry for that key. If you do not want to update
any other maps during that transaction, then a problem does not exist. If you do
want to update, then you can only update maps from the same partition as the
map from which you got the key. The entry that is returned from the getNextKey
method needs to give the application a way to discover relevant data in that
partition. As an example, if you have two maps; one for events and another for
jobs that the events impact. You define the two maps with the following entities:
Job.java
package tutorial.fifo;

import com.ibm.websphere.projector.annotations.Entity;
import com.ibm.websphere.projector.annotations.Id;

@Entity
public class Job
{
@Id String jobId;

int jobState;
}

JobEvent.java
package tutorial.fifo;

import com.ibm.websphere.projector.annotations.Entity;
import com.ibm.websphere.projector.annotations.Id;
import com.ibm.websphere.projector.annotations.OneToOne;

@Entity
public class JobEvent
{
@Id String eventId;
@OneToOne Job job;
}

162 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

The job has as ID and state, which is an integer. Suppose you want to increment
the state whenever an event arrived. The events are stored in the JobEvent Map.
Each entry has a reference to the job the event concerns. The code for the listener
to do this looks like the following example:
JobEventListener.java
package tutorial.fifo;

import com.ibm.websphere.objectgrid.ObjectGridException;
import com.ibm.websphere.objectgrid.ObjectMap;
import com.ibm.websphere.objectgrid.Session;
import com.ibm.websphere.objectgrid.em.EntityManager;

public class JobEventListener
{
boolean stopListening;

public synchronized void stopListening()
{
stopListening = true;
}

synchronized boolean isStopped()
{
return stopListening;
}

public void processJobEvents(Session session)
throws ObjectGridException
{
EntityManager em = session.getEntityManager();
ObjectMap jobEvents = session.getMap("JobEvent");
while(!isStopped())
{
em.getTransaction().begin();

Object jobEventKey = jobEvents.getNextKey(5000);
if(jobEventKey == null)
{
em.getTransaction().rollback();
continue;
}
JobEvent event = (JobEvent)em.find(JobEvent.class, jobEventKey);
// process the event, here we just increment the
// job state
event.job.jobState++;
em.getTransaction().commit();
}
}
}

The listener is started on a thread by the application. The listener runs until the
stopListening method is called. The processJobEvents method is run on the thread
until the stopListening method is called. The loop blocks waiting for an eventKey
from the JobEvent Map and then uses the EntityManager to access the event object,
dereference to the job and increment the state.

The EntityManager API does not have a getNextKey method, but the ObjectMap
does. So, the code uses the ObjectMap for JobEvent to get the key. If a map is used
with entities then it does not store objects anymore. Instead, it stores Tuples; a
Tuple object for the key and a Tuple object for the value. The EntityManager.find
method accepts a Tuple for the key.

The code to create an event looks like the following example:

Chapter 5. Developing applications 163

em.getTransaction().begin();
Job job = em.find(Job.class, "Job Key");
JobEvent event = new JobEvent();
event.id = Random.toString();
event.job = job;
em.persist(event); // insert it
em.getTransaction().commit();

You find the job for the event, construct an event, point it to the job, insert it in the
JobEvent Map and commit the transaction.

Loaders and FIFO maps

If you want to back a map that is used as a FIFO queue with a Loader, then you
might need to do some additional work. If the order of the entries in the map is
not a concern, you have no extra work. If the order is important, then you need to
add a sequence number to all of the inserted records when you are persisting the
records to the backend. The preload mechanism should be written to insert the
records on startup using this order.

Caching objects and their relationships (EntityManager API)
Most cache products use map-based APIs to store data as key-value pairs. The
ObjectMap API and the dynamic cache in WebSphere Application Server, among
others, use this approach. However, map-based APIs have limitations. The
EntityManager API simplifies the interaction with the data grid by providing an
easy way to declare and interact with a complex graph of related objects.

Map-based API limitations

If you are using a map-based API, such as the dynamic cache in WebSphere
Application Server or the ObjectMap API, take the following limitations into
consideration:
v Indexes and queries must use reflection to query fields and properties in cache

objects.
v Custom data serialization is required to achieve performance for complex

objects.
v It is difficult to work with graphs of objects. You must develop the application to

store artificial references between objects and manually join the objects.

Benefits of the EntityManager API

The EntityManager API uses the existing map-based infrastructure, but it converts
entity objects to and from tuples before storing or reading them from the map. An
entity object is transformed into a key tuple and a value tuple, which are then
stored as key-value pairs. A tuple is an array of primitive attributes.

This set of APIs follows the Plain Old Java Object (POJO) style of programming
that is adopted by most frameworks.

Relationship management
Object-oriented languages such as Java, and relational databases support
relationships or associations. Relationships decrease the amount of storage through
the use of object references or foreign keys.

When you are using relationships in a data grid, the data must be organized in a
constrained tree. One root type must exist in the tree and all children must be

164 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

associated to only one root. For example: Department can have many Employees
and an Employee can have many Projects. But a Project cannot have many
Employees that belong to different departments. Once a root is defined, all access
to that root object and its descendants are managed through the root. WebSphere
eXtreme Scale uses the hash code of the root object's key to choose a partition. For
example:
partition = (hashCode MOD numPartitions).

When all of the data for a relationship is tied to a single object instance, the entire
tree can be collocated in a single partition and can be accessed very efficiently
using one transaction. If the data spans multiple relationships, then multiple
partitions must be involved which involves additional remote calls, which can lead
to performance bottlenecks.

Reference data

Some relationships include look-up or reference data such as: CountryName. For
look-up or reference data, the data must exist in every partition. The data can be
accessed by any root key and the same result is returned. Reference data such as
this should only be used in cases where the data is fairly static. Updating this data
can be expensive because the data needs to be updated in every partition. The
DataGrid API is a common technique to keeping reference data up-to-date.

Costs and benefits of normalization

Normalizing the data using relationships can help reduce the amount of memory
used by the data grid since duplication of data is decreased. However, in general,
the more relational data that is added, the less it will scale out. When data is
grouped together, it becomes more expensive to maintain the relationships and to
keep the sizes manageable. Since the grid partitions data based on the key of the
root of the tree, the size of the tree isn't taken into account. Therefore, if you have
a lot of relationships for one tree instance, the data grid may become unbalanced,
causing one partition to hold more data than the others.

When the data is denormalized or flattened, the data that would normally be
shared between two objects is instead duplicated and each table can be partitioned
independently, providing a much more balanced data grid. Although this increases
the amount of memory used, it allows the application to scale since a single row of
data can be accessed that has all of the necessary data. This is ideal for read-mostly
grids since maintaining the data becomes more expensive.

For more information, see Classifying XTP systems and scaling.

Managing relationships using the data access APIs

The ObjectMap API is the fastest, most flexible and granular of the data access
APIs, providing a transactional, session-based approach at accessing data in the
grid of maps. The ObjectMap API allows clients to use common CRUD (create,
read, update and delete) operations to manage key-value pairs of objects in the
distributed data grid.

When using the ObjectMap API, object relationships must be expressed by
embedding the foreign key for all relationships in the parent object.

An example follows.

Chapter 5. Developing applications 165

http://www.devwebsphere.com/devwebsphere/2009/03/classifying-xtp-systems.html

public class Department {
Collection<String> employeeIds;
}

The EntityManager API simplifies relationship management by extracting the
persistent data from the objects including the foreign keys. When the object is later
retrieved from the data grid, the relationship graph is rebuilt, as in the following
example.
@Entity
public class Department {
Collection<String> employees;
}

The EntityManager API is very similar to other Java object persistence technologies
such as JPA and Hibernate in that it synchronizes a graph of managed Java object
instances with the persistent store. In this case, the persistent store is an eXtreme
Scale data grid, where each entity is represented as a map and the map contains
the entity data rather than the object instances.

Defining an entity schema
An ObjectGrid can have any number of logical entity schemas. Entities are defined
using annotated Java classes, XML, or a combination of both XML and Java classes.
Defined entities are then registered with an eXtreme Scale server and bound to
BackingMaps, indexes and other plug-ins.

When designing an entity schema, you must complete the following tasks:
1. Define the entities and their relationships.
2. Configure eXtreme Scale.
3. Register the entities.
4. Create entity-based applications that interact with the eXtreme Scale

EntityManager APIs.

Entity schema configuration

An entity schema is a set of entities and the relationships between the entities. In
an eXtreme Scale application with multiple partitions, the following restrictions
and options apply to entity schemas:
v Each entity schema must have a single root defined. This is known as the

schema root.
v All the entities for a given schema must be in the same map set, which means

that all the entities that are reachable from a schema root with key or non-key
relationships must be defined in the same map set as the schema root.

v Each entity can belong to only one entity schema.
v Each eXtreme Scale application can have multiple schemas.

Entities are registered with an ObjectGrid instance before it is initialized. Each
defined entity must be uniquely named and is automatically bound to an
ObjectGrid BackingMap of the same name. The initialization method varies
depending on the configuration you are using:

Local eXtreme Scale configuration

If you are using a local ObjectGrid, you can programmatically configure the entity
schema. In this mode, you can use the ObjectGrid.registerEntities methods to
register annotated entity classes or an entity metadata descriptor file.

166 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Distributed eXtreme Scale configuration

If you are using a distributed eXtreme Scale configuration, you must provide an
entity metadata descriptor file with the entity schema.

For more details, see “Entity manager in a distributed environment” on page 173.

Entity requirements

Entity metadata is configured using Java class files, an entity descriptor XML file
or both. At minimum, the entity descriptor XML is required to identify which
eXtreme Scale BackingMaps are to be associated with entities. The persistent
attributes of the entity and its relationships to other entities are described in either
an annotated Java class (entity metadata class) or the entity descriptor XML file.
The entity metadata class, when specified, is also used by the EntityManager API
to interact with the data in the grid.

An eXtreme Scale grid can be defined without providing any entity classes. This
can be beneficial when the server and client are interacting directly with the tuple
data stored in the underlying maps. Such entities are defined completely in the
entity descriptor XML file and are referred to as classless entities.

Classless entities

Classless entities are useful when it is not possible to include application classes in
the server or client classpath. Such entities are defined in the entity metadata
descriptor XML file, where the class name of the entity is specified using a
classless entity identifier in the form: @<entity identifier>. The @ symbol identifies
the entity as classless and is used for mapping associations between entities. See
the "Classless entity metadata" figure an example of an entity metadata descriptor
XML file with two classless entities defined.

If an eXtreme Scale server or client does not have access to the classes, either can
still use the EntityManager API using classless entities. Common use cases include
the following:
v The eXtreme Scale container is hosted in a server that does not allow application

classes in the classpath. In this case, the clients can still access the grid using the
EntityManager API from a client, where the classes are allowed.

v The eXtreme Scale client does not require access to the entity classes because the
client is either using a non-Java client, such as the eXtreme Scale REST data
service or the client is accessing the tuple data in the grid using the ObjectMap
API.

If the entity metadata is compatible between the client and server, entity metadata
can be created using entity metadata classes, an XML file, or both.

For example, the "Programmatic entity class" in the following figure is compatible
with the classless metadata code in the next section.
Programmatic entity class
@Entity
public class Employee {

@Id long serialNumber;
@Basic byte[] picture;
@Version int ver;
@ManyToOne(fetch=FetchType.EAGER, cascade=CascadeType.PERSIST)
Department department;

}

Chapter 5. Developing applications 167

@Entity
public static class Department {

@Id int number;
@Basic String name;
@OneToMany(fetch=FetchType.LAZY, cascade=CascadeType.ALL, mappedBy="department")
Collection<Employee> employees;

}

Classless fields, keys, and versions

As previously mentioned, classless entities are configured completely in the entity
XML descriptor file. Class-based entities define their attributes using Java fields,
properties and annotations. So classless entities need to define key and attribute
structure in the entity XML descriptor with the <basic> and <id> tags.
Classless entity metadata
<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://ibm.com/ws/projector/config/emd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/projector/config/emd ./emd.xsd">

<entity class-name="@Employee" name="Employee">
<attributes>

<id name="serialNumber" type="long"/>
<basic name="firstName" type="java.lang.String"/>
<basic name="picture" type="[B"/>
<version name="ver" type="int"/>
<many-to-one

name="department"
target-entity="@Department"
fetch="EAGER"">

<cascade><cascade-persist/></cascade>
</many-to-one>

</attributes>
</entity>

<entity class-name="@Department" name="Department" >
<attributes>

<id name="number" type="int"/>
<basic name="name" type="java.lang.String"/>
<version name="ver" type="int"/>
<one-to-many

name="employees"
target-entity="@Employee"
fetch="LAZY"
mapped-by="department">
<cascade><cascade-all/></cascade>

</one-to-many>
</attributes>

</entity>

Note that each entity above has an <id> element. A classless entity must have
either one or more of an <id> element defined, or a single-valued association that
represents the key for the entity. The fields of the entity are represented by <basic>
elements. The <id>, <version>, and <basic> elements require a name and type in
classless entities. See the following supported attribute types section for details on
supported types.

Entity class requirements

Class-based entities are identified by associating various metadata with a Java
class. The metadata can be specified usingJava Platform, Standard Edition 5

168 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

annotations, an entity metadata descriptor file, or a combination of annotations and
the descriptor file. Entity classes must meet the following criteria:
v The @Entity annotation is specified in the entity XML descriptor file.
v The class has a public or protected no-argument constructor.
v It must be a top-level class. Interfaces and enumerated types are not valid entity

classes.
v Cannot use the final keyword.
v Cannot use inheritance.
v Must have a unique name and type for each ObjectGrid instance.

Entities all have a unique name and type. The name, if using annotations, is the
simple (short) name of the class by default, but can be overridden using the name
attribute of the @Entity annotation.

Persistent attributes

The persistent state of an entity is accessed by clients and the entity manager by
using either fields (instance variables) or Enterprise JavaBeans-style property
accessors. Each entity must define either field- or property-based access. Annotated
entities are field-access if the class fields are annotated and are property-access if
the getter method of the property is annotated. A mixture of field- and
property-access is not allowed. If the type cannot be automatically determined, the
accessType attribute on the @Entity annotation or equivalent XML can be used to
identify the access type.

Persistent fields
Field-access entity instance variables are accessed directly from the entity
manager and clients. Fields that are marked with the transient modifier or
transient annotation are ignored. Persistent fields must not have final or
static modifiers.

Persistent properties
Property-access entities must adhere to the JavaBeans signature
conventions for read and write properties. Methods that do not follow
JavaBeans conventions or have the Transient annotation on the getter
method are ignored. For a property of type T, there must be a getter
method getProperty which returns a value of type T and a void setter
method setProperty(T). For boolean types, the getter method can be
expressed as isProperty, returning true or false. Persistent properties cannot
have the static modifier.

Supported attribute types
The following persistent field and property types are supported:
v Java primitive types including wrappers
v java.lang.String
v java.math.BigInteger
v java.math.BigDecimal
v java.util.Date
v java.util.Calendar
v java.sql.Date
v java.sql.Time
v java.sql.Timestamp
v byte[]

Chapter 5. Developing applications 169

v java.lang.Byte[]
v char[]
v java.lang.Character[]
v enum

User serializable attribute types are supported but have performance,
query and change-detection limitations. Persistent data that cannot be
proxied, such as arrays and user serializable objects, must be reassigned to
the entity if altered.

Serializable attributes are represented in the entity descriptor XML file using the
class name of the object. If the object is an array, the data type is represented using
the Java internal form. For example, if an attribute data type is java.lang.Byte[][],
the string representation is [[Ljava.lang.Byte;

User serializable types should adhere to the following best practices:
v Implement high performance serialization methods. Implement the

java.lang.Cloneable interface and public clone method.
v Implement the java.io.Externalizable interface.
v Implement equals and hashCode

Entity associations

Bi-directional and uni-directional entity associations, or relationships between
entities can be defined as one-to-one, many-to-one, one-to-many and
many-to-many. The entity manager automatically resolves the entity relationships
to the appropriate key references when storing the entities.

The eXtreme Scale grid is a data cache and does not enforce referential integrity
like a database. Although relationships allow cascading persist and remove
operations for child entities, it does not detect or enforce broken links to objects.
When removing a child object, the reference to that object must be removed from
the parent.

If you define a bi-directional association between two entities, you must identify
the owner of the relationship. In a to-many association, the many side of the
relationship is always the owning side. If ownership cannot be determined
automatically, then the mappedBy attribute of the annotation, or XML equivalent,
must be specified. The mappedBy attribute identifies the field in the target entity
that is the owner of the relationship. This attribute also helps identify the related
fields when there are multiple attributes of the same type and cardinality.

Single-valued associations

One-to-one and many-to-one associations are denoted using the @OneToOne and
@ManyToOne annotations or equivalent XML attributes. The target entity type is
determined by the attribute type. The following example defines a uni-directional
association between Person and Address. The Customer entity has a reference to
one Address entity. In this case, the association could also be many-to-one since
there is no inverse relationship.
@Entity
public class Customer {

@Id id;
@OneToOne Address homeAddress;

}

170 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

@Entity
public class Address{

@Id id
@Basic String city;

}

To specify a bi-directional relationship between the Customer and Address classes,
add a reference to the Customer class from the Address class and add the
appropriate annotation to mark the inverse side of the relationship. Because this
association is one-to-one, you have to specify an owner of the relationship using
the mappedBy attribute on the @OneToOne annotation.
@Entity
public class Address{

@Id id
@Basic String city;
@OneToOne(mappedBy="homeAddress") Customer customer;

}

Collection-valued associations

One-to-many and many-to-many associations are denoted using the @OneToMany
and @ManyToMany annotations or equivalent XML attributes. All many relationships
are represented using the types: java.util.Collection, java.util.List or java.util.Set.
The target entity type is determined by the generic type of the Collection, List or
Set or explicitly using the targetEntity attribute on the @OneToMany or @ManyToMany
annotation (or XML equivalent).

In the previous example, it is not practical to have one address object per customer
because many customers might share an address or might have multiple addresses.
This situation is better solved using a many association:
@Entity
public class Customer {

@Id id;
@ManyToOne Address homeAddress;
@ManyToOne Address workAddress;

}

@Entity
public class Address{

@Id id
@Basic String city;
@OneToMany(mappedBy="homeAddress") Collection<Customer> homeCustomers;

@OneToMany(mappedBy="workAddress", targetEntity=Customer.class)
Collection workCustomers;

}

In this example, two different relationships exist between the same entities: a
Home and Work address relationship. A non-generic Collection is used for the
workCustomers attribute to demonstrate how to use the targetEntity attribute
when generics are not available.

Classless associations

Classless entity associations are defined in the entity metadata descriptor XML file
similar to how class-based associations are defined. The only difference is that
instead of the target entity pointing to an actual class, it points to the classless
entity identifier used for the class name of the entity.

Chapter 5. Developing applications 171

An example follows:
<many-to-one name="department" target-entity="@Department" fetch="EAGER">

<cascade><cascade-all/></cascade>
</many-to-one>
<one-to-many name="employees" target-entity="@Employee" fetch="LAZY">

<cascade><cascade-all/></cascade>
</one-to-many>

Primary keys

All entities must have a primary key, which can be a simple (single attribute) or
composite (multiple attribute) key. The key attributes are denoted using the Id
annotation or defined in the entity XML descriptor file. Key attributes have the
following requirements:
v The value of a primary key cannot change.
v A primary key attribute should be one of the following types: Java primitive

type and wrappers, java.lang.String, java.util.Date or java.sql.Date.
v A primary key can contain any number of single-valued associations. The target

entity of the primary key association must not have an inverse association
directly or indirectly to the source entity.

Composite primary keys can optionally define a primary key class. An entity is
associated with a primary key class using the @IdClass annotation or the entity
XML descriptor file. An @IdClass annotation is useful in conjunction with the
EntityManager.find method.

Primary key classes have the following requirements:
v It should be public with a no-argument constructor.
v The access type of the primary key class is determined by the entity that

declares the primary key class.
v If property-access, the properties of the primary key class must be public or

protected.
v The primary key fields or properties must match the key attribute names and

types defined in the referencing entity.
v Primary key classes must implement the equals and hashCode methods.

An example follows:
@Entity
@IdClass(CustomerKey.class)
public class Customer {

@Id @ManyToOne Zone zone;
@Id int custId;
String name;
...

}

@Entity
public class Zone{

@Id String zoneCode;
String name;

}

public class CustomerKey {
Zone zone;
int custId;

172 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

public int hashCode() {...}
public boolean equals(Object o) {...}

}

Classless primary keys

Classless entities are required to either have at least one <id> element or an
association in the XML file with the attribute id=true. An example of both would
look like the following:
<id name="serialNumber" type="int"/>
<many-to-one name="department" target-entity="@Department" id="true">
<cascade><cascade-all/></cascade>
</many-to-one>

Remember:
The <id-class> XML tag is not supported for classless entities.

Entity proxies and field interception

Entity classes and mutable supported attribute types are extended by proxy classes
for property-access entities and bytecode-enhanced for Java Development Kit (JDK)
5 field-access entities. All access to the entity, even by internal business methods
and the equals methods, must use the appropriate field or property access
methods.

Proxies and field interceptors are used to allow the entity manager to track the
state of the entity, determine if the entity has changed, and improve performance.
Field interceptors are only available on Java SE 5 platforms when the entity
instrumentation agent is configured.

Attention: When using property-access entities, the equals method should use the
instanceof operator for comparing the current instance to the input object. All
introspection of the target object should be through the properties of the object, not
the fields themselves, because the object instance will be the proxy.

Entity manager in a distributed environment
You can use EntityManager API with a local ObjectGrid or in a distributed
eXtreme Scale environment. The main difference is how you connect to this remote
environment. After you establish a connection, there is no difference between using
a Session object or using the EntityManager API.

Required configuration files

The following XML configuration files are required:
v ObjectGrid descriptor XML file
v Entity descriptor XML file
v Deployment or data grid descriptor XML file

These files specify the entities and BackingMaps that a server hosts.

The entity metadata descriptor file contains a description of the entities that are
used. At minimum, you must specify the entity class and name. If you are running
in a Java Platform, Standard Edition 5 environment, eXtreme Scale automatically
reads the entity class and its annotations. You can define additional XML attributes

Chapter 5. Developing applications 173

if the entity class has no annotations or if you are required to override the class
attributes. If you are registering the entities classless , provide all of entity
information in the XML file only.

You can use the following XML configuration snippet to define a data grid with
entities. In this snippet, the server creates an ObjectGrid with the name bookstore
and an associated backing map with the name order.The objectgrid.xml file
snippet refers to the entity.xml file. In this case, the entity.xml file contains one
entity, the Order entity.
objectgrid.xml
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="bookstore" entityMetadataXMLFile="entity.xml">
<backingMap name="Order"/>
</objectGrid>

</objectGrids>

</objectGridConfig>

This objectgrid.xml file specifies the entity.xml file with the
entityMetadataXMLFile attribute. The value can be a relative directory or an
absolute path.
v For a relative directory: Specify the location relative to the location of the

objectgrid.xml file.
v For an absolute path: Specify the location with a URL format, such as file://

or http://.

An example of the entity.xml file follows:
entity.xml
<entity-mappings xmlns="http://ibm.com/ws/projector/config/emd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/projector/config/emd ./emd.xsd">
<entity class-name="com.ibm.websphere.tutorials.objectgrid.em.

distributed.step1.Order" name="Order"/>
</entity-mappings>

This example assumes that the Order class would have the orderNumber and desc
fields annotated similarly.

An equivalent classless entity.xml file would be as follows:
classless entity.xml
<entity-mappings xmlns="http://ibm.com/ws/projector/config/emd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/projector/config/emd ./emd.xsd">
<entity class-name="@Order " name="Order">

<description>"Entity named: Order"</description>
<attributes>

<id name="orderNumber" type="int"/>
<basic name="desc" type="java.lang.String"/>

</attributes>
</entity>
</entity-mappings>

For information about starting servers, see the Administration Guide. You use both
the deployment.xml and objectgrid.xml files to start the catalog server.

Connecting to a distributed eXtreme Scale server

The following code enables the connect mechanism for a client and server on the
same computer:

174 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

String catalogEndpoints="localhost:2809";
URL clientOverrideURL= new URL("file:etc/emtutorial/distributed/step1/objectgrid.xml");
ClientClusterContext clusterCtx = ogMgr.connect(catalogEndpoints, null, clientOverrideURL);
ObjectGrid objectGrid=ogMgr.getObjectGrid(clusterCtx, "bookstore");

In the preceding code snippet, note the reference to the remote eXtreme Scale
server. After you establish a connection , you can invoke EntityManager API
methods such as persist, update, remove and find.

Attention: When you are using entities, pass the client override ObjectGrid
descriptor XML file to the connect method. If a null value is passed to the
clientOverrideURL property and the client has a different directory structure than
the server, then the client might fail to locate the ObjectGrid or entity descriptor
XML files. At minimum, the ObjectGrid and entity XML files for the server can be
copied to the client.

Previously, using entities on an ObjectGrid client required you to make the
ObjectGrid XML and entity XML available to the client in one of the following two
ways:
1. Pass an overriding ObjectGrid XML to the ObjectGridManager.connect(String

catalogServerEndpoints, ClientSecurityConfiguration securityProps, URL
overRideObjectGridXml) method.
String catalogEndpoints="myHost:2809";
URL clientOverrideURL= new URL("file:etc/emtutorial/distributed/step1/objectgrid.xml");
ClientClusterContext clusterCtx = ogMgr.connect(catalogEndpoints, null, clientOverrideURL);
ObjectGrid objectGrid=ogMgr.getObjectGrid(clusterCtx, "bookstore");

2. Pass null for the override file and ensure that the ObjectGrid XML and
referenced entity XML are available to the client on the same path as on the
server.
String catalogEndpoints="myHost:2809";
ClientClusterContext clusterCtx = ogMgr.connect(catalogEndpoints, null, null);
ObjectGrid objectGrid=ogMgr.getObjectGrid(clusterCtx, "bookstore");

The XML files were required regardless of whether or not you wanted to use
subset entities on the client side. These files are no longer required to use the
entities as defined by the server. Instead, pass null as the overRideObjectGridXml
parameter as in option 2 of the previous section. If the XML file is not found on
the same path set on the server, the client uses the entity configuration on the
server.

However, if you use subset entities on the client, you must provide an overriding
ObjectGrid XML as in option 1.

Client and server-side schema

The server-side schema defines the type of data stored in the maps on a server.
The client-side schema is a mapping to application objects from the schema on the
server. For example, you might have the following server-side schema:
@Entity
class ServerPerson
{

@Id String ssn;
String firstName;
String surname;
int age;
int salary;

}

A client can have an object annotated as in the following example:

Chapter 5. Developing applications 175

@Entity(name="ServerPerson")
class ClientPerson
{

@Id @Basic(alias="ssn") String socialSecurityNumber;
String surname;

}

This client then takes a server-side entity and projects the subset of the entity into
the client object. This projection leads to bandwidth and memory savings on a
client because the client has only the information it needs instead of all of the
information that is in the server-side entity. Different applications can use their
own objects instead of forcing all applications to share a set of classes for data
access.

The client-side entity descriptor XML file is required in the following cases: if the
server is running with class-based entities while the client side is running classless;
or if the server is classless and the client uses class-based entities. A classless client
mode allows the client to still run entity queries without having access to the
physical classes. Assuming the server has registered the ServerPerson entity above,
the client would override the data grid with an entity.xml file such as follows:
<entity-mappings xmlns="http://ibm.com/ws/projector/config/emd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/projector/config/emd ./emd.xsd">
<entity class-name="@ServerPerson" name="Order">

<description>"Entity named: Order"</description>
<attributes>

<id name="socialSecurityNumber" type="java.lang.String"/>
<basic name="surname" type="java.lang.String"/>

</attributes>
</entity>
</entity-mappings>

This file achieves an equivalent subset entity on the client, without requiring the
client to provide the actual annotated class. If the server is classless, and the client
is not classless, then the client provides an overriding entity descriptor XML file.
This entity descriptor XML file contains an override to the class file reference.

Referencing the schema

If your application is running in Java SE 5, then the application can be added to
the objects by using annotations. The EntityManager can read the schema from the
annotations on those objects. The application provides the eXtreme Scale run time
with references to these objects using the entity.xml file, which is referenced from
the objectgrid.xml file. The entity.xml file lists all the entities, each of which is
associated with either a class or a schema. If a proper class name is specified, then
the application attempts to read the Java SE 5 annotations from those classes to
determine the schema. If you do not annotate the class file or specify a classless
identifier as the class name, then the schema is taken from the XML file. The XML
file is used to specify all the attributes, keys, and relationships for each entity.

A local data grid does not need XML files. The program can obtain an ObjectGrid
reference and invoke the ObjectGrid.registerEntities method to specify a list of Java
SE 5 annotated classes or an XML file.

The run time uses the XML file or a list of annotated classes to find entity names,
attribute names and types, key fields and types, and relationships between entities.
If eXtreme Scale is running on a server or in stand-alone mode, then it
automatically makes a map named after each entity. These maps can be
customized further using the objectgrid.xml file or APIs set either by the
application or injection frameworks such as Spring.

176 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Entity metadata descriptor file

See emd.xsd file for more information about the metadata descriptor file.

Interacting with EntityManager
Applications typically first obtain an ObjectGrid reference, and then a Session from
that reference for each thread. Sessions cannot be shared between threads. An extra
method on Session, the getEntityManager method, is available. This method
returns a reference to an entity manager to use for this thread. The EntityManager
interface can replace the Session and ObjectMap interfaces for all applications. You
can use these EntityManager APIs if the client has access to the defined entity
classes.

Obtaining an EntityManager instance from a session

The getEntityManager method is available on a Session object. The following code
example illustrates how to create a local ObjectGrid instance and access the
EntityManager. See the EntityManager interface in the API documentation for
details about all the supported methods.
ObjectGrid og =
ObjectGridManagerFactory.getObjectGridManager().createObjectGrid("intro-grid");
Session s = og.getSession();
EntityManager em = s.getEntityManager();

A one-to-one relationship exists between the Session object and EntityManager
object. You can use the EntityManager object more than once.

Persisting an entity

Persisting an entity means saving the state of a new entity in an ObjectGrid cache.
After the persist method is called, the entity is in the managed state. Persist is a
transactional operation, and the new entity is stored in the ObjectGrid cache after
the transaction commits.

Every entity has a corresponding BackingMap in which the tuples are stored. The
BackingMap has the same name as the entity, and is created when the class is
registered. The following code example demonstrates how to create an Order
object by using the persist operation.
Order order = new Order(123);
em.persist(order);
order.setX();
...

The Order object is created with the key 123, and the object is passed to the persist
method. You can continue to modify the state of the object before you commit the
transaction.

Important: The preceding example does not include any required transactional
boundaries, such as begin and commit. See the “Tutorial: Storing order information
in entities” on page 9 the entity manager tutorial in the Product Overview for more
information.

Finding an entity

You can locate the entity in the ObjectGrid cache with the find method by
providing a key after the entity is stored in the cache. This method does not

Chapter 5. Developing applications 177

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsentmgrxml.html

require any transactional boundary, which is useful for read-only semantics. The
following example illustrates that only one line of code is needed to locate the
entity.
Order foundOrder = (Order)em.find(Order.class, new Integer(123));

Removing an entity

The remove method, like the persist method, is a transactional operation. The
following example shows the transactional boundary by calling the begin and
commit methods.
em.getTransaction().begin();
Order foundOrder = (Order)em.find(Order.class, new Integer(123));
em.remove(foundOrder);
em.getTransaction().commit();

The entity must first be managed before it can be removed, which you can
accomplish by calling the find method within the transactional boundary. Then call
the remove method on the EntityManager interface.

Invalidating an entity

The invalidate method behaves much like the remove method, but does not invoke
any Loader plug-ins. Use this method to remove entities from the ObjectGrid, but
to preserve them in the backend data store.
em.getTransaction().begin();
Order foundOrder = (Order)em.find(Order.class, new Integer(123));
em.invalidate(foundOrder);
em.getTransaction().commit();

The entity must first be managed before it can be invalidated, which you can
accomplish by calling the find method within the transactional boundary. After
you call the find method, you can call the invalidate method on the EntityManager
interface.

Updating an entity

The update method is also a transactional operation. The entity must be managed
before any updates can be applied.
em.getTransaction().begin();
Order foundOrder = (Order)em.find(Order.class, new Integer(123));
foundOrder.date = new Date(); // update the date of the order
em.getTransaction().commit();

In the preceding example, the persist method is not called after the entity is
updated. The entity is updated in the ObjectGrid cache when the transaction is
committed.

Queries and query queues

With the flexible query engine, you can retrieve entities by using EntityManager
API. Create SELECT type queries over an entity or Object-based schema by using
the ObjectGrid query language. Query interface explains in detail how you can run
the queries by using the EntityManager API. See the Query API for more
information about using queries.

An entity QueryQueue is a queue-like data structure associated with an entity
query. It selects all the entities that match the WHERE condition on the query filter

178 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

and puts the result entities in a queue. Clients can then iteratively retrieve entities
from this queue. See “Entity query queues” on page 186 for more information.

Entity listeners and callback methods:

Applications can be notified when the state of an entity transitions from state to
state. Two callback mechanisms exist for state change events: life cycle callback
methods that are defined on an entity class and are invoked whenever the entity
state changes, and entity listeners, which are more general because the entity
listener can be registered on several entities.

Life cycle of an entity instance

An entity instance has the following states:
v New: A newly created entity instance that does not exist in the eXtreme Scale

cache.
v Managed: The entity instance exists in the eXtreme Scale cache and is retrieved

or persisted using the entity manager. An entity must be associated with an
active transaction to be in the managed state.

v Detached: The entity instance exists in the eXtreme Scale cache, but is no longer
associated with an active transaction.

v Removed: The entity instance is removed, or is scheduled to be removed, from
the eXtreme Scale cache when the transaction is flushed or committed.

v Invalidated: The entity instance is invalidated, or is scheduled to be invalidated,
from the eXtreme Scale cache when the transaction is flushed or committed.

When entities change from state to state, you can invoke life-cycle, call-back
methods.

The following sections further describe the meanings of New, Managed, Detached,
Removed and Invalidated states as the states apply to an entity.

Entity life cycle callback methods

Entity life cycle callback methods can be defined on the entity class and are
invoked when the entity state changes. These methods are useful for validating
entity fields and updating transient state that is not usually persisted with the
entity. Entity life cycle callback methods can also be defined on classes that are not
using entities. Such classes are entity listener classes, which can be associated with
multiple entity types. life cycle callback methods can be defined using both
metadata annotations and a entity metadata XML descriptor file:
v Annotations: life cycle callback methods can be denoted using the PrePersist,

PostPersist, PreRemove, PostRemove, PreUpdate, PostUpdate, and PostLoad
annotations in an entity class.

v Entity XML descriptor : life cycle callback methods can be described using XML
when annotations are not available.

Entity listeners

An entity listener class is a class that does not use entities that defines one or more
entity life cycle callback methods. Entity listeners are useful for general purpose
auditing or logging applications. Entity listeners can be defined using both
metadata annotations and a entity metadata XML descriptor file:

Chapter 5. Developing applications 179

v Annotation: The EntityListeners annotation can be used to denote one or more
entity listener classes on an entity class. If multiple entity listeners are defined,
the order in which they are invoked is determined by the order in which they
are specified in the EntityListeners annotation.

v Entity XML descriptor: The XML descriptor can be used as an alternative to
specify the invocation order of entity listeners or to override the order that is
specified in metadata annotations.

Callback method requirements

Any subset or combination of annotations can be specified on an entity class or a
listener class. A single class cannot have more than one life cycle callback method
for the same life cycle event. However, the same method can be used for multiple
callback events. The entity listener class must have a public no-arg constructor.
Entity listeners are stateless. The life cycle of an entity listener is unspecified.
eXtreme Scale does not support entity inheritance, so callback methods can only be
defined in the entity class, but not in the superclass.

Callback method signature

Entity life cycle callback methods can be defined on an entity listener class, directly
on an entity class, or both. Entity life cycle callback methods can be defined using
both metadata annotations and the entity XML descriptor. The annotations used for
callback methods on the entity class and on the entity listener class are the same.
The signatures of the callback methods are different when defined on an entity
class versus an entity listener class. Callback methods defined on an entity class or
mapped superclass have the following signature:
void <METHOD>()

Callback methods that are defined on an entity listener class have the following
signature:
void <METHOD>(Object)

The Object argument is the entity instance for which the callback method is
invoked. The Object argument can be declared as a java.lang.Object object or the
actual entity type.

Callback methods can have public, private, protected, or package level access, but
must not be static or final.

The following annotations are defined to designate life cycle event callback
methods of the corresponding types:
v com.ibm.websphere.projector.annotations.PrePersist
v com.ibm.websphere.projector.annotations.PostPersist
v com.ibm.websphere.projector.annotations.PreRemove
v com.ibm.websphere.projector.annotations.PostRemove
v com.ibm.websphere.projector.annotations.PreUpdate
v com.ibm.websphere.projector.annotations.PostUpdate
v com.ibm.websphere.projector.annotations.PostLoad

See the API Documentation for more details. Each annotation has an equivalent
XML attribute defined in the entity metadata XML descriptor file.

180 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Life cycle callback method semantics

Each of the different life cycle callback methods has a different purpose and is
called in different phases of the entity life cycle:

PrePersist
Invoked for an entity before the entity has been persisted to the store,
which includes entities that have been persisted due to a cascading
operation. This method is invoked on the thread of the
EntityManager.persist operation.

PostPersist
Invoked for an entity after the entity has been persisted to the store, which
includes entities that have been persisted due to a cascading operation.
This method is invoked on the thread of the EntityManager.persist
operation. It is called after the EntityManager.flush or
EntityManager.commit is called.

PreRemove
Invoked for an entity before the entity has been removed, which includes
entities that have been removed due to a cascading operation. This method
is invoked on the thread of the EntityManager.remove operation.

PostRemove
Invoked for an entity after the entity has been removed, which includes
entities that have been removed due to a cascading operation. This method
is invoked on the thread of the EntityManager.remove operation. It is
called after the EntityManager.flush or EntityManager.commit is called.

PreUpdate
Invoked for an entity before the entity has been updated to the store. This
method is invoked on the thread of the transaction flush or commit
operation.

PostUpdate
Invoked for an entity after the entity has been updated to the store. This
method is invoked on the thread of the transaction flush or commit
operation.

PostLoad
Invoked for an entity after the entity has been loaded from the store which
includes any entities that are loaded through an association. This method is
invoked on the thread of the loading operation, such as EntityManager.find
or a query.

Duplicate life cycle callback methods

If multiple callback methods are defined for an entity life cycle event, the ordering
of the invocation of these methods is as follows:
1. life cycle callback methods defined in the entity listeners: The life cycle

callback methods that are defined on the entity listener classes for an entity
class are invoked in the same order as the specification of the entity listener
classes in the EntityListeners annotation or the XML descriptor.

2. Listener super class: Callback methods defined in the super class of the entity
listener are invoked before the children.

3. Entity life cycle methods: WebSphere eXtreme Scale does not support entity
inheritance, so the entity life cycle methods can only be defined in the entity
class.

Chapter 5. Developing applications 181

Exceptions

Life cycle callback methods might result in run time exceptions. If a life cycle
callback method results in a run time exception within a transaction, the
transaction is rolled back. No further life cycle callback methods are invoked after
a runtime exception results.

Entity listener examples:

You can write EntityListeners based on your requirements. Several example scripts
follow.

EntityListeners example using annotations

The following example shows the life-cycle callback method invocations and order
of the invocations. Assume an entity class Employee and two entity listeners exist:
EmployeeListener and EmployeeListener2.
@Entity
@EntityListeners({EmployeeListener.class, EmployeeListener2.class})
public class Employee {

@PrePersist
public void checkEmployeeID() {

....
}

}

public class EmployeeListener {
@PrePersist
public void onEmployeePrePersist(Employee e) {

....
}

}

public class PersonListener {
@PrePersist
public void onPersonPrePersist(Object person) {

....
}

}

public class EmployeeListener2 extends PersonListener {
@PrePersist
public void onEmployeePrePersist2(Object employee) {

....
}

}

If a PrePersist event occurs on an Employee instance, the following methods are
called in order:
1. onEmployeePrePersist method
2. onPersonPrePersist method
3. onEmployeePrePersist2 method
4. checkEmployeeID method

Entity listeners example using XML

The following example shows how to set an entity listener on an entity using the
entity descriptor XML file:

182 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

<entity
class-name="com.ibm.websphere.objectgrid.sample.Employee"
name="Employee" access="FIELD">
<attributes>

<id name="id" />
<basic name="value" />

</attributes>
<entity-listeners>

<entity-listener
class-name="com.ibm.websphere.objectgrid.sample.EmployeeListener">
<pre-persist method-name="onListenerPrePersist" />
<post-persist method-name="onListenerPostPersist" />

</entity-listener>
</entity-listeners>
<pre-persist method-name="checkEmployeeID" />

</entity>

The entity Employee is configured with a
com.ibm.websphere.objectgrid.sample.EmployeeListener entity listener class ,
which has two life-cycle callback methods defined. The onListenerPrePersist
method is for the PrePersist event, and the onListenerPostPersist method is for the
PostPersist event. Also, the checkEmployeeID method in the Employee class is
configured to listen for the PrePersist event.

EntityManager fetch plan support
A FetchPlan is the strategy that the entity manager uses for retrieving associated
objects if the application needs to access relationships.

Example

Assume for example that your application has two entities: Department and
Employee. The relationship between the Department entity and the Employee
entity is a bi-directional one-to-many relationship: One department has many
employees, and one employee belongs to only one department. Since most of the
time, when Department entity is fetched, its employees are likely to be fetched, the
fetch type of this one-to-many relationship is set to be EAGER.

Here is a snippet of the Department class.
@Entity
public class Department {

@Id
private String deptId;

@Basic
String deptName;

@OneToMany(fetch = FetchType.EAGER, mappedBy="department", cascade = {CascadeType.PERSIST})
public Collection<Employee> employees;

}

In a distributed environment, when an application calls
em.find(Department.class, "dept1") to find a Department entity with key
"dept1", this find operation will get the Department entity and all its eager-fetched
relations. In the case of the preceding snippet, these are all the employees of
department "dept1".

Prior to WebSphere eXtreme Scale 6.1.0.5, the retrieval of one Department entity
and N Employee entities incurred N+1 client-server trips because the client
retrieved one entity for one client-server trip. You can improve performance if you
retrieve these N+1 entities in one trip.

Chapter 5. Developing applications 183

Fetch plan

A fetch plan can be used to customize how to fetch eager relationships by
customizing the maximum depth of the relationships. The fetch depth overrides
eager relations greater than the specified depth to lazy relations. By default, the
fetch depth is the maximum fetch depth. This means that eager relationships of all
levels that are eager-navigable from the root entity will be fetched. An EAGER
relationship is eager-navigable from a root entity if and only if all the relations
starting from the root entity to it are configured as eager-fetched.

In the previous example, the Employee entity is eager-navigable from the
Department entity because the Department-Employee relationship is configured as
eager-fetched.

If the Employee entity has another eager relationship to an Address entity for
instance, then the Address entity is also eager-navigable from the Department
entity. However, if the Department-Employee relationships were configured as
lazy-fetch, then the Address entity is not eager-navigable from the Department
entity because the Department-Employee relationship breaks the eager fetch chain.

A FetchPlan object can be retrieved from the EntityManager instance. The
application can use the setMaxFetchDepth method to change the maximum fetch
depth.

A fetch plan is associated with an EntityManager instance. The fetch plan applies
to any fetch operation, more specifically as follows.
v EntityManager find(Class class, Object key) and findForUpdate(Class

class, Object key) operations
v Query operations
v QueryQueue operations

The FetchPlan object is mutable. Once changed, the changed value will be applied
to the fetch operations executed afterward.

A fetch plan is important for a distributed deployment because it decides whether
the eager-fetched relationship entities are retrieved with the root entity in one
client-server trip or more than one.

Continuing with the previous example, consider further that the fetch plan has
maximum depth set to infinity. In that case, when an application calls
em.find(Department.class, "dept1") to find a Department, this find operation
will get one Department entity and N employee entities in one client-server trip.
However, for a fetch plan with maximum fetch depth set to zero, only the
Department object will be retrieved from the server, while the Employee entities
are retrieved from the server only when the employees collection of the
Department object is accessed.

Different fetch plans

You have several different fetch plans based on your requirements, explained in
the following sections.

Impact on a distributed grid

v Infinite-depth fetch plan: An infinite-depth fetch plan has its maximum fetch depth
set to FetchPlan.DEPTH_INFINITE.

184 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

In a client-server environment, if an infinite-depth fetch plan is used, then all the
relations that are eager-navigable from the root entity will be retrieved in one
client-server trip.
Example: If the application is interested in all the Address entities of all
employees of a particular Department, then it uses an infinite-depth fetch plan
to retrieve all the associated Address entities. The following code only incurs
one client-server trip.
em.getFetchPlan().setMaxFetchDepth(FetchPlan.DEPTH_INFINITE);

tran.begin();
Department dept = (Department) em.find(Department.class, "dept1");
// do something with Address object.
for (Employee e: dept.employees) {

for (Address addr: e.addresses) {
// do something with addresses.
}

}
tran.commit();

v Zero-depth fetch plan: A zero-depth fetch plan has its maximum fetch depth set to
0.
In a client-server environment, if a zero fetch plan is used, then only the root
entity will be retrieved in the first client-server trip. All the eager relationships
are treated as if they were lazy.
Example: In this example, the application is only interested in the Department
entity attribute. It does not need to access its employees, so the application sets
the fetch plan depth to 0.
Session session = objectGrid.getSession();
EntityManager em = session.getEntityManager();
EntityTransaction tran = em.getTransaction();
em.getFetchPlan().setMaxFetchDepth(0);

tran.begin();
Department dept = (Department) em.find(Department.class, "dept1");
// do something with dept object.
tran.commit();

v Fetch plan with depth k :
A k-depth fetch plan has its maximum fetch depth set to k.
In a client-server eXtreme Scale environment, if a k-depth fetch plan is used,
then all the relationships eager-navigable from the root entity within k steps will
be retrieved in the first client-server trip.
The infinite-depth fetch plan (k = infinity) and zero-depth fetch plan (k = 0) are
just two examples of the k-depth fetch plan.
To continue expanding on the previous example, assume there is another eager
relationship from the entity Employee to the entity Address. If the fetch plan has
maximum fetch depth set to 1, then the em.find(Department.class, "dept1")
operation will retrieve the Department entity and all its Employee entities in one
client-server trip. However, the Address entities will not be retrieved because
they are not eager-navigable to the Department entity within 1 step, but 2 steps.
If you use a fetch plan with depth set to 2, then the em.find(Department.class,
"dept1") operation will retrieve the Department entity, all its Employee entities,
and all Address entities associated with the Employee entities in one
client-server trip.

Tip: The default fetch plan has maximum fetch depth set to infinity, so the
default behavior of a fetch operation can change. All the eager-navigable
relationships from the root entity are retrieved. Instead of multiple trips, now
the fetch operation only incurs one client-server trip with the default fetch plan.
To keep the settings for the product from the prior version, set the fetch depth to
0.

Chapter 5. Developing applications 185

v Fetch plan used on query:

If you execute an entity query you can also use a fetch plan to customize
relationship retrieval.
For example, the query SELECT d FROM Department d WHERE
"d.deptName=’Department’" result has a relationship to the Department entity.
Notice the fetch plan depth starts with the query result association: In this case,
the Department entity, not the query result itself. That is, the Department entity
is on fetch-depth level 0. Therefore a fetch plan with maximum fetch depth 1
will retrieve the Department entity and its Employee entities in one client-server
trip.
Example: In this example, the fetch plan depth is set to 1, so the Department
entity and its Employee entities are retrieved in one client-server trip, but the
Address entities will not be retrieved in the same trip.

Important: If a relationship is ordered, using either OrderBy annotation or
configuration, then it is considered an eager relationship even if it is configured as
lazy-fetch.

Performance considerations in a distributed environment

By default, all relationships that are eager-navigable from the root entity will be
retrieved in one client-server trip. This can improve performance if all the
relationships are going to be used. However, in certain usage scenarios, not all
relationships eager-navigable from the root entity are used, so they incur both
run-time overhead and bandwidth overhead by retrieving those unused entities.

For such cases, the application can set the maximum fetch depth to a small
number to decrease the depth of entities to be retrieved by making all the eager
relations after that certain depth lazy. This setting can improve performance.

Proceeding still further with the previous Department-Employee-Address example,
by default, all the Address entities associated with employees of the Department
"dept1" will be retrieved when em.find(Department.class, "dept1") is called. If
the application does not use Address entities, it can set the maximum fetch depth
to 1, so the Address entities will not be retrieved with the Department entity.

Entity query queues
Query queues allow applications to create a queue qualified by a query in the
server-side or local eXtreme Scale over an entity. Entities from the query result are
stored in this queue. Currently, query queue is only supported in a map that is
using the pessimistic lock strategy.

A query queue is shared by multiple transactions and clients. After the query
queue becomes empty, the entity query associated with this queue is rerun and
new results are added to the queue. A query queue is uniquely identified by the
entity query string and parameters. There is only one instance for each unique
query queue in one ObjectGrid instance. See the EntityManager API documentation
for additional information.

Query queue example

The following example shows how query queue can be used.
/**
* Get a unassigned question type task
*/
private void getUnassignedQuestionTask() throws Exception {

186 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

EntityManager em = og.getSession().getEntityManager();
EntityTransaction tran = em.getTransaction();

QueryQueue queue = em.createQueryQueue("SELECT t FROM Task t
WHERE t.type=?1 AND t.status=?2", Task.class);
queue.setParameter(1, new Integer(Task.TYPE_QUESTION));
queue.setParameter(2, new Integer(Task.STATUS_UNASSIGNED));

tran.begin();
Task nextTask = (Task) queue.getNextEntity(10000);
System.out.println("next task is " + nextTask);
if (nextTask != null) {

assignTask(em, nextTask);
}
tran.commit();

}

The previous example first creates a QueryQueue with a entity query string,
"SELECT t FROM Task t WHERE t.type=?1 AND t.status=?2". Then it sets the
parameters for the QueryQueue object. This query queue represents all
"unassigned" tasks of the type "question". The QueryQueue object is very similar to
an entity Query object.

After the QueryQueue is created, an entity transaction is started and the
getNextEntity method is invoked, which retrieves the next available entity with a
timeout value set to 10 seconds. After the entity is retrieved, it is processed in the
assignTask method. The assignTask modifies the Task entity instance and changes
the status to "assigned" which effectively removes it from the queue since it no
longer matches the QueryQueue's filter. Once assigned, the transaction is
committed.

From this simple example, you can see a query queue is similar to an entity query.
However, they differ in the following ways:
1. Entities in the query queue can be retrieved in an iterative manner. The user

application decides the number of entities to be retrieved. For example, if
QueryQueue.getNextEntity(timeout) is used, only one entity is retrieved, and if
QueryQueue.getNextEntities(5, timeout) is used, 5 entities are retrieved. In a
distributed environment, the number of entities directly decides the number of
bytes to be transferred from the server to client.

2. When an entity is retrieved from the query queue, a U lock is placed on the
entity so no other transactions can access it.

Retrieve entities in a loop

You can retrieve entities in a loop. An example that illustrates how to get all the
unassigned, question type tasks completed follows.
/**
* Get all unassigned question type tasks
*/
private void getAllUnassignedQuestionTask() throws Exception {

EntityManager em = og.getSession().getEntityManager();
EntityTransaction tran = em.getTransaction();

QueryQueue queue = em.createQueryQueue("SELECT t FROM Task t WHERE
t.type=?1 AND t.status=?2", Task.class);
queue.setParameter(1, new Integer(Task.TYPE_QUESTION));
queue.setParameter(2, new Integer(Task.STATUS_UNASSIGNED));

Task nextTask = null;

Chapter 5. Developing applications 187

do {
tran.begin();
nextTask = (Task) queue.getNextEntity(10000);
if (nextTask != null) {

System.out.println("next task is " + nextTask);
}
tran.commit();

} while (nextTask != null);
}

If there are 10 unassigned question-type tasks in the entity map, you might expect
that you will have 10 entities printed to the console. However, if this example is
run, you will see the program never exits, which might be contrary to what you
assumed.

When a query queue is created and the getNextEntity is called, the entity query
associated with the queue is executed and the 10 results are populated into the
queue. When getNextEntity is called, an entity is taken off the queue. After 10
getNextEntity calls are executed, the queue is empty. The entity query will
automatically re-run. Since these 10 entities still exist and match the query queue's
filter criteria, they are populated into the queue again.

If the following line is added after the println() statement, you will see only 10
entities printed.

em.remove(nextTask);

For information on using SessionHandle with QueryQueue in a per-container
placement deployment, read about SessionHandle integration.

Query queues deployed to all partitions

In a distributed eXtreme Scale, a query queue can be created for one partition or
all partitions. If a query queue is created for all partitions, there will be one query
queue instance in each partition.

When a client tries to get the next entity using the QueryQueue.getNextEntity or
QueryQueue.getNextEntities method, the client sends a request to one of the
partitions. A client sends peek and pin requests to the server:
v With a peek request, the client sends a request to one partition and the server

returns immediately. If there is an entity in the queue, the server sends a
response with the entity; if there is not, the server sends a response with no
entity. In either case, the server will return immediately.

v With a pin request, the client sends a request to one partition and the server
waits until an entity is available. If there is an entity in the queue, the server
sends a response with the entity immediately; if there is not, the server waits on
the queue until either an entity is available or the request times out.

An example of how an entity is retrieved for a query queue which is deployed to
all partitions (n) follows:
1. When a QueryQueue.getNextEntity or QueryQueue.getNextEntities method is

called, the client picks a random partition number from 0 to n-1.
2. The client sends peek request to the random partition.

v If an entity is available, the QueryQueue.getNextEntity or
QueryQueue.getNextEntities method exits by returning the entity.

188 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

v If an entity is not available and is not the last unvisited partition, the client
sends a peek request to the next partition.

v If an entity is not available and it is the last unvisited partition, the client
instead sends a pin request.

v If the pin request to the last partition times-out and there is still no data
available, the client will make a last effort by sending peek request to all
partitions serially one more round. Therefore, if any entity is available in the
previous partitions, the client will be able to get it.

Subset entity and no-entity support

The method to create a QueryQueue object in the entity manager follows:

public QueryQueue createQueryQueue(String qlString, Class entityClass);

The result in the query queue should be projected to the object defined by the
second parameter to the method, Class entityClass.

If this parameter is specified, the class must have the same entity name as
specified in the query string. This is useful if you want to project an entity into a
subset entity. If a null value is used as the entity class, then the result will not be
projected. The value stored in the map will be in a entity tuple format.

Client-side key collision

In distributed eXtreme Scale environment, query queue is only supported for
eXtreme Scale maps with pessimistic locking mode. Therefore, there is no near
cache on the client side. However, a client could have data (key and value) in the
transactional map. This potentially could lead to a key collision when an entity
retrieved from the server share the same key as an entry already in the
transactional map.

When a key collision happens, the eXtreme Scale client run time uses the following
rule to either throw an exception or silently override the data.
1. If the collided key is the key of the entity specified in the entity query

associated with the query queue, then an exception is thrown. In this case, the
transaction is rolled back, and the U lock on this entity key will be released on
the server side.

2. Otherwise, if the collided key is the key of the entity association, the data in
the transactional map will be overridden without warning.

The key collision only happens when there is a data in the transactional map. In
other words, it only happens when a getNextEntity or getNextEntities call is called
in a transaction which has already been dirtied (a new data has been inserted or a
data has been updated). If an application does not want a key collision happen, it
should always call getNextEntity or getNextEntities in a transaction which has not
been dirtied.

Client failures

After a client sends a getNextEntity or getNextEntities request to the server, the
client could fail as follows:
1. The client sends a request to the server and then goes down.
2. The client gets one or more entities from the server and then goes down.

Chapter 5. Developing applications 189

In the first case, the server discovers that the client is going down when it tries to
send back the response to the client. In the second case, when the client gets one or
more entities from the server, an X lock is placed on these entities. If the client
goes down, the transaction will eventually time out, and the X lock will be
released.

Query with ORDER BY clause

Generally, query queues do not honor the ORDER BY clause. If you call
getNextEntity or getNextEntities from the query queue, there is no guarantee the
entities are returned according to the order. The reason is that the entities cannot
be ordered across partitions. In the case that the query queue is deployed to all
partitions, when a getNextEntity or getNextEntities call is executed, a random
partition is picked to process the request. Therefore, the order is not guaranteed.

ORDER BY is honored if a query queue is deployed to a single partition.

For more information see “EntityManager Query API” on page 200.

One call per transaction

Each QueryQueue.getNextEntity or QueryQueue.getNextEntities call retrieves
matched entities from one random partition. Applications should call exactly one
QueryQueue.getNextEntity or QueryQueue.getNextEntities on one transaction.
Otherwise eXtreme Scale could end up touching entities from multiple partitions,
causing an exception to be thrown at the commit time.

EntityTransaction interface
You can use the EntityTransaction interface to demarcate transactions.

Purpose

To demarcate a transaction, you can use the EntityTransaction interface, which is
associated with an entity manager instance. Use the EntityManager.getTransaction
method to retrieve the EntityTransaction instance for the entity manager. Each
EntityManager and EntityTransaction instance are associated with the Session. You
can demarcate transactions with either the EntityTransaction or Session. Methods
on the EntityTransaction interface do not have any checked exceptions. Only
runtime exceptions of type PersistenceException or its subclasses result.

For more information about the EntityTransaction interface, see the API
documentationEntityTransaction interface in the API documentation.

Retrieving entities and objects (Query API)
WebSphere eXtreme Scale provides a flexible query engine for retrieving entities
using the EntityManager API and Java objects using the ObjectQuery API.

WebSphere eXtreme Scale query capabilities

With the eXtreme Scale query engine, you can perform SELECT type queries over
an entity or object-based schema using the eXtreme Scale query language.

This query language provides the following capabilities:
v Single and multi-valued results
v Aggregate functions

190 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/index.jsp

v Sorting and grouping
v Joins
v Conditional expressions with subqueries
v Named and positional parameters
v eXtreme Scale index use
v Path expression syntax for object navigation
v Pagination

Query interface

Use the query interface to control entity query execution.

Use the EntityManager.createQuery(String) method to create a Query. You can use
each query instance multiple times with the EntityManager instance in which it
was retrieved.

Each query result produces an entity, where the entity key is the row ID (of type
long) and the entity value contains the field results of the SELECT clause. You can
use each query result in subsequent queries.

The following methods are available on the
com.ibm.websphere.objectgrid.em.Query interface.

public ObjectMap getResultMap()

The getResultMap method runs a SELECT query and returns the results in an
ObjectMap object with the results in query-specified order. The resulting
ObjectMap is valid only for the current transaction.

The map key is the result number, of type long, starting at 1. The map value is of
type com.ibm.websphere.projector.Tuple where each attribute and association is
named based on its ordinal position within the select clause of the query. Use the
method to retrieve the EntityMetadata for the Tuple object that is stored within the
map.

The getResultMap method is the fastest method for retrieving query result data
where multiple results can exist. You can retrieve the name of the resulting entity
using the ObjectMap.getEntityMetadata() and EntityMetadata.getName() methods.

Example: The following query returns two rows.
String ql = SELECT e.name, e.id, d from Employee e join e.dept d WHERE d.number=5
Query q = em.createQuery(ql);
ObjectMap resultMap = q.getResultMap();
long rowID = 1; // starts with index 1
Tuple tResult = (Tuple) resultMap.get(new Long(rowID));
while(tResult != null) {

// The first attribute is name and has an attribute name of 1
// But has an ordinal position of 0.
String name = (String)tResult.getAttribute(0);
Integer id = (String)tResult.getAttribute(1);

// Dept is an association with a name of 3, but
// an ordinal position of 0 since it’s the first association.
// The association is always a OneToOne relationship,
// so there is only one key.
Tuple deptKey = tResult.getAssociation(0,0);
...
++rowID;
tResult = (Tuple) resultMap.get(new Long(rowID));

}

Chapter 5. Developing applications 191

public Iterator getResultIterator

The getResultIterator method runs a SELECT query and returns the query results
using an Iterator where each result is either an Object for a single-valued query, or
an Object array for a multiple-valued query. The values in the Object[] result are
stored in query order. The result Iterator is valid for the current transaction only.

This method is preferred for retrieving query results within the EntityManager
context. You can use the optional setResultEntityName(String) method to name the
resulting entity so that it can be used in further queries.

Example: The following query returns two rows.
String ql = SELECT e.name, e.id, e.dept from Employee e WHERE e.dept.number=5
Query q = em.createQuery(ql);
Iterator results = q.getResultIterator();
while(results.hasNext()) {

Object[] curEmp = (Object[]) results.next();
String name = (String) curEmp[0];
Integer id = (Integer) curEmp[1];
Dept d = (Dept) curEmp[2];
...

}

public Iterator getResultIterator(Class resultType)

The getResultIterator(Class resultType) method runs a SELECT query and returns
the query results using an entity Iterator. The entity type is determined by the
resultType parameter. The result Iterator is valid only for the current transaction.

Use this method when you want to use the EntityManager APIs to access the
resulting entities.

Example: The following query returns all of the employees and the department to
which they belong for one division, ordering by salary. To print out the five
employees with the highest salaries and then select work with employees from
only one department in the same working set, use the following code.
String string_ql = "SELECT e.name, e.id, e.dept from Employee e WHERE

e.dept.division=’Manufacturing’ ORDER BY e.salary DESC";
Query query1 = em.createQuery(string_ql);
query1.setResultEntityName("AllEmployees");
Iterator results1 = query1.getResultIterator(EmployeeResult.class);
int curEmployee = 0;
System.out.println("Highest paid employees");
while (results1.hasNext() && curEmployee++ < 5) {
EmployeeResult curEmp = (EmployeeResult) results1.next();
System.out.println(curEmp);
// Remove the employee from the resultset.
em.remove(curEmp);
}

// Flush the changes to the result map.
em.flush();

// Run a query against the local working set without the employees we
// removed
String string_q2 = "SELECT e.name, e.id, e.dept from AllEmployees e

WHERE e.dept.name=’Hardware’";
Query query2 = em.createQuery(string_q2);
Iterator results2 = query2.getResultIterator(EmployeeResult.class);
System.out.println("Subset list of Employees");
while (results2.hasNext()) {
EmployeeResult curEmp = (EmployeeResult) results2.next();
System.out.println(curEmp);
}

192 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

public Object getSingleResult

The getSingleResult method runs a SELECT query that returns a single result.

If the SELECT clause has more than one field defined, then the result is an object
array, where each element in the array is based on its ordinal position within the
SELECT clause of the query.
String ql = SELECT e from Employee e WHERE e.id=100"
Employee e = em.createQuery(ql).getSingleResult();

String ql = SELECT e.name, e.dept from Employee e WHERE e.id=100"
Object[] empData = em.createQuery(ql).getSingleResult();
String empName= (String) empData[0];
Department empDept = (Department) empData[1];

public Query setResultEntityName(String entityName)

The setResultEntityName(String entityName) method specifies the name of the
query result entity.

Each time the getResultIterator or getResultMap methods are invoked, an entity
with an ObjectMap is dynamically created to hold the results of the query. If the
entity is not specified, or null, the entity and ObjectMap name are automatically
generated.

Because all query results are available for the duration of a transaction, a query
name cannot be reused in a single transaction.

public Query setPartition(int partitionId)

Set the partition to where the query routes.

This method is required if the maps in the query are partitioned and if the entity
manager does not have affinity to a single schema root entity partition.

Use the PartitionManager Interface to determine the number of partitions for the
backing map of a given entity.

The following table provides descriptions of the other methods that are available
through the query interface.

Table 3. Other methods.

Method Result

public Query setMaxResults(int maxResult) Set the maximum number of results to
retrieve.

public Query setFirstResult(int startPosition) Set the position of the first result to retrieve.

public Query setParameter(String name,
Object value)

Bind an argument to a named parameter.

public Query setParameter(int position,
Object value)

Bind an argument to a positional parameter.

public Query setFlushMode(FlushModeType
flushMode)

Set the flush mode type to be used when the
query runs, overriding the flush mode type
set on the EntityManager.

Chapter 5. Developing applications 193

eXtreme Scale query elements

With the eXtreme Scale query engine, you can use a single query language for
searching the eXtreme Scale cache. This query language can query Java objects that
are stored in ObjectMap objects and Entity objects. Use the following syntax for
creating a query string.

An eXtreme Scale query is a string that contains the following elements:
v A SELECT clause that specifies the objects or values to return.
v A FROM clause that names the object collections.
v An optional WHERE clause that contains search predicates over the collections.
v An optional GROUP BY and HAVING clause (see eXtreme Scale query

aggregation functions).
v An optional ORDER BY clause that specifies the ordering of the result collection.

Collections of Java objects are identified in queries through the use of their name
in the query FROM clause.

The elements of query language are discussed in more detail in the following
related topics:
v “ObjectGrid query Backus-Naur Form” on page 212 syntax
v “Reference for eXtreme Scale queries” on page 204

The following topics describe the means to use the Query API:
v “EntityManager Query API” on page 200
v “Using the ObjectQuery API” on page 196

Querying data in multiple time zones
In a distributed scenario, queries actually run on servers. When querying data with
predicates of type calendar, java.util.Date and timestamp, the specified date time
value in a query is based on the local time zone of the server.

In a single time-zone system where all clients and servers run on same time zone,
you do not need to consider issues related to predicate types with calendar,
java.util.Date and timestamp. However, when clients and servers are in different
time zones, the specified date time value in queries is based on the server time
zone and may return unwanted data back to client. Without knowing the server
time zone, the specified date time value is meaningless. So the specified date time
value should consider the time zone offset difference between the target time zone
and the server time zone.

Time zone offset

For example, assume that a client is in [GMT-0] time zone and the server is in
[GMT-6] time zone. The server time zone is 6 hours behind the client. The client
would like to run the following query:
SELECT e FROM Employee e WHERE e.birthDate=’1999-12-31 06:00:00’

Assuming the entity Employee has a birthDate attribute that is of type
java.util.Date, the client is in [GMT-0] time zone and wants to retrieve Employees
with birthDate value as '1999-12-31 06:00:00 [GMT-0]' based on its time zone.

The query will run on the server and the birthDate value used by the query engine
will be '1999-12-31 06:00:00 [GMT-6]' that equals to '1999-12-31 12:00:00 [GMT-0]'.

194 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Employees with birthDate value equal to '1999-12-31 12:00:00 [GMT-0]' will be
returned to the client. Thus, the client will not get wanted Employees with
birthDate value '1999-12-31 06:00:00 [GMT-0]'.

The problem described occurs because of the time zone difference between client
and server. To solve this problem, one approach is to calculate the time zone offset
between client and server and apply the time zone offset on the target date time
value in the query. In the previous query example, the time zone offset is -6 hours,
and the adjusted birthDate predicate should be “birthDate='1999-12-31 00:00:00'” if
the client intends to retrieve Employees with birthDate value '12-31 06:00:00
[GMT-0]'. With the adjusted birthDate value, the server will use '1999-12-31
00:00:00 [GMT-6]' that equals to target value '12-31 06:00:00 [GMT-0]', and the
required Employees will be returned to the client.

Distributed deployment in multiple time zones

If the distributed eXtreme Scale grid is deployed into multiple ObjectGrid servers
in various time zones, the adjusting time zone offset approach will not work
because the client will not know which server will run the query and thus cannot
determine the time zone offset to use. The only solution is to use suffix ‘Z' (not
case sensitive) on JDBC date and time escape format to indicate using GMT time
zone based date time value. The suffix ‘Z' (not case sensitive) indicates to use GMT
time zone based date time value. Without the suffix ‘Z', the local time zone based
date time value will be used in the process that runs the query.

The following query is equivalent to the previous example, but uses the suffix ‘Z'
instead:
SELECT e FROM Employee e WHERE e.birthDate=’1999-12-31 06:00:00Z’

The query should find Employees with birthDate value ‘1999-12-31 06:00:00'. The
suffix ‘Z' indicates the specified birthDate value is GMT time zone based, so the
GMT time zone based birthDate value ‘1999-12-31 06:00:00 [GMT-0]' will be used
by the query engine for matching criteria value. Employees with birthDate
attribute value equal to this GMT based birthDate value ‘1999-12-31 06:00:00
[GMT-0]' will be included in query result. Using the suffix ‘Z' on JDBC date time
escape format in any query is crucial to make applications time zone safe. Without
this approach, the date time value is server time zone based and is meaningless
from the client perspective when clients and servers are in different time zones.

For more information, see the topic on inserting data for different time zones in the
Product Overview.

Data for different time zones
When inserting data with calendar, java.util.Date, and timestamp attributes into an
ObjectGrid, you must ensure these date time attributes are created based on same
time zone, especially when deployed into multiple servers in various time zones.
Using the same time zone based date time objects can ensure the application is
time-zone safe and data can be queried by calendar, java.util.Date and timestamp
predicates.

Without explicitly specifying a time zone when creating date time objects, Java
uses the local time zone and may cause inconsistent date time values in clients and
servers.

Consider an example in a distributed deployment in which client1 is in time zone
[GMT-0] and client2 is in [GMT-6] and both want to create a java.util.Date object

Chapter 5. Developing applications 195

with value '1999-12-31 06:00:00'. Then client1 will create java.util.Date object with
value '1999-12-31 06:00:00 [GMT-0]' and client2 will create java.util.Date object with
value '1999-12-31 06:00:00 [GMT-6]'. Both java.util.Date objects are not equal
because the time zone is different. A similar problem occurs when preloading data
into partitions residing in servers in different time zones if local time zone is used
to create date time objects.

To avoid the described problem, the application can choose a time zone such as
[GMT-0] as the base time zone for creating calendar, java.util.Date, and timestamp
objects.

Using the ObjectQuery API
The ObjectQuery API provides methods for querying data in the ObjectGrid that is
stored using the ObjectMap API. When a schema is defined in the ObjectGrid
instance, the ObjectQuery API can be used to create and run queries over the
heterogeneous objects stored in the object maps.

Query and object maps

You can use an enhanced query capability for objects that are stored using the
ObjectMap API. These queries allow retrieval of objects using non-key attributes
and performs simple aggregations such as sum, avg, min, and max against all the
data that matches a query. Applications can construct a query using the
Session.createObjectQuery method. This method returns an ObjectQuery object
which can then be interrogated to obtain the query results. The query object also
allows the query to be customized before running the query. The query is run
automatically when any method returning the result is called.

Session

ObjectMap

Key1 Value1

POJO

ObjectMap

Key1 Value1

POJO

ObjectMap

Key1 Value1

POJO

ObjectMap

Key Value

POJO

ObjectMap

Key1 Value1

POJO

ObjectMap

Key1 Value1

POJO

ObjectMap

Key1 Value1

POJO

MapIndex

Index Key

ObjectMap

Key1 Value1

POJO

ObjectMap

ObjectQuery

Result maps

BackingMap Java Class
BackingMap Java Class
BackingMap Java Class

ObjectQuery Schema

1:Many

Application

1. createObjectQuery() 2. 3. getResults 4.

ObjectGrid

Figure 25. The interaction of the query with the ObjectGrid object maps and how a schema is defined for classes and
associated with an ObjectGrid map

196 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Defining an ObjectMap schema

Object maps are used to store objects in various forms and are largely unaware of
the format. A schema must be defined in the ObjectGrid that defines the format of
the data. A schema is composed of the following pieces:
v The type of object stored in the ObjectMap
v Relationships between ObjectMaps
v The method for which each query should access the data attributes in the objects

(fields or property methods)
v The primary key attribute name in the object.

See Configuring an ObjectQuery schema for details.

For an example on creating a schema programmatically or using the ObjectGrid
descriptor XML file, see “ObjectQuery tutorial - step 3” on page 3the tutorial on
the ObjectQuery in the Product Overview.

Querying objects with the ObjectQuery API

The ObjectQuery interface allows the querying of non-entity objects, which are
heterogeneous objects that are stored directly in the ObjectGrid ObjectMaps. The
ObjectQuery API provides an easy way to find ObjectMap objects without using
the index mechanism directly.

There are two methods for retrieving results from an ObjectQuery:
getResultIterator and getResultMap.

Retrieving query results using getResultIterator

Query results are basically a list of attributes. Suppose the query was select a,b,c
from X where y=z. This query returns a list of rows containing a, b and c. This list
is actually stored in a transaction scoped Map, which means that you must
associate an artificial key with each row and use an integer that increases with
each row. This map is obtained using the ObjectQuery.getResultMap() method. You
can access the elements of each row using code similar to the following:
ObjectQuery q = session.createQuery(

"select c.id, c.firstName, c.surname from Customer c where c.surname=?1");

q.setParameter(1, "Claus");

Iterator iter = q.getResultIterator();
while(iter.hasNext())
{

Object[] row = (Object[])iter.next();
System.out.println("Found a Claus with id "

+ row[objectgrid: 0] + ", firstName: "
+ row[objectgrid: 1] + ", surname: "
+ row[objectgrid: 2]);

}

Retrieving query results using getResultMap

Query results can also be retrieved using the result map directly. The following
example shows a query retrieving specific parts of the matching Customers and
demonstrates how to access the resulting rows. Notice that if you use the

Chapter 5. Developing applications 197

ObjectQuery object to access the data, then the generated long row identifier is
hidden. The long row is only visible when using the ObjectMap to access the
result.

When the transaction is completed this map disappears. The map is also only
visible to the session used, that is, normally to just the thread that created it. The
map uses a key of type Long which represents the row ID. The values stored in
the map either are of type Object or Object[], where each element matches the type
of the element in the select clause of query.
ObjectQuery q = em.createQuery(

"select c.id, c.firstName, c.surname from Customer c where c.surname=?1");
q.setParameter(1, "Claus");
ObjectMap qmap = q.getResultMap();
for(long rowId = 0; true; ++rowId)
{

Object[] row = (Object[]) qmap.get(new Long(rowId));
if(row == null) break;
System.out.println(" I Found a Claus with id " + row[0]

+ ", firstName: " + row[1]
+ ", surname: " + row[2]);

}

For examples on using the ObjectQuery, see “Tutorial: Querying a local in-memory
data grid” on page 1the tutorial on the ObjectQuery API in the Product Overview.

Configuring an ObjectQuery schema:

ObjectQuery relies on schema or shape information to perform semantic checking
and to evaluate path expressions. This section describes how to define the schema
in XML or programmatically.

Defining the schema

The ObjectMap schema is defined in the ObjectGrid deployment descriptor XML or
programmatically using the normal eXtreme Scale configuration techniques. For an
example on how to create a schema, see “Configuring an ObjectQuery schema”

Schema information describes plain old Java objects (POJOs): which attributes they
consist of and what types of attributes there might be, whether the attributes are
primary key fields, single-valued or multi-valued relationships, or bidirectional
relationships. Schema information directs ObjectQuery to use field access or
property access.

Queryable attributes

When the schema is defined in the ObjectGrid, the objects in the schema are
introspected using reflection to determine which attributes are available for
querying. You can query the following attribute types:
v Java primitive types including wrappers
v java.lang.String
v java.math.BigInteger
v java.math.BigDecimal
v java.util.Date
v java.sql.Date
v java.sql.Time
v java.sql.Timestamp

198 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

v java.util.Calendar
v byte[]
v java.lang.Byte[]
v char[]
v java.lang.Character[]
v J2SE enum

Embedded serializable types other than those stated previously can also be
included in a query result, but cannot be included in the WHERE or FROM clause
of the query. Serializable attributes are not navigable.

Attribute types can be excluded from the schema if the type is not serializable, the
field or property is static, or the field is transient. Since all map objects must be
serializable, the ObjectGrid only includes attributes that can be persisted from the
object. Other objects are ignored.

Field attributes

When the schema is configured to access the object using fields, all serializable,
non-transient fields are automatically incorporated into the schema. To select a
field attribute in a query, use the field identifier name as it exists in the class
definition.

All public, private, protected and package protected fields are included in the
schema.

Property attributes

When the schema is configured to access the object using properties, all serializable
methods that follow the JavaBeans property naming conventions will automatically
be incorporated into the schema. To select a property attribute for the query, use
the JavaBeans style property name conventions.

All public, private, protected and package protected properties are included in the
schema.

In the following class, the following attributes are added to the schema: name,
birthday, valid.
public class Person {

public String getName(){}
private java.util.Date getBirthday(){}
boolean isValid(){}
public NonSerializableObject getData(){}

}

When using a CopyMode of COPY_ON_WRITE, the query schema must always
use property-based access. COPY_ON_WRITE creates proxy objects whenever
objects are retrieved from the map and can only access those objects using
property methods. Failure to do so will result in each query result being set to
null.

Relationships

Each relationship must be explicitly defined in the schema configuration. The
cardinality of the relationship is automatically determined by the type of the

Chapter 5. Developing applications 199

attribute. If the attribute implements the java.util.Collection interface, then the
relationship is either a one-to-many or many-to-many relationship.

Unlike entity queries, attributes that refer to other cached objects must not store
direct references to the object. References to other objects are serialized as part of
the containing object's data. Instead, store the key to the related object.

For example, if there is a many-to-one relationship between a Customer and Order:
Incorrect. Storing an object reference.

public class Customer {
String customerId;
Collection<Order> orders;

}

public class Order {
String orderId;
Customer customer;

}

Correct. The key to the related object.

public class Customer {
String customerId;
Collection<String> orders;

}

public class Order {
String orderId;
String customer;

}

When a query is run that joins the two map objects together, the key will
automatically be inflated. For example, the following query would return
Customer objects:

SELECT c FROM Order o JOIN Customer c WHERE orderId=5

Using indexes

ObjectGrid uses index plugins to add indexes to maps. The query engine
automatically incorporates any indexes that are defined on a schema map element
of the type: com.ibm.websphere.objectgrid.plugins.index.HashIndex and the
rangeIndex property is set to true. If the index type is not HashIndex and the
rangeIndex property is not set to true, then the index is ignored by the query. See
“ObjectQuery tutorial - step 2” on page 2 the ObjectQuery tutorial in the Product
Overview for an example on how to add an index to the schema.

EntityManager Query API
The EntityManager API provides methods for querying data in the ObjectGrid that
is stored using the EntityManager API. The EntityManager Query API is used to
create and run queries over one or more entities defined in eXtreme Scale.

Query and ObjectMaps for entities

WebSphere Extended Deployment v6.1 introduced an enhanced query capability
for entities stored in eXtreme Scale. These queries allow objects to be retrieved
using non-key attributes and to perform simple aggregations such as the sum,
average, minimum, and maximum against all the data that matches a query.
Applications construct a query using the EntityManager.createQuery API. This

200 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

returns a Query object and can then be interrogated to obtain the query results.
The query object also allows the query to be customized before running the query.
The query is run automatically when any method returning the result is called.

Retrieving query results using the getResultIterator method

Query results are a list of attributes. If the query was select a,b,c from X where
y=z, then a list of rows containing a, b and c is returned. This list is stored in a
transaction scoped Map, which means that you must associated an artificial key
with each row and use an integer that increases with each row. This map is
obtained using the Query.getResultMap method. The map has EntityMetaData,
which describes each row in the Map associated with it. You can access the
elements of each row using code similar to the following:
Query q = em.createQuery("select c.id, c.firstName, c.surname from Customer c where c.surname=?1");

q.setParameter(1, "Claus");

Iterator iter = q.getResultIterator();
while(iter.hasNext())
{

Object[] row = (Object[])iter.next();
System.out.println("Found a Claus with id " + row[objectgrid: 0]

+ ", firstName: " + row[objectgrid: 1]
+ ", surname: " + row[objectgrid: 2]);

}

Retrieving query results using getResultMap

The following code shows the retrieval of specific parts of the matching Customers
and shows how to access the resulting rows. If you use the Query object to access
the data, then the generated long row identifier is hidden. The long is only visible
when using the ObjectMap to access the result. When the transaction is completed,

Session / EntityManager

ObjectMap

Key1 Value1

POJO

ObjectMap

Key1 Value1

POJO

ObjectMap

Key1 Value1

POJO

ObjectMap

Key Value

Tuple

ObjectMap

Key1 Value1

POJO

ObjectMap

Key1 Value1

POJO

ObjectMap

Key1 Value1

POJO

MapIndex

Index Key

ObjectMap

Key1 Value1

POJO

ObjectMap

Query

Result maps

BackingMap Entity
BackingMap Entity
BackingMap Entity

Entity Schema

1:Many

Application

1. createQuery() 2. 3. getResults 4.

ObjectGrid

Figure 26. The interaction of the query with the ObjectGrid object maps and how the entity schema is defined and
associated with an ObjectGrid map.

Chapter 5. Developing applications 201

then this Map disappears. The Map is only visible to the Session used, that is,
normally to just the thread that created it. The Map uses a Tuple for the key with a
single attribute, a long with the row ID. The value is another tuple with an
attribute for each column in the result set.

The following sample code demonstrates this:
Query q = em.createQuery("select c.id, c.firstName, c.surname from
Customer c where c.surname=?1");
q.setParameter(1, "Claus");
ObjectMap qmap = q.getResultMap();
Tuple keyTuple = qmap.getEntityMetadata().getKeyMetadata().createTuple();
for(long i = 0; true; ++i)
{

keyTuple.setAttribute(0, new Long(i));
Tuple row = (Tuple)qmap.get(keyTuple);
if(row == null) break;
System.out.println(" I Found a Claus with id " + row.getAttribute(0)

+ ", firstName: " + row.getAttribute(1)
+ ", surname: " + row.getAttribute(2));

}

Retrieving query results using an entity result iterator

The following code shows the query and the loop that retrieves each result row
using the normal Map APIs. The key for the Map is a Tuple. So, construct one of
the correct types using the createTuple method result in keyTuple. Try to retrieve
all rows with rowIds from 0 onwards. When you get returns null (indicating key
not found), then the loop finishes. Set the first attribute of keyTuple to be the long
that you want to find. The value returned by get is also a Tuple with an attribute
for each column in the query result. Then, pull each attribute from the value Tuple
using getAttribute.

Following is the next code fragment:
Query q2 = em.createQuery("select c.id, c.firstName, c.surname from Customer c where c.surname=?1");
q2.setResultEntityName("CustomerQueryResult");
q2.setParameter(1, "Claus");

Iterator iter2 = q2.getResultIterator(CustomerQueryResult.class);
while(iter2.hasNext())
{

CustomerQueryResult row = (CustomerQueryResult)iter2.next();
// firstName is the id not the firstName.
System.out.println("Found a Claus with id " + row.id

+ ", firstName: " + row.firstName
+ ", surname: " + row.surname);

}

em.getTransaction().commit();

Specified is a ResultEntityName value on the query. This value tells the query
engine that you want to project each row to a specific object, CustomerQueryResult
in this case. The class follows:
@Entity
public class CustomerQueryResult {
@Id long rowId;
String id;
String firstName;
String surname;
};

In the first snippet, notice that the each query row is returned as a
CustomerQueryResult object rather than an Object[]. The result columns of the
query are projected to the CustomerQueryResult object. Projecting the result is
slightly slower at run time but more readable. Query result Entities should not be

202 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

registered with eXtreme Scale at startup. If the entities are registered, then a global
Map with the same name is created, and the query fails with an error indicating
duplicate Map name.

Simple queries with EntityManager:

WebSphere eXtreme Scale comes with EntityManager query API.

The EntityManager query API is very similar to SQL other query engines that
query over objects. A query is defined, then the result is retrieved from the query
using various getResult methods.

The following examples refer to the entities used in the EntityManager tutorial in
the Product Overview.

Running a simple query

In this example, customers with the surname of Claus are queried:
em.getTransaction().begin();

Query q = em.createQuery("select c from Customer c where c.surname=’Claus’");

Iterator iter = q.getResultIterator();
while(iter.hasNext())
{

Customer c = (Customer)iter.next();
System.out.println("Found a claus with id " + c.id);

}

em.getTransaction().commit();

Using parameters

Since you want to find all customers with a surname of Claus, a parameter to
specify the surname is used since you might may want to use this query more
than once.

Positional Parameter Example

Query q = em.createQuery("select c from Customer c where c.surname=?1");
q.setParameter(1, "Claus");

Using parameters is very important when the query is used more than once. The
EntityManager needs to parse the query string and build a plan for the query,
which is expensive. By using a parameter, the EntityManager caches the plan for
the query, thereby reducing the time it takes to run a query.

Both positional and named parameters are used:

Named Parameter Example

Query q = em.createQuery("select c from Customer c where c.surname=:name");
q.setParameter("name", "Claus");

Using an index to improve performance

If there are millions of customers, then the previous query needs to scan over all
rows in the Customer Map. This is not very efficient. But eXtreme Scale provides a

Chapter 5. Developing applications 203

mechanism for defining indexes over individual attributes in an entity. The query
automatically uses this index when appropriate, which can speed up queries
dramatically.

You can specify which attributes to index very simply by using the @Index
annotation on the entity attribute:
@Entity
public class Customer
{

@Id String id;
String firstName;
@Index String surname;
String address;
String phoneNumber;

}

The EntityManager creates an appropriate ObjectGrid index for the surname
attribute in the Customer entity and the query engine automatically uses the index,
which greatly decreases the query time.

Using pagination to improve performance

If there are a million customers named Claus, then it is not likely that you would
want to display a page displaying a million customers. It is more likely that you
would want to display 10 or 25 customers at a time.

The Query setFirstResult and setMaxResults methods helps by only returning a
subset of the results.

Pagination Example

Query q = em.createQuery("select c from Customer c where c.surname=:name");
q.setParameter("name", "Claus");
// Display the first page
q.setFirstResult=1;
q.setMaxResults=25;
displayPage(q.getResultIterator());

// Display the second page
q.setFirstResult=26;
displayPage(q.getResultIterator());

Reference for eXtreme Scale queries
WebSphere eXtreme Scale has its own language by which the user can query data.

ObjectGrid query FROM clause

The FROM clause specifies the collections of objects to which to apply the query.
Each collection is identified either by an abstract schema name and an
identification variable, called a range variable, or by a collection member
declaration that identifies either a single or multi-valued relationship and an
identification variable.

Conceptually, the semantics of the query is to first form a temporary collection of
tuples, referred to as R. Tuples are composed of elements from the collections that
are identified in the FROM clause. Each tuple contains one element from each of
the collections in the FROM clause. All possible combinations are formed subject to
the constraints that are imposed by the collection member declarations. If any
schema name identifies a collection for which there are no records in the persistent
store, then the temporary collection R is empty.

204 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Examples using FROM

The DeptBean object contains records 10, 20 and 30. The EmpBean object contains
records 1, 2 and 3 that are related to department 10 and records 4 and 5 that are
related to department 20. Department 30 has no related employees.

FROM DeptBean d, EmpBean e

This clause forms a temporary collection R that contains 15 tuples.

FROM DeptBean d, DeptBean d1

This clause forms a temporary collection R that contains 9 tuples.

FROM DeptBean d, IN (d.emps) AS e

This clause forms a temporary collection R that contains 5 tuples. Department 30 is
not in the R temporary collection because it contains no employees. Department 10
is contained in the R temporary collection three times and department 20 is
contained in R twice.

Instead of using IN(d.emps) as e, you can use a JOIN predicate:

FROM DeptBean d JOIN d.emps as e

After forming the temporary collection, the search conditions of the WHERE clause
are applied to the R temporary collection, yielding a new temporary collection R1.
The ORDER BY and SELECT clauses are applied to R1 to yield the final result set.

An identification variable is a variable that is declared in the FROM clause using
the IN operator or the optional AS operator.

FROM DeptBean AS d, IN (d.emps) AS e

is equivalent to:

FROM DeptBean d, IN (d.emps) e

An identification variable that is declared to be an abstract schema name is called a
range variable. In the previous query, "d" is a range variable. An identification
variable that is declared to be a multi-valued path expression is called a collection
member declaration. The "d" and "e" values in the previous example are collection
member declarations.

An example of using a single-valued path expression in the FROM clause follows:

FROM EmpBean e, IN(e.dept.mgr) as m

ObjectGrid query SELECT clause

The syntax of the SELECT clause is illustrated in the following example:

SELECT { ALL | DISTINCT } [selection ,]* selection

Chapter 5. Developing applications 205

selection ::= {single_valued_path_expression |
identification_variable |
OBJECT (identification_variable) |

aggregate_functions } [[AS] id]

The SELECT clause consists of one or more of the following elements: a single
identification variable that is defined in the FROM clause, a single-valued path
expression that evaluates to object references or values, and an aggregate function.
You can use the DISTINCT keyword to eliminate duplicate references.

A scalar-subselect is a subselect that returns a single value.

Examples using SELECT

Find all employees that earn more than the John employee:

SELECT OBJECT(e) FROM EmpBean ej, EmpBean eWHERE ej.name = ’John’ and
e.salary > ej.salary

Find all departments that have one or more employees who earn less than 20000:

SELECT DISTINCT e.dept FROM EmpBean e where e.salary < 20000

A query can have a path expression that evaluates to an arbitrary value:

SELECT e.dept.name FROM EmpBean e where e.salary < 20000

The previous query returns a collection of name values for the departments that
have employees who earn less than 20000.

A query can return an aggregate value:

SELECT avg(e.salary) FROM EmpBean e

A query that retrieves the names and object references for underpaid employees
follows:

SELECT e.name as name, object(e) as emp from EmpBean e where e.salary <
50000

ObjectGrid query WHERE clause

The WHERE clause contains search conditions that are composed of the elements
presented below. When a search condition evaluates to TRUE, the tuple is added to
the result set.

ObjectGrid query literals

A string literal is enclosed in single quotes. A single quotation mark that occurs
within a string literal is represented by two single quotes, for example: 'Tom''s'.

A numeric literal can be any of the following values:
v An exact value such as 57, -957, or +66
v Any value supported by Java long type
v A decimal literal such as 57.5 or -47.02
v An approximate numeric value such as 7E3 or -57.4E-2

206 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

v Float types must include the "F" qualifier, for example 1.0F
v Long types must include the "L" qualifier, for example 123L

Boolean literals are TRUE and FALSE.

Temporal literals follow JDBC escape syntax based on the type of attribute:
v java.util.Date: yyyy-mm-ss
v java.sql.Date: yyyy-mm-ss
v java.sql.Time: hh-mm-ss
v java.sql.Timestamp: yyyy-mm-dd hh:mm:ss.f...
v java.util.Calendar: yyyy-mm-dd hh:mm:ss.f...

Enum literals are expressed using Java enum literal syntax using the fully qualified
enum class name.

ObjectGrid query input parameters

You can specify input parameters by either using an ordinal position or by using a
variable name. Writing queries that use input parameters is strongly encouraged,
because using input parameters increases performance by allowing the ObjectGrid
to catch the query plan between running actions.

An input parameter can be any of the following types: Byte, Short, Integer, Long,
Float, Double, BigDecimal, BigInteger, String, Boolean, Char, java.util.Date,
java.sql.Date, java.sql.Time, java.sql.Timestamp, java.util.Calendar, a Java SE 5
enum, an Entity or POJO Object, or a binary data string in the form of Java byte[].

An input parameter must not have a NULL value. To search for the occurrence of
a NULL value, use the NULL predicate.

Positional Parameters

Positional input parameters are defined by using question mark followed by a
positive number:

?[positive integer].

Positional input parameters are numbered starting at 1 and correspond to the
arguments of the query; therefore, a query must not contain an input parameter
that exceeds the number of input arguments.

Example: SELECT e FROM Employee e WHERE e.city = ?1 and e.salary >= ?2

Named Parameters

Named input parameters are defined using a variable name in the format:
:[parameter name].

Example: SELECT e FROM Employee e WHERE e.city = :city and e.salary >=
:salary

ObjectGrid query BETWEEN predicate

Chapter 5. Developing applications 207

The BETWEEN predicate determines whether a given value lies between two other
given values.

expression [NOT] BETWEEN expression-2 AND expression-3

Example 1

e.salary BETWEEN 50000 AND 60000

is equivalent to:

e.salary >= 50000 AND e.salary <= 60000

Example 2

e.name NOT BETWEEN ’A’ AND ’B’

is equivalent to:

e.name < ’A’ OR e.name > ’B’

ObjectGrid query IN predicate

The IN predicate compares a value to a set of values. You can use the IN predicate
in one of two forms:

expression [NOT] IN (subselect)expression [NOT] IN (value1, value2,
....)

The ValueN value can either be a literal value or an input parameter. The
expression cannot evaluate to a reference type.

Example 1

e.salary IN (10000, 15000)

is equivalent to

(e.salary = 10000 OR e.salary = 15000)

Example 2

e.salary IN (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

is equivalent to

e.salary = ANY (select e1.salary from EmpBean e1 where e1.dept.deptno =
10)

Example 3

e.salary NOT IN (select e1.salary from EmpBean e1 where e1.dept.deptno =
10)

is equivalent to

208 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

e.salary <> ALL (select e1.salary from EmpBean e1 where e1.dept.deptno
= 10)

ObjectGrid query LIKE predicate

The LIKE predicate searches a string value for a certain pattern.

string-expression [NOT] LIKE pattern [ESCAPE escape-character]

The pattern value is a string literal or parameter marker of type string in which the
underscore (_) stands for any single character and percent (%) stands for any
sequence of characters, including an empty sequence. Any other character stands
for itself. The escape character can be used to search for character _ and %. The
escape character can be specified as a string literal or as an input parameter.

If the string-expression is null, then the result is unknown.

If both string-expression and pattern are empty, then the result is true.

Example
’’ LIKE ’’ is true
’’ LIKE ’%’ is true
e.name LIKE ’12%3’ is true for ’123’ ’12993’ and false for ’1234’
e.name LIKE ’s_me’ is true for ’some’ and ’same’, false for ’soome’
e.name LIKE ’/_foo’ escape ’/’ is true for ’_foo’, false for ’afoo’
e.name LIKE ’//_foo’ escape ’/’ is true for ’/afoo’ and for ’/bfoo’
e.name LIKE ’///_foo’ escape ’/’ is true for ’/_foo’ but false for ’/afoo’

ObjectGrid query NULL predicate

The NULL predicate tests for null values.

{single-valued-path-expression | input_parameter} IS [NOT] NULL

Example
e.name IS NULL
e.dept.name IS NOT NULL
e.dept IS NOT NULL

ObjectGrid query EMPTY collection predicate

Use the EMPTY collection predicate to test for an empty collection.

To test if a multi-valued relationship is empty, use the following syntax:

collection-valued-path-expression IS [NOT] EMPTY

Example

Empty collection predicate To find all the departments that have no employees:

SELECT OBJECT(d) FROM DeptBean d WHERE d.emps IS EMPTY

ObjectGrid query MEMBER OF predicate

The following expression tests whether the object reference that is specified by the
single valued path expression or input parameter is a member of the designated

Chapter 5. Developing applications 209

collection. If the collection valued path expression designates an empty collection,
then the value of the MEMBER OF expression is FALSE.

{ single-valued-path-expression | input_parameter } [NOT] MEMBER [OF]
collection-valued-path-expression

Example

Find employees that are not members of a given department number:
SELECT OBJECT(e) FROM EmpBean e , DeptBean d
WHERE e NOT MEMBER OF d.emps AND d.deptno = ?1

Find employees whose manager is a member of a given department number:
SELECT OBJECT(e) FROM EmpBean e, DeptBean d
WHERE e.dept.mgr MEMBER OF d.emps and d.deptno=?1

ObjectGrid query EXISTS predicate

The EXISTS predicate tests for the presence or absence of a condition that specified
by a subselect.

EXISTS (subselect)

The result of EXISTS is true if the subselect returns at least one value, otherwise
the result is false.

To negate an EXISTS predicate, precede the predicate with the NOT logical
operator.

Example

Return departments that have at least one employee that earns more than 1000000:
SELECT OBJECT(d) FROM DeptBean d
WHERE EXISTS (SELECT e FROM IN (d.emps) e WHERE e.salary > 1000000)

Return departments that have no employees:
SELECT OBJECT(d) FROM DeptBean d
WHERE NOT EXISTS (SELECT e FROM IN (d.emps) e)

You can also rewrite the previous query like in the following example:

SELECT OBJECT(d) FROM DeptBean d WHERE SIZE(d.emps)=0

ObjectGrid query ORDER BY clause

The ORDER BY clause specifies an ordering of the objects in the result collection.
An example follows:

ORDER BY [order_element ,]* order_element order_element ::={ path-expression }[
ASC | DESC]

The path expression must specify a single-valued field that is a primitive type of
byte, short, int, long, float, double, char, or a wrapper type of Byte, Short, Integer,
Long, Float, Double, BigDecimal, String, Character, java.util.Date, java.sql.Date,
java.sql.Time, java.sql.Timestamp and java.util.Calendar. The ASC order element

210 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

specifies that the results are displayed in ascending order, which is the default. A
DESC order element specifies that the results are displayed in descending order.

Example

Return department objects. Display the department numbers in decreasing order:

SELECT OBJECT(d) FROM DeptBean d ORDER BY d.deptno DESC

Return employee objects, sorted by department number and name:
SELECT OBJECT(e) FROM EmpBean e ORDER BY e.dept.deptno ASC, e.name DESC

ObjectGrid query aggregation functions

Aggregation functions operate on a set of values to return a single scalar value.
You can use these functions in the select and subselect methods. The following
example illustrates an aggregation:

SELECT SUM (e.salary) FROM EmpBean e WHERE e.dept.deptno =20

This aggregation computes the total salary for department 20.

The aggregation functions are: AVG, COUNT, MAX, MIN, and SUM. The syntax of
an aggregation function is illustrated in the following example:

aggregation-function ([ALL | DISTINCT] expression)

or:

COUNT([ALL | DISTINCT] identification-variable)

The DISTINCT option eliminates duplicate values before applying the function.
The ALL option is the default option, and does not eliminate duplicate values.
Null values are ignored in computing the aggregate function except when you use
the COUNT(identification-variable) function, which returns a count of all the
elements in the set.

Defining return type

The MAX and MIN functions can apply to any numeric, string or date-time data
type and return the corresponding data type. The SUM and AVG functions take a
numeric type as input. The AVG function returns a double type. The SUM function
returns a long type if the input type is an integer type, except when the input is a
Java BigInteger type, then the function returns a Java BigInteger type. The SUM
function returns a double type if the input type is not an integer type, except when
the input is a Java BigDecimal type, then the function returns a Java BigDecimal
type. The COUNT function can take any data type except collections, and returns a
long type.

When applied to an empty set, the SUM, AVG, MAX, and MIN functions can
return a null value. The COUNT function returns zero (0) when it is applied to an
empty set.

Using GROUP BY and HAVING clauses

Chapter 5. Developing applications 211

The set of values that is used for the aggregate function is determined by the
collection that results from the FROM and WHERE clause of the query. You can
divide the set into groups and apply the aggregation function to each group. To
perform this action, use a GROUP BY clause in the query. The GROUP BY clause
defines grouping members, which comprise a list of path expressions. Each path
expression specifies a field that is a primitive type of byte, short, int, long, float,
double, boolean, char, or a wrapper type of Byte, Short, Integer, Long, Float,
Double, BigDecimal, String, Boolean, Character, java.util.Date, java.sql.Date,
java.sql.Time, java.sql.Timestamp, java.util.Calendar or a Java SE 5 enum.

The following example illustrates the use of the GROUP BY clause in a query that
computes the average salary for each department:

SELECT e.dept.deptno, AVG (e.salary) FROM EmpBean e GROUP BY e.dept.deptno

In division of a set into groups, a NULL value is considered equal to another
NULL value.

Groups can be filtered using a HAVING clause that tests group properties before
involving aggregate functions or grouping members. This filtering is similar to
how the WHERE clause filters tuples (that is, records of the return collection
values) from the FROM clause. An example of the HAVING clause follows:
SELECT e.dept.deptno, AVG (e.salary) FROM EmpBean e
GROUP BY e.dept.deptno
HAVING COUNT(e) > 3 AND e.dept.deptno > 5

This query returns the average salary for departments that have more than three
employees and the department number is greater than five.

You can use a HAVING clause without a GROUP BY clause. In this case, the entire
set is treated as a single group, to which the HAVING clause is applied.

ObjectGrid query Backus-Naur Form:

A summary of the ObjectGrid Query Backus-Naur Form (BNF) Notation follows.

Table 4. Key to BNF summary

Representation Description

{...} Grouping

[...] Optional constructs

bold Keywords

* Zero or more

| Alternates

ObjectGrid QL ::=select_clause from_clause [where_clause] [group_by_clause]
[having_clause] [order_by_clause]

from_clause ::=FROM identification_variable_declaration
[,identification_variable_declaration]*

identification_variable_declaration ::=collection_member_declaration |
range_variable_declaration

collection_member_declaration ::=IN (collection_valued_path_expression |
single_valued_navigation) [AS] identifier | [LEFT [OUTER]
| INNER] JOIN collection_valued_path_expression |
single_valued_navigation [AS] identifier

range_variable_declaration ::=abstract_schema_name [AS] identifier

212 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

single_valued_path_expression ::={single_valued_navigation | identification_variable}.
{ state_field | state_field.value_object_attribute } | single_valued_navigation

single_valued_navigation ::=identification_variable.[single_valued_association_field.]*
single_valued_association_field

collection_valued_path_expression ::=identification_variable.[
single_valued_association_field.]* collection_valued_association_field

select_clause ::= SELECT [DISTINCT] [selection ,]* selection

selection ::= {single_valued_path_expression |identification_variable | OBJECT
(identification_variable) |aggregate_functions } [[AS] id]

order_by_clause ::= ORDER BY [{identification_variable.[single_valued_association_field.
]*state_field} [ASC|DESC],]* {identification_variable.[
single_valued_association_field.]*state_field}[ASC|DESC]

where_clause ::= WHERE conditional_expression

conditional_expression ::= conditional_term | conditional_expression OR conditional_term

conditional_term ::= conditional_factor | conditional_term AND conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary ::= simple_cond_expression | (conditional_expression)

simple_cond_expression ::= comparison_expression | between_expression | like_expression |
in_expression | null_comparison_expression | empty_collection_comparison_expression |
exists_expression | collection_member_expression

between_expression ::= numeric_expression [NOT] BETWEEN numeric_expression
AND numeric_expression | string_expression [NOT] BETWEEN
string_expression AND string_expression | datetime_expression [NOT]
BETWEEN datetime_expression AND datetime_expression

in_expression ::= identification_variable.[single_valued_association_field.]state_field
[*NOT] IN { (subselect) | (atom ,]* atom) }

atom ::= { string_literal | numeric_literal | input_parameter }

like_expression ::=string_expression [NOT] LIKE {string_literal | input_parameter}
[ESCAPE {string_literal | input_parameter}]

null_comparison_expression ::= {single_valued_path_expression | input_parameter} IS
[NOT] NULL

empty_collection_comparison_expression ::= collection_valued_path_expression IS
[NOT] EMPTY

collection_member_expression ::={ ssingle_valued_path_expression | input_parameter }[
NOT] MEMBER [OF]collection_valued_path_expression

exists_expression ::= EXISTS {(subselect)}

subselect ::= SELECT [{ ALL | DISTINCT }] subselection from_clause
[where_clause] [group_by_clause] [having_clause]

subselection ::= {single_valued_path_expression |identification_variable |
aggregate_functions }

group_by_clause ::= GROUP BY[single_valued_path_expression,]*
single_valued_path_expression

having_clause ::= HAVING conditional_expression

comparison_expression ::= numeric_ expression comparison_operator { numeric_expression
| {SOME | ANY | ALL} (subselect) } | string_expression
comparison_operator {

string_expression | {SOME | ANY | ALL}(subselect) } |

datetime_expression comparison_operator {

datetime_expression {SOME | ANY | ALL}(subselect) } |

boolean_expression {=|<>} {

boolean_expression {SOME | ANY | ALL}(subselect) } |

entity_expression {=|<>} {

entity_expression {SOME| ANY | ALL}(subselect) }

comparison_operator ::= = | > | >= | < | <= | <>

string_expression ::= string_primary | (subselect)

string_primary ::=state_field_path_expression |string_literal | input_parameter |
functions_returning_strings

datetime_expression ::= datetime_primary |(subselect)

datetime_primary ::=state_field_path_expression | string_literal | long_literal
| input_parameter | functions_returning_datetime

boolean_expression ::= boolean_primary |(subselect)

Chapter 5. Developing applications 213

boolean_primary ::=state_field_path_expression | boolean_literal | input_parameter

entity_expression ::=single_valued_association_path_expression |
identification_variable | input_parameter

numeric_expression ::= simple_numeric_expression |(subselect)

simple_numeric_expression ::= numeric_term | numeric_expression {+|-} numeric_term

numeric_term ::= numeric_factor | numeric_term {*|/} numeric_factor

numeric_factor ::= {+|-} numeric_primary

numeric_primary ::= single_valued_path_expression | numeric_literal |
(numeric_expression) | input_parameter | functions

aggregate_functions :=

AVG([ALL|DISTINCT] identification_variable.
[single_valued_association_field.]*state_field) |

COUNT([ALL|DISTINCT] {single_valued_path_expression |
identification_variable}) |

MAX([ALL|DISTINCT] identification_variable.[
single_valued_association_field.]*state_field) |

MIN([ALL|DISTINCT] identification_variable.[
single_valued_association_field.]*state_field) |

SUM([ALL|DISTINCT] identification_variable.[
single_valued_association_field.]*state_field)

functions ::=

ABS (simple_numeric_expression) |

CONCAT (string_primary , string_primary) |

LOWER (string_primary) |

LENGTH(string_primary) |

LOCATE(string_primary, string_primary [, simple_numeric_expression]) |

MOD (simple_numeric_expression, simple_numeric_expression) |

SIZE (collection_valued_path_expression) |

SQRT (simple_numeric_expression) |

SUBSTRING (string_primary, simple_numeric_expression[, simple_numeric_expression]) |

UPPER (string_primary) |

TRIM ([[LEADING | TRAILING | BOTH] [trim_character]
FROM] string_primary)

Programming for transactions
Applications that require transactions introduce such considerations as handling
locks, handling collisions, and transaction isolation.

Transaction processing overview
WebSphere eXtreme Scale uses transactions as its mechanism for interaction with
data.

To interact with data, the thread in your application needs its own session. When
the application wants to use the ObjectGrid on a thread, call one of the
ObjectGrid.getSession methods to obtain a session. With the session, the
application can work with data that is stored in the ObjectGrid maps.

When an application uses a Session object, the session must be in the context of a
transaction. A transaction begins and commits or begins and rolls back using the
begin, commit, and rollback methods on the Session object. Applications can also
work in auto-commit mode, in which the Session automatically begins and
commits a transaction whenever an operation is performed on the map.
Auto-commit mode cannot group multiple operations into a single transaction, so
it is the slower option if you are creating a batch of multiple operations into a
single transaction. However, for transactions that contain only one operation,
auto-commit is the faster option.

214 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

When your application is finished with the Session, use the optional Session.close()
method to close the session. Closing the Session releases it from the heap and
allows subsequent calls to the getSession() method to be reused, improving
performance.

Data access and transactions:

After an application has a reference to an ObjectGrid instance or a client
connection to a remote data grid, you can access and interact with data in your
data grid. With the ObjectGridManager API, you can create a local instance or
establish a client connection to a distributed instance. To create a local instance, use
one of the createObjectGrid methods. To establish a client connection with a remote
data grid, use the getObjectGrid method.

A thread in an application needs its own Session. When you want your application
to use the ObjectGrid on a thread, call one of the getSession methods to obtain a
Session. After the application is finished with the Session, call the Session.close()
method. This method closes the session, returning it to the pool and releasing its
resources. Closing a session is optional, but improves the performance of
subsequent calls to the getSession() method. If the application is using a
dependency injection framework such as Spring, you can inject a Session into an
application bean when necessary.

After you obtain a Session, the application can access data stored in maps in the
ObjectGrid. If the ObjectGrid uses entities, you can use the EntityManager API,
which you can obtain with the Session.getEntityManager method. Because it is
closer to Java specifications, the EntityManager interface is simpler than the
map-based API. However, the EntityManager API carries a performance overhead
because it tracks changes in objects. The map-based API is obtained by using the
Session.getMap method.

WebSphere eXtreme Scale uses transactions. When an application interacts with a
Session, it must be in the context of a transaction. A transaction is begun and
committed or rolled back using the Session.begin, Session.commit, and
Session.rollback methods on the Session object. Applications can also work in
auto-commit mode, where the Session automatically begins and commits a
transaction whenever the application interacts with Maps. However, the
auto-commit mode is slower.

The logic of using transactions

Transactions may seem to be slow. You must use transactions for the following
reasons:
1. To allow rollback of changes if an exception occurs or business logic needs to

undo state changes.
2. To hold locks on data and release locks within the lifetime of a transaction,

allowing a set of changes to be made atomically, that is, all changes or no
changes to data.

3. To produce an atomic unit of replication.

You can customize how much transaction support is needed. Your application can
turn off rollback support and locking but does so at a cost to the application. The
application must handle the lack of these features.

Chapter 5. Developing applications 215

For example, an application can turn off locking by configuring the BackingMap
locking strategy to be NONE. This strategy is fast, but concurrent transactions can
now modify the same data with no protection from each other. The application is
responsible for all locking and data consistency when NONE is used.

An application can also change the way objects are copied when accessed by the
transaction. The application can specify how objects are copied with the
ObjectMap.setCopyMode method. With this method, you can turn off CopyMode.
Turning off CopyMode is normally used for read-only transactions if different
values can be returned for the same object within a transaction. Different values
can be returned for the same object within a transaction.

For example, if the transaction called the ObjectMap.get method for the object at
T1, it got the value at that point in time. If it calls the get method again within that
transaction at a later time T2, another thread might have changed the value.
Because the value was changed by another thread, the application sees a different
value. If the application modifies an object retrieved using a NONE CopyMode
value, it is changing the committed copy of that object directly. Rolling back the
transaction has no meaning in this mode. You are changing the only copy in the
ObjectGrid. Although using the NONE CopyMode is fast, be aware of its
consequences. An application that uses a NONE CopyMode must never roll back
the transaction. If the application rolls back the transaction, the indexes are not
updated with the changes and the changes are not replicated if replication is turned
on. The default values are easy to use and less prone to errors. If you start trading
performance in exchange for less reliable data, the application needs to be aware of
what it is doing to avoid unintended problems.

CAUTION:
Be careful when you are changing either the locking or the CopyMode values. If
you change the values, unpredictable application behavior occurs.

Stored data interaction

After you obtain a session, you can use the following code fragment to use the
Map API for inserting data.
Session session = ...;
ObjectMap personMap = session.getMap("PERSON");
session.begin();
Person p = new Person();
p.name = "John Doe";
personMap.insert(p.name, p);
session.commit();

The same example using the EntityManager API follows. This code sample
assumes that the Person object is mapped to an Entity.
Session session = ...;
EntityManager em = session.getEntityManager();
session.begin();
Person p = new Person();
p.name = "John Doe";
em.persist(p);
session.commit();

The pattern is designed to obtain references to the ObjectMaps for the Maps that
the thread works with, start a transaction, work with the data, then commit the
transaction.

216 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

The ObjectMap interface has the typical Map operations such as put, get, and
remove. However, use the more specific operation names such as: get,
getForUpdate, insert, update, and remove. These method names convey the intent
more precisely that the traditional Map APIs.

You can also use the indexing support, which is flexible.

The following is an example for updating an Object:
session.begin();
Person p = (Person)personMap.getForUpdate("John Doe");
p.name = "John Doe";
p.age = 30;
personMap.update(p.name, p);
session.commit();

The application normally uses the getForUpdate method rather than a simple get
to lock the record. The update method must be called to actually provide the
updated value to the Map. If update is not called then the Map is unchanged. The
following is the same fragment using the EntityManager API:
session.begin();
Person p = (Person)em.findForUpdate(Person.class, "John Doe");
p.age = 30;
session.commit();

The EntityManager API is simpler than the Map approach. In this case, eXtreme
Scale finds the Entity and returns a managed object to the application. The
application modifies the object and commits the transaction, and eXtreme Scale
tracks changes to managed objects automatically at commit time and performs the
necessary updates.

Transactions and partitions

WebSphere eXtreme Scale transactions can update a single partition. Transactions
from a client can read from multiple partitions, but they can update one partition
only. If an application attempts to update two partitions, then the transaction fails
and is rolled back. A transaction that is using an embedded ObjectGrid (grid logic)
has no routing capability and can see data in the local partition only. This business
logic can always get a second session that is a true client session to access other
partitions. However, this transaction would be an independent transaction.

Queries and partitions

If a transaction has already searched for an Entity, the transaction is associated
with the partition for that Entity. Any queries that run on a transaction that is
associated with an Entity are routed to the associated partition.

If a query is run on a transaction before it is associated with a partition, you must
set the partition ID to use for the query. The partition ID is an integer value. The
query is then routed to that partition.

Queries only search within a single partition. However, you can use the DataGrid
APIs to run the same query in parallel on all partitions or a subset of partitions.
Use the DataGrid APIs to find an entry that might be in any partition.

The REST data service allows any HTTP client to access a WebSphere eXtreme
Scale grid, and is compatible with WCF Data Services in the Microsoft .NET
Framework 3.5 SP1. For more information, see Configuring REST data services.

Chapter 5. Developing applications 217

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsreststart.html

.

Transactions:

Transactions have many advantages for data storage and manipulation. You can
use transactions to protect the data grid from concurrent changes, to apply
multiple changes as a concurrent unit, to replicate data and to implement a life
cycle for locks on changes.

When a transaction starts, WebSphere eXtreme Scale allocates a special difference
map to hold the current changes or copies of key and value pairs that the
transaction uses. Typically, when a key and value pair is accessed, the value is
copied before the application receives the value. The difference map tracks all
changes for operations such as insert, update, get, remove, and so on. Keys are not
copied because they are assumed to be immutable. If an ObjectTransformer object
is specified, then this object is used for copying the value. If the transaction is
using optimistic locking, then before images of the values are also tracked for
comparison when the transaction commits.

If a transaction is rolled back, then the difference map information is discarded,
and locks on entries are released. When a transaction commits, the changes are
applied to the maps and locks are released. If optimistic locking is being used, then
eXtreme Scale compares the before image versions of the values with the values
that are in the map. These values must match for the transaction to commit. This
comparison enables a multiple version locking scheme, but at a cost of two copies
being made when the transaction accesses the entry. All values are copied again
and the new copy is stored in the map. WebSphere eXtreme Scale performs this
copy to protect itself against the application changing the application reference to
the value after a commit.

You can avoid using several copies of the information. The application can save a
copy by using pessimistic locking instead of optimistic locking as the cost of
limiting concurrency. The copy of the value at commit time can also be avoided if
the application agrees not to change a value after a commit.

Advantages of transactions

Use transactions for the following reasons:

By using transactions, you can:
v Roll back changes if an exception occurs or business logic needs to undo state

changes.
v To apply multiple changes as an atomic unit at commit time.
v Hold and release locks on data to apply multiple changes as an atomic unit at

commit time.
v Protect a thread from concurrent changes.
v Implement a life cycle for locks on changes.
v Produce an atomic unit of replication.

Transaction size

Larger transactions are more efficient, especially for replication. However, larger
transactions can adversely impact concurrency because the locks on entries are
held for a longer period of time. If you use larger transactions, you can increase

218 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

replication performance. This performance increase is important when you are
pre-loading a Map. Experiment with different batch sizes to determine what works
best for your scenario.

Larger transactions also help with loaders. If a loader is being used that can
perform SQL batching, then significant performance gains are possible depending
on the transaction and significant load reductions on the database side. This
performance gain depends on the Loader implementation.

Automatic commit mode

If no transaction is actively started, then when an application interacts with an
ObjectMap object, an automatic begin and commit operation is done on behalf of
the application. This automatic begin and commit operation works, but prevents
rollback and locking from working effectively. Synchronous replication speed is
impacted because of the very small transaction size. If you are using an entity
manager application, then do not use automatic commit mode because objects that
are looked up with the EntityManager.find method immediately become
unmanaged on the method return and become unusable.

External transaction coordinators

Typically, transactions begin with the session.begin method and end with the
session.commit method. However, when eXtreme Scale is embedded, the
transactions might be started and ended by an external transaction coordinator. If
you are using an external transaction coordinator, you do not need to call the
session.begin method and end with the session.commit method.

Java EE transaction integration

eXtreme Scale includes a Java Connector Architecture (JCA) 1.5 compliant resource
adapter that supports both client connections to a remote data grid and local
transaction management. Java Platform, Enterprise Edition (Java EE) applications
such as servlets, JavaServer Pages (JSP) files and Enterprise JavaBeans (EJB)
components can demarcate eXtreme Scale transactions using the standard
javax.resource.cci.LocalTransaction interface or the eXtreme Scale session interface.

When the running in WebSphere Application Server with last participant support
enabled in the application, you can enlist the eXtreme Scale transaction in a global
transaction with other two-phase commit transactional resources.

CopyMode attribute:

You can tune the number of copies by defining the CopyMode attribute of the
BackingMap or ObjectMap objects in the ObjectGrid descriptor XML file.

You can tune the number of copies by defining the CopyMode attribute of the
BackingMap or ObjectMap objects. The copy mode has the following values:
v COPY_ON_READ_AND_COMMIT
v COPY_ON_READ
v NO_COPY
v COPY_ON_WRITE
v COPY_TO_BYTES
v COPY_TO_BYTES_RAW

Chapter 5. Developing applications 219

The COPY_ON_READ_AND_COMMIT value is the default. The COPY_ON_READ
value copies on the initial data retrieved, but does not copy at commit time. This
mode is safe if the application does not modify a value after committing a
transaction. The NO_COPY value does not copy data, which is only safe for
read-only data. If the data never changes then you do not need to copy it for
isolation reasons.

Be careful when you use the NO_COPY attribute value with maps that can be
updated. WebSphere eXtreme Scale uses the copy on first touch to allow the
transaction rollback. The application only changed the copy, and as a result,
eXtreme Scale discards the copy. If the NO_COPY attribute value is used, and the
application modifies the committed value, completing a rollback is not possible.
Modifying the committed value leads to problems with indexes, replication, and so
on because the indexes and replicas update when the transaction commits. If you
modify committed data and then roll back the transaction, which does not actually
roll back at all, then the indexes are not updated and replication does not take
place. Other threads can see the uncommitted changes immediately, even if they
have locks. Use the NO_COPY attribute value for read-only maps or for
applications that complete the appropriate copy before modifying the value. If you
use the NO_COPY attribute value and call IBM support with a data integrity
problem, you are asked to reproduce the problem with the copy mode set to
COPY_ON_READ_AND_COMMIT.

The COPY_TO_BYTES value stores values in the map in a serialized form. At read
time, eXtreme Scale inflates the value from a serialized form and at commit time it
stores the value to a serialized form. With this method, a copy occurs at both read
and commit time.

The default copy mode for a map can be configured on the BackingMap object.
You can also change the copy mode on maps before you start a transaction by
using the ObjectMap.setCopyMode method.

An example of a backing map snippet from an objectgrid.xml file that shows how
to set the copy mode for a given backing map follows. This example assumes that
you are using cc as the objectgrid/config namespace.
<cc:backingMap name="RuntimeLifespan" copyMode="NO_COPY"/>

Lock manager:

When you configure a locking strategy, a lock manager is created for the backing
map to maintain cache entry consistency.

Lock manager configuration

When either a PESSIMISTIC or an OPTIMISTIC lock strategy is used, a lock
manager is created for the BackingMap. The lock manager uses a hash map to
track entries that are locked by one or more transactions. If many map entries exist
in the hash map, more lock buckets can result in better performance. The risk of
Java synchronization collisions is lower as the number of buckets grows. More lock
buckets also lead to more concurrency. The previous examples show how an
application can set the number of lock buckets to use for a given BackingMap
instance.

To avoid a java.lang.IllegalStateException exception, the setNumberOfLockBuckets
method must be called before calling the initialize or getSession methods on the
ObjectGrid instance. The setNumberOfLockBuckets method parameter is a Java

220 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

primitive integer that specifies the number of lock buckets to use. Using a prime
number can allow for a uniform distribution of map entries over the lock buckets.
A good starting point for best performance is to set the number of lock buckets to
about 10 percent of the expected number of BackingMap entries.

Locking strategies:

Locking strategies include pessimistic, optimistic and none. To choose a locking
strategy, you must consider issues such as the percentage of each type of
operations you have, whether or not you use a loader and so on.

Locks are bound by transactions. You can specify the following locking settings:
v No locking: Running without the locking setting is the fastest. If you are using

read-only data, then you might not need locking.
v Pessimistic locking: Acquires locks on entries, then and holds the locks until

commit time. This locking strategy provides good consistency at the expense of
throughput.

v Optimistic locking: Takes a before image of every record that the transaction
touches and compares the image to the current entry values when the
transaction commits. If the entry values change, then the transaction rolls back.
No locks are held until commit time. This locking strategy provides better
concurrency than the pessimistic strategy, at the risk of the transaction rolling
back and the memory cost of making the extra copy of the entry.

Set the locking strategy on the BackingMap. You cannot change the locking
strategy for each transaction. An example XML snippet that shows how to set the
locking mode on a map using the XML file follows, assuming cc is the namespace
for the objectgrid/config namespace:
<cc:backingMap name="RuntimeLifespan" lockStrategy="PESSIMISTIC" />

Pessimistic locking

Use the pessimistic locking strategy for read and write maps when other locking
strategies are not possible. When an ObjectGrid map is configured to use the
pessimistic locking strategy, a pessimistic transaction lock for a map entry is
obtained when a transaction first gets the entry from the BackingMap. The
pessimistic lock is held until the application completes the transaction. Typically,
the pessimistic locking strategy is used in the following situations:
v When the BackingMap is configured with or without a loader and versioning

information is not available.
v When the BackingMap is used directly by an application that needs help from

the eXtreme Scale for concurrency control.
v When versioning information is available, but update transactions frequently

collide on the backing entries, resulting in optimistic update failures.

Because the pessimistic locking strategy has the greatest impact on performance
and scalability, this strategy should only be used for read and write maps when
other locking strategies are not viable. For example, these situations might include
when optimistic update failures occur frequently, or when recovery from optimistic
failure is difficult for an application to handle.

Optimistic locking

The optimistic locking strategy assumes that no two transactions might attempt to
update the same map entry while running concurrently. Because of this belief, the

Chapter 5. Developing applications 221

lock mode does not need to be held for the life cycle of the transaction because it
is unlikely that more than one transaction might update the map entry
concurrently. The optimistic locking strategy is typically used in the following
situations:
v When a BackingMap is configured with or without a loader and versioning

information is available.
v When a BackingMap has mostly transactions that perform read operations.

Insert, update, or remove operations on map entries do not occur often on the
BackingMap.

v When a BackingMap is inserted, updated, or removed more frequently than it is
read, but transactions rarely collide on the same map entry.

Like the pessimistic locking strategy, the methods on the ObjectMap interface
determine how eXtreme Scale automatically attempts to acquire a lock mode for
the map entry that is being accessed. However, the following differences between
the pessimistic and optimistic strategies exist:
v Like the pessimistic locking strategy, an S lock mode is acquired by the get and

getAll methods when the method is invoked. However, with optimistic locking,
the S lock mode is not held until the transaction is completed. Instead, the S lock
mode is released before the method returns to the application. The purpose of
acquiring the lock mode is so that eXtreme Scale can ensure that only committed
data from other transactions is visible to the current transaction. After eXtreme
Scale has verified that the data is committed, the S lock mode is released. At
commit time, an optimistic versioning check is performed to ensure that no
other transaction has changed the map entry after the current transaction
released its S lock mode. If an entry is not fetched from the map before it is
updated, invalidated, or deleted, the eXtreme Scale run time implicitly fetches
the entry from the map. This implicit get operation is performed to get the
current value at the time the entry was requested to be modified.

v Unlike pessimistic locking strategy, the getForUpdate and getAllForUpdate
methods are handled exactly like the get and getAll methods when the
optimistic locking strategy is used. That is, an S lock mode is acquired at the
start of the method and the S lock mode is released before returning to the
application.

All other ObjectMap methods are handled exactly like they are handled for the
pessimistic locking strategy. That is, when the commit method is invoked, an X
lock mode is obtained for any map entry that is inserted, updated, removed,
touched, or invalidated and the X lock mode is held until the transaction
completes commit processing.

The optimistic locking strategy assumes that no concurrently running transactions
attempt to update the same map entry. Because of this assumption, the lock mode
does not need to be held for the life of the transaction because it is unlikely that
more than one transaction might update the map entry concurrently. However,
because a lock mode was not held, another concurrent transaction might
potentially update the map entry after the current transaction has released its S
lock mode.

To handle this possibility, eXtreme Scale gets an X lock at commit time and
performs an optimistic versioning check to verify that no other transaction has
changed the map entry after the current transaction read the map entry from the
BackingMap. If another transaction changes the map entry, the version check fails
and an OptimisticCollisionException exception occurs. This exception forces the
current transaction to be rolled back and the application must try the entire

222 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

transaction again. The optimistic locking strategy is very useful when a map is
mostly read and it is unlikely that updates for the same map entry might occur.

No locking

When a BackingMap is configured to use no locking strategy, no transaction locks
for a map entry are obtained.

Using no locking strategy is useful when an application is a persistence manager
such as an Enterprise JavaBeans (EJB) container or when an application uses
Hibernate to obtain persistent data. In this scenario, the BackingMap is configured
without a loader and the persistence manager uses the BackingMap as a data
cache. In this scenario, the persistence manager provides concurrency control
between transactions that are accessing the same Map entries.

WebSphere eXtreme Scale does not need to obtain any transaction locks for the
purpose of concurrency control. This situation assumes that the persistence
manager does not release its transaction locks before updating the ObjectGrid map
with committed changes. If the persistence manager releases its locks, then a
pessimistic or optimistic lock strategy must be used. For example, suppose that the
persistence manager of an EJB container is updating an ObjectGrid map with data
that was committed in the EJB container-managed transaction. If the update of the
ObjectGrid map occurs before the persistence manager transaction locks are
released, then you can use the no lock strategy. If the ObjectGrid map update
occurs after the persistence manager transaction locks are released, then you must
use either the optimistic or pessimistic lock strategy.

Another scenario where no locking strategy can be used is when the application
uses a BackingMap directly and a Loader is configured for the map. In this
scenario, the loader uses the concurrency control support that is provided by a
relational database management system (RDBMS) by using either Java database
connectivity (JDBC) or Hibernate to access data in a relational database. The loader
implementation can use either an optimistic or pessimistic approach. A loader that
uses an optimistic locking or versioning approach helps to achieve the greatest
amount of concurrency and performance. For more information about
implementing an optimistic locking approach, see the OptimisticCallback section in
the information about loader considerations in the Administration Guide. If you are
using a loader that uses pessimistic locking support of an underlying backend, you
might want to use the forUpdate parameter that is passed on the get method of
the Loader interface. Set this parameter to true if the getForUpdate method of the
ObjectMap interface was used by the application to get the data. The loader can
use this parameter to determine whether to request an upgradeable lock on the
row that is being read. For example, DB2® obtains an upgradeable lock when an
SQL select statement contains a FOR UPDATE clause. This approach offers the same
deadlock prevention that is described in “Pessimistic locking” on page 221.

Distributing transactions:

Use Java Message Service (JMS) for distributed transaction changes between
different tiers or in environments on mixed platforms.

JMS is an ideal protocol for distributed changes between different tiers or in
environments on mixed platforms. For example, some applications that use
eXtreme Scale might be deployed on IBM WebSphere Application Server
Community Edition, Apache Geronimo, or Apache Tomcat, whereas other
applications might run on WebSphere Application Server Version 6.x. JMS is ideal

Chapter 5. Developing applications 223

for distributed changes between eXtreme Scale peers in these different
environments. The high availability manager message transport is very fast, but
can only distribute changes to Java virtual machines that are in a single core
group. JMS is slower, but allows larger and more diverse sets of application clients
to share an ObjectGrid. JMS is ideal when sharing data in an ObjectGrid between a
fat Swing client and an application deployed on WebSphere Extended Deployment.

The built-in Client Invalidation Mechanism and Peer-to-Peer Replication are
examples of JMS-based transactional changes distribution. See the information
about configuring peer-to-peer replication with JMS in the Administration Guide for
more information.

Implementing JMS

JMS is implemented for distributing transaction changes by using a Java object that
behaves as an ObjectGridEventListener. This object can propagate the state in the
following four ways:
1. Invalidate: Any entry that is evicted, updated or deleted is removed on all peer

Java virtual machines when they receive the message.
2. Invalidate conditional: The entry is evicted only if the local version is the same

or older than the version on the publisher.
3. Push: Any entry that was evicted, updated, deleted or inserted is added or

overwritten on all peer Java virtual machines when they receive the JMS
message.

4. Push conditional: The entry is only updated or added on the receive side if the
local entry is less recent than the version that is being published.

Listen for changes for publishing

The plug-in implements the ObjectGridEventListener interface to intercept the
transactionEnd event. When eXtreme Scale invokes this method, the plug-in
attempts to convert the LogSequence list for each map that is touched by the
transaction to a JMS message and then publish it. The plug-in can be configured to
publish changes for all maps or a subset of maps. LogSequence objects are
processed for the maps that have publishing enabled. The
LogSequenceTransformer ObjectGrid class serializes a filtered LogSequence for
each map to a stream. After all LogSequences are serialized to the stream, then a
JMS ObjectMessage is created and published to a well-known topic.

Listen for JMS messages and apply them to the local ObjectGrid

The same plug-in also starts a thread that spins in a loop, receiving all messages
that are published to the well known topic. When a message arrives, it passes the
message contents to the LogSequenceTransformer class where it is converted to a
set of LogSequence objects. Then, a no-write-through transaction is started. Each
LogSequence object is provided to the Session.processLogSequence method, which
updates the local Maps with the changes. The processLogSequence method
understands the distribution mode. The transaction is committed and the local
cache now reflects the changes. For more information about using JMS to distribute
transaction changes, see the information about distributing changes between peer
Java Virtual Machines in the Administration Guide.

Single-partition and cross-data-grid transactions:

224 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

The major distinction between WebSphere eXtreme Scale and traditional data
storage solutions like relational databases or in-memory databases is the use of
partitioning, which allows the cache to scale linearly. The important types of
transactions to consider are single-partition and every-partition (cross-data-grid)
transactions.

In general, interactions with the cache can be categorized as single-partition
transactions or cross-data-grid transactions, as discussed in the following section.

Single-partition transactions

Single-partition transactions are the preferable method for interacting with caches
that are hosted by WebSphere eXtreme Scale. When a transaction is limited to a
single partition, then by default it is limited to a single Java virtual machine, and
therefore a single server computer. A server can complete M number of these
transactions per second, and if you have N computers, you can complete M*N
transactions per second. If your business increases and you need to perform twice
as many of these transactions per second, you can double N by buying more
computers. Then you can meet capacity demands without changing the
application, upgrading hardware, or even taking the application offline.

In addition to letting the cache scale so significantly, single-partition transactions
also maximize the availability of the cache. Each transaction only depends on one
computer. Any of the other (N-1) computers can fail without affecting the success
or response time of the transaction. So if you are running 100 computers and one
of them fails, only 1 percent of the transactions in flight at the moment that server
failed are rolled back. After the server fails, WebSphere eXtreme Scale relocates the
partitions that are hosted by the failed server to the other 99 computers. During
this brief period, before the operation completes, the other 99 computers can still
complete transactions. Only the transactions that would involve the partitions that
are being relocated are blocked. After the failover process is complete, the cache
can continue running, fully operational, at 99 percent of its original throughput
capacity. After the failed server is replaced and returned to the data grid, the cache
returns to 100 percent throughput capacity.

Cross-data-grid transactions

In terms of performance, availability and scalability, cross-data-grid transactions
are the opposite of single-partition transactions. Cross-data-grid transactions access
every partition and therefore every computer in the configuration. Each computer
in the data grid is asked to look up some data and then return the result. The
transaction cannot complete until every computer has responded, and therefore the
throughput of the entire data grid is limited by the slowest computer. Adding
computers does not make the slowest computer faster and therefore does not
improve the throughput of the cache.

Cross-data-grid transactions have a similar effect on availability. Extending the
previous example, if you are running 100 servers and one server fails, then 100
percent of the transactions that are in progress at the moment that server failed are
rolled back. After the server fails, WebSphere eXtreme Scale starts to relocate the
partitions that are hosted by that server to the other 99 computers. During this
time, before the failover process completes, the data grid cannot process any of
these transactions. After the failover process is complete, the cache can continue
running, but at reduced capacity. If each computer in the data grid serviced 10
partitions, then 10 of the remaining 99 computers receive at least one extra
partition as part of the failover process. Adding an extra partition increases the

Chapter 5. Developing applications 225

workload of that computer by at least 10 percent. Because the throughput of the
data grid is limited to the throughput of the slowest computer in a cross-data-grid
transaction, on average, the throughput is reduced by 10 percent.

Single-partition transactions are preferable to cross-data-grid transactions for
scaling out with a distributed, highly available, object cache like WebSphere
eXtreme Scale. Maximizing the performance of these kinds of systems requires the
use of techniques that are different from traditional relational methodologies, but
you can turn cross-data-grid transactions into scalable single-partition transactions.

Best practices for building scalable data models

The best practices for building scalable applications with products like WebSphere
eXtreme Scale include two categories: foundational principles and implementation
tips. Foundational principles are core ideas that need to be captured in the design
of the data itself. An application that does not observe these principles is unlikely
to scale well, even for its mainline transactions. Implementation tips are applied
for problematic transactions in an otherwise well-designed application that
observes the general principles for scalable data models.

Foundational principles

Some of the important means of optimizing scalability are basic concepts or
principles to keep in mind.

Duplicate instead of normalizing

The key thing to remember about products like WebSphere eXtreme Scale
is that they are designed to spread data across a large number of
computers. If the goal is to make most or all transactions complete on a
single partition, then the data model design needs to ensure that all the
data the transaction might need is located in the partition. Most of the
time, the only way to achieve this is by duplicating data.

For example, consider an application like a message board. Two very
important transactions for a message board are showing all the posts from
a given user and all the posts on a given topic. First consider how these
transactions would work with a normalized data model that contains a
user record, a topic record, and a post record that contains the actual text.
If posts are partitioned with user records, then displaying the topic
becomes a cross-grid transaction, and vice versa. Topics and users cannot
be partitioned together because they have a many-to-many relationship.

The best way to make this message board scale is to duplicate the posts,
storing one copy with the topic record and one copy with the user record.
Then, displaying the posts from a user is a single-partition transaction,
displaying the posts on a topic is a single-partition transaction, and
updating or deleting a post is a two-partition transaction. All three of these
transactions will scale linearly as the number of computers in the data grid
increases.

Scalability rather than resources

The biggest obstacle to overcome when considering denormalized data
models is the impact that these models have on resources. Keeping two,
three, or more copies of some data can seem to use too many resources to
be practical. When you are confronted with this scenario, remember the
following facts: Hardware resources get cheaper every year. Second, and

226 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

more importantly, WebSphere eXtreme Scale eliminates most hidden costs
associated with deploying more resources.

Measure resources in terms of cost rather than computer terms such as
megabytes and processors. Data stores that work with normalized
relational data generally need to be located on the same computer. This
required collocation means that a single larger enterprise computer needs
to be purchased rather than several smaller computers. With enterprise
hardware, it is not uncommon for one computer to be capable of
completing one million transactions per second to cost much more than the
combined cost of 10 computers capable of doing 100,000 transactions per
second each.

A business cost in adding resources also exists. A growing business
eventually runs out of capacity. When you run out of capacity, you either
need to shut down while moving to a bigger, faster computer, or create a
second production environment to which you can switch. Either way,
additional costs will come in the form of lost business or maintaining
almost twice the capacity needed during the transition period.

With WebSphere eXtreme Scale, the application does not need to be shut
down to add capacity. If your business projects that you need 10 percent
more capacity for the coming year, then increase the number of computers
in the data grid by 10 percent. You can increase this percentage without
application downtime and without purchasing excess capacity.

Avoid data transformations

When you are using WebSphere eXtreme Scale, data should be stored in a
format that is directly consumable by the business logic. Breaking the data
down into a more primitive form is costly. The transformation needs to be
done when the data is written and when the data is read. With relational
databases this transformation is done out of necessity, because the data is
ultimately persisted to disk quite frequently, but with WebSphere eXtreme
Scale, you do not need to perform these transformations. For the most part
data is stored in memory and can therefore be stored in the exact form that
the application needs.

Observing this simple rule helps denormalize your data in accordance with
the first principle. The most common type of transformation for business
data is the JOIN operations that are necessary to turn normalized data into
a result set that fits the needs of the application. Storing the data in the
correct format implicitly avoids performing these JOIN operations and
produces a denormalized data model.

Eliminate unbounded queries

No matter how well you structure your data, unbounded queries do not
scale well. For example, do not have a transaction that asks for a list of all
items sorted by value. This transaction might work at first when the total
number of items is 1000, but when the total number of items reaches 10
million, the transaction returns all 10 million items. If you run this
transaction, the two most likely outcomes are the transaction timing out, or
the client encountering an out-of-memory error.

The best option is to alter the business logic so that only the top 10 or 20
items can be returned. This logic alteration keeps the size of the transaction
manageable no matter how many items are in the cache.

Define schema

Chapter 5. Developing applications 227

The main advantage of normalizing data is that the database system can
take care of data consistency behind the scenes. When data is
denormalized for scalability, this automatic data consistency management
no longer exists. You must implement a data model that can work in the
application layer or as a plug-in to the distributed data grid to guarantee
data consistency.

Consider the message board example. If a transaction removes a post from
a topic, then the duplicate post on the user record needs to be removed.
Without a data model, it is possible a developer would write the
application code to remove the post from the topic and forget to remove
the post from the user record. However, if the developer were using a data
model instead of interacting with the cache directly, the removePost
method on the data model could pull the user ID from the post, look up
the user record, and remove the duplicate post behind the scenes.

Alternately, you can implement a listener that runs on the actual partition
that detects the change to the topic and automatically adjusts the user
record. A listener might be beneficial because the adjustment to the user
record could happen locally if the partition happens to have the user
record, or even if the user record is on a different partition, the transaction
takes place between servers instead of between the client and server. The
network connection between servers is likely to be faster than the network
connection between the client and the server.

Avoid contention

Avoid scenarios such as having a global counter. The data grid will not
scale if a single record is being used a disproportionate number of times
compared to the rest of the records. The performance of the data grid will
be limited by the performance of the computer that holds the given record.

In these situations, try to break the record up so it is managed per
partition. For example consider a transaction that returns the total number
of entries in the distributed cache. Instead of having every insert and
remove operation access a single record that increments, have a listener on
each partition track the insert and remove operations. With this listener
tracking, insert and remove can become single-partition operations.

Reading the counter will become a cross-data-grid operation, but for the
most part, it was already as inefficient as a cross-data-grid operation
because its performance was tied to the performance of the computer
hosting the record.

Implementation tips

You can also consider the following tips to achieve the best scalability.

Use reverse-lookup indexes

Consider a properly denormalized data model where customer records are
partitioned based on the customer ID number. This partitioning method is
the logical choice because nearly every business operation performed with
the customer record uses the customer ID number. However, an important
transaction that does not use the customer ID number is the login
transaction. It is more common to have user names or e-mail addresses for
login instead of customer ID numbers.

228 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

The simple approach to the login scenario is to use a cross-data-grid
transaction to find the customer record. As explained previously, this
approach does not scale.

The next option might be to partition on user name or e-mail. This option
is not practical because all the customer ID based operations become
cross-data-grid transactions. Also, the customers on your site might want
to change their user name or e-mail address. Products like WebSphere
eXtreme Scale need the value that is used to partition the data to remain
constant.

The correct solution is to use a reverse lookup index. With WebSphere
eXtreme Scale, a cache can be created in the same distributed grid as the
cache that holds all the user records. This cache is highly available,
partitioned and scalable. This cache can be used to map a user name or
e-mail address to a customer ID. This cache turns login into a two partition
operation instead of a cross-grid operation. This scenario is not as good as
a single-partition transaction, but the throughput still scales linearly as the
number of computers increases.

Compute at write time

Commonly calculated values like averages or totals can be expensive to
produce because these operations usually require reading a large number
of entries. Because reads are more common than writes in most
applications, it is efficient to compute these values at write time and then
store the result in the cache. This practice makes read operations both
faster and more scalable.

Optional fields

Consider a user record that holds a business, home, and telephone number.
A user could have all, none or any combination of these numbers defined.
If the data were normalized then a user table and a telephone number
table would exist. The telephone numbers for a given user could be found
using a JOIN operation between the two tables.

De-normalizing this record does not require data duplication, because most
users do not share telephone numbers. Instead, empty slots in the user
record must be allowed. Instead of having a telephone number table, add
three attributes to each user record, one for each telephone number type.
This addition of attributes eliminates the JOIN operation and makes a
telephone number lookup for a user a single-partition operation.

Placement of many-to-many relationships

Consider an application that tracks products and the stores in which the
products are sold. A single product is sold in many stores, and a single
store sells many products. Assume that this application tracks 50 large
retailers. Each product is sold in a maximum of 50 stores, with each store
selling thousands of products.

Keep a list of stores inside the product entity (arrangement A), instead of
keeping a list of products inside each store entity (arrangement B). Looking
at some of the transactions this application would have to perform
illustrates why arrangement A is more scalable.

First look at updates. With arrangement A, removing a product from the
inventory of a store locks the product entity. If the data grid holds 10000
products, only 1/10000 of the grid needs to be locked to perform the
update. With arrangement B, the data grid only contains 50 stores, so 1/50

Chapter 5. Developing applications 229

of the grid must be locked to complete the update. So even though both of
these could be considered single-partition operations, arrangement A scales
out more efficiently.

Now, considering reads with arrangement A, looking up the stores at
which a product is sold is a single-partition transaction that scales and is
fast because the transaction only transmits a small amount of data. With
arrangement B, this transaction becomes an cross-data-grid transaction
because each store entity must be accessed to see if the product is sold at
that store, which reveals an enormous performance advantage for
arrangement A.

Scaling with normalized data

One legitimate use of cross-data-grid transactions is to scale data
processing. If a data grid has 5 computers and a cross-data-grid transaction
is dispatched that sorts through about 100,000 records on each computer,
then that transaction sorts through 500,000 records. If the slowest computer
in the data grid can perform 10 of these transactions per second, then the
data grid is capable of sorting through 5,000,000 records per second. If the
data in the grid doubles, then each computer must sort through 200,000
records, and each transaction sorts through 1,000,000 records. This data
increase decreases the throughput of the slowest computer to 5 transactions
per second, thereby reducing the throughput of the data grid to 5
transactions per second. Still, the data grid sorts through 5,000,000 records
per second.

In this scenario, doubling the number of computer allows each computer
to return to its previous load of sorting through 100,000 records, allowing
the slowest computer to process 10 of these transactions per second. The
throughput of the data grid stays the same at 10 requests per second, but
now each transaction processes 1,000,000 records, so the grid has doubled
its capacity in terms of processing records to 10,000,000 per second.

Applications such as a search engine that need to scale both in terms of
data processing to accommodate the increasing size of the Internet and
throughput to accommodate growth in the number of users, you must
create multiple data grids, with a round robin of the requests between the
grids. If you need to scale up the throughput, add computers and add
another data grid to service requests. If data processing needs to be scaled
up, add more computers and keep the number of data grids constant.

Developing eXtreme Scale client components to use transactions
The WebSphere eXtreme Scale resource adapter provides client connection
management and local transaction support. With this support, Java Platform,
Enterprise Edition (Java EE) applications can look up eXtreme Scale client
connections and demarcate local transactions with Java EE local transactions or the
eXtreme Scale APIs.

Before you begin

Create an eXtreme Scale connection factory resource reference.

About this task

There are several options for working with eXtreme Scale data access APIs. In all
cases, the eXtreme Scale connection factory must be injected into the application
component, or looked up in Java Naming Directory Interface (JNDI). After the

230 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

connection factory is looked up, you can demarcate transactions and create
connections to access the eXtreme Scale APIs.

You can optionally cast the javax.resource.cci.ConnectionFactory instance to a
com.ibm.websphere.xs.ra.XSConnectionFactory that provides additional options for
retrieving connection handles. The resulting connection handles must be cast to the
com.ibm.websphere.xs.ra.XSConnection interface, which provides the getSession
method. The getSession method returns a com.ibm.websphere.objectgrid.Session
object handle that allows applications to use any of the eXtreme Scale data access
APIs, such as the ObjectMap API and EntityManager API.

The Session handle and any derived objects are valid for the life of the
XSConnection handle.

The following procedures can be used to demarcate eXtreme Scale transactions.
You cannot mix each of the procedures. For example, you cannot mix global
transaction demarcation and local transaction demarcation in the same application
component context.

Procedure
v Use autocommit, local transactions. Use the following steps to automatically

commit data access operations or operations that do not support an active
transaction:
1. Retrieve a com.ibm.websphere.xs.ra.XSConnection connection outside of the

context of a global transaction.
2. Retrieve and use the com.ibm.websphere.objectgrid.Session session to interact

with the data grid.
3. Invoke any data access operation that supports autocommit transactions.
4. Close the connection.

v Use an ObjectGrid session to demarcate a local transaction. Use the following
steps to demarcate an ObjectGrid transaction using the Session object:
1. Retrieve a com.ibm.websphere.xs.ra.XSConnection connection.
2. Retrieve the com.ibm.websphere.objectgrid.Session session.
3. Use the Session.begin() method to start the transaction.
4. Use the session to interact with the data grid.
5. Use the Session.commit() or rollback() methods to end the transaction.
6. Close the connection.

v Use a javax.resource.cci.LocalTransction transaction to demarcate a local
transaction. Use the following steps to demarcate an ObjectGrid transaction
using the javax.resource.cci.LocalTransaction interface:
1. Retrieve a com.ibm.websphere.xs.ra.XSConnection connection.
2. Retrieve the javax.resource.cci.LocalTransaction transaction using the

XSConnection.getLocalTransaction() method.
3. Use the LocalTransaction.begin() method to start the transaction.
4. Retrieve and use the com.ibm.websphere.objectgrid.Session session to interact

with the data grid.
5. Use the LocalTransaction.commit() or rollback() methods to end the

transaction.
6. Close the connection.

v Enlist the connection in a global transaction. This procedure also applies to
container-managed transactions:

Chapter 5. Developing applications 231

1. Begin the global transaction through the javax.transaction.UserTransaction
interface or with a container-managed transaction.

2. Retrieve a com.ibm.websphere.xs.ra.XSConnection connection.
3. Retrieve and use the com.ibm.websphere.objectgrid.Session session.
4. Close the connection.
5. Commit or roll back the global transaction.

Example

See the following code example, which demonstrates the previous steps for
demarcating eXtreme Scale transactions.

// (C) Copyright IBM Corp. 2001, 2012.
// All Rights Reserved. Licensed Materials - Property of IBM.
package com.ibm.ws.xs.ra.test.ee;

import javax.naming.InitialContext;
import javax.resource.cci.Connection;
import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.LocalTransaction;
import javax.transaction.Status;
import javax.transaction.UserTransaction;

import junit.framework.TestCase;

import com.ibm.websphere.objectgrid.ObjectMap;
import com.ibm.websphere.objectgrid.Session;
import com.ibm.websphere.xs.ra.XSConnection;

/**
* This sample requires that it runs in a J2EE context in your
* application server. For example, using the JUnitEE framework servlet.
*
* The code in these test methods would typically reside in your own servlet,
* EJB, or other web component.
*
* The sample depends on a configured WebSphere eXtreme Scale connection
* factory registered at of JNDI Name of "eis/embedded/wxscf" that defines
* a connection to a grid containing a Map with the name "Map1".
*
* The sample does a direct lookup of the JNDI name and does not require
* resource injection.
*/
public class DocSampleTests extends TestCase {

public final static String CF_JNDI_NAME = "eis/embedded/wxscf";
public final static String MAP_NAME = "Map1";

Long key = null;
Long value = null;
InitialContext ctx = null;
ConnectionFactory cf = null;

public DocSampleTests() {
}
public DocSampleTests(String name) {

super(name);
}
protected void setUp() throws Exception {

ctx = new InitialContext();
cf = (ConnectionFactory)ctx.lookup(CF_JNDI_NAME);
key = System.nanoTime();
value = System.nanoTime();

}
/**
* This example runs when not in the context of a global transaction
* and uses autocommit.
*/
public void testLocalAutocommit() throws Exception {

Connection conn = cf.getConnection();
try {

Session session = ((XSConnection)conn).getSession();
ObjectMap map = session.getMap(MAP_NAME);
map.insert(key, value); // Or various data access operations

232 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

}
finally {

conn.close();
}

}

/**
* This example runs when not in the context of a global transaction
* and demarcates the transaction using session.begin()/session.commit()
*/
public void testLocalSessionTransaction() throws Exception {

Session session = null;
Connection conn = cf.getConnection();
try {

session = ((XSConnection)conn).getSession();
session.begin();
ObjectMap map = session.getMap(MAP_NAME);
map.insert(key, value); // Or various data access operations
session.commit();

}
finally {

if (session != null && session.isTransactionActive()) {
try { session.rollback(); }
catch (Exception e) { e.printStackTrace(); }

}
conn.close();

}
}

/**
* This example uses the LocalTransaction interface to demarcate
* transactions.
*/
public void testLocalTranTransaction() throws Exception {

LocalTransaction tx = null;
Connection conn = cf.getConnection();
try {

tx = conn.getLocalTransaction();
tx.begin();
Session session = ((XSConnection)conn).getSession();
ObjectMap map = session.getMap(MAP_NAME);
map.insert(key, value); // Or various data access operations
tx.commit(); tx = null;

}
finally {

if (tx != null) {
try { tx.rollback(); }
catch (Exception e) { e.printStackTrace(); }

}
conn.close();

}
}

/**
* This example depends on an externally managed transaction,
* the externally managed transaction might typically be present in
* an EJB with its transaction attributes set to REQUIRED or REQUIRES_NEW.
* NOTE: If there is NO global transaction active, this example runs in auto-commit
* mode because it doesn’t verify a transaction exists.
*/
public void testGlobalTransactionContainerManaged() throws Exception {

Connection conn = cf.getConnection();
try {

Session session = ((XSConnection)conn).getSession();
ObjectMap map = session.getMap(MAP_NAME);
map.insert(key, value); // Or various data access operations

}
catch (Throwable t) {

t.printStackTrace();
UserTransaction tx = (UserTransaction)ctx.lookup("java:comp/UserTransaction");
if (tx.getStatus() != Status.STATUS_NO_TRANSACTION) {

tx.setRollbackOnly();
}

}
finally {

conn.close();
}

}

Chapter 5. Developing applications 233

/**
* This example demonstrates starting a new global transaction using the
* UserTransaction interface. Typically the container starts the global
* transaction (for example in an EJB with a transaction attribute of
* REQUIRES_NEW), but this sample will also start the global transaction
* using the UserTransaction API if it is not currently active.
*/
public void testGlobalTransactionTestManaged() throws Exception {

boolean started = false;
UserTransaction tx = (UserTransaction)ctx.lookup("java:comp/UserTransaction");
if (tx.getStatus() == Status.STATUS_NO_TRANSACTION) {

tx.begin();
started = true;

}
// else { called with an externally/container managed transaction }
Connection conn = null;
try {

conn = cf.getConnection(); // Get connection after the global tran starts
Session session = ((XSConnection)conn).getSession();
ObjectMap map = session.getMap(MAP_NAME);
map.insert(key, value); // Or various data access operations
if (started) {

tx.commit(); started = false; tx = null;
}

}
finally {

if (started) {
try { tx.rollback(); }
catch (Exception e) { e.printStackTrace(); }

}
if (conn != null) { conn.close(); }

}
}

}

Using locking
Locks have life cycles and different types of locks are compatible with others in
various ways. Locks must be handled in the correct order to avoid deadlock
scenarios.

Locks:

Locks have life cycles and different types of locks are compatible with others in
various ways. Locks must be handled in the correct order to avoid deadlock
scenarios.

Shared, upgradeable, and exclusive locks

When an application calls any method of the ObjectMap interface, uses the find
methods on an index, or does a query, eXtreme Scale automatically attempts to
acquire a lock for the map entry that is being accessed. WebSphere eXtreme Scale
uses the following lock modes based on the method the application calls in the
ObjectMap interface.
v The get and getAll methods on the ObjectMap interface, index methods, and

queries acquire an S lock, or a shared lock mode for the key of a map entry. The
duration that the S lock is held depends on the transaction isolation level used.
An S lock mode allows concurrency between transactions that attempt to acquire
an S or an upgradeable lock (U lock) mode for the same key, but blocks other
transactions that attempt to get an exclusive lock (X lock) mode for the same
key.

v The getForUpdate and getAllForUpdate methods acquire a U lock, or an
upgradeable lock mode for the key of a map entry. The U lock is held until the
transaction completes. A U lock mode allows concurrency between transactions
that acquire an S lock mode for the same key, but blocks other transactions that
attempt to acquire a U lock or X lock mode for the same key.

234 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

v The put, putAll, remove, removeAll, insert, update, and touch acquire an X lock,
or exclusive lock mode for the key of a map entry. The X lock is held until the
transaction completes. An X lock mode ensures that only one transaction is
inserting, updating, or removing a map entry of a given key value. An X lock
blocks all other transactions that attempt to acquire a S, U, or X lock mode for
the same key.

v The global invalidate and global invalidateAll methods acquire an X lock for
each map entry that is invalidated. The X lock is held until the transaction
completes. No locks are acquired for the local invalidate and local invalidateAll
methods because none of the BackingMap entries are invalidated by local
invalidate method calls.

From the preceding definitions, it is obvious that an S lock mode is weaker than a
U lock mode because it allows more transactions to run concurrently when
accessing the same map entry. The U lock mode is slightly stronger than the S lock
mode because it blocks other transactions that are requesting either a U or X lock
mode. The S lock mode only blocks other transactions that are requesting an X lock
mode. This small difference is important in preventing some deadlocks from
occurring. The X lock mode is the strongest lock mode because it blocks all other
transactions attempting to get an S, U, or X lock mode for the same map entry. The
net effect of an X lock mode is to ensure that only one transaction can insert,
update, or remove a map entry and to prevent updates from being lost when more
than one transaction is attempting to update the same map entry.

The following table is a lock mode compatibility matrix that summarizes the
described lock modes, which you can use to determine which lock modes are
compatible with each other. To read this matrix, the row in the matrix indicates a
lock mode that is already granted. The column indicates the lock mode that is
requested by another transaction. If Yes is displayed in the column, then the lock
mode requested by the other transaction is granted because it is compatible with
the lock mode that is already granted. No indicates that the lock mode is not
compatible and the other transaction must wait for the first transaction to release
the lock that it owns.

Table 5. Lock mode compatibility matrix

Lock Lock type S (shared) Lock type U (upgradeable) Lock type X (exclusive) Strength

S (shared) Yes Yes No weakest

U (upgradeable) Yes No No normal

X (exclusive) No No No strongest

Locking deadlocks

Consider the following sequence of lock mode requests:
1. X lock is granted to transaction 1 for key1.
2. X lock is granted to transaction 2 for key2.
3. X lock requested by transaction 1 for key2. (Transaction 1 blocks waiting for

lock owned by transaction 2.)
4. X lock requested by transaction 2 for key1. (Transaction 2 blocks waiting for

lock owned by transaction 1.)

The preceding sequence is the classic deadlock example of two transactions that
attempt to acquire more than a single lock, and each transaction acquires the locks
in a different order. To prevent this deadlock, each transaction must obtain the
multiple locks in the same order. If the OPTIMISTIC lock strategy is used and the

Chapter 5. Developing applications 235

flush method on the ObjectMap interface is never used by the application, then
lock modes are requested by the transaction only during the commit cycle. During
the commit cycle, eXtreme Scale determines the keys for the map entries that need
to be locked and requests the lock modes in key sequence (deterministic behavior).
With this method, eXtreme Scale prevents the large majority of the classic
deadlocks. However, eXtreme Scale does not and cannot prevent all possible
deadlock scenarios. A few scenarios exist that the application needs to consider.
Following are the scenarios that the application must be aware of and take
preventative action against.

One scenario exists where eXtreme Scale is able to detect a deadlock without
having to wait for a lock wait timeout to occur. If this scenario does occur, a
com.ibm.websphere.objectgrid.LockDeadlockException exception results. Consider
the following code snippet:
Session sess = ...;
ObjectMap person = sess.getMap("PERSON");
sess.begin();
Person p = (IPerson)person.get("Lynn");
// Lynn had a birthday, so we make her 1 year older.
p.setAge(p.getAge() + 1);
person.put("Lynn", p);
sess.commit();

In this situation, Lynn's boyfriend wants to make her older than she is now, and
both Lynn and her boyfriend run this transaction concurrently. In this situation,
both transactions own an S lock mode on the Lynn entry of the PERSON map as a
result of the person.get("Lynn") method invocation. As a result of the person.put
("Lynn", p) method call, both transactions attempt to upgrade the S lock mode to
an X lock mode. Both transactions block waiting for the other transaction to release
the S lock mode it owns. As a result, a deadlock occurs because a circular wait
condition exists between the two transactions. A circular wait condition results
when more than one transaction attempts to promote a lock from a weaker to a
stronger mode for the same map entry. In this scenario, a LockDeadlockException
exception results instead of a LockTimeoutException exception.

The application can prevent the LockDeadlockException exception for the
preceding example by using the optimistic lock strategy instead of the pessimistic
lock strategy. Using the optimistic lock strategy is the preferred solution when the
map is mostly read and updates to the map are infrequent. If the pessimistic lock
strategy must be used, the getForUpdate method can be used instead of the get
method in the above example or a transaction isolation level of
TRANSACTION_READ_COMMITTED can be used.

For more information, see the topic on locking strategies in the Product Overview.

Using the TRANSACTION_READ_COMMITTED transaction isolation level
prevents the S lock that is acquired by the get method from being held until the
transaction completes. If the key is never invalidated in the transactional cache,
repeatable reads are still guaranteed.

See the topic on map entry locking in the Administration Guide for more
information.

An alternative to changing the transaction isolation level is to use the
getForUpdate method. The first transaction to call the getForUpdate method
acquires a U lock mode instead of an S lock. This lock mode causes the second
transaction to block when it calls the getForUpdate method because only one

236 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

transaction is granted a U lock mode. Because the second transaction is blocked, it
does not own any lock mode on the Lynn map entry. The first transaction does not
block when it attempts to upgrade the U lock mode to an X lock mode as a result
of the put method call from the first transaction. This feature demonstrates why U
lock mode is called the upgradeable lock mode. When the first transaction is
completed, the second transaction unblocks and is granted the U lock mode. An
application can prevent the lock promotion deadlock scenario by using the
getForUpdate method instead of the get method when pessimistic lock strategy is
being used.

Important: This solution does not prevent read-only transactions from being able
to read a map entry. Read-only transactions call the get method, but never call the
put, insert, update, or remove methods. Concurrency is just as high as when the
regular get method is used. The only reduction in concurrency occurs when the
getForUpdate method is called by more than one transaction for the same map
entry.

You must be aware when a transaction calls the getForUpdate method on more
than one map entry to ensure that the U locks are acquired in the same order by
each transaction. For example, suppose that the first transaction calls the
getForUpdate method for the key 1 and the getForUpdate method for key 2.
Another concurrent transaction calls the getForUpdate method for the same keys,
but in reverse order. This sequence causes the classic deadlock because multiple
locks are obtained in different orders by different transactions. The application still
needs to ensure that every transaction accesses multiple map entries in key
sequence to ensure that deadlock does not occur. Because the U lock is obtained at
the time that the getForUpdate method is called rather than at commit time, the
eXtreme Scale cannot order the lock requests like it does during the commit cycle.
The application must control the lock ordering in this case.

Using the flush method on the ObjectMap interface before a commit can introduce
additional lock ordering considerations. The flush method is typically used to force
changes made to the map out to the backend through the Loader plug-in. In this
situation, the backend uses its own lock manager to control concurrency, so the
lock wait condition and deadlock can occur in backend rather than in the eXtreme
Scale lock manager. Consider the following transaction:
Session sess = ...;
ObjectMap person = sess.getMap("PERSON");
boolean activeTran = false;
try
{

sess.begin();
activeTran = true;
Person p = (IPerson)person.get("Lynn");
p.setAge(p.getAge() + 1);
person.put("Lynn", p);
person.flush();
...
p = (IPerson)person.get("Tom");
p.setAge(p.getAge() + 1);
sess.commit();
activeTran = false;

}
finally
{

if (activeTran) sess.rollback();
}

Chapter 5. Developing applications 237

Suppose that another transaction also updated the Tom person, called the flush
method, and then updated the Lynn person. If this situation occurred, the
following interleaving of the two transactions results in a database deadlock
condition:
X lock is granted to transaction 1 for "Lynn" when flush is executed.
X lock is granted to transaction 2 for "Tom" when flush is executed..
X lock requested by transaction 1 for "Tom" during commit processing.
(Transaction 1 blocks waiting for lock owned by transaction 2.)
X lock requested by transaction 2 for "Lynn" during commit processing.
(Transaction 2 blocks waiting for lock owned by transaction 1.)

This example demonstrates that the use of the flush method can cause a deadlock
to occur in the database rather than in eXtreme Scale. This deadlock example can
occur regardless of what lock strategy is used. The application must take care to
prevent this kind of deadlock from occurring when using the flush method and
when a Loader is plugged into the BackingMap. The preceding example also
illustrates another reason why eXtreme Scale has a lock wait timeout mechanism.
A transaction that is waiting for a database lock might be waiting while it owns an
eXtreme Scale map entry lock. Consequently, problems at database level can cause
excessive wait times for an eXtreme Scale lock mode and result in a
LockTimeoutException exception.

Implementing exception handling in locking scenarios:

To prevent locks from being held for excessive amounts of time when a
LockTimeoutException exception or a LockDeadlockException exception occurs, an
application must ensure that it catches unexpected exceptions and calls the rollback
method when something unexpected occurs.

Procedure

1. Catch the exception, and display resulting message.
try {
...
} catch (ObjectGridException oe) {
System.out.println(oe);
}

The following exception displays as a result:
com.ibm.websphere.objectgrid.plugins.LockDeadlockException: Message

This message represents the string that is passed as a parameter when the
exception is created and thrown.

2. Roll back the transaction after an exception:
Session sess = ...;
ObjectMap person = sess.getMap("PERSON");
boolean activeTran = false;
try
{

sess.begin();
activeTran = true;
Person p = (IPerson)person.get("Lynn");
// Lynn had a birthday, so we make her 1 year older.
p.setAge(p.getAge() + 1);
person.put("Lynn", p);
sess.commit();
activeTran = false;

}

238 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

finally
{

if (activeTran) sess.rollback();
}

The finally block in the snippet of code ensures that a transaction is rolled
back when an unexpected exception occurs. It not only handles a
LockDeadlockException exception, but any other unexpected exception that
might occur. The finally block handles the case where an exception occurs
during a commit method invocation. This example is not the only way to deal
with unexpected exceptions, and there might be cases where an application
wants to catch some of the unexpected exceptions that can occur and display
one of its application exceptions. You can add catch blocks as appropriate, but
the application must ensure that the snippet of code does not exit without
completing the transaction.

Configuring a locking strategy:

You can define an optimistic, a pessimistic, or no locking strategy on each
BackingMap in the WebSphere eXtreme Scale configuration.

About this task

Each BackingMap instance can be configured to use one of the following locking
strategies:
1. Optimistic locking mode
2. Pessimistic locking mode
3. None

The default lock strategy is OPTIMISTIC. Use optimistic locking when data is
changed infrequently. Locks are only held for a short duration while data is being
read from the cache and copied to the transaction. When the transaction cache is
synchronized with the main cache, any cache objects that have been updated are
checked against the original version. If the check fails, then the transaction is rolled
back and an OptimisticCollisionException exception results.

The PESSIMISTIC lock strategy acquires locks for cache entries and should be used
when data is changed frequently. Any time a cache entry is read, a lock is acquired
and conditionally held until the transaction completes. The duration of some locks
can be tuned using transaction isolation levels for the session.

If locking is not required because the data is never updated or is only updated
during quiet periods, you can disable locking by using the NONE lock strategy.
This strategy is very fast because a lock manager is not required. The NONE lock
strategy is ideal for look-up tables or read-only maps.

For more information about locking strategies, see “Locking strategies” on page
221the information about locking strategies in the Product Overview.

Procedure

v Configure an optimistic locking strategy

– Programmatically using the setLockStrategy method:
import com.ibm.websphere.objectgrid.BackingMap;
import com.ibm.websphere.objectgrid.LockStrategy;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;

Chapter 5. Developing applications 239

...
ObjectGrid og =
ObjectGridManagerFactory.getObjectGridManager().createObjectGrid("test");
BackingMap bm = og.defineMap("optimisticMap");
bm.setLockStrategy(LockStrategy.OPTIMISTIC);

– Using the lockStrategy attribute in the .:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="test">
<backingMap name="optimisticMap"

lockStrategy="OPTIMISTIC"/>
</objectGrid>

</objectGrids>
</objectGridConfig>

v Configure a pessimistic locking strategy

– Programmatically using the setLockStrategy method:
specify pessimistic strategy programmatically
import com.ibm.websphere.objectgrid.BackingMap;
import com.ibm.websphere.objectgrid.LockStrategy;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
...
ObjectGrid og =
ObjectGridManagerFactory.getObjectGridManager().createObjectGrid("test");
BackingMap bm = og.defineMap("pessimisticMap");
bm.setLockStrategy(LockStrategy.PESSIMISTIC);

– Using the lockStrategy attribute in the .
specify pessimistic strategy using XML
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="test">

<backingMap name="pessimisticMap"
lockStrategy="PESSIMISTIC"/>

</objectGrid>
</objectGrids>

</objectGridConfig>

v Configure a no locking strategy

– Programmatically using the setLockStrategy method:
import com.ibm.websphere.objectgrid.BackingMap;
import com.ibm.websphere.objectgrid.LockStrategy;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
...
ObjectGrid og =
ObjectGridManagerFactory.getObjectGridManager().createObjectGrid("test");
BackingMap bm = og.defineMap("noLockingMap");
bm.setLockStrategy(LockStrategy.NONE);

– Using the lockStrategy attribute in the .:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="test">

240 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

<backingMap name="noLockingMap"
lockStrategy="NONE"/>

</objectGrid>
</objectGrids>

</objectGridConfig>

What to do next

To avoid a java.lang.IllegalStateException exception, you must call the
setLockStrategy method before calling the initialize or getSession methods on the
ObjectGrid instance.

Configuring the lock timeout value:

The lock timeout value on a BackingMap instance is used to ensure that an
application does not wait endlessly for a lock mode to be granted because of a
deadlock condition that occurs due to an application error.

Before you begin

To configure the lock timeout value, the locking strategy must be set to either
OPTIMISTIC or PESSIMISTIC. See “Configuring a locking strategy” on page 239
for more information.

About this task

When a LockTimeoutException exception occurs, the application must determine if
the timeout is occurring because the application is running slower than expected,
or if the timeout occurred because of a deadlock condition. If an actual deadlock
condition occurred, then increasing the lock wait timeout value does not eliminate
the exception. Increasing the timeout results in the exception taking longer to
occur. However, if increasing the lock wait timeout value does eliminate the
exception, then the problem occurred because the application was running slower
than expected. The application in this case must determine why performance is
slow.

To prevent deadlocks from occurring, the lock manager has a default timeout value
of 15 seconds. If the timeout limit is exceeded, a LockTimeoutException exception
occurs. If your system is heavily loaded, the default timeout value might cause the
LockTimeoutException exceptions to occur when no deadlock exists. In this
situation, you can increase the lock timeout value programmatically or in the
ObjectGrid descriptor XML file.

Procedure

v Configure a lock timeout value programmatically on a BackingMap instance
with the setLockTimeout method.
The following example illustrates how to set the lock wait timeout value for the
map1 backing map to 60 seconds:
import com.ibm.websphere.objectgrid.BackingMap;
import com.ibm.websphere.objectgrid.LockStrategy;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
...
ObjectGrid og =
ObjectGridManagerFactory.getObjectGridManager().createObjectGrid("test");
BackingMap bm = og.defineMap("map1");
bm.setLockStrategy(LockStrategy.PESSIMISTIC);
bm.setLockTimeout(60);

Chapter 5. Developing applications 241

To avoid a java.lang.IllegalStateException exception, call both the
setLockStrategy method and the setLockTimeout method before calling either the
initialize or getSession methods on the ObjectGrid instance. The setLockTimeout
method parameter is a Java primitive integer that specifies the number of
seconds that eXtreme Scale waits for a lock mode to be granted. If a transaction
waits longer than the lock wait timeout value configured for the BackingMap, a
com.ibm.websphere.objectgrid.LockTimeoutException exception results.

v Configure the lock timeout value using the lockTimeout attribute in the
ObjectGrid descriptor XML fileObjectGrid descriptor XML file.
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="test">
<backingMap name="optimisticMap"

lockStrategy="OPTIMISTIC"
lockTimeout="60"/>

</objectGrid>
</objectGrids>

</objectGridConfig>

v Override the lock wait timeout for a single ObjectMap instance. Use the
ObjectMap.setLockTimeout method to override the lock timeout value for a
specific ObjectMap instance. The lock timeout value affects all transactions
started after the new timeout value is set. This method can be useful when lock
collisions are possible or expected in select transactions.

Map entry locks with query and indexes:

This topic describes how eXtreme Scale Query APIs and the MapRangeIndex
indexing plug-in interact with locks and some best practices to increase
concurrency and decrease deadlocks when using the pessimistic locking strategy
for maps.

Overview

The ObjectGrid Query API allows SELECT queries over ObjectMap cache objects
and entities. When a query is run, the query engine uses a MapRangeIndex when
possible to find matching keys that match values in the query's WHERE clause or
to bridge relationships. When an index isn't available, the query engine will scan
each entry in one or more maps to find the appropriate entries. Both the query
engine and index plugins will acquire locks to verify consistent data, depending on
the locking strategy, transaction isolation level, and transaction state.

Locking with the HashIndex plug-in

The eXtreme Scale HashIndex plug-in allows finding keys based on a single
attribute stored in the cache entry value. The index stores the indexed value in a
separate data structure from the cache map. The index validates the keys against
map entries before returning to the user to try to achieve an accurate result set.
When the pessimistic lock strategy is used and the index is used against a local
ObjectMap instance (versus a client/server ObjectMap), the index will acquire
locks for each matching entry. When using optimistic locking or a remote
ObjectMap, the locks are always immediately released.

242 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsogref.html

The type of lock that is acquired depends upon the forUpdate argument passed to
the ObjectMap.getIndex method. The forUpdate argument specifies the type of lock
that the index should acquire. If false, a shareable (S) lock is acquired and if true,
an upgradeable (U) lock is acquired.

If the lock type is shareable, the transaction isolation setting for the session is
applied and affects the duration of the lock. See the transaction isolation topic for
details on how transaction isolation is used to add concurrency to applications.

Shared locks with query

The eXtreme Scale query engine acquires S locks when needed to introspect the
cache entries to discover if they satisfy the query's filter criteria. When using
repeatable read transaction isolation with pessimistic locking, the S locks are only
retained for the elements that are included in the query result and are released for
any entries that are not included in the result. If using a lower transaction isolation
level or optimistic locking, the S locks are not retained.

Shared locks with client to server query

When using the eXtreme Scale query from a client, the query typically runs on the
server unless all of the maps or entities referenced in the query are local to the
client (for example: a client-replicated map or a query result entity). All queries
that run in a read/write transaction will retain S locks as described in the previous
section. If the transaction is not a read/write transaction, then a session is not
retained on the server and the S locks are released.

A read/write transaction is only routed to a primary partition and a session is
maintained on the server for the client session. A transaction can be promoted to
read/write under the following conditions:
1. Any map configured to use pessimistic locking is accessed using the ObjectMap

get and getAll API methods or the EntityManager.find methods.
2. The transaction is flushed, causing updates to be sent to the server.
3. Any map configured to use optimistic locking is accessed using the

ObjectMap.getForUpdate or EntityManager.findForUpdate method.

Upgradeable locks with query

Shareable locks are useful when concurrency and consistency is important. It
guarantees that an entry's value does not change for the life of the transaction. No
other transaction can change the value while any other S locks are held, and only
one other transaction can establish an intent to update the entry. See the
Pessimistic Locking Mode topic for details on the S, U and X locking modes.

Upgradeable locks are used to identify the intent to update a cache entry when
using the pessimistic lock strategy. It allows synchronization between transactions
that want to modify a cache entry. Transactions can still view the entry using an S
lock, but other transactions are prevented from acquiring a U lock or an X lock. In
many scenarios, acquiring a U lock without first acquiring an S lock is necessary to
avoid deadlocks. See the Pessimistic Locking Mode topic for common deadlock
examples.

Chapter 5. Developing applications 243

The ObjectQuery and EntityManager Query interfaces provide the setForUpdate
method to identify the intended use for the query result. Specifically, the query
engine acquires U locks instead of S locks for each map entry involved in the
query result:
ObjectMap orderMap = session.getMap("Order");
ObjectQuery q = session.createQuery("SELECT o FROM Order o WHERE o.orderDate=?1");
q.setParameter(1, "20080101");
q.setForUpdate(true);
session.begin();
// Run the query. Each order has U lock
Iterator result = q.getResultIterator();
// For each order, update the status.
while(result.hasNext()) {

Order o = (Order) result.next();
o.status = "shipped";
orderMap.update(o.getId(), o);

}
// When committed, the
session.commit();

Query q = em.createQuery("SELECT o FROM Order o WHERE o.orderDate=?1");
q.setParameter(1, "20080101");
q.setForUpdate(true);
emTran.begin();
// Run the query. Each order has U lock
Iterator result = q.getResultIterator();
// For each order, update the status.
while(result.hasNext()) {

Order o = (Order) result.next();
o.status = "shipped";

}
tmTran.commit();

When the setForUpdate attribute is enabled, the transaction is automatically
converted to a read/write transaction and the locks are held on the server as
expected. If the query cannot use any indexes, then the map must be scanned
which will result in temporary U locks for map entries that do not satisfy the
query result, and hold U locks for entries that are included in the result.

Transaction isolation
For transactions, you can configure each backing map configuration with one of
three lock strategies: pessimistic, optimistic or none. When you are using
pessimistic and optimistic locking, eXtreme Scale uses shared (S), upgradeable (U)
and exclusive (X) locks to maintain consistency. This locking behavior is most
notable when using pessimistic locking, because optimistic locks are not held. You
can use one of three transaction isolation levels to tune the locking semantics that
eXtreme Scale uses to maintain consistency in each cache map: repeatable read,
read committed and read uncommitted.

Transaction isolation overview

Transaction isolation defines how the changes that are made by one operation
become visible to other concurrent operations.

WebSphere eXtreme Scale supports three transaction isolation levels with which
you can further tune the locking semantics that eXtreme Scale uses to maintain
consistency in each cache map: repeatable read, read committed and read
uncommitted. The transaction isolation level is set on the Session interface using
the setTransactionIsolation method. The transaction isolation can be changed any
time during the life of the session, if a transaction is not currently in progress.

244 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

The product enforces the various transaction isolation semantics by adjusting the
way in which shared (S) locks are requested and held. Transaction isolation has no
effect on maps configured to use the optimistic or none locking strategies or when
upgradeable (U) locks are acquired.

Repeatable read with pessimistic locking

The repeatable read transaction isolation level is the default. This isolation level
prevents dirty reads and non-repeatable reads, but does not prevent phantom
reads. A dirty read is a read operation that occurs on data that has been modified
by a transaction but has not been committed. A non-repeatable read might occur
when read locks are not acquired when performing a read operation. A phantom
read can occur when two identical read operations are performed, but two
different sets of results are returned because an update has occurred on the data
between the read operations. The product achieve a repeatable read by holding
onto any S locks until the transaction that owns the lock completes. Because an X
lock is not granted until all S locks are released, all transactions holding the S lock
are guaranteed to see the same value when re-read.
map = session.getMap("Order");
session.setTransactionIsolation(Session.TRANSACTION_REPEATABLE_READ);
session.begin();

// An S lock is requested and held and the value is copied into
// the transactional cache.
Order order = (Order) map.get("100");
// The entry is evicted from the transactional cache.
map.invalidate("100", false);

// The same value is requested again. It already holds the
// lock, so the same value is retrieved and copied into the
// transactional cache.
Order order2 (Order) = map.get("100");

// All locks are released after the transaction is synchronized
// with cache map.
session.commit();

Phantom reads are possible when you are using queries or indexes because locks
are not acquired for ranges of data, only for the cache entries that match the index
or query criteria. For example:
session1.setTransactionIsolation(Session.TRANSACTION_REPEATABLE_READ);
session1.begin();

// A query is run which selects a range of values.
ObjectQuery query = session1.createObjectQuery

("SELECT o FROM Order o WHERE o.itemName=’Widget’");

// In this case, only one order matches the query filter.
// The order has a key of "100".
// The query engine automatically acquires an S lock for Order "100".
Iterator result = query.getResultIterator();

// A second transaction inserts an order that also matches the query.
Map orderMap = session2.getMap("Order");
orderMap.insert("101", new Order("101", "Widget"));

// When the query runs again in the current transaction, the
// new order is visible and will return both Orders "100" and "101".
result = query.getResultIterator();

Chapter 5. Developing applications 245

// All locks are released after the transaction is synchronized
// with cache map.
session.commit();

Read committed with pessimistic locking

The read committed transaction isolation level can be used with eXtreme Scale,
which prevents dirty reads, but does not prevent non-repeatable reads or phantom
reads, so eXtreme Scale continues to use S locks to read data from the cache map,
but immediately releases the locks.
map1 = session1.getMap("Order");
session1.setTransactionIsolation(Session.TRANSACTION_READ_COMMITTED);
session1.begin();

// An S lock is requested but immediately released and
//the value is copied into the transactional cache.

Order order = (Order) map1.get("100");

// The entry is evicted from the transactional cache.
map1.invalidate("100", false);

// A second transaction updates the same order.
// It acquires a U lock, updates the value, and commits.
// The ObjectGrid successfully acquires the X lock during
// commit since the first transaction is using read
// committed isolation.

Map orderMap2 = session2.getMap("Order");
session2.begin();
order2 = (Order) orderMap2.getForUpdate("100");
order2.quantity=2;
orderMap2.update("100", order2);
session2.commit();

// The same value is requested again. This time, they
// want to update the value, but it now reflects
// the new value
Order order1Copy (Order) = map1.getForUpdate("100");

Read uncommitted with pessimistic locking

The read uncommitted transaction isolation level can be used with eXtreme Scale,
which is a level that allows dirty reads, non-repeatable reads and phantom reads.

Optimistic collision exception
You can receive an OptimisticCollisionException directly, or receive it with an
ObjectGridException.

The following code is an example of how to catch the exception and then display
its message:
try {
...
} catch (ObjectGridException oe) {

System.out.println(oe);
}

Exception cause

OptimisticCollisionException is created in a situation in which two different clients
try to update the same map entry at relatively the same time. For example, if one

246 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

client attempts to commit a session and update the map entry after another client
reads the data before the commit, that data is then incorrect. The exception is
created when the other client attempts to commit the incorrect data.

Retrieving the key that triggered the exception

It might be useful, when troubleshooting such an exception, to retrieve the key
corresponding to the entry that triggered the exception. The benefit of the
OptimisticCollisionException is it contains the getKey method, which returns the
object representing that key. The following example demonstrates how to retrieve
and print the key when catching OptimisticCollisionException:
try {
...
} catch (OptimisticCollisionException oce) {

System.out.println(oce.getKey());
}

ObjectGridException causes an OptimisticCollisionException

OptimisticCollisionException might be the cause of ObjectGridException
displaying. If this is the case, you can use the following code to determine the
exception type and print out the key. The following code uses the findRootCause
utility method as described in the section below.
try {
...
}
catch (ObjectGridException oe) {

Throwable Root = findRootCause(oe);
if (Root instanceof OptimisticCollisionException) {

OptimisticCollisionException oce = (OptimisticCollisionException)Root;
System.out.println(oce.getKey());

}
}

General exception handling technique

Knowing the root cause of a Throwable object is helpful in isolating the source of
an error. The following example demonstrates how an exception handler uses a
utility method to find the root cause of the Throwable object.

Example:
static public Throwable findRootCause(Throwable t)
{

// Start with Throwable that occurred as the root.
Throwable root = t;

// Follow cause chain until last Throwable in chain is found.
Throwable cause = root.getCause();
while (cause != null)
{

root = cause;
cause = root.getCause();

}

// Return last Throwable in the chain as the root cause.
return root;

}

Chapter 5. Developing applications 247

Running parallel business logic on the data grid (DataGrid API)
The DataGrid API provides a simple programming interface to run business logic
over all or a subset of the data grid in parallel with where the data is located.

DataGrid APIs and partitioning:

With the DataGrid APIs, a client can send requests to one partition, a subset of
partitions, or all the partitions in a data grid. The client can specify a list of keys,
and WebSphere eXtreme Scale determines the set of partitions that are hosting the
keys. The request is then sent to all the partitions in the set in parallel and the
client waits for the results. The client can also send requests without specifying
keys, therefore, requests are sent to all partitions.

Agents that are deployed to the data grid do not work in client mode. These
agents work directly against the primary shard. Working directly against the
primary shard results in maximum performance, allowing tens of thousands or
more transactions per second because the agent works with the data at full
memory speeds. Working directly with the primary shard also means that an agent
can only see data that is within that shard. This provides some interesting
opportunities that cannot be done on a client.

A typical eXtreme Scale client must be able determine the partition from the
transaction, because the client needs to route the request. If an agent is directly
attached to a shard, then no routing is needed. All requests go against that shard.
Because the agent is directly attached to a shard, data in other maps in the shard
can be accessed without worrying about common partitioning keys, and so on,
because no routing occurs.

DataGrid agents and entity-based Maps:

A map contains key objects and value objects. The key object is a generated tuple
as is the value. An agent is normally provided with the application specified key
objects.

The key object is a generated tuple as is the value. An agent is normally provided
with the application specified key objects. This will be the key objects used by the
application or Tuples if it is an entity Map. An application using Entities will not
want to deal with Tuples directly and would prefer to work with the Java objects
mapped to the Entity.

Therefore, an Agent class can implement the EntityAgentMixin interface. This
forces the class to implement one more method, getClassForEntity(). This returns
the entity class to use with the agent on the server side. The keys are converted to
this Entity before invoking the process and reduce methods.

This is a different semantic to a non EntityAgentMixin agent where those methods
are provided with just the keys. An agent implementing EntityAgentMixin receives
the Entity object which includes keys and values in one object.

Note: If the entity does not exist on the server, the keys are the raw Tuple format
of the key instead of the managed entity.

DataGrid API example:

The DataGrid APIs support two common grid programming patterns: parallel map
and parallel reduce.

248 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Parallel Map

The parallel map allows the entries for a set of keys to be processed and returns a
result for each entry processed. The application makes a list of keys and receives a
Map of key/result pairs after invoking a Map operation. The result is the result of
applying a function to the entry of each key. The function is supplied by the
application.

MapGridAgent call flow

When the AgentManager.callMapAgent method is invoked with a collection of
keys, the MapGridAgent instance is serialized and sent to each primary partition
that the keys resolve to. This means that any instance data stored in the agent can
be sent to the server. Each primary partition therefore has one instance of the
agent. The process method is invoked for each instance one time for each key that
resolves to the partition. The result of each process method is then serialized back
to the client and returned to the caller in a Map instance, where the result is
represented as the value in the map.

When the AgentManager.callMapAgent method is invoked without a collection of
keys, the MapGridAgent instance is serialized and sent to every primary partition.
This means that any instance data stored in the agent can be sent to the server.
Each primary partition therefore has one instance (partition) of the agent. The
processAllEntries method is invoked for each partition. The result of each
processAllEntries method is then serialized back to the client and returned to the
caller in a Map instance. The following example assumes that a Person entity exists
with the following shape:
import com.ibm.websphere.projector.annotations.Entity;
import com.ibm.websphere.projector.annotations.Id;
@Entity
public class Person
{

@Id String ssn;
String firstName;
String surname;
int age;

}

The application supplied function is written as a class that implements the
MapAgentGrid interface. An example agent that shows a function to return the age
of a Person multiplied by two.
public class DoublePersonAgeAgent implements MapGridAgent, EntityAgentMixin
{

private static final long serialVersionUID = -2006093916067992974L;

int lowAge;
int highAge;

public Object process(Session s, ObjectMap map, Object key)
{

Person p = (Person)key;
return new Integer(p.age * 2);

}

public Map processAllEntries(Session s, ObjectMap map)
{

EntityManager em = s.getEntityManager();
Query q = em.createQuery("select p from Person p where p.age > ?1 and p.age < ?2");
q.setParameter(1, lowAge);
q.setParameter(2, highAge);
Iterator iter = q.getResultIterator();
Map<Person, Interger> rc = new HashMap<Person, Integer>();
while(iter.hasNext())
{
Person p = (Person)iter.next();
rc.put(p, (Integer)process(s, map, p));
}

Chapter 5. Developing applications 249

return rc;
}
public Class getClassForEntity()
{
return Person.class;
}
}

The previous example shows the Map agent for doubling a Person. The first
process method is supplied with the Person to work with and returns double the
age of that entry. The second process method is called for each partition and finds
all Person objects with an age between lowAge and highAge and returns their ages
doubled.
Session s = grid.getSession();
ObjectMap map = s.getMap("Person");
AgentManager amgr = map.getAgentManager();

DoublePersonAgeAgent agent = new DoublePersonAgeAgent();

// make a list of keys
ArrayList<Person> keyList = new ArrayList<Person>();
Person p = new Person();
p.ssn = "1";
keyList.add(p);
p = new Person ();
p.ssn = "2";
keyList.add(p);

// get the results for those entries
Map<Tuple, Object> = amgr.callMapAgent(agent, keyList);
// Close the session (optional in Version 7.1.1 and later) for improved performance
s.close();

The previous example shows a client obtaining a Session and a reference to the
Person Map. The agent operation is performed against a specific Map. The
AgentManager interface is retrieved from that Map. An instance of the agent to
invoke is created and any necessary state is added to the object by setting
attributes, there are none in this case. A list of keys are then constructed. A Map
with the values for person 1 doubled, and the same values for person 2 are
returned.

The agent is then invoked for that set of keys. The agents process method is
invoked on each partition with some of the specified keys in the grid in parallel. A
Map is returned providing the merged results for the specified key. In this case, a
Map with the values holding the age for person 1 doubled and the same for
person 2 is returned.

If the key does not exist, the agent is still invoked. This invocation gives the agent
the opportunity to create the map entry. If you are using an EntityAgentMixin, the
key to process is not the entity, but the actual Tuple key value for the entity. If the
keys are unknown, then you can ask all partitions to find Person objects of a
certain shape and return their ages doubled. An example follows:
Session s = grid.getSession();

ObjectMap map = s.getMap("Person");
AgentManager amgr = map.getAgentManager();

DoublePersonAgeAgent agent = new DoublePersonAgeAgent();
agent.lowAge = 20;
agent.highAge = 9999;

Map m = amgr.callMapAgent(agent);

250 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

The previous example shows the AgentManager being obtained for the Person
Map, and the agent constructed and initialized with the low and high ages for
Persons of interest. The agent is then invoked using the callMapAgent method.
Notice, no keys are supplied. As a result, the ObjectGrid invokes the agent on
every partition in the grid in parallel and returns the merged results to the client.
This set of returns contains all Person objects in the grid with an age between low
and high and calculates the age of those Person objects doubled. This example
shows how the grid APIs can be used to run a query to find entities that match a
certain query. The agent is serialized and transported by the ObjectGrid to the
partitions with the needed entries. The results are similarly serialized for transport
back to the client. Care needs to be taken with the Map APIs. If the ObjectGrid
was hosting terabytes of objects and running on many servers, then potentially this
processing would overwhelm client machines. Use Map APIs to process a small
subset. If a large subset needs processing, use a reduce agent to do the processing
out in the data grid rather than on a client.

Parallel Reduction or aggregation agents

This style of programming processes a subset of the entries and calculates a single
result for the group of entries. Examples of such a result would be:
v Minimum value
v Maximum value
v Some other business-specific function

A reduce agent is coded and invoked in a similar manner to the Map agents.

ReduceGridAgent call flow

When the AgentManager.callReduceAgent method is invoked with a collection of
keys, the ReduceGridAgent instance is serialized and sent to each primary
partition that the keys resolve to. This means that any instance data stored in the
agent can be sent to the server. Each primary partition therefore has one instance
of the agent. The reduce(Session s, ObjectMap map, Collection keys) method is
invoked once per instance (partition) with the subset of keys that resolves to the
partition. The result of each reduce method is then serialized back to the client.
The reduceResults method is invoked on the client ReduceGridAgent instance with
the collection of each result from each remote reduce invocation. The result from
the reduceResults method is returned to the caller of the callReduceAgent method.

When the AgentManager.callReduceAgent method is invoked without a collection
of keys, the ReduceGridAgentinstance is serialized and sent to each primary
partition. This means that any instance data stored in the agent can be sent to the
server. Each primary partition therefore has one instance of the agent. The
reduce(Session s, ObjectMap map) method is invoked once per instance (partition).
The result of each reduce method is then serialized back to the client. The
reduceResults method is invoked on the client ReduceGridAgent instance with the
collection of each result from each remote reduce invocation. The result from the
reduceResults method is returned to the caller of the callReduceAgent method.
Here is an example of a reduce agent that simply adds the ages of the matching
entries.
package com.ibm.ws.objectgrid.test.agent.jdk5;

import java.util.Collection;
import java.util.Iterator;

import com.ibm.websphere.objectgrid.ObjectMap;
import com.ibm.websphere.objectgrid.Session;
import com.ibm.websphere.objectgrid.datagrid.EntryErrorValue;
import com.ibm.websphere.objectgrid.datagrid.ReduceGridAgent;

Chapter 5. Developing applications 251

import com.ibm.websphere.objectgrid.query.ObjectQuery;
import com.ibm.websphere.samples.objectgrid.entityxmlgen.PersonFeature1Entity.PersonKey;

public class SumAgeReduceAgent implements ReduceGridAgent {
private static final long serialVersionUID = 2521080771723284899L;

/**
* Invoked on the server if a collection of keys is passed to
* AgentManager.callReduceAgent(). This is invoked on each primary shard
* where the key applies.
*/
public Object reduce(Session s, ObjectMap map, Collection keyList) {
try {
int sum = 0;
Iterator<PersonKey> iter = keyList.iterator();
while (iter.hasNext()) {
Object nextKey = iter.next();
PersonKey pk = (PersonKey) nextKey;
Person p = (Person) map.get(pk);
sum += p.age;
}

return sum;
} catch (Exception e) {
throw new RuntimeException(e.getMessage(), e);
}
}

/**
* Invoked on the server if a collection of keys is NOT passed to
* AgentManager.callReduceAgent(). This is invoked on every primary shard.
*/
public Object reduce(Session s, ObjectMap map) {
ObjectQuery q = s

.createObjectQuery("select p from Person p where p.age > -1");
Iterator<Person> iter = q.getResultIterator();
int sum = 0;
while (iter.hasNext()) {
Object nextKey = iter.next();
Person p = (Person) nextKey;
sum += p.age;
}
return sum;
}

/**
* Invoked on the client to reduce the results from all partitions.
*/
public Object reduceResults(Collection results) {
// If we encounter an EntryErrorValue, then throw a RuntimeException
// to indicate that there was at least one failure and include each
// EntryErrorValue
// as part of the thrown exception.
Iterator<Integer> iter = results.iterator();
int sum = 0;
while (iter.hasNext()) {
Object nextResult = iter.next();
if (nextResult instanceof EntryErrorValue) {
EntryErrorValue eev = (EntryErrorValue) nextResult;
throw new RuntimeException(

"Error encountered on one of the partitions: "
+ nextResult, eev.getException());

}

sum += ((Integer) nextResult).intValue();
}
return new Integer(sum);
}
}

The previous example shows the agent. The agent has three important parts. The
first allows a specific set of entries to be processed without a query. It iterates over
the set of entries, adding the ages. The sum is returned from the method. The
second uses a query to select the entries to be aggregated. It then sums all the
matching Person ages. The third method is used to aggregate the results from each
partition to a single result. The ObjectGrid performs the entry aggregation in
parallel across the grid. Each partition produces an intermediate result that must
be aggregated with other partition intermediate results. This third method
performs that task. In the following example the agent is invoked, and the ages of
all Persons with ages 10 - 20 exclusively are aggregated:
Session s = grid.getSession();
ObjectMap map = s.getMap("Person");
AgentManager amgr = map.getAgentManager();

252 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

SumAgeReduceAgent agent = new SumAgeReduceAgent();

Person p = new Person();
p.ssn = "1";
ArrayList<Person> list = new ArrayList<Person>();
list.add(p);
p = new Person ();
p.ssn = "2";
list.add(p);
Integer v = (Integer)amgr.callReduceAgent(agent, list);
// Close the session (optional in Version 7.1.1 and later) for improved performance
s.close();

Agent functions

The agent is free to do ObjectMap or EntityManager operations within the local
shard where it is running. The agent receives a Session and can add, update, query,
read, or remove data from the partition the Session represents. Some applications
query only data from the grid, but you can also write an agent to increment all the
Person ages by 1 that match a certain query. There is a transaction on the Session
when the agent is called, and is committed when the agent returns unless an
exception is thrown

Error handling

If a map agent is invoked with an unknown key then the value that is returned is
an error object that implements the EntryErrorValue interface.

Transactions

A map agent runs in a separate transaction from the client. Agent invocations may
be grouped into a single transaction. If an agent fails and throws an exception, the
transaction is rolled back. Any agents that ran successfully in a transaction rolls
back with the failed agent. The AgentManager reruns the rolled-back agents that
ran successfully in a new transaction.

Configuring clients programmatically
You can configure a WebSphere eXtreme Scale client based on your requirements
such as the need to override settings.

Override plug-ins

You can override the following plug-ins on a client:
v ObjectGrid plug-ins

– TransactionCallback plug-in
– ObjectGridEventListener plug-in

v BackingMap plug-ins

– Evictor plug-in
– MapEventListener plug-in
– numberOfBuckets attribute
– ttlEvictorType attribute
– timeToLive attribute

Chapter 5. Developing applications 253

Configure the client programmatically

You can also override client-side ObjectGrid settings programmatically. Create an
ObjectGridConfiguration object that is similar in structure to the server-side
ObjectGrid instance. The following code creates a client-side ObjectGrid instance
that is functionally equivalent to the client override in the previous section which
uses an XML file.
client-side override programmatically
ObjectGridConfiguration companyGridConfig = ObjectGridConfigFactory

.createObjectGridConfiguration("CompanyGrid");
Plugin txCallbackPlugin = ObjectGridConfigFactory.createPlugin(

PluginType.TRANSACTION_CALLBACK, "com.company.MyClientTxCallback");
companyGridConfig.addPlugin(txCallbackPlugin);

Plugin ogEventListenerPlugin = ObjectGridConfigFactory.createPlugin(
PluginType.OBJECTGRID_EVENT_LISTENER, "");

companyGridConfig.addPlugin(ogEventListenerPlugin);

BackingMapConfiguration customerMapConfig = ObjectGridConfigFactory
.createBackingMapConfiguration("Customer");

customerMapConfig.setNumberOfBuckets(1429);
Plugin evictorPlugin = ObjectGridConfigFactory.createPlugin(PluginType.EVICTOR,

"com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor");
customerMapConfig.addPlugin(evictorPlugin);

companyGridConfig.addBackingMapConfiguration(customerMapConfig);

BackingMapConfiguration orderLineMapConfig = ObjectGridConfigFactory
.createBackingMapConfiguration("OrderLine");

orderLineMapConfig.setNumberOfBuckets(701);
orderLineMapConfig.setTimeToLive(800);
orderLineMapConfig.setTtlEvictorType(TTLType.LAST_ACCESS_TIME);

companyGridConfig.addBackingMapConfiguration(orderLineMapConfig);

List ogConfigs = new ArrayList();
ogConfigs.add(companyGridConfig);

Map overrideMap = new HashMap();
overrideMap.put(CatalogServerProperties.DEFAULT_DOMAIN, ogConfigs);

ogManager.setOverrideObjectGridConfigurations(overrideMap);
ClientClusterContext client = ogManager.connect(catalogServerEndpoints, null, null);
ObjectGrid companyGrid = ogManager.getObjectGrid(client, objectGridName);

The ogManager instance of the ObjectGridManager interface checks for overrides
only in the ObjectGridConfiguration and BackingMapConfiguration objects that
you include in the overrideMap Map. For instance, the previous code overrides the
number of buckets on the OrderLine Map. However, the Order map remains
unchanged on the client side because no configuration for that map is included.

Disable the client near cache

The near cache is enabled by default when locking is configured as optimistic or
none. Clients do not maintain a near cache when the locking setting is configured
as pessimistic. To disable the near cache, you must set the numberOfBuckets
attribute to 0 in the client override ObjectGrid descriptor file.

Enabling client-side map replication
You can also enable replication of maps on the client side to make data available
faster.

With eXtreme Scale, you can replicate a server map to one or more clients by using
asynchronous replication. A client can request a local read-only copy of a server
side map by using the ClientReplicableMap.enableClientReplication method.
void enableClientReplication(Mode mode, int[] partitions,
ReplicationMapListener listener) throws ObjectGridException;

254 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

The first parameter is the replication mode. This mode can be a continuous
replication or a snapshot replication. The second parameter is an array of partition
IDs that represent the partitions from which to replicate the data. If the value is
null or an empty array, the data is replicated from all the partitions. The last
parameter is a listener to receive client replication events. See ClientReplicableMap
and ReplicationMapListener in the API documentation for details.

After the replication is enabled, then the server starts to replicate the map to the
client. The client is eventually only a few transactions behind the server at any
point in time.

Accessing data with the REST data service
Develop applications that perform operations using REST data service protocols.

Operations with the REST data service
After you start the eXtreme Scale REST data service, you can use any HTTP client
to interact with it. A Web browser, PHP client, Java client or WCF Data Services
client can be used to issue any of the supported request operations.

The REST service implements a subset of the Microsoft Atom Publishing Protocol:
Data Services URI and Payload Extensions specification, Version 1.0 which is part
of OData protocol. This topic describes which of the features of the specification
are supported and how they are mapped to eXtreme Scale.

Service root URI

Microsoft WCF Data Services typically defines a service per data source or entity
model. The eXtreme Scale REST data service defines a service per defined
ObjectGrid. Each ObjectGrid that is defined in the eXtreme Scale ObjectGrid client
override XML file is automatically exposed as a separate REST service root.

The URI for the service root is:
http://host:port/contextroot/restservice/gridname

Where:
v contextroot is defined when you deploy the REST data service application, and

depends on the application server
v gridname is the name of the ObjectGrid

Request types

The following list describes the Microsoft WCF Data Services request types which
the eXtreme Scale REST data service supports. For details about each request type
that WCF Data Services supports, see: MSDN: Request Types.

Insert request types

Clients can insert resources using the POST HTTP verb with the following
limitations:
v InsertEntity Request: Supported.
v InsertLink request: Supported.
v InsertMediaResource request: Not supported due to media resource

support restriction.

Chapter 5. Developing applications 255

http://msdn.microsoft.com/en-us/library/dd541188(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541188(PROT.10).aspx
http://www.odata.org/
http://msdn.microsoft.com/en-us/library/dd541602%28PROT.10%29.aspx

For additional information, see: MSDN: Insert Request Types.

Update request types

Clients can update resources using the PUT and MERGE HTTP verbs with
the following limitations:
v UpdateEntity Request: Supported.
v UpdateComplexType Request: Not Supported due to complex type

restriction.
v UpdatePrimitiveProperty Request: Supported.
v UpdateValue Request: Supported.
v UpdateLink Request: Supported.
v UpdateMediaResource Request: Not supported due to media resource

support restriction.

For additional information, see: MSDN: Insert Request types.

Delete request types

Clients can delete resources using the DELETE HTTP verb with the
following limitations:
v DeleteEntity Request: Supported.
v DeleteLink Request: Supported.
v DeleteValue request: Supported.

For additional information, see: MSDN: Delete Request Types.

Retrieve request types

Clients can retrieve resources using the GET HTTP verb with the following
limitations:
v RetrieveEntitySet Request: Supported.
v RetrieveEntity Request: Supported.
v RetrieveComplexType Request: Not supported due to complex type

restriction.
v RetrievePrimitiveProperty Request: Supported.
v RetrieveValue Request: Supported.
v RetrieveServiceMetadata Request: Supported.
v RetrieveServiceDocument Request: Supported.
v RetrieveLink Request: Supported.
v Retrieve Request Containing a Customizable Feed Mapping: Not

supported
v RetrieveMediaResource: Not supported due to media resource

restriction.

For additional information, see: MSDN: Retrieve Request Types.

System query options

Queries are supported which allow clients to identify a collection of
entities or a single entity. System query options are specified in a data
service URI and are supported with the following limitations:
v $expand: Supported
v $filter: Supported.
v $orderby: Supported.

256 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://msdn.microsoft.com/en-us/library/dd541376(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541138(v=PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541534(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541450(PROT.10).aspx

v $format: Not supported. The acceptable format is identified in the HTTP
Accept request header.

v $skip: Supported
v $top: Supported

For additional information, see: MSDN: System Query Options.

Partition routing

Partition routing is based on the root entity. A request URI infers a root
entity if its resource path starts with a root entity or with an entity that has
a direct or indirect association to the entity. In a partitioned environment,
any request that cannot infer a root entity will be rejected. Any request that
infers a root entity will be routed to the correct partition.

For additional information on defining a schema with associations and root
entities, see Scalable data model in eXtreme Scale and Partitioning.

Invoke request

Invoke requests are not supported. For additional information, see MSDN: Invoke
Request.

Batch request

Clients can batch multiple Change Sets or Query Operations within a single
request. This can reduce the number of round trips to the server and allows
multiple requests to participate in a single transaction. For additional information,
see MSDN: Batch Request.

Tunneled requests

Tunneled requests are not supported. For additional information, see MSDN:
Tunneled Requests.

Optimistic concurrency in the REST data service
The eXtreme Scale REST data service uses an optimistic locking model by using
native HTTP headers: If-Match, If-None-Match, and ETag. These headers are sent
in request and response messages to relay an entity's version information from the
server to client and client to server.

For more details on optimistic concurrency, refer to MSDN Library: Optimistic
Concurrency (ADO.NET).

The eXtreme Scale REST data service enables optimistic concurrency for an entity if
a version attribute is defined in the entity schema for that entity. A version
property can be defined in the entity schema by a @Version annotation for Java
classes or a <version/> attribute for entities defined using an entity descriptor
XML file. The eXtreme Scale REST data service automatically propagates the value
of the version property to the client in the ETag header for single entity responses
using an m:etag attribute in the payload for multiple entity XML responses, and an
etag attribute in the payload for multiple entity JSON responses.

For more details on defining an eXtreme Scale entity schema, see “Defining an
entity schema” on page 166.

Chapter 5. Developing applications 257

http://msdn.microsoft.com/en-us/library/dd541320(PROT.10).aspx
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/cxsrestdtmdl.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/cxspartition.html
http://msdn.microsoft.com/en-us/library/dd541482(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541482(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541539(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541243(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541243(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/aa0416cz.aspx
http://msdn.microsoft.com/en-us/library/aa0416cz.aspx

Request protocols for the REST data service
In general, the protocols for interacting with the REST service are the same as
those described in the WCF Data Services AtomPub protocol. However, eXtreme
Scale does provide additional details, from eXtreme Scale Entity Model perspective.
Users are expected to be familiar with the WCF Data Services protocols before
reading this section. Alternatively, users can read this section with the WCF Data
Services protocol section.

Examples are provided to illustrate the request and response. These examples
apply to both the eXtreme Scale REST data service and WCF Data Services.
Because Web browsers can only retrieve data, the CUD (create, update and delete)
operations must be performed by another client such as Java, JavaScript, RUBY or
PHP.

Retrieve requests with the REST data service
A RetrieveEntity Request is used by a client to retrieve an eXtreme Scale entity. The
response payload contains the entity data in AtomPub or JSON format. Also, the
system operator $expand can be used to expand the relations. The relations are
represented in line within the data service response as an Atom Feed Document,
which is a to-many relation, or an Atom Entry Document which is a to-one
relation.

Tip: For more details on the RetrieveEntity protocol defined in WCF Data Services,
refer to MSDN: RetrieveEntity Request.

Retrieving an entity

The following RetrieveEntity example retrieves a Customer entity with key.

AtomPub

v Method
GET

v Request URI:
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/
Customer('ACME')

v Request Header:
Accept: application/atom+xml

v Request Payload:
None

v Response Header:
Content-Type: application/atom+xml

v Response Payload:
<?xml version="1.0" encoding="ISO-8859-1"?>
<entry xml:base = "http://localhost:8080/wxsrestservice/
restservice" xmlns:d= "http://schemas.microsoft.com/ado/2007/
08/dataservices" xmlns:m = "http://schemas.microsoft.com/ado/2007/
08/dataservices/metadata" xmlns = "http://www.w3.org/2005/Atom">

<category term = "NorthwindGridModel.Customer" scheme = "http://
schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>
<id>http://localhost:8080/wxsrestservice/restservice/

NorthwindGrid/Customer(’ACME’)</id>
<title type = "text"/>
<updated>2009-12-16T19:52:10.593Z</updated>
<author>

258 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://msdn.microsoft.com/en-us/library/dd541268(PROT.10).aspx

<name/>
</author>
<link rel = "edit" title = "Customer" href = "Customer(
’ACME’)"/>
<link rel = "http://schemas.microsoft.com/ado/2007/08/
dataservices/related/

orders" type = "application/atom+xml;type=feed" title =
"orders" href ="Customer(’ACME’)/orders"/>

<content type = "application/xml">
<m:properties>

<d:customerId>ACME</d:customerId>
<d:city m:null = "true"/>
<d:companyName>RoaderRunner</d:companyName>
<d:contactName>ACME</d:contactName>
<d:country m:null = "true"/>
<d:version m:type = "Edm.Int32">3</d:version>

</m:properties>
</content>

</entry>

v Response Code:
200 OK

JSON

v Method
GET

v Request URI:
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/
Customer('ACME')

v Request Header:
Accept: application/json

v Request Payload:
None

v Response Header:
Content-Type: application/json

v Response Payload:
{"d":{"__metadata":{"uri":"http://localhost:8080/wxsrestservice/

restservice/NorthwindGrid/Customer(’ACME’)",
"type":"NorthwindGridModel.Customer"},
"customerId":"ACME",
"city":null,
"companyName":"RoaderRunner",
"contactName":"ACME",
"country":null,
"version":3,
"orders":{"__deferred":{"uri":"http://localhost:8080/

wxsrestservice/restservice/
NorthwindGrid/Customer(’ACME’)/orders"}}}}

v Response Code:
200 OK

Queries

A query can also be used with a RetrieveEntitySet or RetrieveEntity request. A
query is specified by the system $filter operator.

For details on the $filter operator, refer to: MSDN: Filter System Query Option
($filter)

Chapter 5. Developing applications 259

http://msdn.microsoft.com/en-us/library/dd541344(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541344(PROT.10).aspx

The OData protocol supports several common expressions. The eXtreme Scale
REST data service supports a subset of the expressions defined in the specification:
v Boolean expressions:

– eq, ne, lt, le, gt, ge
– negate
– not
– parenthesis
– and, or

v Arithmetic expressions:
– add
– sub
– mul
– div

v Primitive literals
– String
– date-time
– decimal
– single
– double
– int16
– int32
– int64
– binary
– null
– byte

The following expressions are not available:
v Boolean expressions:

– isof
– cast

v Method call expressions
v Arithmetic expressions:

– mod
v Primitive literals:

– Guid
v Member expressions

For a complete list and description of the expressions that are available in
Microsoft WCF Data Services, see section 2.2.3.6.1.1 : Common Expression Syntax.

The following example demonstrates a RetrieveEntity request with a query. In this
example, all customers whose contact name is “RoadRunner” are retrieved. The
only customer which matches this filter is Customer('ACME') as shown in the
response payload.

Restriction: This query will only work for non-partitioned entities. If Customer is
partitioned, then the key belonging to the customer is required.

260 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://msdn.microsoft.com/en-us/library/dd541448(v=PROT.10).aspx

AtomPub

v Method: GET
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer?$filter=contactName eq 'RoadRunner'
v Request Header: Accept: application/atom+xml
v Input Payload: None
v Response Header: Content-Type: application/atom+xml
v Response Payload:

<?xml version="1.0" encoding="iso-8859-1"?>
<feed
xml:base="http://localhost:8080/wxsrestservice/restservice"
xmlns:d="http://schemas.microsoft.com/ado/2007/08/

dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/

dataservices/metadata"
xmlns="http://www.w3.org/2005/Atom">
<title type="text">Customer</title>
<id> http://localhost:8080/wxsrestservice/restservice/

NorthwindGrid/Customer </id>
<updated>2009-09-16T04:59:28.656Z</updated>
<link rel="self" title="Customer" href="Customer" />
<entry>
<category term="NorthwindGridModel.Customer"
scheme="http://schemas.microsoft.com/ado/2007/08/
dataservices/scheme" />
<id>

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/
Customer(’ACME’)</id>
<title type="text" />
<updated>2009-09-16T04:59:28.656Z</updated>
<author>
<name />
</author>
<link rel="edit" title="Customer" href="Customer(’ACME’)" />
<link
rel="http://schemas.microsoft.com/ado/2007/08/dataservices/

related/orders"
type="application/atom+xml;type=feed" title="orders"
href="Customer(’ACME’)/orders" />
<content type="application/xml">

<m:properties>
<d:customerId>ACME</d:customerId>
<d:city m:null = "true"/>
<d:companyName>RoaderRunner</d:companyName>
<d:contactName>ACME</d:contactName>
<d:country m:null = "true"/>
<d:version m:type = "Edm.Int32">3</d:version>

</m:properties>
</content>
</entry>
</feed>

v Response Code: 200 OK

JSON

v Method: GET
v Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/
Customer?$filter=contactName eq 'RoadRunner'

v Request Header: Accept: application/json
v Request Payload: None

Chapter 5. Developing applications 261

v Response Header: Content-Type: application/json
v Response Payload:

{"d":[{"__metadata":{"uri":"http://localhost:8080/wxsrestservice/
restservice/NorthwindGrid/Customer(’ACME’)",
"type":"NorthwindGridModel.Customer"},
"customerId":"ACME",
"city":null,
"companyName":"RoaderRunner",
"contactName":"ACME",
"country":null,
"version":3,
"orders":{"__deferred":{"uri":"http://localhost:8080/

wxsrestservice/restservice/NorthwindGrid/
Customer(’ACME’)/orders"}}}]}

v Response Code: 200 OK

System operator $expand

The system operator $expand can be used to expand associations. The associations
are represented in line in the data service response. Multi-valued (to-many)
associations are represented as an Atom Feed Document or JSON array.
Single-valued (to-one) associations, are represented as n Atom Entry Document or
JSON object.

For more details on the $expand system operator, refer to Expand System Query
Option ($expand).

Here is an example of using the $expand system operator. In this example, we
retrieve the entity Customer('IBM')which has an Orders 5000, 5001 and others
associated with it. The $expand clause is set to “orders”, so the order collection is
expand as inline in the response payload. Only orders 5000 and 5001 are displayed
here.

AtomPub

v Method: GET
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')?$expand=orders
v Request Header: Accept: application/atom+xml
v Request Payload: None
v Response Header: Content-Type: application/atom+xml
v Response Payload:

<?xml version="1.0" encoding="utf-8"?>
<entry xml:base = "http://localhost:8080/wxsrestservice/restservice"

xmlns:d ="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m = "http://schemas.microsoft.com/ado/2007/08/dataservices/
metadata" xmlns = "http://www.w3.org/2005/Atom">

<category term = "NorthwindGridModel.Customer" scheme = "http://schemas.

microsoft.com/ado/2007/08/dataservices/scheme"/>
<id>http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/
Customer(’IBM’)</id>
<title type = "text"/>
<updated>2009-12-16T22:50:18.156Z</updated>
<author>

<name/>
</author><link rel = "edit" title = "Customer" href =
"Customer(’IBM’)"/>
<link rel = "http://schemas.microsoft.com/ado/2007/08/dataservices/

262 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://msdn.microsoft.com/en-us/library/dd541606(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541606(PROT.10).aspx

related/orders" type = "application/atom+xml;type=feed" title =
"orders" href = "Customer(’IBM’)/orders">

<m:inline>
<feed>

<title type = "text">orders</title>
<id>http://localhost:8080/wxsrestservice/restservice/

NorthwindGrid/Customer(’IBM’)/orders</id>
<updated>2009-12-16T22:50:18.156Z</updated>
<link rel = "self" title = "orders" href = "Customer

(’IBM’)/orders"/>
<entry>

<category term = "NorthwindGridModel.Order" scheme =
"http://schemas.microsoft.com/ado/2007/08/
dataservices/scheme"/>

<id>http://localhost:8080/wxsrestservice/restservice/
NorthwindGrid/Order(orderId=5000,customer_customerId=

’IBM’)</id>
<title type = "text"/>
<updated>2009-12-16T22:50:18.156Z</updated>
<author>

<name/>
</author>
<link rel = "edit" title = "Order" href =

"Order(orderId=5000,customer_customerId=’IBM’)"/>
<link rel = "http://schemas.microsoft.com/ado/2007/08/

dataservices/related/customer" type = "application/
atom+xml;type=entry" title ="customer" href =
"Order(orderId=5000,customer_customerId=’IBM’)/customer"/>

<link rel = "http://schemas.microsoft.com/ado/2007/08/
dataservices/related/orderDetails" type = "application/
atom+xml;type=feed" title ="orderDetails" href =
"Order(orderId=5000,customer_customerId=’IBM’)/orderDetails"/>

<content type = "application/xml">
<m:properties>

<d:orderId m:type = "Edm.Int32">5000</d:orderId>
<d:customer_customerId>IBM</d:customer_customerId>
<d:orderDate m:type = "Edm.DateTime">

2009-12-16T19:46:29.562</d:orderDate>
<d:shipCity>Rochester</d:shipCity>
<d:shipCountry m:null = "true"/>
<d:version m:type = "Edm.Int32">0</d:version>

</m:properties>
</content>

</entry>
<entry>

<category term = "NorthwindGridModel.Order" scheme =
"http://schemas.microsoft.com/ado/2007/08/
dataservices/scheme"/>

<id>http://localhost:8080/wxsrestservice/restservice/
NorthwindGrid/Order(orderId=5001,customer_customerId=
’IBM’)</id>

<title type = "text"/>
<updated>2009-12-16T22:50:18.156Z</updated>
<author>

<name/></author>
<link rel = "edit" title = "Order" href = "Order(

orderId=5001,customer_customerId=’IBM’)"/>
<link rel = "http://schemas.microsoft.com/ado/2007/

08/dataservices/related/customer" type =
"application/atom+xml;type=entry" title =
"customer" href = "Order(orderId=5001,customer_customerId=
’IBM’)/customer"/>

<link rel = "http://schemas.microsoft.com/ado/2007/08/
dataservices/related/orderDetails" type =
"application/atom+xml;type=feed" title =
"orderDetails" href = "Order(orderId=5001,
customer_customerId=’IBM’)/orderDetails"/>

Chapter 5. Developing applications 263

<content type = "application/xml">
<m:properties>

<d:orderId m:type = "Edm.Int32">5001</d:orderId>
<d:customer_customerId>IBM</d:customer_customerId>
<d:orderDate m:type = "Edm.DateTime">2009-12-16T19:

50:11.125</d:orderDate>
<d:shipCity>Rochester</d:shipCity>
<d:shipCountry m:null = "true"/>
<d:version m:type = "Edm.Int32">0</d:version>

</m:properties>
</content>

</entry>
</feed>

</m:inline>
</link>
<content type = "application/xml">

<m:properties>
<d:customerId>IBM</d:customerId>
<d:city m:null = "true"/>
<d:companyName>IBM Corporation</d:companyName>
<d:contactName>John Doe</d:contactName>
<d:country m:null = "true"/>
<d:version m:type = "Edm.Int32">4</d:version>

</m:properties>
</content>

</entry>

v Response Code: 200 OK

JSON

v Method: GET
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')?$expand=orders
v Request Header: Accept: application/json
v Request Payload: None
v Response Header: Content-Type: application/json
v Response Payload:

{"d":{"__metadata":{"uri":"http://localhost:8080/wxsrestservice/
restservice/NorthwindGrid/Customer(’IBM’)",

"type":"NorthwindGridModel.Customer"},
"customerId":"IBM",
"city":null,
"companyName":"IBM Corporation",
"contactName":"John Doe",
"country":null,
"version":4,
"orders":[{"__metadata":{"uri":"http://localhost:8080/

wxsrestservice/restservice/NorthwindGrid/Order(
orderId=5000,customer_customerId=’IBM’)",

"type":"NorthwindGridModel.Order"},
"orderId":5000,
"customer_customerId":"IBM",
"orderDate":"\/Date(1260992789562)\/",
"shipCity":"Rochester",
"shipCountry":null,
"version":0,
"customer":{"__deferred":{"uri":"http://localhost:8080/

wxsrestservice/restservice/NorthwindGrid/Order(
orderId=5000,customer_customerId=’IBM’)/customer"}},

"orderDetails":{"__deferred":{"uri":"http://localhost:
8080/wxsrestservice/restservice/NorthwindGrid/
Order(orderId=5000,customer_customerId=’IBM’)/
orderDetails"}}},

{"__metadata":{"uri":"http://localhost:8080/wxsrestservice/

264 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

restservice/NorthwindGrid/Order(orderId=5001,
customer_customerId=’IBM’)","type":
"NorthwindGridModel.Order"},

"orderId":5001,
"customer_customerId":"IBM",
"orderDate":"\/Date(1260993011125)\/",
"shipCity":"Rochester",
"shipCountry":null,
"version":0,
"customer":{"__deferred":{"uri":"http://localhost:

8080/wxsrestservice/restservice/
NorthwindGrid/Order(orderId=5001,customer_customerId

=’IBM’)/customer"}},
"orderDetails":{"__deferred":{"uri":"http://localhost:8080/

wxsrestservice/restservice/NorthwindGrid/Order(
orderId=5001, customer_customerId=’IBM’)/
orderDetails"}}}]}}

v Response Code: 200 OK

Retrieving non-entities with REST data services
The REST data service allows you to retrieve more than only entities, such as
entity collections and properties.

Retrieve an entity collection

A RetrieveEntitySet Request can be used by a client to retrieve a set of eXtreme
Scale entities. The entities are represented as an Atom Feed Document or JSON
array in the response payload. For more details on the RetrieveEntitySet protocol
defined in WCF Data Services, refer to MSDN: RetrieveEntitySet Request.

The following RetrieveEntitySet request example retrieves all the Order entities
associated with the Customer('IBM') entity. Only orders 5000 and 5001 are
displayed here.

AtomPub

v Method: GET
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')/orders
v Request Header: Accept: application/atom+xml
v Request Payload: None
v Response Header: Content-Type: application/atom+xml
v Response Payload:

<?xml version="1.0" encoding="utf-8"?>
<feed xml:base = "http://localhost:8080/wxsrestservice/restservice"

xmlns:d = "http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m = "http://schemas.microsoft.com/ado/2007/08/dataservices/
metadata" xmlns = "http://www.w3.org/2005/Atom">
<title type = "text">Order</title>
<id>http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/
Order</id>
<updated>2009-12-16T22:53:09.062Z</updated>
<link rel = "self" title = "Order" href = "Order"/>
<entry>

<category term = "NorthwindGridModel.Order" scheme = "http://
schemas.microsoft.com/
ado/2007/08/dataservices/scheme"/>

<id>http://localhost:8080/wxsrestservice/restservice/
NorthwindGrid/Order(orderId=5000,customer_customerId=
’IBM’)</id>

<title type = "text"/>

Chapter 5. Developing applications 265

http://msdn.microsoft.com/en-us/library/dd541423(PROT.10).aspx

<updated>2009-12-16T22:53:09.062Z</updated>
<author>

<name/>
</author>
<link rel = "edit" title = "Order" href = "Order(orderId=5000,

customer_customerId=’IBM’)"/>
<link rel = "http://schemas.microsoft.com/ado/2007/08/

dataservices/related/customer"
type = "application/atom+xml;type=entry"
title = "customer" href = "Order(orderId=5000,
customer_customerId=’IBM’)/customer"/>

<link rel = "http://schemas.microsoft.com/ado/2007/08/
dataservices/related/orderDetails"
type = "application/atom+xml;type=feed"
title = "orderDetails" href = "Order(orderId=5000,

customer_customerId=’IBM’)/
orderDetails"/>
<content type = "application/xml">

<m:properties>
<d:orderId m:type = "Edm.Int32">5000</d:orderId>
<d:customer_customerId>IBM</d:customer_customerId>
<d:orderDate m:type = "Edm.DateTime">2009-12-16T19:

46:29.562</d:orderDate>
<d:shipCity>Rochester</d:shipCity>
<d:shipCountry m:null = "true"/>
<d:version m:type = "Edm.Int32">0</d:version>

</m:properties>
</content>

</entry>
<entry>

<category term = "NorthwindGridModel.Order" scheme = "http://
schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

<id>http://localhost:8080/wxsrestservice/restservice/
NorthwindGrid/Order(orderId=5001, customer_customerId=’IBM’)

</id>
<title type = "text"/>
<updated>2009-12-16T22:53:09.062Z</updated>
<author>

<name/>
</author>
<link rel = "edit" title = "Order" href = "Order(orderId=5001,
customer_customerId=’IBM’)"/>
<link rel = "http://schemas.microsoft.com/ado/2007/08/
dataservices/related/customer"
type = "application/atom+xml;type=entry"
title = "customer" href = "Order(orderId=5001,

customer_customerId=’IBM’)/customer"/>
<link rel = "http://schemas.microsoft.com/ado/2007/08/
dataservices/related/orderDetails"

type = "application/atom+xml;type=feed"
title = "orderDetails" href = "Order(orderId=5001,

customer_customerId=’IBM’)/orderDetails"/>
<content type = "application/xml">

<m:properties>
<d:orderId m:type = "Edm.Int32">5001</d:orderId>
<d:customer_customerId>IBM</d:customer_customerId>
<d:orderDate m:type = "Edm.DateTime">2009-12-16T19:50:

11.125</d:orderDate>
<d:shipCity>Rochester</d:shipCity>
<d:shipCountry m:null = "true"/>
<d:version m:type = "Edm.Int32">0</d:version>

</m:properties>
</content>

</entry>
</feed>

v Response Code: 200 OK

266 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

JSON

v Method: GET
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')/orders
v Request Header: Accept: application/json
v Request Payload: None
v Response Header: Content-Type: application/json
v Response Payload:

{"d":[{"__metadata":{"uri":"http://localhost:8080/wxsrestservice/
restservice/NorthwindGrid/Order(orderId=5000,
customer_customerId=’IBM’)",

"type":"NorthwindGridModel.Order"},
"orderId":5000,
"customer_customerId":"IBM",
"orderDate":"\/Date(1260992789562)\/",
"shipCity":"Rochester",
"shipCountry":null,
"version":0,
"customer":{"__deferred":{"uri":"http://localhost:8080/

wxsrestservice/restservice/NorthwindGrid/Order(orderId=
5000,customer_customerId=’IBM’)/customer"}},

"orderDetails":{"__deferred":{"uri":"http://localhost:8080/
wxsrestservice/restservice/NorthwindGrid/Order(orderId=
5000,customer_customerId=’IBM’)/orderDetails"}}},

{"__metadata":{"uri":"http://localhost:8080/wxsrestservice/
restservice/NorthwindGrid/

Order(orderId=5001,
customer_customerId=’IBM’)",

"type":"NorthwindGridModel.Order"},
"orderId":5001,
"customer_customerId":"IBM",
"orderDate":"\/Date(1260993011125)\/",
"shipCity":"Rochester",
"shipCountry":null,
"version":0,
"customer":{"__deferred":{"uri":"http://localhost:8080/

wxsrestservice/restservice/NorthwindGrid/Order(orderId=
5001,customer_customerId=’IBM’)/customer"}},

"orderDetails":{"__deferred":{"uri":"http://localhost:8080/
wxsrestservice/restservice/NorthwindGrid/Order(orderId=
5001,customer_customerId=’IBM’)/orderDetails"}}}]}

v Response Code: 200 OK

Retrieve a property

A RetrievePrimitiveProperty request can be used to get the value of a property of
an eXtreme Scale entity instance. The property value is represented as XML format
for AtomPub requests and a JSON object for JSON requests in the response
payload. For more details on RetrievePrimitiveProperty request, refer to MSDN:
RetrievePrimitiveProperty Request.

The following RetrievePrimitiveProperty request example retrieves the
contactName property of the Customer('IBM') entity.

AtomPub

v Method: GET
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')/contactName
v Request Header: Accept: application/xml

Chapter 5. Developing applications 267

http://msdn.microsoft.com/en-us/library/dd541245(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541245(PROT.10).aspx

v Request Payload: None
v Response Header: Content-Type: application/atom+xml
v Response Payload:

<contactName xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices">
John Doe

</contactName>

v Response Code: 200 OK

JSON

v Method: GET
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')/contactName
v Request Header: Accept: application/json
v Request Payload: None
v Response Header: Content-Type: application/json
v Response Payload: {"d":{"contactName":"John Doe"}}

v Response Code: 200 OK

Retrieve a property value

A RetrieveValue request can be used to get the raw value of a property on an
eXtreme Scale entity instance. The property value is represented as a raw value in
the response payload. If the entity type is one of the following, then the media
type of the response is “text/plain." Otherwise the response' media type is
“application/octet-stream." These types are:
v Java primitive types and their respective wrappers
v java.lang.String
v byte[]
v Byte[]
v char[]
v Character[]
v enums
v java.math.BigInteger
v java.math.BigDecimal
v java.util.Date
v java.util.Calendar
v java.sql.Date
v java.sql.Time
v java.sql.Timestamp

For more details on the RetrieveValue request, refer to MSDN: RetrieveValue
Request.

The following RetrieveValue request example retrieves the raw value of the
contactName property of the Customer('IBM') entity.
v Request Method: GET
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')/contactName/$value
v Request Header: Accept: text/plain

268 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://msdn.microsoft.com/en-us/library/dd541523(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541523(PROT.10).aspx

v Request Payload: None
v Response Header: Content-Type: text/plain
v Response Payload: John Doe
v Response Code: 200 OK

Retrieve a link

A RetrieveLink Request can be used to get the link(s) representing a to-one
association or to-many association. For the to-one association, the link is from one
eXtreme Scale Entity instance to another, and the link is represented in the
response payload. For the to-many association, the links are from one eXtreme
Scale Entity instance to all others in a specified eXtreme Scale entity collection, and
the response is represented as a set of links in the response payload. For more
details on RetrieveLink request, refer to MSDN: RetrieveLink Request.

Here is a RetrieveLink request example. In this example, we retrieve the
association between entity Order(orderId=5000,customer_customerId='IBM') and its
customer. The response shows the Customer entity URI.

AtomPub

v Method: GET
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Order(orderId=5000,customer_customerId='IBM')/$links/customer
v Request Header: Accept: application/xml
v Request Payload: None
v Response Header: Content-Type: application/xml
v Response Payload:

<?xml version="1.0" encoding="utf-8"?>
<uri>http://localhost:8080/wxsrestservice/restservice/

NorthwindGrid/Customer(’IBM’)</uri>

v Response Code: 200 OK

JSON

v Method: GET
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Order(orderId=5000,customer_customerId='IBM')/$links/customer
v Request Header: Accept: application/json
v Request Payload: None
v Response Header: Content-Type: application/json
v Response Payload: {"d":{"uri":"http:\/\/localhost:8080\/wxsrestservice\/

restservice\/NorthwindGrid\/Customer('IBM')"}}

Retrieve service metadata

A RetrieveServiceMetadata Request can be used to get the conceptual schema
definition language (CSDL) document, which describes the data model associated
with the eXtreme Scale REST data service. For more details on
RetrieveServiceMetadata request, refer to MSDN: RetrieveServiceMetadata Request.

Chapter 5. Developing applications 269

http://msdn.microsoft.com/en-us/library/dd541339(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541530(PROT.10).aspx

Retrieve service document

A RetrieveServiceDocument Request can be used to retrieve the Service Document
describing the collection of resources exposed by the eXtreme Scale REST data
service. For more details on RetrieveServiceDocument request, refer to MSDN:
RetrieveServiceDocument Request.

Insert requests with REST data services
An InsertEntity Request can be used to insert a new eXtreme Scale entity instance,
potentially with new related entities, into the eXtreme Scale REST data service.

Insert entity request

An InsertEntity Request can be used to insert a new eXtreme Scale entity instance,
potentially with new related entities, into the eXtreme Scale REST data service.
When inserting an entity, the client may specify if the resource or entity should be
automatically linked to other existing entities in the data service.

The client must include the required binding information in the representation of
the associated relation in the request payload.

In addition to supporting the insertion of a new EntityType instance (E1), the
InsertEntity request also allows inserting new entities related to E1 (described by
an entity relation) in a single Request. For example, when inserting a
Customer('IBM'), we can insert all the orders with Customer('IBM'). This form of
an InsertEntity Request is also known as a deep insert. With a deep insert, the
related entities must be represented using the inline representation of the relation
associated with E1 that identifies the link to the to-be-inserted related entities.

The properties of the entity to be inserted are specified in the request payload. The
properties are parsed by the REST data service and then set to the correspondent
property on the entity instance. For the AtomPub format, the property is specified
as a <d:PROPERTY_NAME> XML element. For JSON, the property is specified as
a property of a JSON object.

If a property is missing in the request payload, then the REST data service sets the
entity property value to the java default value. However, the database backend
might reject such a default value, for example, if the column is not nullable in the
database. Then a 500 response code will be returned to indicate an Internal Server
error.

If there are duplicate properties specified in the payload, the last property will be
used. All the previous values for the same property name are ignored by the REST
data service.

If the payload contains a non-existent property, then the REST data service returns
a 400 (Bad Request) response code to indicate the request sent by the client was
syntactically incorrect.

If the key properties are missing, then the REST data service returns a response
code of 400 (Bad Request) to indicate a missing key property.

If the payload contains a link to a related entity with a non-existent key, then the
REST data service returns a 404 (Not Found) response code to indicate the linked
entity cannot be found.

270 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://msdn.microsoft.com/en-us/library/dd541594(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541594(PROT.10).aspx

If the payload contains a link to a related entity with an incorrect association name,
then the REST data service returns a 400 (Bad Request) response code to indicate
the link cannot be found.

If the payload contains more than one link to a to-one relation, the last link will be
used. All the previous links for the same association are ignored.

For more details on the InsertEntity request, see MSDN Library: InsertEntity
Request.

An InsertEntity request inserts a Customer entity with key 'IBM'.

AtomPub

v Method: POST
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')
v Request Header: Accept: application/atom+xml Content-Type:

application/atom+xml
v Request Payload:

<?xml version="1.0" encoding="ISO-8859-1"?>
<entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
xmlns="http://www.w3.org/2005/Atom">
<category term="NorthwindGridModel.Customer"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />

<content type="application/xml">
<m:properties>
<d:customerId>Rational</d:customerId>
<d:city>Rochester</d:city>
<d:companyName>Rational</d:companyName>
<d:contactName>John Doe</d:contactName>
<d:country>USA</d:country>
</m:properties>
</content>
</entry>

v Response Header: Content-Type: application/atom+xml
v Response Payload:

<?xml version="1.0" encoding="ISO-8859-1"?>
<entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
xmlns="http://www.w3.org/2005/Atom">
<category term="NorthwindGridModel.Customer"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />

<content type="application/xml">
<m:properties>
<d:customerId>Rational</d:customerId>
<d:city>Rochester</d:city>
<d:companyName>Rational</d:companyName>
<d:contactName>John Doe</d:contactName>
<d:country>USA</d:country>
</m:properties>
</content>
</entry>
Response Header:
Content-Type: application/atom+xml
Response Payload:
<?xml version="1.0" encoding="utf-8"?>
<entry xml:base = "http://localhost:8080/wxsrestservice/restservice" xmlns:d =

"http://schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m =
"http://schemas.microsoft.com/

Chapter 5. Developing applications 271

http://msdn.microsoft.com/en-us/library/dd541128(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541128(PROT.10).aspx

ado/2007/08/dataservices/metadata" xmlns = "http://www.w3.org/2005/Atom">
<category term = "NorthwindGridModel.Customer" scheme = "http://schemas.
microsoft.com/ado/2007/08/dataservices/scheme"/>
<id>http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/
Customer(’Rational’)</id>
<title type = "text"/>
<updated>2009-12-16T23:25:50.875Z</updated>
<author>

<name/>
</author>
<link rel = "edit" title = "Customer" href = "Customer(’Rational’)"/>
<link rel = "http://schemas.microsoft.com/ado/2007/08/dataservices/related/
orders" type = "application/atom+xml;type=feed"
title = "orders" href = "Customer(’Rational’)/orders"/>
<content type = "application/xml">

<m:properties>
<d:customerId>Rational</d:customerId>
<d:city>Rochester</d:city>
<d:companyName>Rational</d:companyName>
<d:contactName>John Doe</d:contactName>
<d:country>USA</d:country>
<d:version m:type = "Edm.Int32">0</d:version>

</m:properties>
</content>

</entry>

v Response Code: 201 Created

JSON

v Method: POST
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer
v Request Header: Accept: application/json Content-Type: application/json
v Request Payload:

{"customerId":"Rational",
"city":null,
"companyName":"Rational",
"contactName":"John Doe",
"country": "USA",}

v Response Header: Content-Type: application/json
v Response Payload:

{"d":{"__metadata":{"uri":"http://localhost:8080/wxsrestservice/restservice/
NorthwindGrid/Customer(’Rational’)",

"type":"NorthwindGridModel.Customer"},
"customerId":"Rational",
"city":null,
"companyName":"Rational",
"contactName":"John Doe",
"country":"USA",
"version":0,
"orders":{"__deferred":{"uri":"http://localhost:8080/wxsrestservice/restservice/

NorthwindGrid/Customer(’Rational’)/orders"}}}}

v Response Code: 201 Created

Insert link request

An InsertLink Request can be used to create a new Link between two eXtreme
Scale entity instances. The URI of the request must resolve to an eXtreme Scale
to-many association. The payload of the request contains a single link which points
to the to-many association target entity.

272 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

If the URI of the InsertLink request represents a to-one association, the REST data
service returns a 400 (Bad request) response.

If the URI of the InsertLink request points to an association which does not exist,
the REST data service returns a 404 (Not Found) response to indicate the link
cannot be found.

If the payload contains a link with a key which does not exist, the REST data
service returns a 404 (Not Found) response to indicate the linked entity cannot be
found.

If the payload contains more than one link, the eXtreme Scale Rest Data Service
will parse the first link. The remaining links are ignored.

For more details on InsertLink request, refer to: MSDN Library: InsertLink Request.

The following InsertLink request example creates a link from Customer('IBM') to
Order(orderId=5000,customer_customerId='IBM').

AtomPub

v Method: POST
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')/$link/orders
v Request Header: Content-Type: application/xml
v Request Payload:

<?xml version="1.0" encoding="ISO-8859-1"?>
<uri>http://host:1000/wxsrestservice/restservice/NorthwindGrid/Order(orderId=

5000,customer_customerId=’IBM’)</uri>

v Response Payload: None
v Response Code: 204 No Content

JSON

v Method: POST
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')/$links/orders
v Request Header: Content-Type: application/json
v Request Payload:

{"uri": "http://host:1000/wxsrestservice/restservice/NorthwindGrid/Order(orderId
=5000,customer_customerId=’IBM’)"}

v Response Payload: None
v Response Code: 204 No Content

Update requests with REST data services
The WebSphere eXtreme Scale REST data service supports update requests for
entities, entity primitive properties, and so on.

Update an entity

An UpdateEntity Request can be used to update an existing eXtreme Scale entity.
The client can use an HTTP PUT method to replace an existing eXtreme Scale
entity, or use an HTTP MERGE method to merge the changes into an existing
eXtreme Scale entity.

Chapter 5. Developing applications 273

http://msdn.microsoft.com/en-us/library/dd541360(PROT.10).aspx

When updating the entity, the client can specify if the entity, in addition to being
updated, must be automatically linked to other existing entities in the data service
that are related through single valued to-one associations.

The property of the entity to be updated is in the request payload. The property is
parsed by the REST data service and then set to the correspondent property on the
entity. For the AtomPub format, the property is specified as a <d:PROPERTY_NAME>
XML element. For JSON, the property is specified as a property of a JSON object.

If a property is missing in the request payload, the REST data service sets the
entity property value to the Java default value for HTTP PUT method. However,
the database backend might reject such a default value if, for example, the column
is not nullable in the database. Then a 500 (Internal Server Error) response code is
returned to indicate an Internal Server Error. If a property is missing in the HTTP
MERGE request payload, the REST data service does not change the existing
property value.

If there are duplicate properties specified in the payload, the last property is used.
All the previous values with the same property name are ignored by the REST
data service.

If the payload contains a non-existent property, the REST data service returns a 400
(Bad Request) response code to indicate the request sent by the client was
syntactically incorrect.

As part of the serialization of a resource, if the payload of an Update request
contains any of the key properties for the entity, the REST data service ignores
those key values since entity keys are immutable.

For details on UpdateEntity request, refer to: MSDN Library: UpdateEntity
Request.

An UpdateEntity request updates the city name of Customer('IBM') to 'Raleigh'.

AtomPub

v Method: PUT
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')
v Request Header: Content-Type: application/atom+xml
v Request Payload:

<?xml version="1.0" encoding="ISO-8859-1"?>
<entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
xmlns="http://www.w3.org/2005/Atom">
<category term="NorthwindGridModel.Customer"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
<title />
<updated>2009-07-28T21:17:50.609Z</updated>
<author>
<name />
</author>
<id />
<content type="application/xml">
<m:properties>
<d:customerId>IBM</d:customerId>
<d:city>Raleigh</d:city>
<d:companyName>IBM Corporation</d:companyName>
<d:contactName>Big Blue</d:contactName>

274 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://msdn.microsoft.com/en-us/library/dd541157(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541157(PROT.10).aspx

<d:country>USA</d:country>
</m:properties>
</content>
</entry>

v Response Payload: None
v Response Code: 204 No Content

JSON

v Method: PUT
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')
v Request Header: Content-Type: application/json
v Request Payload:

{"customerId":"IBM",
"city":"Raleigh",
"companyName":"IBM Corporation",
"contactName":"Big Blue",
"country":"USA",}

v Response Payload: None
v Response Code: 204 No Content

Update an entity primitive property

The UpdatePrimitiveProperty Request can update a property value of an eXtreme
Scale entity. The property and value to be updated are in the request payload. The
property cannot be a key property since eXtreme Scale does not allow clients to
change entity keys.

For more details on the UpdatePrimitiveProperty request, refer to: MSDN Library:
UpdatePrimitiveProperty Request.

Here is an UpdatePrimitiveProperty request example. In this example, we update
the city name of Customer('IBM') to 'Raleigh'.

AtomPub

v Method: PUT
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')/city
v Request Header: Content-Type: application/xml
v Request Payload:

<?xml version="1.0" encoding="ISO-8859-1"?>
<city xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices">
Raleigh
</city>

v Response Payload: None
v Response Code: 204 No Content

JSON

v Method: PUT
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')/city
v Request Header: Content-Type: application/json
v Request Payload: {"city":"Raleigh"}

Chapter 5. Developing applications 275

http://msdn.microsoft.com/en-us/library/dd541206(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541206(PROT.10).aspx

v Response Payload: None
v Response Code: 204 No Content

Update an entity primitive property value

The UpdateValue Request can update a raw property value of an eXtreme Scale
entity. The value to be updated is represented as a raw value in the request
payload. The property cannot be a key property since eXtreme Scale does not
allow clients to change entity keys.

The content type of the request can be “text/plain” or “application/octet-stream”
depending on the property type. For more information, see “Retrieving non-entities
with REST data services” on page 265.

For more details on the UpdateValue request, refer to: MSDN Library: UpdateValue
Request

Here is an UpdateValue request example. In this example, update the city name of
Customer('IBM') to 'Raleigh'.
v Method: PUT
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')/city/$value
v Request Header: Content-Type: text/plain
v Request Payload: Raleigh
v Response Payload: None
v Response Code: 204 No Content

Update a link

The UpdateLink request can be used to establish an association between two
eXtreme Scale entity instances. The association can be a single valued (to-one)
relation or a multi-valued (to-many) relation.

Updating a link between two eXtreme Scale entity instances can establish
associations or remove associations. For example, if the client establishes a to-one
association between an Order(orderId=5000,customer_customerId='IBM') entity
and Customer('ALFKI') instance, it has to dissociate the
Order(orderId=5000,customer_customerId='IBM') entity and entity from its
currently associated Customer instance.

If either of the entity instances specified in the UpdateLink request cannot be
found, the REST data service returns a 404 (Not Found) response.

If the URI of the UpdateLink request specifies a non-existent association, the REST
data service returns a 404 (Not Found) response to indicate the link cannot be
found.

If the URI specified in the UpdateLink request payload does not resolve to the
same entity or the same key as specified in the URI, if exists, then the eXtreme
Scale Rest Data Service returns a 400 (Bad Request) response.

If the UpdateLink request payload contains multiple links, then the REST data
service parses the first link only. The rest of the links are ignored.

276 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://msdn.microsoft.com/en-us/library/dd541483(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541483(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541081(PROT.10).aspx#link
http://msdn.microsoft.com/en-us/library/dd541288(PROT.10).aspx#entity_type

For more details on the UpdateLink request, refer to: MSDN Library: UpdateLink
Request.

Here is an UpdateLink request example. In this example, we update the customer
relation of Order(orderId=5000,customer_customerId='IBM') entity and from
Customer('IBM') to Customer('IBM').

Remember: The previous example is for illustration only. Because all associations
are typically key-associations for a partitioned grid, the link cannot be changed.

AtomPub

v Method: PUT
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Order(101)/$links/customer
v Request Header: Content-Type: application/xml
v Request Payload:

<?xml version="1.0" encoding="ISO-8859-1"?>
<uri>
http://host:1000/wxsrestservice/restservice/NorthwindGrid/Customer(’IBM’)
</uri>

v Response Payload: None
v Response Code: 204 No Content

JSON

v Method: PUT
v Request URI: http://localhost:8080/wxsrestservice/restservice/

NorthwindGrid/Order(orderId=5000,customer_customerId='IBM')/$links/
customer

v Request Header: Content-Type: application/xml
v Request Payload: {"uri": "http://host:1000/wxsrestservice/restservice/

NorthwindGrid/Customer('IBM')"}

v Response Payload: None
v Response Code: 204 No Content

Delete requests with REST data services
The WebSphere eXtreme Scale REST data service can delete entities, property
values and links.

Delete an entity

The DeleteEntity Request can delete an eXtreme Scale entity from the REST data
service.

If any relation to the to-be-deleted entity has cascade-delete set, then the eXtreme
Scale Rest data service will delete the related entity or entities. For more details on
the DeleteEntity request, refer to MSDN Library: DeleteEntity Request.

The following DeleteEntity request deletes the customer with key 'IBM'.
v Method: DELETE
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')
v Request Payload: None

Chapter 5. Developing applications 277

http://msdn.microsoft.com/en-us/library/dd541580(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541580(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541417(PROT.10).aspx

v Response Payload: None
v Response Code: 204 No Content

Delete a property value

The DeleteValue Request sets an eXtreme Scale entity property to null.

Any property of an eXtreme Scale entity can be set to null with a DeleteValue
request. To set a property to null, ensure all of the following:
v For any primitive number type and its wrapper, BigInteger, or BigDecimal, the

property value is set to 0.
v For Boolean or boolean type, the property value is set to false.
v For char or Character type, the property value is set to character #X1 (NIL).
v For enum type, the property value is set to the enum value with ordinal 0.
v For all other types, the property value is set to null.

However, such a delete request could be rejected by the database backend if, for
example, the property is not nullable in the database. In this case, the REST data
service returns a 500 (Internal Server Error) response. For more details on the
DeleteValue request, refer to: MSDN Library: DeleteValue Request.

Here is a DeleteValue request example. In this example, we set the contact name of
Customer('IBM') to null.
v Method: DELETE
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')/contactName
v Request Payload: None
v Response Payload: None
v Response Code: 204 No Content

Delete a link

The DeleteLink request can removes an association between two eXtreme Scale
entity instances. The association can be a to-one relation or a to-many relation.
However, such a delete request could be rejected by the database backend if, for
example, the foreign key constraint is set. In this case, the REST data service
returns a 500 (Internal Server Error) response. For more details on the DeleteLink
request, refer to: MSDN Library: DeleteLink Request.

The following DeleteLink request removes the association between Order(101) and
its associated Customer.
v Method: DELETE
v Request URI: http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Order(101)/$links/customer
v Request Payload: None
v Response Payload: None
v Response Code: 204 No Content

278 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://msdn.microsoft.com/en-us/library/dd541270(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541543(PROT.10).aspx

System APIs and plug-ins
A plug-in is a component that provides a function to the pluggable components,
which include ObjectGrid and BackingMap. To most effectively use eXtreme Scale
as an in-memory data grid or database processing space, you should carefully
determine how best you can maximize performance with available plug-ins.

Managing plug-in life cycles
You can manage plug-in life cycles with specialized methods from each plug-in,
which are available to be invoked at designated functional points. Both initialize
and destroy methods define the life cycle of plug-ins, which are controlled by their
owner objects. An owner object is the object that actually uses the given plug-in. An
owner can be a grid client, server, or a backing map.

About this task

Similarly all plug-ins can implement the optional mix-in interfaces appropriate for
their owner object. Any ObjectGrid plug-in can implement the optional mix-in
interface ObjectGridPlugin. Any BackingMap plug-in can implement the optional
mix-in interface BackingMapPlugin. The optional mix-in interfaces require
implementation of several additional methods beyond the initialize() and destroy()
methods for the basic plug-ins. For more information about these interfaces, see the
API documentation.

When owner objects are initializing, those objects set attributes on the plug-in, then
invoke the initialize method of their owned plug-ins. During the destroy cycle of
owner objects, the destroy method of plug-ins are consequently invoked also. For
details on the specifics of initialize and destroy methods, along with other methods
capable with each plug-in, refer to the topics relevant to each plug-in.

As an example, consider a distributed environment. Both the client-side
ObjectGrids and the server-side ObjectGrids can have their own plug-ins. The life
cycle of a client-side ObjectGrid, and therefore, its plug-in instances are
independent from all server-side ObjectGrid and plug-in instances.

In such a distributed topology, assume that you have an ObjectGrid named myGrid
defined in the objectGrid.xml file and configured with a customized
ObjectGridEventListener named myObjectGridEventListener. The
objectGridDeployment.xml file defines the deployment policy for the myGrid
ObjectGrid. Both the objectGrid.xml and objectGridDeployment.xml files are used
to start container servers. During the startup of the container server, the server-side
myGrid ObjectGrid instance is initialized. Meanwhile, the initialize method of the
myObjectGridEventListener instance that is owned by the myObjectGrid instance is
invoked. After the container server is started, your application can connect to the
server-side myGrid ObjectGrid instance and obtain a client-side instance.

When obtaining the client-side myGrid ObjectGrid instance, the client-side myGrid
instance goes through its own initialization cycle and invokes the initialize method
of its own client-side myObjectGridEventListener instance. This client-side
myObjectGridEventListener instance is independent from the server-side
myObjectGridEventListener instance. Its life cycle is controlled by its owner, which
is the client-side myGrid ObjectGrid instance.

If your application disconnects or destroys the client-side myGrid ObjectGrid
instance, then the destroy method that belongs to the client-side

Chapter 5. Developing applications 279

myObjectGridEventListener instance is invoked automatically. However, this
process has no impact on server-side myObjectGridEventListener instance. The
destroy method of the server-side myObjectGridEventListener instance can only be
invoked during the destroy life cycle of the server-side myGrid ObjectGrid instance,
when stopping a container server. Specifically, when stopping a container server,
the contained ObjectGrid instances are destroyed and the destroy method of all
their owned plug-ins is invoked.

Although the previous example applies specifically to the case of a client and a
server instance of an ObjectGrid, the owner of a plug-in can also be a BackingMap
interface. In addition, carefully to determine your configurations for plug-ins that
you might write, based on these life cycle considerations. Use the following topics
to write plug-ins that provide extended life cycle management events that you can
use to set up or remove resources in your environment:

Writing an ObjectGridPlugin plug-in
An ObjectGridPlugin is an optional mix-in interface that you can use to provide
extended life cycle management events to all other ObjectGrid plug-ins.

About this task

Any ObjectGrid plug-in that implements the ObjectGridPlugin receives the
extended set of life cycle events, and can provide more control, which you can use
to set up or remove resources. In a container for a partitioned data grid, there will
be one ObjectGrid instance (the plugin owner) for each partition managed by the
container.When individual partitions are removed, the resources that are used by
that ObjectGrid instance must also be removed. Therefore, you might need to close
or end a resource, such as an open configuration file or a running thread that is
managed by a plug-in, when the owning partition for that resource is removed.

The ObjectGridPlugin interface provides methods to set or modify the state of the
plug-in, as well as methods to introspect the current state of the plug-in. All
methods must be implemented correctly, and the WebSphere eXtreme Scale
runtime environment verifies the method behavior under certain circumstances.
For example, after calling the initialize() method, the eXtreme Scale runtime
environment calls the isInitialized() method to ensure that the method successfully
completed the appropriate initialization.

Procedure
1. Implement the ObjectGridPlugin interface so that the ObjectGridPlugin plug-in

receives notifications about significant eXtreme Scale events. Three main
categories of methods exist:

Properties methods Purpose

setObjectGrid() Called to set the ObjectGrid instance the plug-in is used
for.

getObjectGrid() Called to get or confirm the ObjectGrid instance the
plug-in is used for.

Initialization methods Purpose

initialize() Called to initialize the ObjectGridPlugin.

isInitialized() Called to get or confirm the initialization status of the
plug-in.

Destruction methods Purpose

destroy() Called to destroy the ObjectGridPlugin.

280 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Destruction methods Purpose

isDestroyed() Called to get or confirm the destroyed status of the
plug-in.

See the API documentation for more information about these interfaces.
2. Configure an ObjectGridPlugin plug-in with XML. Use the

com.company.org.MyObjectGridPluginTxCallback class, which implements the
TransactionCallback interface and the ObjectGridPlugin interface.
In the following code example, the custom transaction callback, which will
ultimately receive extended life cycle events, is generated and added to an
ObjectGrid.

Important: The TransactionCallback interface already has an initialize method,
a new initialize method is added as well as the destroy method and other
ObjectGridPlugin methods. Each method is used, and the initialize methods
only perform initialization one time. The following XML creates a configuration
that uses the enhanced TransactionCallback interface.

The following text must be in the myGrid.xml file:
?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="myGrid">

<bean id="TransactionCallback"
className="com.company.org.MyObjectGridPluginTxCallback" />

<backingMap name="Book"/>
</objectGrid>

</objectGrids>
</objectGridConfig>

Notice the bean declarations come before the backingMap declarations.
3. Provide the myGrid.xml file to the ObjectGridManager plug-in to facilitate the

creation of this configuration.

Writing a BackingMapPlugin plug-in
A BackingMap plug-in implements the BackingMapPlugin mix-in interface, which
you can use to receive extended capabilities for managing its life cycle.

About this task

Any existing BackingMap plug-in that also implements the BackingMapPlugin
interface will automatically receive the extended set of lifecycle events during its
construction and use.

The BackingMapPlugin interface provides methods to set or modify the state of the
plug-in, as well as methods to introspect the current state of the plug-in.

All methods must be implemented correctly, and the WebSphere eXtreme Scale
runtime environment verifies the method behavior under certain circumstances.
For example, after calling the initialize() method, the eXtreme Scale runtime
environment calls the isInitialized() method to ensure that the method successfully
completed the appropriate initialization.

Chapter 5. Developing applications 281

Procedure
1. Implement the BackingMapPlugin interface so that the BackingMapPlugin

plug-in receives notifications about significant eXtreme Scale events. Three
main categories of methods exist:

Properties methods Purpose

setBackingMap() Called to set the BackingMap instance the plug-in is used
for.

getBackingMap() Called to get or confirm the BackingMap instance the
plug-in is used for.

Initialization methods Purpose

initialize() Called to initialize the BackingMapPlugin plug-in.

isInitialized() Called to get or confirm the initialization status of the
plug-in.

Destruction methods Purpose

destroy() Called to destroy the BackingMapPlugin plug-in.

isDestroyed() Called to get or confirm the destroyed status of the
plug-in.

See the API documentation for more information about these interfaces.
2. Configure a BackingMapPlugin plug-in with XML. Assume that the class name

of an eXtreme Scale Loader plug-in is the
com.company.org.MyBackingMapPluginLoader class, which implements the
Loader interface and the BackingMapPlugin interface.
In the following code example, the custom transaction callback, which will
ultimately receive extended life cycle events, is generated and added to a
BackingMap.
You can also configure a BackingMapPlugin plug-in using XML. The following
text must be in the myGrid.xml file:
<?xml version="1.0" encoding="UTF-8" ?>
<objectGridconfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config../objectGrid.xsd"

xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="myGrid">
<backingMap name="Book" pluginCollectionRef="myPlugins" />

</objectGrid>
</objectGrids>
<backingMapPluginCollections>

<backingMapPluginCollection id="myPlugins">
<bean id="Loader"

className="com.company.org.MyBackingMapPluginLoader" />
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

3. Provide the myGrid.xml file to the ObjectGridManager plug-in to facilitate the
creation of this configuration.

Results

The BackingMap instance that is created has a Loader that receives
BackingMapPlugin life cycle events.

Plug-ins for multimaster replication
Consider transforming cached objects to increase the performance of your cache.
You can use the ObjectTransformer plug-in when your processor usage is high. Up

282 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

to 60-70 percent of the total processor time is spent serializing and copying entries.
By implementing the ObjectTransformer plug-in, you can serialize and deserialize
objects with your own implementation. You can use a CollisionArbiter plug-in to
define how change collisions are handled in your domains.

Developing custom arbiters for multi-master replication
Change collisions might occur if the same records can be changed simultaneously
in two places. In a multi-master replication topology, catalog service domains
detect collisions automatically. When a catalog service domain detects a collision, it
invokes an arbiter. Typically, collisions are resolved with the default collision
arbiter. However, an application can provide a custom collision arbiter.

Before you begin
v See “Planning multiple data center topologies” on page 104 for more

information about planning and designing the multi-master replication topology.
v See Configuring multiple data center topologies for more information about

setting up links between catalog service domains.

About this task

If a catalog service domain receives a replicated entry that collides with a collision
record, the default arbiter uses the changes from the lexically lowest named catalog
service domain. For example, if domain A and B generate a conflict for a record,
then the change from domain B is ignored. Domain A keeps its version and the
record in domain B is changed to match the record from domain A. Domain names
are converted to uppercase for comparison.

An alternative option is for the multi-master replication topology to call on a
custom collision plug-in to decide the outcome. These instructions outline how to
develop a custom collision arbiter and configure a multi-master replication
topology to use it.

Procedure
1. Develop a custom collision arbiter and integrate it into your application.

The class must implement the interface:
com.ibm.websphere.objectgrid.revision.CollisionArbiter

A collision plug-in has three choices for deciding the outcome of a collision. It
can choose the local copy or the remote copy or it can provide a revised
version of the entry. A catalog service domain provides the following
information to a custom collision arbiter:
v The existing version of the record
v The collision version of the record
v A Session object that must be used to create the revised version of the

collided entry

The plug-in method returns an object that indicates its decision. The method
invoked by the domain to call the plug-in must return true or false, where false
means to ignore the collision. When the collision is ignored, the local version
remains unchanged and the arbiter forgets that it ever saw the existing version.
The method returns a true value if the method used the provided session to
create a new, merged version of the record, reconciling the change.

2. In the objectgrid.xml file, specify the custom arbiter plug-in.
The ID must be CollisionArbiter.

Chapter 5. Developing applications 283

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsmultimasterconfig.html

<dgc:objectGrid name="revisionGrid" txTimeout="10">
<dgc:bean className="com.you.your_application.
CustomArbiter" id="CollisionArbiter">
<dgc:property name="property" type="java.lang.String"
value="propertyValue"/>
</dgc:bean>

</dgc:objectGrid>

Plug-ins for versioning and comparing cache objects
Use the OptimisticCallback plug-in to customize versioning and comparison
operations of cache objects when you are using the optimistic locking strategy.

You can provide a pluggable optimistic callback object that implements the
com.ibm.websphere.objectgrid.plugins.OptimisticCallback interface. For entity
maps, a high performance OptimisticCallback plug-in is automatically configured.

Purpose

Use the OptimisticCallback interface to provide optimistic comparison operations
for the values of a map. An OptimisticCallback plug-in is required when you use
the optimistic locking strategy. The product provides a default OptimisticCallback
implementation. However, typically your application must plug in its own
implementation of the OptimisticCallback interface.

Default implementation

The eXtreme Scale framework provides a default implementation of the
OptimisticCallback interface that is used if the application does not plug in an
application-provided OptimisticCallback object. The default implementation always
returns the special value of NULL_OPTIMISTIC_VERSION as the version object
for the value and never updates the version object. This action makes optimistic
comparison a "no operation" function. In most cases, you do not want the "no
operation" function to occur when you are using the optimistic locking strategy.
Your applications must implement the OptimisticCallback interface and plug in
their own OptimisticCallback implementations so that the default implementation
is not used. However, at least one scenario exists where the default provided
OptimisticCallback implementation is useful. Consider the following situation:
v A loader is plugged in for the backing map.
v The loader knows how to perform the optimistic comparison without assistance

from an OptimisticCallback plug-in.

How can the loader perform optimistic versioning without assistance from an
OptimisticCallback object? The loader has knowledge of the value class object and
knows which field of the value object is used as an optimistic versioning value. For
example, suppose the following interface is used for the value object for the
employees map:
public interface Employee
{

// Sequential sequence number used for optimistic versioning.
public long getSequenceNumber();
public void setSequenceNumber(long newSequenceNumber);
// Other get/set methods for other fields of Employee object.

}

In this example, the loader knows that it can use the getSequenceNumber method
to get the current version information for an Employee value object. The loader
increments the returned value to generate a new version number before it updates

284 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

the persistent storage with the new Employee value. For a Java database
connectivity (JDBC) loader, the current sequence number in the WHERE clause of
an overqualified SQL UPDATE statement is used, and it uses the new generated
sequence number to set the sequence number column to the new sequence number
value. Another possibility is that the loader makes use of some backend-provided
function that automatically updates a hidden column that can be used for
optimistic versioning.

In some situations, a stored procedure or trigger can possibly be used to help
maintain a column that holds versioning information. If the loader is using one of
these techniques for maintaining optimistic versioning information, then the
application does not need to provide an OptimisticCallback implementation. The
default OptimisticCallback implementation is usable in this scenario because the
loader can handle optimistic versioning without any assistance from an
OptimisticCallback object.

Default implementation for entities

Entities are stored in the ObjectGrid using tuple objects. The default
OptimisticCallback implementation behavior is similar to the behavior for
non-entity maps. However, the version field in the entity is identified using the
@Version annotation or the version attribute in the entity descriptor XML file.

The version attribute can be of the following types: int, Integer, short, Short, long,
Long or java.sql.Timestamp. An entity must only have one version attribute
defined. Only set the version attribute during construction. After the entity is
persisted, the value of the version attribute should not be modified.

If a version attribute is not configured and the optimistic locking strategy is used,
then the entire tuple is implicitly versioned using the entire state of the tuple,
which is much more expensive

In the following example, the Employee entity has a long version attribute named
SequenceNumber:
@Entity
public class Employee
{
private long sequence;

// Sequential sequence number used for optimistic versioning.
@Version
public long getSequenceNumber() {

return sequence;
}
public void setSequenceNumber(long newSequenceNumber) {

this.sequence = newSequenceNumber;
}
// Other get/set methods for other fields of Employee object.

}

Writing an OptimisticCallback plug-in

An OptimisticCallback plug-in must to implement the OptimisticCallback interface
and follow the common ObjectGrid plug-in conventions. See the
OptimisticCallback interface in the API documentation for more information.

The following list provides a description or consideration for each of the methods
in the OptimisticCallback interface:

Chapter 5. Developing applications 285

NULL_OPTIMISTIC_VERSION

This special value is returned by the getVersionedObjectForValue method if the
OptimisticCallback implementation does not require version checking. The built-in
plugin implementation of the
com.ibm.websphere.objectgrid.plugins.builtins.NoVersioningOptimisticCallback
class uses this value because versioning is disabled when you are specifying this
plug-in implementation.

getVersionedObjectForValue method

The getVersionedObjectForValue method might return a copy of the value or an
attribute of the value that can be used for versioning purposes. This method is
called whenever an object is associated with a transaction. When no Loader is
plugged into a backing map, the backing map uses this value at commit time to
perform an optimistic version comparison. The optimistic version comparison is
used by the backing map to ensure that the version has not changed after this
transaction first accessed the map entry that was modified by this transaction. If
another transaction had already modified the version for this map entry, the
version comparison fails and the backing map displays an
OptimisticCollisionException exception to force the transaction to roll back. If a
Loader is plugged in, the backing map does not use the optimistic versioning
information. Instead, the Loader is responsible for performing the optimistic
versioning comparison and updating the versioning information when necessary.
The Loader typically gets the initial versioning object from the LogElement passed
to the batchUpdate method on the loader, which is called when a flush operation
occurs or a transaction is committed.

The following code shows the implementation used by the
EmployeeOptimisticCallbackImpl object:
public Object getVersionedObjectForValue(Object value)
{

if (value == null)
{

return null;
}
else
{

Employee emp = (Employee) value;
return new Long(emp.getSequenceNumber());

}
}

As demonstrated in the previous example, the sequenceNumber attribute is
returned in a java.lang.Long object as expected by the Loader, which implies that
the same person that wrote the Loader either wrote the
EmployeeOptimisticCallbackImpl implementation or worked closely with the
person that implemented the EmployeeOptimisticCallbackImpl - for example,
agreed on the value returned by the getVersionedObjectForValue method. The
default OptimisticCallback plug-in returns the special value
NULL_OPTIMISTIC_VERSION as the version object.

updateVersionedObjectForValue method

This method is called whenever a transaction has updated a value and a new
versioned object is needed. If the getVersionedObjectForValue method returns an
attribute of the value, this method typically updates the attribute value with a new
version object. If getVersionedObjectForValue method returns a copy of the value,

286 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

this method typically does not complete any actions. The default
OptimisticCallback plug-in does not complete any actions with this method
because the default implementation of getVersionedObjectForValue always returns
the special value NULL_OPTIMISTIC_VERSION as the version object. The
following example shows the implementation used by the
EmployeeOptimisticCallbackImpl object that is used in the OptimisticCallback
section:
public void updateVersionedObjectForValue(Object value)
{

if (value != null)
{

Employee emp = (Employee) value;
long next = emp.getSequenceNumber() + 1;
emp.updateSequenceNumber(next);

}
}

As demonstrated in the previous example, the sequenceNumber attribute
increments by one so that the next time the getVersionedObjectForValue method is
called, the java.lang.Long value that is returned has a long value that is the
original sequence number value plus one, for example, is the next version value
for this employee instance. This example implies that the same person that wrote
the Loader either wrote EmployeeOptimisticCallbackImpl or worked closely with
the person that implemented the EmployeeOptimisticCallbackImpl.

serializeVersionedValue method

This method writes the versioned value to the specified stream. Depending on the
implementation, the versioned value can be used to identify optimistic update
collisions. In some implementations, the versioned value is a copy of the original
value. Other implementations might have a sequence number or some other object
to indicate the version of the value. Because the actual implementation is
unknown, this method is provided to perform the appropriate serialization. The
default implementation calls the writeObject method.

inflateVersionedValue method

This method takes the serialized version of the versioned value and returns the
actual versioned value object. Depending on the implementation, the versioned
value can be used to identify optimistic update collisions. In some
implementations, the versioned value is a copy of the original value. Other
implementations might have a sequence number or some other object to indicate
the version of the value. Because the actual implementation is unknown, this
method is provided to perform the appropriate deserialization. The default
implementation calls the readObject method.

Using application-provided OptimisticCallback object

You have two approaches to add an application-provided OptimisticCallback object
into the BackingMap configuration: XML configuration and programmatic
configuration.

Programmatically plug in an OptimisticCallback object

The following example demonstrates how an application can programmatically
plug in an OptimisticCallback object for the employee backing map in the local
grid1 ObjectGrid instance:

Chapter 5. Developing applications 287

import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.ObjectGridManager;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.BackingMap;
ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid og = ogManager.createObjectGrid("grid1");
BackingMap bm = dg.defineMap("employees");
EmployeeOptimisticCallbackImpl cb = new EmployeeOptimisticCallbackImpl();
bm.setOptimisticCallback(cb);

XML configuration approach to plug in an OptimisticCallback
object

The application can use an XML file to plug in its OptimisticCallback object as
shown in the following example:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="grid1">
<backingMap name="employees" pluginCollectionRef="employees" lockStrategy="OPTIMISTIC" />

</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="employees">

<bean id="OptimisticCallback" className="com.xyz.EmployeeOptimisticCallbackImpl" />
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

Plug-ins for serializing cached objects
WebSphere eXtreme Scale uses multiple Java processes to serialize the data, by
converting the Java object instances to bytes and back to objects again, as needed,
to move the data between client and server processes.

To serialize data in eXtreme Scale, you can use Java serialization, the
ObjectTransformer plug-in, or the DataSerializer plug-ins.

The ObjectTransformer interface has been replaced by the DataSerializer
plug-ins, which you can use to efficiently store arbitrary data in WebSphere
eXtreme Scale so that existing product APIs can efficiently interact with your data.

Serializer programming overview
You can use the DataSerializer plug-ins to write optimized serializers for storing
Java objects and other data in binary form in the grid. The plug-in also provides
methods that you can use to query attributes within the binary data without
requiring the entire data object to be inflated.

The DataSerializer plug-ins include three main plug-ins and several optional
mix-in interfaces. The MapSerializerPlugin plug-in includes metadata about the
relationship between a map and other maps. It also includes a reference to a
KeySerializerPlugin and ValueSerializerPlugin. The key and value serializer
plug-ins include metadata and serialization code responsible for interacting with
the respective key and value data for a map. A MapSerializerPlugin plug-in must
include one or both key and value serializers.

The KeySerializerPlugin plug-in provides methods and metadata for serializing,
inflating and introspecting keys. The ValueSerializer plug-in provides methods and
metadata for serializing, inflating and introspecting values. Both interfaces have
different requirements. For details on what methods are available on the

288 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

DataSerializer plug-ins, see the API documentation for the
com.ibm.websphere.objectgrid.plugins.io package.

MapSerializerPlugin plug-in
The MapSerializerPlugin is the main plug-in point to the BackingMap
interface, and it includes two nested plug-ins: the KeySerializerPlugin and
ValueSerializerPlugin plug-ins. Since eXtreme Scale does not support
nested or wired plug-ins, the BasicMapSerializerPlugin plug-in accesses
these nested plug-ins artificially. When you use these plug-ins with the
OSGi framework, the only proxy is the MapSerializerPlugin plug-in. All
nested plug-ins must not be cached within other dependent plug-ins, such
as loaders, unless those plug-ins also listen for BackingMap life cycle
events. This is important when running in an OSGi framework, because
references to those plug-ins can continue to be refreshed.

KeySerializerPlugin plug-in
The KeySerializerPlugin plug-in extends the DataSerializer interface and
includes other mix-in interfaces and metadata that describes the key. Use
this plug-in to serialize and inflate key data objects and attributes.

ValueSerializerPlugin plug-in
The ValueSerializerPlugin plug-in extends the DataSerializer interface, but
exposes no additional methods. Use this plug-in to serialize and inflate
value data objects and attributes.

Optional and mix-in interfaces

Optional and mix-in interfaces provide additional capabilities, such as:

Optimistic versioning
The Versionable interface allows the ValueSerializerPlugin plug-in to
handle version checking and version updates when using optimistic
locking. If the Versioning is not implemented and optimistic locking is
enabled, then the version is the entire serialized form of the data object
value.

Non-hashCode-based routing
The Partitionable interface allows KeySerializerPlugin implementations to
route requests to explicit partitions. This is equivalent to the
PartitionableKey interface, when used with the ObjectMap API without a
KeySerializerPlugin. Without this feature, the key is routed to the partition
based on the resulting hashCode.

UserReadable (toString) interface
The UserReadable (toString) interface allows all DataSerializer
implementations to provide an alternative method to display data in log
files and debuggers. With this capability, you can hide sensitive data such
as passwords. If DataSerializer implementations do not implement this
interface, then the runtime environment might call toString() directly on
the object or include alternative representations, if appropriate.

Evolution support
The Mergeable interface can be implemented on ValueSerializerPlugin
plug-in implementations to allow interoperability between multiple
versions of objects when there are different DataSerializer versions
updating data in the grid through it's lifetime. The Mergeable methods
allow the DataSerializer plug-in to retain any data that it might not
otherwise understand.

Chapter 5. Developing applications 289

Avoiding object inflation when updating and retrieving cache
data
You can use the DataSerializer plug-ins to bypass automatic object inflation and
manually retrieve attributes from data that has already been serialized. You can
also use the DataSerializer to insert and update data in its serialized form. This
usage can be useful when only part of the data needs to be accessed or when the
data needs to be passed between systems.

About this task

This task uses the COPY_TO_BYTES_RAW copy mode with the
MapSerializerPlugin and ValueSerializerPlugin plug-ins. The MapSerializer is the
main plug-in point to the BackingMap interface. It includes two nested plug-ins,
the KeyDataSerializer and ValueDataSerializer. Since the product does not support
nested plug-ins, the BaseMapSerializer supports nested or wired plug-ins
artificially. Therefore, when you use these APIs in the OSGi container, the
MapSerializer is the only proxy. All nested plug-ins must not be cached within
other dependent plug-ins, such as a loader, unless it also listens for BackingMap
life cycle events, so that it can refresh its supporting references.

When COPY_TO_BYTES_RAW is set, all ObjectMap methods return
SerializedValue objects, allowing the user to retrieve the serialized form or the Java
object form of the value.

When using a KeySerializerPlugin plug-in, all methods that return keys, such as
the MapIndexPlugin or Loader plug-ins return SerializedKey objects.

When the data is already in serialized form, the data is inserted using the same
SerializedKey and SerializedValue objects. When the data is in byte[] format, the
DataObjectKeyFactory and DataObjectValueFactory factories are used to create the
appropriate key or value wrapper. The factories are available on the
DataObjectContext, which can be accessed from the SerializerAccessor for the
BackingMap, or from within the DataSerializer implementation.

The example in this topic demonstrates how to complete the following actions:

Procedure
1. Use the DataSerializer plug-ins to serialize and inflate data objects.
2. Retrieve serialized values.
3. Retrieve individual attributes from a serialized value.
4. Insert pre-serialized keys and values.

Example

Use this example to update and retrieve cache data:
import java.io.IOException;
import com.ibm.websphere.objectgrid.CopyMode;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.ObjectGridException;
import com.ibm.websphere.objectgrid.ObjectMap;
import com.ibm.websphere.objectgrid.Session;
import com.ibm.websphere.objectgrid.io.XsDataOutputStream;
import com.ibm.websphere.objectgrid.plugins.io.SerializerAccessor;
import com.ibm.websphere.objectgrid.plugins.io.ValueSerializerPlugin;
import com.ibm.websphere.objectgrid.plugins.io.dataobject.DataObjectContext;
import com.ibm.websphere.objectgrid.plugins.io.dataobject.SerializedKey;
import com.ibm.websphere.objectgrid.plugins.io.dataobject.SerializedValue;

/**
* Use the DataSerializer to serialize an Order key.
*/

290 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

public byte[] serializeOrderKey(ObjectGrid grid, String key)
throws IOException {

SerializerAccessor sa = grid.getMap("Order").getSerializerAccessor();
DataObjectContext dftObjCtx = sa.getDefaultContext();
XsDataOutputStream out = dftObjCtx.getDataStreamManager()

.createOutputStream();
sa.getMapSerializerPlugin().getKeySerializerPlugin()

.serializeDataObject(sa.getDefaultContext(), key, out);
return out.toByteArray();

}

/**
* Use the DataSerializer to serialize an Order value.
*/
public byte[] serializeOrderValue(ObjectGrid grid, Order value)

throws IOException {
SerializerAccessor sa = grid.getMap("Order").getSerializerAccessor();
DataObjectContext dftObjCtx = sa.getDefaultContext();
XsDataOutputStream out = dftObjCtx.getDataStreamManager()

.createOutputStream();
sa.getMapSerializerPlugin().getValueSerializerPlugin()

.serializeDataObject(sa.getDefaultContext(), value, out);
return out.toByteArray();

}

/**
* Retrieve a single Order in serialized form.
*/
public byte[] fetchOrderRAWBytes(Session session, String key)

throws ObjectGridException {
ObjectMap map = session.getMap("Order");

// Override the CopyMode to retrieve the serialized form of the value.
// This process affects all API methods from this point on for the life
// of the Session.
map.setCopyMode(CopyMode.COPY_TO_BYTES_RAW, null);
SerializedValue serValue = (SerializedValue) map.get(key);

if (serValue == null)
return null;

// Retrieve the byte array and return it to the caller.
return serValue.getInputStream().toByteArray();

}

/**
* Retrieve one or more attributes from the Order without inflating the
* Order object.
*/
public Object[] fetchOrderAttribute(Session session, String key,

String... attributes) throws ObjectGridException, IOException {
ObjectMap map = session.getMap("Order");

// Override the CopyMode to retrieve the serialized form of the value.
// This process affects all API methods from this point on for the life
// of the Session.
map.setCopyMode(CopyMode.COPY_TO_BYTES_RAW, null);
SerializedValue serValue = (SerializedValue) map.get(key);

if (serValue == null)
return null;

// Retrieve a single attribute from the byte buffer.
ValueSerializerPlugin valSer = session.getObjectGrid()

.getMap(map.getName()).getSerializerAccessor()

.getMapSerializerPlugin().getValueSerializerPlugin();
Object attrCtx = valSer.getAttributeContexts(attributes);
return valSer.inflateDataObjectAttributes(serValue.getContext(),

serValue.getInputStream(), attrCtx);
}

/**
* Inserts a pre-serialized key and value into the Order map.
*/
public void insertRAWOrder(Session session, byte[] key, byte[] value)

throws ObjectGridException {
ObjectMap map = session.getMap("Order");

// Get a referece to the default DataObjectContext for the map.
DataObjectContext dftDtaObjCtx = session.getObjectGrid()

.getMap(map.getName()).getSerializerAccessor()

.getDefaultContext();

// Wrap the key and value in a SerializedKey and SerializedValue
// wrapper.
SerializedKey serKey = dftDtaObjCtx.getKeyFactory().createKey(key);
SerializedValue serValue = dftDtaObjCtx.getValueFactory().createValue(

value);

Chapter 5. Developing applications 291

// Insert the serialized form of the key and value.
map.insert(serKey, serValue);

}
}

ObjectTransformer plug-in
With the ObjectTransformer plug-in, you can serialize, deserialize, and copy objects
in the cache for increased performance.

The ObjectTransformer interface has been replaced by the DataSerializer
plug-ins, which you can use to efficiently store arbitrary data in WebSphere
eXtreme Scale so that existing product APIs can efficiently interact with your data.

If you see performance issues with processor usage, add an ObjectTransformer
plug-in to each map. If you do not provide an ObjectTransformer plug-in, up to
60-70 percent of the total processor time is spent serializing and copying entries.

Purpose

With the ObjectTransformer plug-in, your applications can provide custom
methods for the following operations:
v Serialize or deserialize the key for an entry
v Serialize or deserialize the value for an entry
v Copy a key or value for an entry

If no ObjectTransformer plug-in is provided, you must be able to serialize the keys
and values because the ObjectGrid uses a serialize and deserialize sequence to
copy the objects. This method is expensive, so use an ObjectTransformer plug-in
when performance is critical. The copying occurs when an application looks up an
object in a transaction for the first time. You can avoid this copying by setting the
copy mode of the Map to NO_COPY or reduce the copying by setting the copy
mode to COPY_ON_READ. Optimize the copy operation when needed by the
application by providing a custom copy method on this plug-in. Such a plug-in
can reduce the copy overhead from 65−70 percent to 2/3 percent of total processor
time.

The default copyKey and copyValue method implementations first attempt to use
the clone method, if the method is provided. If no clone method implementation is
provided, the implementation defaults to serialization.

Object serialization is also used directly when the eXtreme Scale is running in
distributed mode. The LogSequence uses the ObjectTransformer plug-in to help
serialize keys and values before transmitting the changes to peers in the
ObjectGrid. You must take care when providing a custom serialization method
instead of using the built-in Java developer kit serialization. Object versioning is a
complex issue and you might encounter problems with version compatibility if
you do not ensure that your custom methods are designed for versioning.

The following list describes how the eXtreme Scale tries to serialize both keys and
values:
v If a custom ObjectTransformer plug-in is written and plugged in, eXtreme Scale

calls methods in the ObjectTransformer interface to serialize keys and values and
get copies of object keys and values.

v If a custom ObjectTransformer plug-in is not used, eXtreme Scale serializes and
deserializes values according to the default. If the default plug-in is used, each
object is implemented as externalizable or is implemented as serializable.

292 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

– If the object supports the Externalizable interface, the writeExternal method is
called. Objects that are implemented as externalizable lead to better
performance.

– If the object does not support the Externalizable interface and does implement
the Serializable interface, the object is saved using the ObjectOutputStream
method.

Using the ObjectTransformer interface

An ObjectTransformer object must implement the ObjectTransformer interface and
follow the common ObjectGrid plug-in conventions.

Two approaches, programmatic configuration and XML configuration, are used to
add an ObjectTransformer object into the BackingMap configuration as follows.

Programmatically plug in an ObjectTransformer object

The following code snippet creates the custom ObjectTransformer object and adds
it to a BackingMap:
ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid myGrid = objectGridManager.createObjectGrid("myGrid", false);
BackingMap backingMap = myGrid.getMap("myMap");
MyObjectTransformer myObjectTransformer = new MyObjectTransformer();
backingMap.setObjectTransformer(myObjectTransformer);

XML configuration approach to plug in an ObjectTransformer

Assume that the class name of the ObjectTransformer implementation is the
com.company.org.MyObjectTransformer class. This class implements the
ObjectTransformer interface. An ObjectTransformer implementation can be
configured using the following XML:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="myGrid">
<backingMap name="myMap" pluginCollectionRef="myMap" />

</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="myMap">

<bean id="ObjectTransformer" className="com.company.org.MyObjectTransformer" />
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

ObjectTransformer usage scenarios

You can use the ObjectTransformer plug-in in the following situations:
v Non-serializable object
v Serializable object but improve serialization performance
v Key or value copy

In the following example, ObjectGrid is used to store the Stock class:
/**
* Stock object for ObjectGrid demo
*
*
*/
public class Stock implements Cloneable {

String ticket;

Chapter 5. Developing applications 293

double price;
String company;
String description;
int serialNumber;
long lastTransactionTime;
/**
* @return Returns the description.
*/
public String getDescription() {

return description;
}
/**
* @param description The description to set.
*/
public void setDescription(String description) {

this.description = description;
}
/**
* @return Returns the lastTransactionTime.
*/
public long getLastTransactionTime() {

return lastTransactionTime;
}
/**
* @param lastTransactionTime The lastTransactionTime to set.
*/
public void setLastTransactionTime(long lastTransactionTime) {

this.lastTransactionTime = lastTransactionTime;
}
/**
* @return Returns the price.
*/
public double getPrice() {

return price;
}
/**
* @param price The price to set.
*/
public void setPrice(double price) {

this.price = price;
}
/**
* @return Returns the serialNumber.
*/
public int getSerialNumber() {

return serialNumber;
}
/**
* @param serialNumber The serialNumber to set.
*/
public void setSerialNumber(int serialNumber) {

this.serialNumber = serialNumber;
}
/**
* @return Returns the ticket.
*/
public String getTicket() {

return ticket;
}
/**
* @param ticket The ticket to set.
*/
public void setTicket(String ticket) {

this.ticket = ticket;
}
/**
* @return Returns the company.
*/
public String getCompany() {

return company;
}
/**
* @param company The company to set.
*/
public void setCompany(String company) {

this.company = company;
}
//clone
public Object clone() throws CloneNotSupportedException

294 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

{
return super.clone();

}
}

You can write a custom object transformer class for the Stock class:
/**
* Custom implementation of ObjectGrid ObjectTransformer for stock object
*
*/
public class MyStockObjectTransformer implements ObjectTransformer {
/* (non−Javadoc)
* @see
* com.ibm.websphere.objectgrid.plugins.ObjectTransformer#serializeKey
* (java.lang.Object,
* java.io.ObjectOutputStream)
*/
public void serializeKey(Object key, ObjectOutputStream stream) throws IOException {

String ticket= (String) key;
stream.writeUTF(ticket);

}

/* (non−Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#serializeValue(java.lang.Object,
java.io.ObjectOutputStream)
*/
public void serializeValue(Object value, ObjectOutputStream stream) throws IOException {

Stock stock= (Stock) value;
stream.writeUTF(stock.getTicket());
stream.writeUTF(stock.getCompany());
stream.writeUTF(stock.getDescription());
stream.writeDouble(stock.getPrice());
stream.writeLong(stock.getLastTransactionTime());
stream.writeInt(stock.getSerialNumber());

}

/* (non−Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#inflateKey(java.io.ObjectInputStream)
*/
public Object inflateKey(ObjectInputStream stream) throws IOException, ClassNotFoundException {

String ticket=stream.readUTF();
return ticket;

}

/* (non−Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#inflateValue(java.io.ObjectInputStream)
*/

public Object inflateValue(ObjectInputStream stream) throws IOException, ClassNotFoundException {
Stock stock=new Stock();
stock.setTicket(stream.readUTF());
stock.setCompany(stream.readUTF());
stock.setDescription(stream.readUTF());
stock.setPrice(stream.readDouble());
stock.setLastTransactionTime(stream.readLong());
stock.setSerialNumber(stream.readInt());
return stock;

}

/* (non−Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#copyValue(java.lang.Object)
*/
public Object copyValue(Object value) {

Stock stock = (Stock) value;
try {

return stock.clone();
}
catch (CloneNotSupportedException e)
{

// display exception message }
}

/* (non−Javadoc)
* @see com.ibm.websphere.objectgrid.plugins.
ObjectTransformer#copyKey(java.lang.Object)
*/
public Object copyKey(Object key) {

String ticket=(String) key;
String ticketCopy= new String (ticket);
return ticketCopy;

}
}

Then, plug in this custom MyStockObjectTransformer class into the BackingMap:

Chapter 5. Developing applications 295

ObjectGridManager ogf=ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid og = ogf.getObjectGrid("NYSE");
BackingMap bm = og.defineMap("NYSEStocks");
MyStockObjectTransformer ot = new MyStockObjectTransformer();
bm.setObjectTransformer(ot);

Plug-ins for providing event listeners
You can use the ObjectGridEventListener, MapEventListener,
ObjectGridLifecycleListener and BackingMapLifecycleListener plug-ins to configure
notifications for various events in the eXtreme Scale cache. Listener plug-ins are
registered with an ObjectGrid or BackingMap instance like other eXtreme Scale
plug-ins and add integration and customization points for applications and cache
providers.

ObjectGridEventListener plug-in

An ObjectGridEventListener plug-in provides eXtreme Scale life cycle events for
the ObjectGrid instance, shards, and transactions. Use the ObjectGridEventListener
plug-in to receive notifications when significant events occur on an ObjectGrid.
These events include ObjectGrid initialization, the beginning of a transaction, the
ending a transaction, and destroying an ObjectGrid. To listen for these events,
create a class that implements the ObjectGridEventListener interface and add it to
the eXtreme Scale.

For more information about writing an ObjectGridEventListener plug-in, see
“ObjectGridEventListener plug-in” on page 298. You can also refer to the API
documentation for more information.

Adding and removing ObjectGridEventListener instances

An ObjectGrid can have multiple ObjectGridEventListener listeners. Add and
remove the listeners using the addEventListener, and removeEventListener
methods on the ObjectGrid interface. You can also declaratively
registerObjectGridEventListener plug-ins with the ObjectGrid descriptor file. For
examples, see “ObjectGridEventListener plug-in” on page 298.

MapEventListener plug-in

A MapEventListener plug-in provides callback notifications and significant cache
state changes that occur for a BackingMap instance. For details on writing a
MapEventListener plug-in, see “MapEventListener plug-in” on page 297. You can
also refer to the API documentation for more information.

Adding and removing MapEventListener instances

An eXtreme Scale can have multiple MapEventListener listeners. Add and remove
listeners with the addMapEventListener, and removeMapEventListener methods on
the BackingMap interface. You can also declaratively register MapEventListener
listeners with the ObjectGrid descriptor file. For examples, see “MapEventListener
plug-in” on page 297.

BackingMapLifecycleListener plug-in

A BackingMapLifecycleListener plug-in provides callback notifications for life cycle
state changes that occur for a BackingMap instance. The BackingMap instance
proceeds through a predefined set of states during its life time.

296 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Adding and removing BackingMapLifecycleListener instances

An eXtreme Scale server can have multiple BackingMapLifecycleListener listeners.
Add and remove listeners with the addMapEventListener and
removeMapEventListener methods on the BackingMap interface. Any BackingMap
plug-ins that implement the BackingMapLifecycleListener interface are also
automatically added as a BackingMapLifecycleListener for the ObjectGrid instance
they are registered with. You can also declaratively register
BackingMapLifecycleListener listeners with the ObjectGrid descriptor file. For
examples, see BackingMapLifecycleListener plug-in.

ObjectGridLifecycleListener plug-in

An ObjectGridLifecycleListener plug-in provides callback notifications for life cycle
state changes that occur for an ObjectGrid instance. The ObjectGrid instance
proceeds through a predefined set of states during its life time.

Adding and removing ObjectGridLifecycleListener instances

An eXtreme Scale can have multiple ObjectGridLifecycleListener listeners. Add and
remove listeners with the addEventListener and removeEventListener methods on
the ObjectGrid interface. Any ObjectGrid plug-ins that implement the
ObjectGridLifecycleListener interface are automatically added as an
ObjectGridLifecycleListener for the ObjectGrid instance that they are registered
with. You can also declaratively register ObjectGridLifecycleListener listeners with
the ObjectGrid deployment descriptor file. For examples, see
ObjectGridLifecycleListener plug-in.

MapEventListener plug-in
A MapEventListener plug-in provides callback notifications and significant cache
state changes that occur for a BackingMap object: when a map has finished
pre-loading or when an entry is evicted from the map. A particular
MapEventListener plug-in is a custom class you write implementing the
MapEventListener interface.

MapEventListener plug-in conventions

When you develop a MapEventListener plug-in, you must follow common plug-in
conventions. For more information about plug-in conventions, see “Plug-ins
overview” on page 117. For other types of listener plug-ins, see “Plug-ins for
providing event listeners” on page 296.

After you write a MapEventListener implementation, you can plug it in to the
BackingMap configuration programmatically or with an XML configuration.

Write a MapEventListener implementation

Your application can include an implementation of the MapEventListener plug-in.
The plug-in must implement the MapEventListener interface to receive significant
events about a map. Events are sent to the MapEventListener plug-in when an
entry is evicted from the map and when the preload of a map completes.

Programmatically plug in a MapEventListener implementation

The class name for the custom MapEventListener is the
com.company.org.MyMapEventListener class. This class implements the

Chapter 5. Developing applications 297

MapEventListener interface. The following code snippet creates the custom
MapEventListener object and adds it to a BackingMap object:
ObjectGridManager objectGridManager =
ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid myGrid = objectGridManager.createObjectGrid("myGrid", false);
BackingMap myMap = myGrid.defineMap("myMap");
MyMapEventListener myListener = new MyMapEventListener();
myMap.addMapEventListener(myListener);

Plug in a MapEventListener implementation using XML

A MapEventListner implementation can be configured using XML. The following
XML must be in the myGrid.xml file:
<?xml version="1.0" encoding="UTF-8" ?>
<objectGridconfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="myGrid">

<backingMap name="myMap" pluginCollectionRef="myPlugins" />
</objectGrid>

</objectGrids>
<backingMapPluginCollections>

<backingMapPluginCollection id="myPlugins">
<bean id="MapEventListener" className=

"com.company.org.MyMapEventListener" />
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

Providing this file to the ObjectGridManager instance facilitates the creation of this
configuration. The following code snippet shows how to create an ObjectGrid
instance using this XML file. The newly created ObjectGrid instance has a
MapEventListener set on the myMap BackingMap.
ObjectGridManager objectGridManager =
ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid myGrid =
objectGridManager.createObjectGrid("myGrid", new URL("file:etc/test/myGrid.xml"),
true, false);

ObjectGridEventListener plug-in
An ObjectGridEventListener plug-in provides WebSphere eXtreme Scale life cycle
events for the ObjectGrid, shards and transactions. An ObjectGridEventListener
plug-in provides notifications when an ObjectGrid is initialized or destroyed, and
when a transaction is started or ended. ObjectGridEventListener plug-ins are
custom classes you write implementing the ObjectGridEventListener interface.
Optionally, the implementation includes ObjectGridEventGroup sub-interfaces and
follow the common eXtreme Scale plug-in conventions.

Overview

An ObjectGridEventListener plug-in is useful when a Loader plug-in is available,
and you must initialize Java Database Connectivity (JDBC) connections or
connections to a back end when transactions start and end. Typically, an
ObjectGridEventListener plug-in and a Loader plug-in are written together.

Writing an ObjectGridEventListener plug-in

An ObjectGridEventListener plug-in must implement the ObjectGridEventListener
interface to receive notifications about significant eXtreme Scale events. To receive

298 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

additional event notifications, you can implement the following interfaces. These
sub-interfaces are included in the ObjectGridEventGroup interface:
v ShardEvents interface
v ShardLifecycle interface
v TransactionEvents interface

For more information about these interfaces, see the API documentation.

Shard events

When the catalog service places partition primary or replica shards in a Java
virtual machine (JVM), a new ObjectGrid instance is created in that JVM to host
that shard. Some applications that need to start threads on the JVM host the
primary need notification of these events. The ObjectGridEventGroup.ShardEvents
interface declares the shardActivate and shardDeactivate methods. These methods
are called only when a shard is activated as a primary and when the shard is
deactivated from a primary. These two events allow the application to start
additional threads when the shard is a primary and stop the threads when the
shard returns to being a replica or is taken out of service.

An application can determine which partition has been activated by looking up a
specific BackingMap in the ObjectGrid reference that is provided to the
shardActivate method using the ObjectGrid#getMap method. The application can
then see the partition number using the BackingMap#getPartitionId() method. The
partitions are numbered from 0 to the number of partitions in the deployment
descriptor minus one.

Shard life-cycle events

ObjectGridEventListener.initialize and ObjectGridEventListener.destroy method
events are delivered using the ObjectGridEventGroup.ShardLifecycle interface.

Transaction events

ObjectGridEventListener.transactionBegin and
ObjectGridEventListener.transactionEnd methods are delivered through the
ObjectGridEventGroup.TransactionEvents interface.

If an ObjectGridEventListener plug-in implements the ObjectGridEventListener and
ShardLifecycle interfaces, then shard life-cycle events are the only events that are
delivered to the listener. After you implement any of the new
ObjectGridEventGroup inner interfaces, eXtreme Scale only delivers those specific
events by the new interfaces. With this implementation, code can be backwards
compatible. If you are using the new inner interfaces, it can now receive just the
specific events that are needed.

Using the ObjectGridEventListener plug-in

To use a custom ObjectGridEventListener plug-in, first create a class that
implements the ObjectGridEventListener interface and any optional
ObjectGridEventGroup sub-interfaces. Add the custom listener to an ObjectGrid to
receive notification of significant events. You have two approaches to add an
ObjectGridEventListener plug-in into the eXtreme Scale configuration:
programmatic configuration and XML configuration.

Chapter 5. Developing applications 299

Configure an ObjectGridEventListener plug-in programmatically

Assume that the class name of the eXtreme Scale event listener is the
com.company.org.MyObjectGridEventListener class. This class implements the
ObjectGridEventListener interface. The following code snippet creates the custom
ObjectGridEventListener and adds it to an ObjectGrid.
ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid myGrid = objectGridManager.createObjectGrid("myGrid", false);
MyObjectGridEventListener myListener = new MyObjectGridEventListener();
myGrid.addEventListener(myListener);

Configure an ObjectGridEventListener plug-in with XML

You can also configure an ObjectGridEventListener plug-in using XML. The
following XML creates a configuration that is equivalent to the described
programmatically created ObjectGrid event listener. The following text must be in
the myGrid.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="myGrid">

<bean id="ObjectGridEventListener"
className="com.company.org.MyObjectGridEventListener" />

<backingMap name="Book"/>
</objectGrid>

</objectGrids>
</objectGridConfig>

Notice the bean declarations come before the backingMap declarations. Provide
this file to the ObjectGridManager plug-in to facilitate the creation of this
configuration. The following code snippet demonstrates how to create an
ObjectGrid instance using this XML file. The ObjectGrid instance that is created has
an ObjectGridEventListener listener set on the myGrid ObjectGrid.
ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid myGrid = objectGridManager.createObjectGrid("myGrid",
new URL("file:etc/test/myGrid.xml"), true, false);

BackingMapLifecycleListener plug-in
A BackingMapLifecycleListener plug-in receives notification of WebSphere eXtreme
Scale life cycle state change events for the backing map.

The BackingMapLifecycleListener plug-in receives an event containing a
BackingMapLifecycleListener.State object for each state change of the backing map.
Any BackingMap plug-in that also implements the BackingMapLifecycleListener
interface will automatically be added as a listener for the BackingMap instance
where the plug-in is registered.

Overview

A BackingMapLifecycleListener plug-in is useful when an existing BackingMap
plug-in needs to perform activities relative to activities in a related plugin. As an
example, a loader plug-in might need to retrieve configuration from a cooperating
MapIndexPlugin or DataSerializer plug-in.

By implementing the BackingMapLifecycleListener interface, and detecting the
BackingMapLifecycleListener.State.INITIALIZED event, the loader can know about
the state of other plug-ins in the BackingMap instance. The loader can safely
retrieve information from the cooperating MapIndexPlugin or DataSerializer

300 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

plug-in, since the BackingMap is in the INITIALIZED state, which means that the
other plug-in has had its initialize() method called.

A BackingMapLifecycleListener can be added or removed at any time, either before
or after the ObjectGrid and its BackingMaps are initialized.

Write a BackingMapLifecycleListener plug-in

A BackingMapLifecycleListener plug-in must implement the
BackingMapLifecycleListener interface to receive notifications about significant
eXtreme Scale events. Any BackingMap plug-in can implement the
BackingMapLifecycleListener interface and be automatically added as a listener
when it is also added to the backing map.

For more information about these interfaces, see the API documentation.

Life cycle event and plug-in relationships

The BackingMapLifecycleListener retrieves the life cycle state from the event in the
backingMapStateChanged method; for example:
public void backingMapStateChanged(BackingMap map,

LifecycleEvent event)
throws LifecycleFailedException {

switch(event.getState()) {
case INITIALIZED: // All other plug-ins are initialized.

// Retrieve reference to plug-in X for use from map.
break;

case DESTROYING: // Destroy phase is starting
// Eliminate reference to plug-in X it may be destroyed before this plug-in
break;

}
}

The following table describes the relationship between life cycle events sent to a
BackingMapLifecycleListener plug-in and the states of the BackingMap and other
plug-in objects.

BackingMapLifecycleListener.State value Description

INITIALIZING The BackingMap initialization phase is starting. The
BackingMap and BackingMap plug-ins are about to be
initialized.

INITIALIZED The BackingMap initialization phase is complete. All
BackingMap plug-ins are initialized. The INITIALIZED
state might recur when shard placement activities
(promotion or demotion) occur.

STARTING The BackingMap instance is being activated for use as a
local instance, client instance or as an instance in a
primary or replica shard on the server. All ObjectGrid
plug-ins in the ObjectGrid instance owning this
BackingMap instance have been initialized. The
STARTING state might recur when shard placement
activities (promotion or demotion) occur.

PRELOAD The BackingMap instance is set to the PRELOAD state by
the StateManager API for preloading, or the configured
loader is preloading data into the backing map.

ONLINE The BackingMap instance is ready for work as a local
instance, client instance, or as an instance in a primary or
replica shard on the server. All ObjectGrid plug-ins in the
ObjectGrid instance owning this BackingMap instance
have been initialized. This steady state is typical of the
BackingMap. The ONLINE state might recur when shard
placement activities (promotion or demotion) occur.

Chapter 5. Developing applications 301

BackingMapLifecycleListener.State value Description

QUIESCE Work is stopping on the BackingMap as a result of the
StateManager API or other event. No new work is
allowed. Your plug-in ends any existing work as soon as
possible.

OFFLINE All work is stopped on the BackingMap as a result of the
StateManager API or another event. No new work is
allowed.

DESTROYING The BackingMap instance is starting the destroy phase.
BackingMap plug-ins for the instance are about to be
destroyed.

DESTROYED The BackingMap instance and all BackingMap plug-ins
have been destroyed.

Configure a BackingMapLifecycleListener plug-in with XML

Assume that the class name of the eXtreme Scale event listener is the
com.company.org.MyBackingMapLifecycleListener class. This class implements the
BackingMapLifecycleListener interface.

You can configure a BackingMapLifecycleListener plug-in using XML. The
following text must be in the object grid XML file:
<?xml version="1.0" encoding="UTF-8" ?>
<objectGridconfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config../objectGrid.xsd"

xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="myGrid">
<backingMap name="myMap" pluginCollectionRef="myPlugins" />

</objectGrid>
</objectGrids>
<backingMapPluginCollections>

<backingMapPluginCollection id="myPlugins">
<bean id="BackingMapLifecycleListener"

className="com.company.org.MyBackingMapLifecycleListener" />
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

Provide this file to the ObjectGridManager plug-in to facilitate the creation of this
configuration. The BackingMap instance that is created has a
BackingMapLifecycleListener listener set on the myGrid ObjectGrid.

Like the BackingMapLifecycleListener, other BackingMap plug-ins, such as Loader
or MapIndexPlugin, that you specify using XML that also implement the
BackingMapLifecycleListener interface, will automatically be added as life cycle
listeners.

ObjectGridLifecycleListener plug-in
An ObjectGridLifecycleListener plug-in receives notification of WebSphere eXtreme
Scale life cycle, state change events for the data grid.

The ObjectGridLifecycleListener plug-in receives an event containing an
ObjectGridLifecycleListener.State object for each state change of the ObjectGrid.
Any ObjectGrid plug-in that also implements the ObjectGridLifecycleListener
interface will automatically be added as a listener for the ObjectGrid instance
where the plug-in is registered.

302 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Overview

An ObjectGridLifecycleListener plug-in is useful when an existing ObjectGrid
plug-in needs to perform activities relative to activities in a related plug-in. As an
example, a TransactionCallback plug-in might need to retrieve the configuration
from a cooperating ObjectGridEventListener or ShardListener plug-in.

By implementing the ObjectGridLifecycleListener interface, and detecting the
ObjectGridLifecycleListener.State.INITIALIZED event, the TransactionCallback
plug-in can detect the state of other plug-ins in the ObjectGrid instance. The
TransactionCallback plug-in can safely retrieve information from the cooperating
ObjectGridEventListener plug-in or ShardListener plug-in, since the ObjectGrid is
in the INITIALIZED state, which means that the other plug-in has had its
initialize() method called.

You can add an ObjectGridLifecycleListener plug-in at any time, either before or
after the ObjectGrid is initialized.

Write an ObjectGridLifecycleListener plug-in

An ObjectGridLifecycleListener plug-in must implement the
ObjectGridLifecycleListener interface to receive notifications about significant
eXtreme Scale events. Any ObjectGrid plug-in can implement the
ObjectGridLifecycleListener interface and be automatically added as a listener
when it is also added to the ObjectGrid.

For more information about these interfaces, see the API documentation.

Life cycle event and plug-in relationships

The ObjectGridLifecycleListener retrieves the life cycle state from the event in the
objectgridStateChanged method; for example:
public void objectGridStateChanged(ObjectGrid grid,

LifecycleEvent event)
throws LifecycleFailedException {

switch(event.getState()) {
case INITIALIZED: // All other plug-ins are initialized.

// Retrieve reference to plug-in X for use from grid.
break;

case DESTROYING: // Destroy phase is starting
// Eliminate reference to plug-in X it may be destroyed before this plug-in
break;

}

The following table describes the relationship between life cycle events sent to a
ObjectGridLifecycleListener and the states of the ObjectGrid and other plug-in
objects.

ObjectGridLifecycleListener.State value Description

INITIALIZING The ObjectGrid initialization phase is starting. The
ObjectGrid and ObjectGrid plug-ins are about to be
initialized.

INITIALIZED The ObjectGrid initialization phase is complete. All
ObjectGrid plug-ins are initialized. The INITIALIZED
state might recur when shard placement activities
(promotion or demotion) occur. All BackingMap plug-ins
in the BackingMap instances owned by this ObjectGrid
instance have been initialized.

Chapter 5. Developing applications 303

ObjectGridLifecycleListener.State value Description

STARTING The ObjectGrid instance is being activated for use as a
local instance, client instance, or as an instance in a
primary or replica shard on the server. The STARTING
state might recur when shard placement activities
(promotion or demotion) occur.

PRELOAD The ObjectGrid instance is set to the PRELOAD state by
the StateManager API or other configuration.

ONLINE The ObjectGrid instance is ready for work as a local
instance, client instance, or as an instance in a primary or
replica shard on the server. This steady state is typical of
the ObjectGrid. The ONLINE state might recur when
shard placement activities (promotion or demotion) occur.

QUIESCE Work is stopping on the ObjectGrid as a result of the
StateManager API or other event. No new work is
allowed. End any existing work as soon as possible.

OFFLINE All work is stopped on the ObjectGrid as a result of the
StateManager API or other event. No new work is
allowed.

DESTROYING The ObjectGrid instance is starting the destroy phase.
ObjectGrid plug-ins for the instance are about to be
destroyed. During the destroy phase, all BackingMap
instances owned by this ObjectGrid instance are also
destroyed.

DESTROYED The ObjectGrid instance, its BackingMap instances, and
all ObjectGrid plug-ins have been destroyed.

Configure an ObjectGridLifecycleListener plug-in with XML

Assume that the class name of the eXtreme Scale event listener is the
com.company.org.MyObjectGridLifecycleListener class. This class implements the
ObjectGridLifecycleListener interface.

You can configure an ObjectGridLifecycleListener plug-in using XML. The
following XML creates a configuration using the ObjectGridLifecycleListener. The
following text must be in the object grid xml file:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="myGrid">

<bean id="ObjectGridLifecycleListener"
className="com.company.org.MyObjectGridLifecycleListener" />

<backingMap name="Book"/>
</objectGrid>

</objectGrids>
</objectGridConfig>

Notice the bean declarations come before the backingMap declarations. Provide
this file to the ObjectGridManager plug-in to facilitate the creation of this
configuration.

Like the registered ObjectGridLifecycleListener in the previous example, other
ObjectGrid plug-ins, CollisionArbiter or TransactionCallback for example, that you
specify using XML that also implement the ObjectGridLifecycleListener interface,
will automatically be added as life cycle listeners.

Plug-ins for indexing data
The built-in HashIndex, the
com.ibm.websphere.objectgrid.plugins.index.HashIndex class, is a MapIndexPlugin

304 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

plug-in that you can add into BackingMap to build static or dynamic indexes. This
class supports both the MapIndex and MapRangeIndex interfaces. Defining and
implementing indexes can significantly improve query performance.

Configuring the HashIndex plug-in
You can configure the built-in HashIndex, the
com.ibm.websphere.objectgrid.plugins.index.HashIndex class, with an XML file,
programmatically, or with an entity annotation on an entity map.

About this task

Configuring a composite index is the same as configuring a regular index with
XML, except for the attributeName property value. In a composite index, the value
of attributeName property is a comma-delimited list of attributes. For example, the
value class Address has three attributes: city, state, and zipcode. A composite index
can be defined with the attributeName property value as "city,state,zipcode"
indicating that city, state, and zipcode are included in the composite index.

Also, note that the composite HashIndexes do not support range lookups and
therefore cannot have the RangeIndex property set to true.

Procedure
v Configure a composite index in the ObjectGrid descriptor XML file.

Use the backingMapPluginCollections element to define the plug-in:
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Address.CityStateZip"/>
<property name="AttributeName" type="java.lang.String" value="city,state,zipcode"/>
</bean>

v Configure a composite index programmatically.
The following example code creates the same composite index:

HashIndex mapIndex = new HashIndex();
mapIndex.setName("Address.CityStateZip");
mapIndex.setAttributeName(("city,state,zipcode"));
mapIndex.setRangeIndex(true);

BackingMap bm = objectGrid.defineMap("mymap");
bm.addMapIndexPlugin(mapIndex);

v Configure a composite index with entity notations.
If you are using entity maps, you can use an annotation approach to define a
composite index. You can define a list of CompositeIndex within the
CompositeIndexes annotation on the entity class level. The CompositeIndex has
a name and attributeNames property. Each CompositeIndex is associated with a
HashIndex instance applied to the backing map that is associated with the entity.
The HashIndex is configured as a non-range index.
@Entity
@CompositeIndexes({

@CompositeIndex(name="CityStateZip", attributeNames="city,state,zipcode"),
@CompositeIndex(name="lastnameBirthday", attributeNames="lastname,birthday")

})
public class Address {

@Id int id;
String street;
String city;
String state;
String zipcode;
String lastname;
Date birthday;

}

The name property for each composite index must be unique within the entity
and backing map. If the name is not specified, a generated name is used. The
attributeName property is used to populate the HashIndex attributeName with
the comma-delimited list of attributes. The attribute names coincide with the
persistent field names when the entities are configured to use field-access, or the

Chapter 5. Developing applications 305

property name as defined for the JavaBeans naming conventions for
property-access entities. For example: If the attribute name is street, the
property getter method is named getStreet.

Example: Adding HashIndex into BackingMap

In the following example, you configure the HashIndex plug-in by adding static
index plug-ins to the XML file:
<backingMapPluginCollection id="person">

<bean id="MapIndexPlugin"
className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">

<property name="Name" type="java.lang.String" value="CODE"
description="index name" />

<property name="RangeIndex" type="boolean" value="true"
description="true for MapRangeIndex" />

<property name="AttributeName" type="java.lang.String" value="employeeCode"
description="attribute name" />

</bean>
</backingMapPluginCollection>

In this XML configuration example, the built-in HashIndex class is used as the
index plug-in. The HashIndex supports properties that users can configure, such as
Name, RangeIndex, and AttributeName.
v The Name property is configured as CODE, a string identifying this index plug-in.

The Name property value must be unique within the scope of the backing map.
The name can be used to retrieve the index object by name from the ObjectMap
instance for the BackingMap.

v The RangeIndex property is configured as true, which means the application can
cast the retrieved index object to the MapRangeIndex interface. If the
RangeIndex property is configured as false, the application can only cast the
retrieved index object to the MapIndex interface. A MapRangeIndex supports
functions to find data using range functions such as greater than, less than, or
both, while a MapIndex only supports equals functions. If the index is by query,
the RangeIndex property must be configured to true on single-attribute indexes.
For a relationship index and composite index, the RangeIndex property must be
configured to false.

v The AttributeName property is configured as employeeCode, which means the
employeeCode attribute of the cached object is used to build a single-attribute
index. If an application must search for cached objects with multiple attributes,
the AttributeName property can be set to a comma-delimited list of attributes,
yielding a composite index.

In summary, the previous example defines a single-attribute range HashIndex. It is
a single-attribute HashIndex because the AttributeName property value is
employeeCode that includes only one attribute name. It also is a range HashIndex.

HashIndex plug-in attributes:

You can use the following attributes to configure the HashIndex plug-in. These
attributes define properties such as if you are using an attribute or composite
HashIndex, or if range indexing is enabled.

Attributes

Name Specifies the name of the index. The name must be unique for each map.
The name is used to retrieve the index object from the object map instance
for the backing map.

306 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

AttributeName
Specifies the comma-delimited names of the attributes to index. For
field-access indexes, the attribute names are equivalent to the field names.
For property-access indexes, the attribute names are the JavaBean
compatible property names. If only one attribute name exists, the
HashIndex is a single attribute index. If this attribute is a relationship, it is
also a relationship index. If multiple attribute names are included in the
attribute names, the HashIndex is a composite index.

FieldAccessAttribute
Used for non-entity maps. If true, the object is accessed using the fields
directly. If not specified or false, the getter method for the attribute is
used to access the data.

POJOKeyIndex
Used for non-entity maps. If true, the index introspects the object in the
key part of the map. This setting is useful when the key is a composite key
and the value does not have the key embedded within it. If not specified
or false, then the index introspects the object in the value part of the map.

RangeIndex
If true, range indexing is enabled and the application can cast the
retrieved index object to the MapRangeIndex interface. If the RangeIndex
property is configured as false, the application can cast the retrieved index
object to the MapIndex interface only.

Single-attribute HashIndex versus composite HashIndex

When the AttributeName property of HashIndex includes multiple attribute names,
the HashIndex is a composite index. Otherwise, if it includes only one attribute
name, it is a single-attribute index. For example, the AttributeName property value
of a composite HashIndex might be city,state,zipcode. It includes three
attributes delimited by commas. If the AttributeName property value is only
zipcode that only has one attribute, it is a single-attribute HashIndex.

Composite HashIndex provides an efficient way to look up cached objects when
search criteria involve many attributes. However, it does not support range index
and its RangeIndex property must set to false.

See the topic on a composite HashIndex in the Administration Guide.

Relationship HashIndex

If the indexed attribute of single-attribute HashIndex is a relationship, either
single- or multi-valued, the HashIndex is a relationship HashIndex. For
relationship HashIndex, the RangeIndex property of HashIndex must set to “false”.

Relationship HashIndex can speed up queries that use cyclical references or use the
IS NULL, IS EMPTY, SIZE, and MEMBER OF query filters. For more information,
see “Query optimization using indexes” on page 413the information about query
optimization with indexes in the Programming Guide.

Key HashIndex

For non-entity maps, when the POJOKeyIndex property of HashIndex is set to true,
the HashIndex is a key HashIndex and the key part of entry are used for indexing.

Chapter 5. Developing applications 307

When the AttributeName property of HashIndex is not specified, the whole key is
indexed; otherwise, the key HashIndex can only be a single-attribute HashIndex.

For example, adding the following property into the preceding sample causes the
HashIndex to become key HashIndex because the POJOKeyIndex property value is
true.
<property name="POJOKeyIndex" type="boolean" value="true"
description="indicates if POJO key HashIndex" />

In the preceding key index example, because the AttributeName property value is
specified as employeeCode, the indexed attribute is the employeeCode field of the
key part of map entry. If you want to build key index on the whole key part of
map entry, remove the AttributeName property.

Range HashIndex

When the RangeIndex property of HashIndex is set to true, the HashIndex is a
range index and can support the MapRangeIndex interface. A MapRangeIndex
implementation supports functions to find data using range functions, such as
greater than, less than, or both, while a MapIndex supports equals functions only.
For a single-attribute index, the RangeIndex property can be set to true only if the
indexed attribute is of type Comparable. If the single-attribute index will be used
by query, the RangeIndex property must set to true and the indexed attribute must
be of type Comparable. For relationship HashIndex and composite HashIndex, the
RangeIndex property must set to false.

The preceding sample is a range HashIndex because the RangeIndex property
value is true.

The following table provides a summary for using range index.

Table 6. Support for range index. States whether HashIndex types support range index.

HashIndex type Supports range index

Single-attribute HashIndex: indexed key or attribute is of type
Comparable

Yes

Single-attribute HashIndex: indexed key or attribute is not of type
Comparable

No

Composite HashIndex No

Relationship HashIndex No

Query optimization with HashIndex plug-ins

Defining indexes can significantly improve query performance.WebSphere eXtreme
Scale queries can use built-in HashIndex plug-ins to improve performance of
queries. Although using indexes can significantly improve query performance, it
might have a performance impact on transactional map operations.

Plug-ins for custom indexing of cache objects:

With a MapIndexPlugin plug-in, or index, you can write custom indexing
strategies that are beyond the built-in indexes that eXtreme Scale provides.

MapIndexPlugin implementations must use the MapIndexPlugin interface and
follow the common eXtreme Scale plug-in conventions.

308 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

The following sections include some of the important methods of the index
interface.

setProperties method

Use the setProperties method to initialize the index plug-in programmatically. The
Properties object parameter that is passed into the method should contain required
configuration information to initialize the index plug-in properly. The setProperties
method implementation, along with the getProperties method implementation, are
required in a distributed environment because the index plug-in configuration
moves between client and server processes. An implementation example of this
method follows.
setProperties(Properties properties)

// setProperties method sample code
public void setProperties(Properties properties) {

ivIndexProperties = properties;

String ivRangeIndexString = properties.getProperty("rangeIndex");
if (ivRangeIndexString != null && ivRangeIndexString.equals("true")) {

setRangeIndex(true);
}
setName(properties.getProperty("indexName"));
setAttributeName(properties.getProperty("attributeName"));

String ivFieldAccessAttributeString = properties.getProperty("fieldAccessAttribute");
if (ivFieldAccessAttributeString != null && ivFieldAccessAttributeString.equals("true")) {

setFieldAccessAttribute(true);
}

String ivPOJOKeyIndexString = properties.getProperty("POJOKeyIndex");
if (ivPOJOKeyIndexString != null && ivPOJOKeyIndexString.equals("true")) {

setPOJOKeyIndex(true);
}

}

getProperties method

The getProperties method extracts the index plug-in configuration from a
MapIndexPlugin instance. You can use the extracted properties to initialize another
MapIndexPlugin instance to have the same internal states. The getProperties
method and setProperties method implementations are required in a distributed
environment. An implementation example of the getProperties method follows.
getProperties()

// getProperties method sample code
public Properties getProperties() {

Properties p = new Properties();
p.put("indexName", indexName);
p.put("attributeName", attributeName);
p.put("rangeIndex", ivRangeIndex ? "true" : "false");
p.put("fieldAccessAttribute", ivFieldAccessAttribute ? "true" : "false");
p.put("POJOKeyIndex", ivPOJOKeyIndex ? "true" : "false");
return p;

}

setEntityMetadata method

The setEntityMetadata method is called by the WebSphere eXtreme Scale run time
during initialization to set the EntityMetadata of the associated BackingMap on the
MapIndexPlugin instance. The EntityMetadata is required for supporting indexing
of tuple objects. A tuple is a data set that represents an entity object or its key. If
the BackingMap is for an entity, then you must implement this method.

The following code sample implements the setEntityMetadata method.

Chapter 5. Developing applications 309

setEntityMetadata(EntityMetadata entityMetadata)

// setEntityMetadata method sample code
public void setEntityMetadata(EntityMetadata entityMetadata) {

ivEntityMetadata = entityMetadata;
if (ivEntityMetadata != null) {

// this is a tuple map
TupleMetadata valueMetadata = ivEntityMetadata.getValueMetadata();
int numAttributes = valueMetadata.getNumAttributes();
for (int i = 0; i < numAttributes; i++) {

String tupleAttributeName = valueMetadata.getAttribute(i).getName();
if (attributeName.equals(tupleAttributeName)) {

ivTupleValueIndex = i;
break;

}
}

if (ivTupleValueIndex == -1) {
// did not find the attribute in value tuple, try to find it on key tuple.
// if found on key tuple, implies key indexing on one of tuple key attributes.
TupleMetadata keyMetadata = ivEntityMetadata.getKeyMetadata();
numAttributes = keyMetadata.getNumAttributes();
for (int i = 0; i < numAttributes; i++) {

String tupleAttributeName = keyMetadata.getAttribute(i).getName();
if (attributeName.equals(tupleAttributeName)) {

ivTupleValueIndex = i;
ivKeyTupleAttributeIndex = true;
break;

}
}

}

if (ivTupleValueIndex == -1) {
// if entityMetadata is not null and we could not find the

// attributeName in entityMetadata, this is an
// error
throw new ObjectGridRuntimeException("Invalid attributeName. Entity: " +

ivEntityMetadata.getName());
}

}
}

Attribute name methods

The setAttributeName method sets the name of the attribute to be indexed. The
cached object class must provide the get method for the indexed attribute. For
example, if the object has an employeeName or EmployeeName attribute, the
index calls the getEmployeeName method on the object to extract the attribute
value. The attribute name must be the same as the name in the get method, and
the attribute must implement the Comparable interface. If the attribute is boolean
type, you can also use the isAttributeName method pattern.

The getAttributeName method returns the name of the indexed attribute.

getAttribute method

The getAttribute method returns the indexed attribute value from the specified
object. For example, if an Employee object has an attribute called employeeName
that is indexed, you can use the getAttribute method to extract the employeeName
attribute value from a specified Employee object. This method is required in a
distributed WebSphere eXtreme Scale environment.
getAttribute(Object value)

// getAttribute method sample code
public Object getAttribute(Object value) throws ObjectGridRuntimeException {

if (ivPOJOKeyIndex) {
// In the POJO key indexing case, no need to get attribute from value object.
// The key itself is the attribute value used to build the index.
return null;

}

try {
Object attribute = null;
if (value != null) {

// handle Tuple value if ivTupleValueIndex != -1
if (ivTupleValueIndex == -1) {

// regular value
if (ivFieldAccessAttribute) {

310 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

attribute = this.getAttributeField(value).get(value);
} else {

attribute = getAttributeMethod(value).invoke(value, emptyArray);
}

} else {
// Tuple value
attribute = extractValueFromTuple(value);

}
}
return attribute;

} catch (InvocationTargetException e) {
throw new ObjectGridRuntimeException(

"Caught unexpected Throwable during index update processing,
index name = " + indexName + ": " + t,

t);
} catch (Throwable t) {

throw new ObjectGridRuntimeException(
"Caught unexpected Throwable during index update processing,

index name = " + indexName + ": " + t,
t);

}
}

Using a composite index:

The composite HashIndex improves query performance and avoids expensive map
scanning. The feature also provides a convenient way for the HashIndex API to
find cached objects when search criteria involve many attributes.

Improved performance

A composite HashIndex provides a fast and convenient way to search for cached
objects with multiple attributes in match-searching criteria. The composite index
supports full attribute-match searches, but does not support range searches.

Note: Composite indexes do not support the BETWEEN operator in the ObjectGrid
query language because BETWEEN would require range support. The greater than
(>) and less than (<) conditionals also do not work because they require range
indexes.

A composite index can improve performance of queries if the appropriate
composite index is available for the WHERE condition. This means that the
composite index has exactly the same attributes as involved in the WHERE
condition with full attributes matched.

A query might have many attributes involved in a condition as in the following
example.

SELECT a FROM Address a WHERE a.city=’Rochester’ AND a.state=’MN’ AND
a.zipcode=’55901’

Composite index can improve query performance by avoiding scanning map or
joining multiple single-attribute index results. In the example, if a composite index
is defined with attributes (city,state,zipcode), the query engine can use the
composite index to find the entry with city='Rochester', state='MN', and
zipcode='55901'. Without composite index and attribute index on city, state, and
zipcode attributes, the query engine will have to scan the map or join multiple
single-attribute searches, which usually have expensive overhead. Also, querying
for the composite index only supports a full-matched pattern.

Configuring a composite index

You can configure composite indexing in three ways: using XML,
programmatically, and with entity annotations only for entity maps.

Chapter 5. Developing applications 311

Programmatic configuration

The programmatic example code below will create the same composite index as
the preceding XML.

HashIndex mapIndex = new HashIndex();
mapIndex.setName("Address.CityStateZip");
mapIndex.setAttributeName(("city,state,zipcode"));
mapIndex.setRangeIndex(true);

BackingMap bm = objectGrid.defineMap("mymap");
bm.addMapIndexPlugin(mapIndex);

Note that configuring a composite index is the same as configuring a regular index
with XML except for the attributeName property value. In a composite index case,
the value of attributeName is a comma-delimited list of attributes. For example,
the value class Address has 3 attributes: city, state, and zipcode. A composite index
can be defined with the attributeName property value as "city,state,zipcode"
indicating that city, state, and zipcode are included in the composite index.

Also, note that the composite HashIndexes do not support range lookups and
therefore cannot have the RangeIndex property set to true.

Using XML

In order to configure a composite index with XML, include code such as below in
the configuration file's backingMapPluginCollections element.
Composite index - XML configuration approach
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Address.CityStateZip"/>
<property name="AttributeName" type="java.lang.String" value="city,state,zipcode"/>
</bean>

With entity annotations

In the entity map case, annotation approach can be used to define a composite
index. You can define a list of CompositeIndex within CompositeIndexes
annotation on the entity class level. The CompositeIndex has a name and
attributeNames property. Each CompositeIndex is associated with a HashIndex
instance applied to the entity's associated BackingMap. The HashIndex is
configured as a non-range index.
@Entity
@CompositeIndexes({

@CompositeIndex(name="CityStateZip", attributeNames="city,state,zipcode"),
@CompositeIndex(name="lastnameBirthday", attributeNames="lastname,birthday")

})
public class Address {

@Id int id;
String street;
String city;
String state;
String zipcode;
String lastname;
Date birthday;

}

The name property for each composite index must be unique within the entity and
BackingMap. If the name is not specified, a generated name will be used. The
attributeNames property is used to populate the HashIndex attributeName with
the comma-delimited list of attributes. The attribute names coincide with the
persistent field names when the entities are configured to use field-access, or the
property name as defined for the JavaBeans naming conventions for
property-access entities. For example: If the attribute name is "street", the property
getter method is named getStreet.

312 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Performing composite index lookups

After a composite index is configured, an application can use the findAll(Object)
method of the MapIndex interface to perform lookups, as below.
Session sess = objectgrid.getSession();
ObjectMap map = sess.getMap("MAP_NAME");
MapIndex codeIndex = (MapIndex) map.getIndex("INDEX_NAME");
Object[] compositeValue = new Object[]{ MapIndex.EMPTY_VALUE,

"MN", "55901"};
Iterator iter = mapIndex.findAll(compositeValue);
// Close the session (optional in Version 7.1.1 and later) for improved performance
sess.close();

The MapIndex.EMPTY_VALUE is assigned to the compositeValue[0] which
indicates that the city attribute is excluded from evaluation. Only objects with state
attribute equal to "MN" and zipcode attribute equal to "55901" will be included in
the result.

The following queries benefit from the previous composite index configuration:

SELECT a FROM Address a WHERE a.city=’Rochester’ AND a.state=’MN’ AND
a.zipcode=’55901’

SELECT a FROM Address a WHERE a.state=’MN’ AND a.zipcode=’55901’

The query engine will find the appropriate composite index and use it to improve
query performance in full attribute-match cases.

In some scenarios, the application might need to define multiple composite indexes
with overlapped attributes in order to satisfy all queries with full attributes
matched. A disadvantage of increasing the number of indexes is the possible
performance overhead on map operations.

Migration and interoperability

The only constraint for the use of a composite index is that an application cannot
configure it in a distributed environment with heterogeneous containers. Old and
new containers cannot be mixed, since older containers will not recognize a
composite index configuration. The composite index is just like the existing regular
attribute index, except that the former allows indexing over multiple attributes.
When using only the regular attribute index, a mixed-container environment is still
viable.

Plug-ins for communicating with databases
With a Loader plug-in, an ObjectGrid map can behave as a memory cache for data
that is typically kept in a persistent store on either the same system or some other
system. Typically, a database or file system is used as the persistent store. A remote
Java virtual machine (JVM) can also be used as the source of data, allowing
hub-based caches to be built using ObjectGrid. A loader has the logic for reading
and writing data to and from a persistent store.

Loaders are backing map plug-ins that are invoked when changes are made to the
backing map or when the backing map is unable to satisfy a data request (a cache
miss).

Chapter 5. Developing applications 313

WebSphere eXtreme Scale includes two built-in loaders to integrate with relational
database back ends. The Java Persistence API (JPA) loaders use the
Object-Relational Mapping (ORM) capabilities of both the OpenJPA and Hibernate
implementations of the JPA specification.

Using a loader

To add a loader into the BackingMap configuration, you can use programmatic
configuration or XML configuration. A loader has the following relationship with a
backing map:
v A backing map can have only one loader.
v A client backing map (near cache) cannot have a loader.
v A loader definition can be applied to multiple backing maps, but each backing

map has its own loader instance.

Loaders in multi-master configurations

For considerations about using loaders in multi-master configurations, see “Loader
considerations in a multi-master topology” on page 109.

Programmatically plug in a Loader

The following snippet of code demonstrates how to plug an application-provided
Loader into the backing map for map1 using the ObjectGrid API:
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.ObjectGridManager;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.BackingMap;
ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid og = ogManager.createObjectGrid("grid");
BackingMap bm = og.defineMap("map1");

Database

Loader

Server Core Cache
(BackingMap)

Transactional Cache
(ObjectMap)

O
b
je

c
tG

ri
d

Transactional Cache
(ObjectMap)

Primary Shard

JVM

S
e
rv

e
r

P
ro

c
e
s
s

Figure 27. Loader

314 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

MyLoader loader = new MyLoader();
loader.setDataBaseName("testdb");
loader.setIsolationLevel("read committed");
bm.setLoader(loader);

This snippet assumes that the MyLoader class is the application-provided class that
implements the com.ibm.websphere.objectgrid.plugins.Loader interface. Because
the association of a Loader with a backing map cannot be changed after ObjectGrid
is initialized, the code must be run before invoking the initialize method of the
ObjectGrid interface that is being called. An IllegalStateException exception occurs
on a setLoader method call if it is called after initialization has occurred.

The application-provided Loader can have set properties. In the example, the
MyLoader loader is used to read and write data from a table in a relational
database. The loader must specify the name of the database and the SQL isolation
level. The MyLoader loader has the setDataBaseName and setIsolationLevel
methods that allow the application to set these two Loader properties.

XML configuration approach to plug in a Loader

An application-provided Loader can also be plugged in by using an XML file. The
following example demonstrates how to plug the MyLoader loader into the map1
backing map with the same database name and isolation level Loader properties.
You must specify the className for your loader, the database name and
connection details, and the isolation level properties. You can use the same XML
structure if you are only using a preloader by specifying the preloader classname
instead of a complete loader classname.:
<?xml version="1.0" encoding="UTF-8" ?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="grid">
<backingMap name="map1" pluginCollectionRef="map1" lockStrategy="OPTIMISTIC" />

</objectGrid>
</objectGrids>
<backingMapPluginCollections>

<backingMapPluginCollection id="map1">
<bean id="Loader" className="com.myapplication.MyLoader">

<property name="dataBaseName"
type="java.lang.String"
value="testdb"
description="database name" />

<property name="isolationLevel"
type="java.lang.String"
value="read committed"
description="iso level" />

</bean>
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

Configuring database loaders
Loaders are backing map plug-ins that are invoked when changes are made to the
backing map or when the backing map is unable to satisfy a data request (a cache
miss).

Preload considerations

Loaders are backing map plug-ins that are invoked when changes are made to the
backing map or when the backing map is unable to satisfy a data request (a cache
miss). For an overview of how eXtreme Scale interacts with a loader, see “In-line
cache” on page 93.

Chapter 5. Developing applications 315

Each backing map has a boolean preloadMode attribute that is set to indicate if
preload of a map runs asynchronously. By default, the preloadMode attribute is set
to false, which indicates that the backing map initialization does not complete until
the preload of the map is complete. For example, backing map initialization is not
complete until the preloadMap method returns. If the preloadMap method reads a
large amount of data from its back end and loads it into the map, it might take a
relatively long time to complete. In this case, you can configure a backing map to
use asynchronous preload of the map by setting the preloadMode attribute to true.
This setting causes the backing map initialization code to start a thread that
invokes the preloadMap method, allowing initialization of a backing map to
complete while the preload of the map is still in progress.

In a distributed eXtreme Scale scenario, one of the preload patterns is client
preload. In the client preload pattern, an eXtreme Scale client is responsible for
retrieving data from the backend and then inserting the data into the distributed
container server using DataGrid agents. Furthermore, client preload could be
executed in the Loader.preloadMap method in one and only one specific partition.
In this case, asynchronously loading the data to the grid becomes very important.
If the client preload were executed in the same thread, the backing map would
never be initialized, so the partition it resides in would never become ONLINE.
Therefore, the eXtreme Scale client could not send the request to the partition, and
eventually it would cause an exception.

If an eXtreme Scale client is used in the preloadMap method, you should set the
preloadMode attribute to true. The alternative is to start a thread in the client
preload code.

The following snippet of code illustrates how the preloadMode attribute is set to
enable asynchronous preload:
BackingMap bm = og.defineMap("map1");
bm.setPreloadMode(true);

The preloadMode attribute can also be set by using a XML file as illustrated in the
following example:
<backingMap name="map1" preloadMode="true" pluginCollectionRef="map1"
lockStrategy="OPTIMISTIC" />

TxID and use of the TransactionCallback interface

Both the get method and batchUpdate methods on the Loader interface are passed
a TxID object that represents the Session transaction that requires the get or
batchUpdate operation to be performed. The get and batchUpdate methods can be
called more than once per transaction. Therefore, transaction-scoped objects that
are needed by the Loader are typically kept in a slot of the TxID object. A Java
database connectivity (JDBC) Loader is used to illustrate how a Loader uses the
TxID and TransactionCallback interfaces.

Several ObjectGrid maps can be stored in the same database. Each map has its
own loader, and each loader might need to connect to the same database. When
the loaders connect to the database, they should use the same JDBC
connection. Using the same connection commits the changes to each table as part
of the same database transaction. Typically, the same person who writes the Loader
implementation also writes the TransactionCallback implementation. The best
method is when the TransactionCallback interface is extended to add methods that
the Loader needs for getting a database connection and for caching prepared

316 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

statements. The reason for this methodology becomes apparent as you see how the
TransactionCallback and TxID interfaces are used by the loader.

As an example, the loader might need the TransactionCallback interface to be
extended as follows:
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import com.ibm.websphere.objectgrid.TxID;
public interface MyTransactionCallback extends TransactionCallback
{

Connection getAutoCommitConnection(TxID tx, String databaseName) throws SQLException;
Connection getConnection(TxID tx, String databaseName, int isolationLevel) throws SQLException;
PreparedStatement getPreparedStatement(TxID tx, Connection conn, String tableName, String sql)
throws SQLException;
Collection getPreparedStatementCollection(TxID tx, Connection conn, String tableName);

}

Using these new methods, the Loader get and batchUpdate methods can get a
connection as follows:
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import com.ibm.websphere.objectgrid.TxID;
private Connection getConnection(TxID tx, int isolationLevel)
{

Connection conn = ivTcb.getConnection(tx, databaseName, isolationLevel);
return conn;

}

In the previous example and in the examples that follow, ivTcb and ivOcb are
Loader instance variables that were initialized as described in the Preload
considerations section. The ivTcb variable is a reference to the
MyTransactionCallback instance and the ivOcb is a reference to the
MyOptimisticCallback instance. The databaseName variable is an instance variable
of the Loader that was set as a Loader property during the initialization of the
backing map. The isolationLevel argument is one of the JDBC Connection
constants that are defined for the various isolation levels that JDBC supports. If the
Loader is using an optimistic implementation, the get method typically uses a
JDBC auto−commit connection to fetch the data from the database. In that case, the
Loader might have a getAutoCommitConnection method that is implemented as
follows:
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import com.ibm.websphere.objectgrid.TxID;
private Connection getAutoCommitConnection(TxID tx)
{

Connection conn = ivTcb.getAutoCommitConnection(tx, databaseName);
return conn;

}

Recall that the batchUpdate method has the following switch statement:
switch (logElement.getType().getCode())
{

case LogElement.CODE_INSERT:
buildBatchSQLInsert(tx, key, value, conn);
break;

case LogElement.CODE_UPDATE:
buildBatchSQLUpdate(tx, key, value, conn);
break;

Chapter 5. Developing applications 317

case LogElement.CODE_DELETE:
buildBatchSQLDelete(tx, key, conn);
break;

}

Each of the buildBatchSQL methods uses the MyTransactionCallback interface to
get a prepared statement. Following is a snippet of code that shows the
buildBatchSQLUpdate method building an SQL update statement for updating an
EmployeeRecord entry and adding it for the batch update:
private void buildBatchSQLUpdate(TxID tx, Object key, Object value,
Connection conn)
throws SQLException, LoaderException
{

String sql = "update EMPLOYEE set LASTNAME = ?, FIRSTNAME = ?, DEPTNO = ?,
SEQNO = ?, MGRNO = ? where EMPNO = ?";
PreparedStatement sqlUpdate = ivTcb.getPreparedStatement(tx, conn,
"employee", sql);
EmployeeRecord emp = (EmployeeRecord) value;
sqlUpdate.setString(1, emp.getLastName());
sqlUpdate.setString(2, emp.getFirstName());
sqlUpdate.setString(3, emp.getDepartmentName());
sqlUpdate.setLong(4, emp.getSequenceNumber());
sqlUpdate.setInt(5, emp.getManagerNumber());
sqlUpdate.setInt(6, key);
sqlUpdate.addBatch();

}

After the batchUpdate loop has built all of the prepared statements, it calls the
getPreparedStatementCollection method. This method is implemented as follows:
private Collection getPreparedStatementCollection(TxID tx, Connection conn)
{

return (ivTcb.getPreparedStatementCollection(tx, conn, "employee"));
}

When the application invokes the commit method on the Session, the Session code
calls the commit method on the TransactionCallback method after it has pushed all
the changes made by the transaction out to the Loader for each map that was
changed by the transaction. Because all of the Loaders used the
MyTransactionCallback method to get any connection and prepared statements
they needed, the TransactionCallback method knows which connection to use to
request that the back end commits the changes. So, extending the
TransactionCallback interface with methods that are needed by each of the Loaders
has the following advantages:
v The TransactionCallback object encapsulates the use of TxID slots for

transaction-scoped data, and the Loader does not require information about the
TxID slots. The Loader only needs to know about the methods that are added to
TransactionCallback using the MyTransactionCallback interface for the
supporting functions needed by the Loader.

v The TransactionCallback object can ensure that connection sharing occurs
between each Loader that connects to the same backend so that a two phase
commit protocol can be avoided.

v The TransactionCallback object can ensure that connecting to the backend is
driven to completion through a commit or rollback invoked on the connection
when appropriate.

v TransactionCallback ensures that the cleanup of database resources occurs when
a transaction completes.

v TransactionCallback hides if it is obtaining a managed connection from a
managed environment such as WebSphere Application Server or some other Java

318 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

2 Platform, Enterprise Edition (J2EE) compliant application server. This
advantage allows the same Loader code to be used in both a managed and
unmanaged environments. Only the TransactionCallback plug-in must be
changed.

v For detailed information about how the TransactionCallback implementation
uses the TxID slots for transaction-scoped data, see TransactionCallback plug-in.

OptimisticCallback

As mentioned earlier, the Loader might use an optimistic approach for concurrency
control. In this case, the buildBatchSQLUpdate method example must be modified
slightly for implementing an optimistic approach. Several possible ways exist for
using an optimistic approach. A typical way is to have either a timestamp column
or sequence number counter column for versioning each update of the row.
Assume that the employee table has a sequence number column that increments
each time the row is updated. You then modify the signature of the
buildBatchSQLUpdate method so that it is passed the LogElement object instead of
the key and value pair. It also needs to use the OptimisticCallback object that is
plugged into the backing map for getting both the initial version object and for
updating the version object. The following is an example of a modified
buildBatchSQLUpdate method that uses the ivOcb instance variable that was
initialized as described in the preloadMap section:
modified batch-update method code example
private void buildBatchSQLUpdate(TxID tx, LogElement le, Connection conn)
throws SQLException, LoaderException
{

// Get the initial version object when this map entry was last read
// or updated in the database.
Employee emp = (Employee) le.getCurrentValue();
long initialVersion = ((Long) le.getVersionedValue()).longValue();
// Get the version object from the updated Employee for the SQL update
//operation.
Long currentVersion = (Long)ivOcb.getVersionedObjectForValue(emp);
long nextVersion = currentVersion.longValue();
// Now build SQL update that includes the version object in where clause
// for optimistic checking.
String sql = "update EMPLOYEE set LASTNAME = ?, FIRSTNAME = ?,
DEPTNO = ?,SEQNO = ?, MGRNO = ? where EMPNO = ? and SEQNO = ?";
PreparedStatement sqlUpdate = ivTcb.getPreparedStatement(tx, conn,
"employee", sql);
sqlUpdate.setString(1, emp.getLastName());
sqlUpdate.setString(2, emp.getFirstName());
sqlUpdate.setString(3, emp.getDepartmentName());
sqlUpdate.setLong(4, nextVersion);
sqlUpdate.setInt(5, emp.getManagerNumber());
sqlUpdate.setInt(6, key);
sqlUpdate.setLong(7, initialVersion);
sqlUpdate.addBatch();

}

The example shows that the LogElement is used to obtain the initial version value.
When the transaction first accesses the map entry, a LogElement is created with the
initial Employee object that is obtained from the map. The initial Employee object
is also passed to the getVersionedObjectForValue method on the
OptimisticCallback interface and the result is saved in the LogElement. This
processing occurs before an application is given a reference to the initial Employee
object and has a chance to call some method that changes the state of the initial
Employee object.

Chapter 5. Developing applications 319

The example shows that the Loader uses the getVersiondObjectForValue method to
obtain the version object for the current updated Employee object. Before calling
the batchUpdate method on the Loader interface, eXtreme Scale calls the
updateVersionedObjectForValue method on the OptimisticCallback interface to
cause a new version object to be generated for the updated Employee object. After
the batchUpdate method returns to the ObjectGrid, the LogElement is updated
with the current version object and becomes the new initial version object. This
step is necessary because the application might have called the flush method on
the map instead of the commit method on the Session. It is possible for the Loader
to be called multiple times by a single transaction for the same key. For that
reason, eXtreme Scale ensures that the LogElement is updated with the new
version object each time the row is updated in the employee table.

Now that the Loader has both the initial version object and the next version object,
it can run an SQL update statement that sets the SEQNO column to the next
version object value and uses the initial version object value in the where clause.
This approach is sometimes referred to as an overqualified update statement. The
use of the overqualified update statement allows the relational database to verify
that the row was not changed by some other transaction between the time that this
transaction read the data from the database and the time that this transaction
updates the database. If another transaction modified the row, then the count array
that is returned by the batch update indicates that zero rows were updated for this
key. The Loader is responsible for verifying that the SQL update operation did
update the row. If it does not, the Loader displays a
com.ibm.websphere.objectgrid.plugins.OptimisticCollisionException exception to
inform the Session that the batchUpdate method failed due to more than one
concurrent transaction trying to update the same row in the database table. This
exception causes the Session to roll back and the application must retry the entire
transaction. The rationale is that the retry will be successful, which is why this
approach is called optimistic. The optimistic approach performs better if data is
infrequently changed or concurrent transactions rarely try to update the same row.

It is important for the Loader to use the key parameter of the
OptimisticCollisionException constructor to identify which key or set of keys
caused the optimistic batchUpdate method to fail. The key parameter can either be
the key object itself or an array of key objects if more than one key resulted in
optimistic update failure. And eXtreme Scale uses the getKey method of the
OptimisticCollisionException constructor to determine which map entries contain
stale data and caused the exception to result. Part of the rollback processing is to
evict each stale map entry from the map. Evicting stale entries is necessary so that
any subsequent transaction that accesses the same key or keys results in the get
method of the Loader interface being called to refresh the map entries with the
current data from the database.

Other ways for a Loader to implement an optimistic approach include:
v No timestamp or sequence number column exists. In this case, the

getVersionObjectForValue method on the OptimisticCallback interface simply
returns the value object itself as the version. With this approach, the Loader
needs to build a where clause that includes each of the fields of the initial
version object. This approach is not efficient, and not all column types are
eligible to be used in the where clause of an overqualified SQL update
statement. This approach is typically not used.

v No timestamp or sequence number column exists. However, unlike the prior
approach, the where clause only contains the value fields that were modified by
the transaction. One method to detect which fields are modified is to set the

320 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

copy mode on the backing map to be CopyMode.COPY_ON_WRITE mode. This
copy mode requires that a value interface be passed to the setCopyMode
method on the BackingMap interface. The BackingMap creates dynamic proxy
objects that implement the provided value interface. With this copy mode, the
Loader can cast each value to a
com.ibm.websphere.objectgrid.plugins.ValueProxyInfo object. The
ValueProxyInfo interface has a method that allows the Loader to obtain the List
of attribute names that were changed by the transaction. This method enables
the Loader to call the get methods on the value interface for the attribute names
to obtain the changed data and to build an SQL update statement that only sets
the changed attributes. The where clause can now be built to have the primary
key column plus each of the changed attribute columns. This approach is more
efficient than the prior approach, but it requires more code to be written in the
Loader and leads to the possibility that the prepared statement cache needs to be
larger to handle the different permutations. However, if transactions typically
only modify a few of the attributes, this limitation might not be a problem.

v Some relational databases might have an API to assist in automatically
maintaining column data that is useful for optimistic versioning. Consult your
database documentation to determine if this possibility exists.

Writing a loader
You can write your own loader plug-in implementation in your applications, which
must follow the common WebSphere eXtreme Scale plug-in conventions.

Including a loader plug-in

The Loader interface has the following definition:
public interface Loader
{

static final SpecialValue KEY_NOT_FOUND;
List get(TxID txid, List keyList, boolean forUpdate) throws LoaderException;
void batchUpdate(TxID txid, LogSequence sequence) throws
LoaderException, OptimisticCollisionException;
void preloadMap(Session session, BackingMap backingMap) throws LoaderException;

}

See “Loaders” on page 97 for more information.

get method

The backing map calls the Loader get method to get the values that are associated
with a key list that is passed as the keyList argument. The get method is required
to return a java.lang.util.List list of values, one value for each key that is in the key
list. The first value that is returned in the value list corresponds to the first key in
the key list, the second value returned in the value list corresponds to the second
key in the key list, and so on. If the loader does not find the value for a key in the
key list, the Loader is required to return the special KEY_NOT_FOUND value
object that is defined in the Loader interface. Because a backing map can be
configured to allow null as a valid value, it is very important for the Loader to
return the special KEY_NOT_FOUND object when the Loader cannot find the key.
This special value allows the backing map to distinguish between a null value and
a value that does not exist because the key was not found. If a backing map does
not support null values, a Loader that returns a null value instead of the
KEY_NOT_FOUND object for a key that does not exist results in an exception.

The forUpdate argument tells the Loader if the application called a get method on
the map or a getForUpdate method on the map. See the ObjectMap interface in the
API documentation for more information. The Loader is responsible for
implementing a concurrency control policy that controls concurrent access to the

Chapter 5. Developing applications 321

persistent store. For example, many relational database management systems
support the for update syntax on the SQL select statement that is used to read data
from a relational table. The Loader can choose to use the for update syntax on the
SQL select statement based on whether boolean true is passed as the argument
value for the forUpdate parameter of this method. Typically, the Loader uses the
for update syntax only when the pessimistic concurrency control policy is used.
For an optimistic concurrency control, the Loader never uses for update syntax on
the SQL select statement. The Loader is responsible to decide to use the forUpdate
argument based on the concurrency control policy that is being used by the
Loader.

For an explanation of the txid parameter, see “Plug-ins for managing transaction
life cycle events” on page 351.

batchUpdate method

The batchUpdate method is important on the Loader interface. This method is
called whenever the eXtreme Scale needs to apply all the current changes to the
Loader. The Loader is given a list of changes for the selected Map. The changes are
iterated and applied to the backend. The method receives the current TxID value
and the changes to apply. The following sample iterates over the set of changes
and batches three Java database connectivity (JDBC) statements, one with insert,
another with update, and one with delete.
import java.util.Collection;
import java.util.Map;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import com.ibm.websphere.objectgrid.TxID;
import com.ibm.websphere.objectgrid.plugins.Loader;
import com.ibm.websphere.objectgrid.plugins.LoaderException;
import com.ibm.websphere.objectgrid.plugins.LogElement;
import com.ibm.websphere.objectgrid.plugins.LogSequence;

public void batchUpdate(TxID tx, LogSequence sequence) throws LoaderException {
// Get a SQL connection to use.
Connection conn = getConnection(tx);
try {

// Process the list of changes and build a set of prepared
// statements for executing a batch update, insert, or delete
// SQL operation.
Iterator iter = sequence.getPendingChanges();
while (iter.hasNext()) {

LogElement logElement = (LogElement) iter.next();
Object key = logElement.getKey();
Object value = logElement.getCurrentValue();
switch (logElement.getType().getCode()) {
case LogElement.CODE_INSERT:

buildBatchSQLInsert(tx, key, value, conn);
break;

case LogElement.CODE_UPDATE:
buildBatchSQLUpdate(tx, key, value, conn);
break;

case LogElement.CODE_DELETE:
buildBatchSQLDelete(tx, key, conn);
break;

}
}
// Execute the batch statements that were built by above loop.
Collection statements = getPreparedStatementCollection(tx, conn);
iter = statements.iterator();
while (iter.hasNext()) {

PreparedStatement pstmt = (PreparedStatement) iter.next();
pstmt.executeBatch();

}
} catch (SQLException e) {

LoaderException ex = new LoaderException(e);
throw ex;

}
}

The preceding sample illustrates the high level logic of processing the LogSequence
argument, but the details of how a SQL insert, update, or delete statement is built
are not illustrated. Some of the key points that are illustrated include:

322 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

v The getPendingChanges method is called on the LogSequence argument to
obtain an iterator over the list of LogElements that the Loader needs to process.

v The LogElement.getType().getCode() method is used to determine if the
LogElement is for a SQL insert, update, or delete operation.

v An SQLException exception is caught and is chained to a LoaderException
exception that prints to report that an exception occurred during the batch
update.

v JDBC batch update support is used to minimize the number of queries to the
backend that must be made.

preloadMap method

During the eXtreme Scale initialization, each backing map that is defined is
initialized. If a Loader is plugged into a backing map, the backing map invokes the
preloadMap method on the Loader interface to allow the loader to prefetch data
from its back end and load the data into the map. The following sample assumes
the first 100 rows of an Employee table is read from the database and is loaded
into the map. The EmployeeRecord class is an application-provided class that
holds the employee data that is read from the employee table.

Note: This sample fetches all the data from database and then insert them into the
base map of one partition. In a real-world distributed eXtreme Scale deployment
scenario, data should be distributed into all the partitions. Refer to “Developing
client-based JPA loaders” on page 367 for more information.
import java.sql.PreparedStatement;
import java.sql.SQLException;
import com.ibm.websphere.objectgrid.Session;
import com.ibm.websphere.objectgrid.TxID;
import com.ibm.websphere.objectgrid.plugins.Loader;
import com.ibm.websphere.objectgrid.plugins.LoaderException

public void preloadMap(Session session, BackingMap backingMap) throws LoaderException {
boolean tranActive = false;
ResultSet results = null;
Statement stmt = null;
Connection conn = null;
try {

session.beginNoWriteThrough();
tranActive = true;
ObjectMap map = session.getMap(backingMap.getName());
TxID tx = session.getTxID();
// Get a auto−commit connection to use that is set to
// a read committed isolation level.
conn = getAutoCommitConnection(tx);
// Preload the Employee Map with EmployeeRecord
// objects. Read all Employees from table, but
// limit preload to first 100 rows.
stmt = conn.createStatement();
results = stmt.executeQuery(SELECT_ALL);
int rows = 0;
while (results.next() && rows < 100) {

int key = results.getInt(EMPNO_INDEX);
EmployeeRecord emp = new EmployeeRecord(key);
emp.setLastName(results.getString(LASTNAME_INDEX));
emp.setFirstName(results.getString(FIRSTNAME_INDEX));
emp.setDepartmentName(results.getString(DEPTNAME_INDEX));
emp.updateSequenceNumber(results.getLong(SEQNO_INDEX));
emp.setManagerNumber(results.getInt(MGRNO_INDEX));
map.put(new Integer(key), emp);
++rows;

}
// Commit the transaction.
session.commit();
tranActive = false;

} catch (Throwable t) {
throw new LoaderException("preload failure: " + t, t);

} finally {
if (tranActive) {

try {
session.rollback();

} catch (Throwable t2) {
// Tolerate any rollback failures and
// allow original Throwable to be thrown.

}

Chapter 5. Developing applications 323

}
// Be sure to clean up other databases resources here
// as well such a closing statements, result sets, etc.

}
}

This sample illustrates the following key points:
v The preloadMap backing map uses the Session object that is passed to it as the

session argument.
v The Session.beginNoWriteThrough method is used to begin the transaction

instead of the begin method.
v The Loader cannot be called for each put operation that occurs in this method

for loading the map.
v The Loader can map columns of the employee table to a field in the

EmployeeRecord Java object. The Loader catches all throwable exceptions that
occur and throws a LoaderException exception with the caught throwable
exception chained to it.

v The finally block ensures that any throwable exception that occurs between the
time the beginNoWriteThrough method is called and the commit method is
called cause the finally block to roll back the active transaction. This action is
critical to ensure that any transaction that has been started by the preloadMap
method is completed before returning to the caller. The finally block is a good
place to perform other cleanup actions that might be needed, like closing the
Java Database Connectivity (JDBC) connection and other JDBC objects.

The preloadMap sample is using a SQL select statement that selects all rows of the
table. In your application-provided Loader, you might need to set one or more
Loader properties to control how much of the table needs to be preloaded into the
map.

Because the preloadMap method is only called one time during the BackingMap
initialization, it is also a good place to run the one time Loader initialization code.
Even if a Loader chooses not to prefetch data from the backend and load the data
into the map, it probably needs to perform some other one time initialization to
make other methods of the Loader more efficient. The following example illustrates
caching the TransactionCallback object and OptimisticCallback object as instance
variables of the Loader so that the other methods of the Loader do not have to
make method calls to get access to these objects. This caching of the ObjectGrid
plug-in values can be performed because after the BackingMap is initialized, the
TransactionCallback and the OptimisticCallback objects cannot be changed or
replaced. It is acceptable to cache these object references as instance variables of
the Loader.
import com.ibm.websphere.objectgrid.Session;
import com.ibm.websphere.objectgrid.BackingMap;
import com.ibm.websphere.objectgrid.plugins.OptimisticCallback;
import com.ibm.websphere.objectgrid.plugins.TransactionCallback;

// Loader instance variables.
MyTransactionCallback ivTcb; // MyTransactionCallback

// extends TransactionCallback
MyOptimisticCallback ivOcb; // MyOptimisticCallback

// implements OptimisticCallback
// ...
public void preloadMap(Session session, BackingMap backingMap) throws LoaderException
[Replication programming]

// Cache TransactionCallback and OptimisticCallback objects
// in instance variables of this Loader.
ivTcb = (MyTransactionCallback) session.getObjectGrid().getTransactionCallback();
ivOcb = (MyOptimisticCallback) backingMap.getOptimisticCallback();
// The remainder of preloadMap code (such as shown in prior example).

}

324 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

For information about preloading and recoverable preloading as it pertains to
replication failover, see Replication for availabilitythe information about replication
in the Product Overview.

Loaders with entity maps

If the loader is plugged into an entity map, the loader must handle tuple objects.
Tuple objects are a special entity data format. The loader must conversion data
between tuple and other data formats. For example, the get method returns a list
of values that correspond to the set of keys that are passed in to the method. The
passed-in keys are in the type of Tuple, says key tuples. Assuming that the loader
persists the map with a database using JDBC, the get method must convert each
key tuple into a list of attribute values that correspond to the primary key columns
of the table that is mapped to the entity map, run the SELECT statement with the
WHERE clause that uses converted attribute values as criteria to fetch data from
database, and then convert the returned data into value tuples. The get method
gets data from the database and converts the data into value tuples for passed-in
key tuples, and then returns a list of value tuples correspond to the set of tuple
keys that are passed in to the caller. The get method can perform one SELECT
statement to fetch all data at one time, or run a SELECT statement for each key
tuple. For programming details that show how to use the Loader when the data is
store using an entity manager, see “Using a loader with entity maps and tuples”
on page 342.

Map pre-loading
Maps can be associated with Loaders. A loader is used to fetch objects when they
cannot be found in the map (a cache miss) and also to write changes to a back-end
when a transaction commits. Loaders can also be used for pre-loading data into a
map. The preloadMap method of the Loader interface is called on each map when
its corresponding partition in the map set becomes a primary. The preloadMap
method is not called on replicas. It attempts to load all the intended referenced
data from the back-end into the map using the provided session. The relevant map
is identified by the BackingMap argument that is passed to the preloadMap
method.
void preloadMap(Session session, BackingMap backingMap) throws LoaderException;

Pre-loading in partitioned map set

Maps can be partitioned into N partitions. Maps can therefore be striped across
multiple servers, with each entry identified by a key that is stored only on one of
those servers. Very large maps can be held in a data grid because the application is
no longer limited by the heap size of a single Java virtual machine (JVM) to hold
all the entries of a Map. Applications that want to preload with the preloadMap
method of the Loader interface must identify the subset of the data that it
preloads. A fixed number of partitions always exists. You can determine this
number by using the following code example:
int numPartitions = backingMap.getPartitionManager().getNumOfPartitions();
int myPartition = backingMap.getPartitionId();

This code example shows how an application can identify the subset of the data to
preload from the database. Applications must always use these methods even
when the map is not initially partitioned. These methods allow flexibility: If the
map is later partitioned by the administrators, then the loader continues to work
correctly.

Chapter 5. Developing applications 325

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/cxsrepl.html

The application must issue queries to retrieve the myPartition subset from the
backend. If a database is used, then it might be easier to have a column with the
partition identifier for a given record unless there is some natural query that
allows the data in the table to partition easily.

See “Writing a loader with a replica preload controller” on page 346 for an
example on how to implement a Loader for a replicated data grid.

Performance

The preload implementation copies data from the back-end into the map by storing
multiple objects in the map in a single transaction. The optimal number of records
to store per transaction depends on several factors, including complexity and size.
For example, after the transaction includes blocks of more than 100 entries, the
performance benefit decreases as you increase the number of entries. To determine
the optimal number, begin with 100 entries and then increase the number until the
performance benefit decreases to none. Larger transactions result in better
replication performance. Remember, only the primary runs the preload code. The
preloaded data is replicated from the primary to any replicas that are online.

Pre-loading map set

If the application uses a map set with multiple maps then each map has its own
loader. Each loader has a preload method. Each map is loaded serially by the data
grid. It might be more efficient to preload all the maps by designating a single
map as the pre-loading map. This process is an application convention. For
example, two maps, department and employee, might use the department Loader
to preload both the department and the employee maps. This procedure ensures
that, transactionally, if an application wants a department then the employees for
that department are in the cache. When the department Loader preloads a
department from the back-end, it also fetches the employees for that department.
The department object and its associated employee objects are then added to the
map using a single transaction.

Recoverable pre-loading

Some customers have very large data sets that need caching. Pre-loading this data
can be very time consuming. Sometimes, the pre-loading must complete before the
application can go online. You can benefit from making pre-loading recoverable.
Suppose there are a million records to preload. The primary is pre-loading them
and fails at the 800,000th record. Normally, the replica chosen to be the new
primary clears any replicated state and starts from the beginning. eXtreme Scale
can use a ReplicaPreloadController interface. The loader for the application would
also need to implement the ReplicaPreloadController interface. This example adds
a single method to the Loader: Status checkPreloadStatus(Session session,
BackingMap bmap);. This method is called by the eXtreme Scale run time before the
preload method of the Loader interface is normally called. The eXtreme Scale tests
the result of this method (Status) to determine its behavior whenever a replica is
promoted to a primary.

Table 7. Status value and response

Returned status value eXtreme Scale response

Status.PRELOADED_ALREADY eXtreme Scale does not call the preload method at all because this status
value indicates that the map is fully preloaded.

Status.FULL_PRELOAD_NEEDED eXtreme Scale clears the map and calls the preload method normally.

326 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Table 7. Status value and response (continued)

Returned status value eXtreme Scale response

Status.PARTIAL_PRELOAD_NEEDED eXtreme Scale leaves the map as-is and calls preload. This strategy allows the
application loader to continue pre-loading from that point onwards.

Clearly, while a primary is pre-loading the map, it must leave some state in a map
in the MapSet that is being replicated so that the replica determines what status to
return. You can use an extra map named, for example, RecoveryMap map. This
RecoveryMap map must be part of the same MapSet map set that is being
preloaded to ensure that the map is replicated consistently with the data being
preloaded. A suggested implementation follows.

As the preload commits each block of records, the process also updates a counter
or value in the RecoveryMap map as part of that transaction. The preloaded data
and the RecoveryMap map data are replicated atomically to the replicas. When the
replica is promoted to primary, it can now check the RecoveryMap map to see
what has happened.

The RecoveryMap map can hold a single entry with the state key. If no object
exists for this key then you need a full preload (checkPreloadStatus returns
FULL_PRELOAD_NEEDED). If an object exists for this state key and the value is
COMPLETE, the preload completes, and the checkPreloadStatus method returns
PRELOADED_ALREADY. Otherwise, the value object indicates where the preload restarts
and the checkPreloadStatus method returns PARTIAL_PRELOAD_NEEDED. The loader
can store the recovery point in an instance variable for the loader so that when
preload is called, the loader knows the starting point. The RecoveryMap map can
also hold an entry per map if each map is preloaded independently.

Handling recovery in synchronous replication mode with a Loader

The eXtreme Scale run time is designed not to lose committed data when the
primary fails. The following section shows the algorithms used. These algorithms
apply only when a replication group uses synchronous replication. A loader is
optional.

The eXtreme Scale run time can be configured to replicate all changes from a
primary to the replicas synchronously. When a synchronous replica is placed, it
receives a copy of the existing data on the primary shard. During this time, the
primary continues to receives transactions and copies them to the replica
asynchronously. The replica is not considered to be online at this time.

After the replica catches up the primary, the replica enters peer mode and
synchronous replication begins. Every transaction committed on the primary is
sent to the synchronous replicas and the primary waits for a response from each
replica. A synchronous commit sequence with a Loader on the primary looks like
the following set of steps:

Table 8. Commit sequence on the primary

Step with loader Step without loader

Get locks for entries same

Flush changes to the loader no-op

Save changes to the cache same

Chapter 5. Developing applications 327

Table 8. Commit sequence on the primary (continued)

Step with loader Step without loader

Send changes to replicas and wait for
acknowledgement

same

Commit to the loader through the
TransactionCallback plug-in

plug-in commit called, but does
nothing

Release locks for entries same

Notice that the changes are sent to the replica before they are committed to the
loader. To determine when the changes are committed on the replica, revise this
sequence: At initialize time, initialize the tx lists on the primary as below.
CommitedTx = {}, RolledBackTx = {}

During synchronous commit processing, use the following sequence:

Table 9. Synchronous commit processing

Step with loader Step without loader

Get locks for entries same

Flush changes to the loader no-op

Save changes to the cache same

Send changes with a committed transaction, roll back
transaction to replica, and wait for acknowledgement

same

Clear list of committed transactions and rolled back
transactions

same

Commit the loader through the TransactionCallBack plug-in TransactionCallBack plug-in
commit is still called, but
typically does not do
anything

If commit succeeds, add the transaction to the committed
transactions, otherwise add to the rolled back transactions

no-op

Release locks for entries same

For replica processing, use the following sequence:
1. Receive changes
2. Commit all received transactions in the committed transaction list
3. Roll back all received transactions in the rolled back transaction list
4. Start a transaction or session
5. Apply changes to the transaction or session
6. Save the transaction or session to the pending list
7. Send back reply

Notice that on the replica, no loader interactions occur while the replica is in
replica mode. The primary must push all changes through the Loader. The replica
does not change data. A side effect of this algorithm is that the replica always has
the transactions, but they are not committed until the next primary transaction
sends the commit status of those transactions. The transactions are then committed
or rolled back on the replica. Until then, the transactions are not committed. You
can add a timer on the primary that sends the transaction outcome after a small
time period (a few seconds). This timer limits, but does not eliminate, any staleness

328 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

to that time window. This staleness is only a problem when using replica read
mode. Otherwise, the staleness does not have an impact on the application.

When the primary fails, it is likely that a few transactions were committed or
rolled back on the primary, but the message never made it to the replica with these
outcomes. When a replica is promoted to the new primary, one of the first actions
is to handle this condition. Each pending transaction is reprocessed against the
new primary's set of maps. If there is a Loader, then each transaction is given to
the Loader. These transactions are applied in strict first in first out (FIFO) order. If
a transaction fails, it is ignored. If three transactions are pending, A, B, and C, then
A might commit, B might rollback, and C might also commit. No one transaction
has any impact on the others. Assume that they are independent.

A loader might want to use slightly different logic when it is in failover recovery
mode versus normal mode. The loader can easily know when it is in failover
recovery mode by implementing the ReplicaPreloadController interface. The
checkPreloadStatus method is only called when failover recovery completes.
Therefore, if the apply method of the Loader interface is called before the
checkPreloadStatus method, then it is a recovery transaction. After the
checkPreloadStatus method is called, the failover recovery is complete.

Configuring write-behind loader support
You can enable write-behind support either using the ObjectGrid descriptor XML
file or programmatically using the BackingMap interface.

Use either the ObjectGrid descriptor XML file to enable write-behind support, or
programmatically by using the BackingMap interface.

ObjectGrid descriptor XML file

When configuring an ObjectGrid using an ObjectGrid descriptor XML file, the
write-behind loader is enabled by setting the writeBehind attribute on the
backingMap tag. An example follows:
<objectGrid name="library" >

<backingMap name="book" writeBehind="T300;C900" pluginCollectionRef="bookPlugins"/>

In the previous example, write-behind support of the book backing map is enabled
with parameter T300;C900. The write-behind attribute specifies the maximum
update time and/or a maximum key update count. The format of the write-behind
parameter is:

write-behind attribute ::= <defaults> | <update time> | <update key count> | <update time> ";" <update key count>
update time ::= "T" <positive integer>
update key count ::= "C" <positive integer>
defaults ::= "" {table}

Updates to the loader occur when one of the following events occurs:
1. The maximum update time in seconds has elapsed since the last update.
2. The number of updated keys in the queue map has reached the update key

count.

These parameters are only hints. The real update count and update time will be
within close range of the parameters. However, we do not guarantee that the
actual update count or update time are the same as defined in the parameters.
Also, the first behind update could happen after up to twice as long as the update
time. This is because ObjectGrid randomizes the update starting time so all
partitions will not hit the database simultaneously.

Chapter 5. Developing applications 329

In the previous example T300;C900, the loader writes the data to the back-end
when 300 seconds have passed since the last update or when 900 keys are pending
to be updated. The default update time is 300 seconds and the default update key
count is 1000.

Table 10. Some write-behind options
Attribute value Time

T100 The update time is 100 seconds, and the update key count is 1000 (the default value)

C2000 The update time is 300 seconds (the default value), and the update key count is 2000.

T300;C900 The update time is 300 seconds and the update key count is 900.

"" The update time is 300 second (the default value), and the update key count is 1000 (the default value).
Note: If you configure the write-behind loader as an empty string: writeBehind="", the write-behind loader is enabled
using the default values. Therefore, do not specify the writeBehind attribute if you do not want write-behind support
enabled.

Programmatically enabling write-behind support

When you are creating a backing map programmatically for a local, in-memory
eXtreme Scale, you can use the following method on the BackingMap interface to
enable and disable write-behind support.
public void setWriteBehind(String writeBehindParam);

For more details about how to use the setWriteBehind method, see the information
about the BackingMap interface in the Programming Guide.

Write-behind caching:

You can use write-behind caching to reduce the overhead that occurs when
updating a database you are using as a back end.

Write-behind caching overview

Write-behind caching asynchronously queues updates to the Loader plug-in. You
can improve performance by disconnecting updates, inserts, and removes for a
map, the overhead of updating the back-end database. The asynchronous update is
performed after a time-based delay (for example, five minutes) or an entry-based
delay (1000 entries).

330 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

The write-behind configuration on a BackingMap creates a thread between the
loader and the map. The loader then delegates data requests through the thread
according to the configuration settings in the BackingMap.setWriteBehind method.
When an eXtreme Scale transaction inserts, updates, or removes an entry from a
map, a LogElement object is created for each of these records. These elements are
sent to the write-behind loader and queued in a special ObjectMap called a queue
map. Each backing map with the write-behind setting enabled has its own queue
maps. A write-behind thread periodically removes the queued data from the queue
maps and pushes them to the real back-end loader.

The write-behind loader only sends insert, update, and delete types of LogElement
objects to the real loader. All other types of LogElement objects, for example,
EVICT type, are ignored.

Write-behind support is an extension of the Loader plug-in, which you use to
integrate eXtreme Scale with the database. For example, consult the Configuring
JPA loaders information about configuring a JPA loader.

Benefits

Enabling write-behind support has the following benefits:
v Back end failure isolation: Write-behind caching provides an isolation layer

from back end failures. When the back-end database fails, updates are queued in
the queue map. The applications can continue driving transactions to eXtreme
Scale. When the back end recovers, the data in the queue map is pushed to the
back-end.

v Reduced back end load: The write-behind loader merges the updates on a key
basis so only one merged update per key exists in the queue map. This merge
decreases the number of updates to the back-end database.

DatabaseLoader

Application

insert into

K1 V1

K1 V1

batchUpdate
insert: k1,v1

insert (k1,v1)

Queue Map

Write
Timer

Figure 28. Write-behind caching

Chapter 5. Developing applications 331

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsjpaload.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsjpaload.html

v Improved transaction performance: Individual eXtreme Scale transaction times
are reduced because the transaction does not need to wait for the data to be
synchronized with the back-end.

Write-behind loader application design considerations:

When you implement a write-behind loaders, you must consider several issues
such as integrity constraints, locking behavior, and performance.

Application design considerations

Enabling write-behind support is simple, but designing an application to work
with write-behind support needs careful consideration. Without write-behind
support, the ObjectGrid transaction encloses the back-end transaction. The
ObjectGrid transaction starts before the back-end transaction starts, and it ends
after the back-end transaction ends.

With write-behind support enabled, the ObjectGrid transaction finishes before the
back-end transaction starts. The ObjectGrid transaction and back-end transaction
are de-coupled.

Referential integrity constraints

Each backing map that is configured with write-behind support has its own
write-behind thread to push the data to the back-end. Therefore, the data that
updated to different maps in one ObjectGrid transaction are updated to the
back-end in different back-end transactions. For example, transaction T1 updates
key key1 in map Map1 and key key2 in map Map2. The key1 update to map Map1
is updated to the back-end in one back-end transaction, and the key2 updated to
map Map2 is updated to the back-end in another back-end transaction by different
write-behind threads. If data stored in Map1 and Map2 have relations, such as
foreign key constraints in the back-end, the updates might fail.

When designing the referential integrity constraints in your back-end database,
ensure that out-of-order updates are allowed.

Queue map locking behavior

Another major transaction behavior difference is the locking behavior. ObjectGrid
supports three different locking strategies: PESSIMISTIC, OPTIMISITIC, and
NONE. The write-behind queue maps uses pessimistic locking strategy no matter
which lock strategy is configured for its backing map. Two different types of
operations exist that acquire a lock on the queue map:
v When an ObjectGrid transaction commits, or a flush (map flush or session flush)

happens, the transaction reads the key in the queue map and places an S lock on
the key.

v When an ObjectGrid transaction commits, the transaction tries to upgrade the S
lock to X lock on the key.

Because of this extra queue map behavior, you can see some locking behavior
differences.
v If the user map is configured as PESSIMISTIC locking strategy, there isn't much

locking behavior difference. Every time a flush or commit is called, an S lock is

332 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

placed on the same key in the queue map. During the commit time, not only is
an X lock acquired for key in the user map, it is also acquired for the key in the
queue map.

v If the user map is configured as OPTIMISTIC or NONE locking strategy, the
user transaction will follow the PESSIMISTIC locking strategy pattern. Every
time a flush or commit is called, an S lock is acquired for the same key in the
queue map. During the commit time, an X lock is acquired for the key in the
queue map using the same transaction.

Loader transaction retries

ObjectGrid does not support 2-phase or XA transactions. The write-behind thread
removes records from the queue map and updates the records to the back-end. If
the server fails in the middle of the transaction, some back-end updates can be
lost.

The write-behind loader will automatically retry to write failed transactions and
will send an in-doubt LogSequence to the back-end to avoid data loss. This action
requires the loader to be idempotent, which means when the
Loader.batchUpdate(TxId, LogSequence) is called twice with the same value, it
gives the same result as if it were applied one time. Loader implementations must
implement the RetryableLoader interface to enable this feature. See the API
documentation for more details.

Write-behind caching performance considerations

Write-behind caching support improves response time by removing the loader
update from the transaction. It also increases database throughput because
database updates are combined. It is important to understand the overhead
introduced by write-behind thread, which pulls the data out of the queue map and
pushed to the loader.

The maximum update count or the maximum update time need to be adjusted
based on the expected usage patterns and environment. If the value of the
maximum update count or the maximum update time is too small, the overhead of
the write-behind thread may exceed the benefits. Setting a large value for these
two parameters could also increase the memory usage for queuing the data and
increase the stale time of the database records.

For best performance, tune the write-behind parameters based on the following
factors:
v Ratio of read and write transactions
v Same record update frequency
v Database update latency.

Handling failed write-behind updates:

Because the WebSphere eXtreme Scale transaction finishes before the back-end
transaction starts, the transaction could have false success.

If you try to insert an entry in an eXtreme Scale transaction that does not exist in
the backing map but exists in the backend database, causing a duplicate key, the
eXtreme Scale transaction succeeds. However, the transaction in which the
write-behind thread inserts the object into the backend database fails with a
duplicate key exception.

Chapter 5. Developing applications 333

Handling failed write-behind updates: client side

Such an update, or any other failed back-end update, is a failed write-behind
update. Failed write-behind updates are stored in a failed write-behind update
map. This map serves as an event queue for failed updates. The key of the update
is a unique Integer object, and the value is an instance of FailedUpdateElement.
The failed write-behind update map is configured with an evictor, which evicts the
records one hour after it has been inserted. So the failed-update records are lost if
they are not retrieved within one hour.

The ObjectMap API can be used to retrieve the failed write-behind update map
entries. The failed write-behind update map name is: IBM_WB_FAILED_UPDATES_<map
name>. See the WriteBehindLoaderConstants API documentation for the prefix
names of each of the write-behind system maps. The following is an example.
process failed - example code
ObjectMap failedMap = session.getMap(

WriteBehindLoaderConstants.WRITE_BEHIND_FAILED_UPDATES_MAP_PREFIX + "Employee");
Object key = null;

session.begin();
while(key = failedMap.getNextKey(ObjectMap.QUEUE_TIMEOUT_NONE)) {

FailedUpdateElement element = (FailedUpdateElement) failedMap.get(key);
Throwable throwable = element.getThrowable();
Object failedKey = element.getKey();
Object failedValue = element.getAfterImage();
failedMap.remove(key);
// Do something interesting with the key, value, or exception.

}
session.commit();

A getNextKey method call works with a specific partition for each eXtreme Scale
transaction. In a distributed environment, to get keys from all partitions, you must
start multiple transactions, as shown in the following example:
getting keys from all partitions - example code
ObjectMap failedMap = session.getMap(

WriteBehindLoaderConstants.WRITE_BEHIND_FAILED_UPDATES_MAP_PREFIX + "Employee");
while (true) {

session.begin();
Object key = null;
while((key = failedMap.getNextKey(5000))!= null) {

FailedUpdateElement element = (FailedUpdateElement) failedMap.get(key);
Throwable throwable = element.getThrowable();

Object failedKey = element.getKey();
Object failedValue = element.getAfterImage();
failedMap.remove(key);
// Do something interesting with the key, value, or exception.

}
Session.commit();

}

Note: The failed update map provides a way to monitor the application health. If
a system produces many records in the failed update map, it is a sign that you
need to revise the application or architecture to use the write-behind support. You
can use the xscmd -showMapSizes command to see the failed update map entry
size.

334 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Handling failed write-behind updates: shard listener

It is important to detect and log when a write-behind transaction fails. Every
application using write-behind needs to implement a watcher to handle failed
write-behind updates. This avoids potentially running out of memory as records in
the bad update Map are not evicted because the application is expected to handle
them.

The following code shows how to plug in such a watcher, or "dumper," which
must be added to the ObjectGrid descriptor XML as in the snippet.
<objectGrid name="Grid">
<bean id="ObjectGridEventListener" className="utils.WriteBehindDumper"/>

You can see the ObjectGridEventListener bean that has been added, which is the
write-behind watcher referred to above. The watcher interacts over the Maps for all
primary shards in a JVM looking for ones with write-behind enabled. If it finds
one then it tries to log up to 100 bad updates. It keeps watching a primary shard
until the shard is moved to a different JVM. All applications using write-behind
must use a watcher similar to this one. Otherwise, the Java virtual machines run
out of memory because this error map is never evicted

See “Example: Writing a write-behind dumper class” for more information.

Example: Writing a write-behind dumper class:

This sample source code shows how to write a watcher (dumper) to handle failed
write-behind updates.
//
//This sample program is provided AS IS and may be used, executed, copied and
//modified without royalty payment by customer (a) for its own instruction and
//study, (b) in order to develop applications designed to run with an IBM
//WebSphere product, either for customer’s own internal use or for redistribution
//by customer, as part of such an application, in customer’s own products. "
//
//5724-J34 (C) COPYRIGHT International Business Machines Corp. 2009
//All Rights Reserved * Licensed Materials - Property of IBM
//
package utils;

import java.util.Collection;
import java.util.Iterator;
import java.util.concurrent.Callable;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledFuture;
import java.util.concurrent.ScheduledThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.logging.Logger;

import com.ibm.websphere.objectgrid.BackingMap;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.ObjectGridException;
import com.ibm.websphere.objectgrid.ObjectGridRuntimeException;
import com.ibm.websphere.objectgrid.ObjectMap;
import com.ibm.websphere.objectgrid.Session;
import com.ibm.websphere.objectgrid.UndefinedMapException;
import com.ibm.websphere.objectgrid.plugins.ObjectGridEventGroup;
import com.ibm.websphere.objectgrid.plugins.ObjectGridEventListener;
import com.ibm.websphere.objectgrid.writebehind.FailedUpdateElement;
import com.ibm.websphere.objectgrid.writebehind.WriteBehindLoaderConstants;

/**
* Write behind expects transactions to the Loader to succeed. If a transaction for a key fails then
* it inserts an entry in a Map called PREFIX + mapName. The application should be checking this
* map for entries to dump out write behind transaction failures. The application is responsible for
* analyzing and then removing these entries. These entries can be large as they include the key, before
* and after images of the value and the exception itself. Exceptions can easily be 20k on their own.
*
* The class is registered with the grid and an instance is created per primary shard in a JVM. It creates
* a single thread
* and that thread then checks each write behind error map for the shard, prints out the problem and
* then removes the entry.
*

Chapter 5. Developing applications 335

* This means there will be one thread per shard. If the shard is moved to another JVM then the deactivate
* method stops the thread.
* @author bnewport
*
*/
public class WriteBehindDumper implements ObjectGridEventListener, ObjectGridEventGroup.ShardEvents,
Callable<Boolean>
{
static Logger logger = Logger.getLogger(WriteBehindDumper.class.getName());

ObjectGrid grid;

/**
* Thread pool to handle table checkers. If the application has it’s own pool
* then change this to reuse the existing pool
*/
static ScheduledExecutorService pool = new ScheduledThreadPoolExecutor(2); // two threads to dump records

// the future for this shard
ScheduledFuture<Boolean> future;

// true if this shard is active
volatile boolean isShardActive;

/**
* Normal time between checking Maps for write behind errors
*/
final long BLOCKTIME_SECS = 20L;

/**
* An allocated session for this shard. No point in allocating them again and again
*/
Session session;
/**
* When a primary shard is activated then schedule the checks to periodically check
* the write behind error maps and print out any problems
*/
public void shardActivated(ObjectGrid grid)
{
try
{
this.grid = grid;
session = grid.getSession();

isShardActive = true;
future = pool.schedule(this, BLOCKTIME_SECS, TimeUnit.SECONDS); // check every BLOCKTIME_SECS seconds initially
}
catch(ObjectGridException e)
{
throw new ObjectGridRuntimeException("Exception activating write dumper", e);
}
}

/**
* Mark shard as inactive and then cancel the checker
*/
public void shardDeactivate(ObjectGrid arg0)
{
isShardActive = false;
// if it’s cancelled then cancel returns true
if(future.cancel(false) == false)
{
// otherwise just block until the checker completes
while(future.isDone() == false) // wait for the task to finish one way or the other
{
try
{
Thread.sleep(1000L); // check every second
}
catch(InterruptedException e)
{
}
}
}
}

/**
* Simple test to see if the map has write behind enabled and if so then return
* the name of the error map for it.
* @param mapName The map to test
* @return The name of the write behind error map if it exists otherwise null
*/
static public String getWriteBehindNameIfPossible(ObjectGrid grid, String mapName)
{
BackingMap map = grid.getMap(mapName);
if(map != null && map.getWriteBehind() != null)
{
return WriteBehindLoaderConstants.WRITE_BEHIND_FAILED_UPDATES_MAP_PREFIX + mapName;
}
else
return null;

336 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

}

/**
* This runs for each shard. It checks if each map has write behind enabled and if it does
* then it prints out any write behind
* transaction errors and then removes the record.
*/
public Boolean call()
{
logger.fine("Called for " + grid.toString());
try
{
// while the primary shard is present in this JVM
// only user defined maps are returned here, no system maps like write behind maps are in
// this list.
Iterator<String> iter = grid.getListOfMapNames().iterator();
boolean foundErrors = false;
// iterate over all the current Maps
while(iter.hasNext() && isShardActive)
{
String origName = iter.next();

// if it’s a write behind error map
String name = getWriteBehindNameIfPossible(grid, origName);
if(name != null)
{
// try to remove blocks of N errors at a time
ObjectMap errorMap = null;
try
{
errorMap = session.getMap(name);
}
catch(UndefinedMapException e)
{
// at startup, the error maps may not exist yet, patience...
continue;
}
// try to dump out up to N records at once
session.begin();
for(int counter = 0; counter < 100; ++counter)
{
Integer seqKey = (Integer)errorMap.getNextKey(1L);
if(seqKey != null)
{
foundErrors = true;
FailedUpdateElement elem = (FailedUpdateElement)errorMap.get(seqKey);
//
// Your application should log the problem here
logger.info("WriteBehindDumper (" + origName + ") for key (" + elem.getKey() + ") Exception: " +
elem.getThrowable().toString());
//
//
errorMap.remove(seqKey);
}
else
break;

}
session.commit();
}
} // do next map
// loop faster if there are errors
if(isShardActive)
{
// reschedule after one second if there were bad records
// otherwise, wait 20 seconds.
if(foundErrors)
future = pool.schedule(this, 1L, TimeUnit.SECONDS);
else
future = pool.schedule(this, BLOCKTIME_SECS, TimeUnit.SECONDS);

}
}
catch(ObjectGridException e)
{
logger.fine("Exception in WriteBehindDumper" + e.toString());
e.printStackTrace();

//don’t leave a transaction on the session.
if(session.isTransactionActive())
{
try { session.rollback(); } catch(Exception e2) {}
}
}
return true;
}

public void destroy() {
// TODO Auto-generated method stub

}

public void initialize(Session arg0) {

Chapter 5. Developing applications 337

// TODO Auto-generated method stub

}

public void transactionBegin(String arg0, boolean arg1) {
// TODO Auto-generated method stub

}

public void transactionEnd(String arg0, boolean arg1, boolean arg2,
Collection arg3) {
// TODO Auto-generated method stub

}
}

JPA loader programming considerations
A Java Persistence API (JPA) Loader is a loader plug-in implementation that uses
JPA to interact with the database. Use the following considerations when you
develop an application that uses a JPA loader.

eXtreme Scale entity and JPA entity

You can designate any POJO class as an eXtreme Scale entity using eXtreme Scale
entity annotations, XML configuration, or both. You can also designate the same
POJO class as a JPA entity using JPA entity annotations, XML configuration, or
both.

eXtreme Scale entity: An eXtreme Scale entity represents persistent data that is
stored in ObjectGrid maps. An entity object is transformed into a key tuple and a
value tuple, which are then stored as key-value pairs in the maps. A tuple is an
array of primitive attributes.

JPA entity: A JPA entity represents persistent data that is stored in a relational
database automatically using container-managed persistence. The data is persisted
in some form of a data storage system in the appropriate form, such as database
tuples in a database.

When an eXtreme Scale entity is persisted, its relations are stored in other entity
maps. For example, when you are persisting a Consumer entity with a
one-to-many relation to a ShippingAddress entity, if cascade-persist is enabled, the
ShippingAddress entity is stored in the shippingAddress map in tuple format. If
you are persisting a JPA entity, the related JPA entities are also persisted to
database tables if cascade-persist is enabled. When a POJO class is designated as
both an eXtreme Scale entity and a JPA entity, the data can be persisted to both
ObjectGrid entity maps and databases. Common uses follow:
v Preload scenario: An entity is loaded from a database using a JPA provider and

persists it into ObjectGrid entity maps.
v Loader scenario: A Loader implementation is plugged in for the ObjectGrid

entity maps so an entity stored in ObjectGrid entity maps can be persisted into
or loaded from a database using JPA providers.

It is also common that a POJO class is designated as a JPA entity only. In that case,
what is stored in the ObjectGrid maps are the POJO instances, versus the entity
tuples in the ObjectGrid entity case.

Application design considerations for entity maps

When you are plugging in a JPALoader interface, the object instances are directly
stored in the ObjectGrid maps.

338 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

However, you are when plugging in a JPAEntityLoader, the entity class is
designated as both an eXtreme Scale entity and a JPA entity. In that case, treat this
entity as if it has two persistent stores: the ObjectGrid entity maps and the JPA
persistence store. The architecture becomes more complicated than the JPALoader
case.

For more information about the JPAEntityLoader plug-in and application design
considerations, see the information about the JPAEntityLoader plug-in in the
Administration Guide. This information can also help if you plan to implement your
own loader for the entity maps.

Performance considerations

Ensure that you set the proper eager or lazy fetch type for relationships. For
example, a bidirectional one-to-many relationship Consumer to ShippingAddress,
with OpenJPA to help explain the performance differences. In this example, a JPA
query attempts select o from Consumer o where . . . to do a bulk load, and
also load all related ShippingAddress objects. A one-to-many relationship defined
in the Consumer class follows:
@Entity
public class Consumer implements Serializable {

@OneToMany(mappedBy="consumer",cascade=CascadeType.ALL, fetch =FetchType.EAGER)
ArrayList <ShippingAddress> addresses;

The many-to-one relation consumer defined in the ShippingAddress class follows:
@Entity
public class ShippingAddress implements Serializable{

@ManyToOne(fetch=FetchType.EAGER)
Consumer consumer;

}

If the fetch types of both relationships are configured as eager, OpenJPA uses
N+1+1 queries to get all the Consumer objects and ShippingAddress objects, where
N is the number of ShippingAddress objects. However if the ShippingAddress is
changed to use lazy fetch type as follows, it only takes two queries to get all the
data.
@Entity
public class ShippingAddress implements Serializable{

@ManyToOne(fetch=FetchType.LAZY)
Consumer consumer;

}

Although the query returns the same results, having a lower number of queries
significantly decreases interaction with the database, which can increase
application performance.

JPAEntityLoader plug-in:

The JPAEntityLoader plug-in is a built-in Loader implementation that uses Java
Persistence API (JPA) to communicate with the database when you are using the
EntityManager API. When you are using the ObjectMap API, use the JPALoader
loader.

Chapter 5. Developing applications 339

Loader details

Use the JPALoader plug-in when you are storing data using the ObjectMap API.
Use the JPAEntityLoader plug-in when you are storing data using the
EntityManager API.

Loaders provide two main functions:
1. get: In the get method, the JPAEntityLoader plug-in first calls the

javax.persistence.EntityManager.find(Class entityClass, Object key) method to
find the JPA entity. Then the plug-in projects this JPA entity into entity tuples.
During the projection, both the tuple attributes and the association keys are
stored in the value tuple. After processing each key, the get method returns a
list of entity value tuples.

2. batchUpdate: The batchUpdate method takes a LogSequence object that
contains a list of LogElement objects. Each LogElement object contains a key
tuple and a value tuple. To interact with the JPA provider, you must first find
the eXtreme Scale entity based on the key tuple. Based on the LogElement type,
you run the following JPA calls:
v insert: javax.persistence.EntityManager.persist(Object o)
v update: javax.persistence.EntityManager.merge(Object o)
v remove: javax.persistence.EntityManager.remove(Object o)

A LogElement with type update makes the JPAEntityLoader call the
javax.persistence.EntityManager.merge(Object o) method to merge the entity.
However, an update type LogElement might be the result of either a
com.ibm.websphere.objectgrid.em.EntityManager.merge(object o) call or an
attribute change of the eXtreme Scale EntityManager managed-instance. See the
following example:
com.ibm.websphere.objectgrid.em.EntityManager em = og.getSession().getEntityManager();
em.getTransaction().begin();
Consumer c1 = (Consumer) em.find(Consumer.class, c.getConsumerId());
c1.setName("New Name");
em.getTransaction().commit();

In this example, an update type LogElement is sent to the JPAEntityLoader of the
map consumer. The javax.persistence.EntityManager.merge(Object o) method is
called to the JPA entity manager instead of an attribute update to the JPA-managed
entity. Because of this changed behavior, some limitations exist with using this
programming model.

Application design rules

Entities have relationships with other entities. Designing an application with
relationships involved and with JPAEntityLoader plugged in requires additional
considerations. The application should follow the following four rules, described in
the following sections.

Limited relationship depth support

The JPAEntityLoader is only supported when using entities without any
relationships or entities with single-level relationships. Relationships with more
than one level, such as Company > Department > Employee are not supported.

340 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

One loader per map

Using the Consumer-ShippingAddress entity relationships as an example, when
you load a consumer with eager fetch enabled, you could load all the related
ShippingAddress objects. When you persist or merge a Consumer object, you could
persist or merge related ShippingAddress objects if cascade-persist or
cascade-merge is enabled.

You cannot plug in a loader for the root entity map which stores the Consumer
entity tuples. You must configure a loader for each entity map.

Same cascade type for JPA and eXtreme Scale

Reconsider the scenario where the entity Consumer has a one-to-many relationship
with ShippingAddress. You can look at the scenario where cascade-persist is
enabled for this relationship. When a Consumer object is persisted into eXtreme
Scale, the associated N number of ShippingAddress objects are also persisted into
eXtreme Scale.

A persist call of the Consumer object with a cascade-persist relationship to
ShippingAddress translates to one
javax.persistence.EntityManager.persist(consumer) method call and N
javax.persistence.EntityManager.persist(shippingAddress) method calls by the
JPAEntityLoader layer. However, these N extra persist calls to ShippingAddress
objects are unnecessary because of the cascade-persist setting from the JPA
provider point of view. To solve this problem, eXtreme Scale provides a new
method isCascaded on the LogElement interface. The isCascaded method indicates
whether the LogElement is a result of an eXtreme Scale EntityManager cascade
operation. In this example, the JPAEntityLoader of the ShippingAddress map
receives N LogElement objects because of the cascade persist calls. The
JPAEntityLoader finds out that the isCascaded method returns true and then
ignores them without making any JPA calls. Therefore, from a JPA point of view,
only one javax.persistence.EntityManager.persist(consumer) method call is received.

The same behavior is exhibited if you merge an entity or remove an entity with
cascade enabled. The cascaded operations are ignored by the JPAEntityLoader
plug-in.

The design of the cascade support is to replay the eXtreme Scale EntityManager
operations to the JPA providers. These operations include persist, merge, and
remove operations. To enable cascade support, verify that the cascade setting for
the JPA and the eXtreme Scale EntityManager are the same.

Use entity update with caution

As previously described, the design of the cascade support is to replay eXtreme
Scale EntityManager operations to the JPA providers. If your application calls the
ogEM.persist(consumer) method to the eXtreme Scale EntityManager, even the
associated ShippingAddress objects are persisted because of the cascade-persist
setting, and the JPAEntityLoader only calls the jpAEM.persist(consumer) method to
the JPA providers.

However, if your application updates a managed entity, this update translates to a
JPA merge call by the JPAEntityLoader plug-in. In this scenario, support for
multiple levels of relationships and key associations is not guaranteed. In this case,

Chapter 5. Developing applications 341

the best practice is to use the javax.persistence.EntityManager.merge(o) method
instead of updating a managed entity.

Using a loader with entity maps and tuples
The entity manager converts all entity objects into tuple objects before they are
stored in an WebSphere eXtreme Scale map. Every entity has a key tuple and a
value tuple. This key-value pair is stored in the associated eXtreme Scale map for
the entity. When you are using an eXtreme Scale map with a loader, the loader
must interact with the tuple objects.

eXtreme Scale includes loader plug-ins that simplify integration with relational
databases. The Java Persistence API (JPA) Loaders use a Java Persistence API to
interact with the database and create the entity objects. The JPA loaders are
compatible with eXtreme Scale entities.

Tuples

A tuple contains information about the attributes and associations of an entity.
Primitive values are stored using their primitive wrappers. Other supported object
types are stored in their native format. Associations to other entities are stored as a
collection of key tuple objects that represent the keys of the target entities.

Each attribute or association is stored using a zero-based index. You can retrieve
the index of each attribute using the getAttributePosition or getAssociationPosition
methods. After the position is retrieved, it remains unchanged for the duration of
the eXtreme Scale life cycle. The position can change when the eXtreme Scale is
restarted. The setAttribute, setAssociation and setAssociations methods are used to
update the elements in the tuple.

Attention: When you are creating or updating tuple objects, update every
primitive field with a non-null value. Primitive values such as int should not be
null. If you do not change the value to a default, poor performance issues can
result, also affecting fields marked with the @Version annotation or version
attribute in the entity descriptor XML file.

The following example further explains how to process tuples. For more
information about defining entities for this example, see the information about the
order entity schema, which is in the entity manager tutorial in the Product
Overview.WebSphere eXtreme Scale is configured for using loaders with each of the
entities. Additionally, only the Order entity is taken, and this specific entity has a
many-to-one relationship with the Customer entity. The attribute name is customer,
and it has a one-to-many relationship with the OrderLine entity.

Use the Projector to build Tuple objects automatically from entities. Using the
Projector can simplify loaders when you are using an object-relational mapping
utility such as Hibernate or JPA.

order.java
@Entity
public class Order
{

@Id String orderNumber;
java.util.Date date;
@OneToOne(cascade=CascadeType.PERSIST) Customer customer;
@OneToMany(cascade=CascadeType.ALL, mappedBy="order") @OrderBy("lineNumber") List<OrderLine> lines;

}

342 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

customer.java
@Entity
public class Customer {

@Id String id;
String firstName;
String surname;
String address;
String phoneNumber;

}

orderLine.java
@Entity
public class OrderLine
{

@Id @ManyToOne(cascade=CascadeType.PERSIST) Order order;
@Id int lineNumber;
@OneToOne(cascade=CascadeType.PERSIST) Item item;
int quantity;
double price;

}

A OrderLoader class that implements the Loader interface is shown in the
following code. The following example assumes that an associated
TransactionCallback plug-in is defined.

orderLoader.java
public class OrderLoader implements com.ibm.websphere.objectgrid.plugins.Loader {

private EntityMetadata entityMetaData;
public void batchUpdate(TxID txid, LogSequence sequence)

throws LoaderException, OptimisticCollisionException {
...
}
public List get(TxID txid, List keyList, boolean forUpdate)

throws LoaderException {
...
}
public void preloadMap(Session session, BackingMap backingMap)

throws LoaderException {
this.entityMetaData=backingMap.getEntityMetadata();
}

}

The instance variable entityMetaData is initialized during the preLoadMap method
call from the eXtreme Scale. The entityMetaData variable is not null if the Map is
configured to use entities. Otherwise, the value is null.

batchUpdate method

The batchUpdate method provides the ability to know what action the application
intended to perform. Based on an insert, update or a delete operation, a connection
can be opened to the database and the work performed. Because the key and
values are of type Tuple, they must be transformed so the values make sense on
the SQL statement.

The ORDER table was created with the following Data Definition Language (DDL)
definition, as shown in the following code:
CREATE TABLE ORDER (ORDERNUMBER VARCHAR(250) NOT NULL, DATE TIMESTAMP, CUSTOMER_ID VARCHAR(250))
ALTER TABLE ORDER ADD CONSTRAINT PK_ORDER PRIMARY KEY (ORDERNUMBER)

The following code demonstrates how to convert a Tuple to an Object:
public void batchUpdate(TxID txid, LogSequence sequence)

throws LoaderException, OptimisticCollisionException {
Iterator iter = sequence.getPendingChanges();
while (iter.hasNext()) {

Chapter 5. Developing applications 343

LogElement logElement = (LogElement) iter.next();
Object key = logElement.getKey();
Object value = logElement.getCurrentValue();

switch (logElement.getType().getCode()) {
case LogElement.CODE_INSERT:

1) if (entityMetaData!=null) {

// The order has just one key orderNumber
2) String ORDERNUMBER=(String) getKeyAttribute("orderNumber", (Tuple) key);
// Get the value of date
3) java.util.Date unFormattedDate = (java.util.Date) getValueAttribute("date",(Tuple)value);
// The values are 2 associations. Lets process customer because
// the our table contains customer.id as primary key
4) Object[] keys= getForeignKeyForValueAssociation("customer","id",(Tuple) value);

//Order to Customer is M to 1. There can only be 1 key
5) String CUSTOMER_ID=(String)keys[0];
// parse variable unFormattedDate and format it for the database as formattedDate
6) String formattedDate = "2007-05-08-14.01.59.780272"; // formatted for DB2
// Finally, the following SQL statement to insert the record
7) //INSERT INTO ORDER (ORDERNUMBER, DATE, CUSTOMER_ID) VALUES(ORDERNUMBER,formattedDate, CUSTOMER_ID)

}
break;

case LogElement.CODE_UPDATE:
break;

case LogElement.CODE_DELETE:
break;

}
}

}
// returns the value to attribute as stored in the key Tuple
private Object getKeyAttribute(String attr, Tuple key) {

//get key metadata
TupleMetadata keyMD = entityMetaData.getKeyMetadata();
//get position of the attribute
int keyAt = keyMD.getAttributePosition(attr);
if (keyAt > -1) {

return key.getAttribute(keyAt);
} else { // attribute undefined

throw new IllegalArgumentException("Invalid position index for "+attr);
}

}
// returns the value to attribute as stored in the value Tuple

private Object getValueAttribute(String attr, Tuple value) {
//similar to above, except we work with value metadata instead
TupleMetadata valueMD = entityMetaData.getValueMetadata();

int keyAt = valueMD.getAttributePosition(attr);
if (keyAt > -1) {

return value.getAttribute(keyAt);
} else {

throw new IllegalArgumentException("Invalid position index for "+attr);
}

}
// returns an array of keys that refer to association.

private Object[] getForeignKeyForValueAssociation(String attr, String fk_attr, Tuple value) {
TupleMetadata valueMD = entityMetaData.getValueMetadata();
Object[] ro;

int customerAssociation = valueMD.getAssociationPosition(attr);
TupleAssociation tupleAssociation = valueMD.getAssociation(customerAssociation);

EntityMetadata targetEntityMetaData = tupleAssociation.getTargetEntityMetadata();

Tuple[] customerKeyTuple = ((Tuple) value).getAssociations(customerAssociation);

int numberOfKeys = customerKeyTuple.length;
ro = new Object[numberOfKeys];

TupleMetadata keyMD = targetEntityMetaData.getKeyMetadata();
int keyAt = keyMD.getAttributePosition(fk_attr);
if (keyAt < 0) {

throw new IllegalArgumentException("Invalid position index for " + attr);
}
for (int i = 0; i < numberOfKeys; ++i) {

ro[i] = customerKeyTuple[i].getAttribute(keyAt);
}

return ro;

}

1. Ensure that entityMetaData is not null, which implies that the key and value
cache entries are of type Tuple. From the entityMetaData, Key TupleMetaData
is retrieved, which really reflects only the key part of Order metadata.

2. Process the KeyTuple and get the value of Key Attribute orderNumber

344 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

3. Process the ValueTuple and get the value of attribute date
4. Process the ValueTuple and get the value of Keys from association customer
5. Extract CUSTOMER_ID. Based on relationship, an Order can only have one

customer, we will only have one key. Hence the size of keys is 1. For simplicity,
we skipped parsing of date to correct format.

6. Because this is an insert operation, the SQL statement is passed onto the data
source connection to complete the insert operation.

Transaction demarcation and access to database is covered in “Writing a loader” on
page 321.

get method

If the key is not found in the cache, call the get method in the Loader plug-in to
find the key.

The key is a Tuple. The first step is to convert the Tuple to primitive values that
can be passed onto the SELECT SQL statement. After all the attributes are retrieved
from the database, you must convert into Tuples. The following code demonstrates
the Order class.
public List get(TxID txid, List keyList, boolean forUpdate) throws LoaderException {

System.out.println("OrderLoader: Get called");
ArrayList returnList = new ArrayList();

1) if (entityMetaData != null) {
int index=0;
for (Iterator iter = keyList.iterator(); iter.hasNext();) {

2) Tuple orderKeyTuple=(Tuple) iter.next();

// The order has just one key orderNumber
3) String ORDERNUMBERKEY = (String) getKeyAttribute("orderNumber",orderKeyTuple);

//We need to run a query to get values of
4) // SELECT CUSTOMER_ID, date FROM ORDER WHERE ORDERNUMBER=’ORDERNUMBERKEY’

5) //1) Foreign key: CUSTOMER_ID
6) //2) date

// Assuming those two are returned as
7) String CUSTOMER_ID = "C001"; // Assuming Retrieved and initialized
8) java.util.Date retrievedDate = new java.util.Date();

// Assuming this date reflects the one in database

// We now need to convert this data into a tuple before returning

//create a value tuple
9) TupleMetadata valueMD = entityMetaData.getValueMetadata();

Tuple valueTuple=valueMD.createTuple();

//add retrievedDate object to Tuple
int datePosition = valueMD.getAttributePosition("date");

10) valueTuple.setAttribute(datePosition, retrievedDate);

//Next need to add the Association
11) int customerPosition=valueMD.getAssociationPosition("customer");

TupleAssociation customerTupleAssociation =
valueMD.getAssociation(customerPosition);

EntityMetadata customerEMD = customerTupleAssociation.getTargetEntityMetadata();
TupleMetadata customerTupleMDForKEY=customerEMD.getKeyMetadata();

12) int customerKeyAt=customerTupleMDForKEY.getAttributePosition("id");

Tuple customerKeyTuple=customerTupleMDForKEY.createTuple();
customerKeyTuple.setAttribute(customerKeyAt, CUSTOMER_ID);

13) valueTuple.addAssociationKeys(customerPosition, new Tuple[] {customerKeyTuple});

14) int linesPosition = valueMD.getAssociationPosition("lines");
TupleAssociation linesTupleAssociation = valueMD.getAssociation(linesPosition);
EntityMetadata orderLineEMD = linesTupleAssociation.getTargetEntityMetadata();
TupleMetadata orderLineTupleMDForKEY = orderLineEMD.getKeyMetadata();
int lineNumberAt = orderLineTupleMDForKEY.getAttributePosition("lineNumber");
int orderAt = orderLineTupleMDForKEY.getAssociationPosition("order");

if (lineNumberAt < 0 || orderAt < 0) {
throw new IllegalArgumentException(

"Invalid position index for lineNumber or order "+
lineNumberAt + " " + orderAt);

Chapter 5. Developing applications 345

}
15) // SELECT LINENUMBER FROM ORDERLINE WHERE ORDERNUMBER=’ORDERNUMBERKEY’

// Assuming two rows of line number are returned with values 1 and 2

Tuple orderLineKeyTuple1 = orderLineTupleMDForKEY.createTuple();
orderLineKeyTuple1.setAttribute(lineNumberAt, new Integer(1));// set Key
orderLineKeyTuple1.addAssociationKey(orderAt, orderKeyTuple);

Tuple orderLineKeyTuple2 = orderLineTupleMDForKEY.createTuple();
orderLineKeyTuple2.setAttribute(lineNumberAt, new Integer(2));// Init Key
orderLineKeyTuple2.addAssociationKey(orderAt, orderKeyTuple);

16) valueTuple.addAssociationKeys(linesPosition, new Tuple[]
{orderLineKeyTuple1, orderLineKeyTuple2 });

returnList.add(index, valueTuple);

index++;

}
}else {
// does not support tuples
}
return returnList;
}

1. The get method is called when the ObjectGrid cache could not find the key
and requests the loader to fetch. Test for entityMetaData value and proceed if
not null.

2. The keyList contains Tuples.
3. Retrieve value of attribute orderNumber.
4. Run query to retrieve date (value) and customer ID (foreign key).
5. CUSTOMER_ID is a foreign key that must be set in the association tuple.
6. The date is a value and should already be set.
7. Since this example does not perform JDBC calls, CUSTOMER_ID is assumed.
8. Since this example does not perform JDBC calls, date is assumed.
9. Create value Tuple.

10. Set the value of date into the Tuple, based on its position.
11. Order has two associations. Start with the attribute customer which refers to

the customer entity. You must have the value of ID to set in the Tuple.
12. Find the position of ID on the customer entity.
13. Set the values of the association keys only.
14. Also, lines is an association that must be set up as a group of association keys,

in the same way as you did for customer association.
15. Since you must set up keys for the lineNumber associated with this order, run

the SQL to retrieve lineNumber values.
16. Set up the association keys in the valueTuple. This completes the creation of

the Tuple that is returned to the BackingMap.

This topic offers the steps create tuples, and a description of the Order entity only.
Complete similar steps for the other entities, and the entire process that is tied
together with the TransactionCallback plug-in. See “Plug-ins for managing
transaction life cycle events” on page 351 for details.

Writing a loader with a replica preload controller
A Loader with a replica preload controller is a Loader that implements the
ReplicaPreloadController interface in addition to the Loader interface.

The ReplicaPreloadController interface is designed to provide a way for a replica
that becomes the primary shard to know whether the previous primary shard has
completed the preload process. If the preload is partially completed, the
information to pick up where the previous primary left is provided. With the

346 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

ReplicaPreloadController interface implementation, a replica that becomes the
primary continues the preload process where the previous primary left and
continues to finish the overall preload.

In a distributed WebSphere eXtreme Scale environment, a map can have replicas
and might preload large volume of data during initialization. The preload is a
Loader activity and only occurs in the primary map during initialization. The
preload might take a long time to complete if a large volume of data is preloaded.
If the primary map has completed large portion of preload data, but is stopped for
unknown reason during initialization, a replica becomes the primary. In this
situation, the preloaded data that was completed by the previous primary is lost
because the new primary normally performs an unconditional preload. With an
unconditional preload, the new primary starts the preload process from the
beginning and the previous preloaded data is ignored. If you want the new
primary to pick up where the previous primary left during preload process,
provide a Loader that implements the ReplicaPreloadController interface. For more
information see the API documentation.

For information about Loaders, see “Loaders” on page 97the information about
loaders in the Product Overview. If you are interested in writing a regular Loader
plug-in, see “Writing a loader” on page 321.

The ReplicaPreloadController interface has the following definition:
public interface ReplicaPreloadController
{

public static final class Status
{

static public final Status PRELOADED_ALREADY =
new Status(K_PRELOADED_ALREADY);
static public final Status FULL_PRELOAD_NEEDED =
new Status(K_FULL_PRELOAD_NEEDED);
static public final Status PARTIAL_PRELOAD_NEEDED =
new Status(K_PARTIAL_PRELOAD_NEEDED);

}

Status checkPreloadStatus(Session session,
BackingMap bmap);

}

The following sections discuss some of the methods of the Loader and
ReplicaPreloadController interface.

checkPreloadStatus method

When a Loader implements ReplicaPreloadController interface, the
checkPreloadStatus method is called before the preloadMap method during map
initialization. The return status of this method determines if the preloadMap
method is called. If this method returns Status#PRELOADED_ALREADY, the preload
method is not called. Otherwise, the preload method runs. Because of this
behavior, this method should serve as the Loader initialization method. You must
initialize the Loader properties in this method. This method must return the correct
status, or the preload might not work as expected.
public Status checkPreloadStatus(Session session,

BackingMap backingMap) {
// When a loader implements ReplicaPreloadController interface,

// this method will be called before preloadMap method during
// map initialization. Whether the preloadMap method will be
// called depends on teh returned status of this method. So, this
// method also serve as Loader’s initialization method. This method
// has to return the right staus, otherwise the preload may not
// work as expected.

// Note: must initialize this loader instance here.

Chapter 5. Developing applications 347

ivOptimisticCallback = backingMap.getOptimisticCallback();
ivBackingMapName = backingMap.getName();
ivPartitionId = backingMap.getPartitionId();
ivPartitionManager = backingMap.getPartitionManager();
ivTransformer = backingMap.getObjectTransformer();
preloadStatusKey = ivBackingMapName + "_" + ivPartitionId;

try {
// get the preloadStatusMap to retrieve preload status that

// could be set by other JVMs.
ObjectMap preloadStatusMap = session.getMap(ivPreloadStatusMapName);

// retrieve last recorded preload data chunk index.
Integer lastPreloadedDataChunk = (Integer) preloadStatusMap

.get(preloadStatusKey);

if (lastPreloadedDataChunk == null) {
preloadStatus = Status.FULL_PRELOAD_NEEDED;

} else {
preloadedLastDataChunkIndex = lastPreloadedDataChunk.intValue();
if (preloadedLastDataChunkIndex == preloadCompleteMark) {

preloadStatus = Status.PRELOADED_ALREADY;
} else {

preloadStatus = Status.PARTIAL_PRELOAD_NEEDED;
}

}

System.out.println("TupleHeapCacheWithReplicaPreloadControllerLoader.
checkPreloadStatus()

-> map = " + ivBackingMapName + ", preloadStatusKey = " + preloadStatusKey
+ ", retrieved lastPreloadedDataChunk =" + lastPreloadedDataChunk + ",

determined preloadStatus = "
+ getStatusString(preloadStatus));

} catch (Throwable t) {
t.printStackTrace();

}

return preloadStatus;
}

preloadMap method

Running the preloadMap method depends on the returned result from
checkPreloadStatus method. If the preloadMap method is called, it typically must
retrieve preload status information from designated preload status map and
determine how to proceed. Ideally, the preloadMap method should know if the
preload is partially complete and exactly where to start. During the data preload,
the preloadMap method should update the preload status on the designated
preload status map. The preload status that is stored in the preload status map is
retrieved by the checkPreloadStatus method when it needs to check the preload
status.
public void preloadMap(Session session, BackingMap backingMap)

throws LoaderException {
EntityMetadata emd = backingMap.getEntityMetadata();
if (emd != null && tupleHeapPreloadData != null) {

// The getPreLoadData method is similar to fetching data
// from database. These data will be push into cache as
// preload process.

ivPreloadData = tupleHeapPreloadData.getPreLoadData(emd);

ivOptimisticCallback = backingMap.getOptimisticCallback();
ivBackingMapName = backingMap.getName();
ivPartitionId = backingMap.getPartitionId();
ivPartitionManager = backingMap.getPartitionManager();
ivTransformer = backingMap.getObjectTransformer();
Map preloadMap;

if (ivPreloadData != null) {
try {

ObjectMap map = session.getMap(ivBackingMapName);

// get the preloadStatusMap to record preload status.
ObjectMap preloadStatusMap = session.

348 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

getMap(ivPreloadStatusMapName);

// Note: when this preloadMap method is invoked, the
// checkPreloadStatus has been called, Both preloadStatus
// and preloadedLastDataChunkIndex have been set. And the
// preloadStatus must be either PARTIAL_PRELOAD_NEEDED
// or FULL_PRELOAD_NEEDED that will require a preload again.

// If large amount of data will be preloaded, the data usually
// is divided into few chunks and the preload process will
// process each chunk within its own tran. This sample only
// preload few entries and assuming each entry represent a chunk.

// so that the preload process an entry in a tran to simulate
// chunk preloading.

Set entrySet = ivPreloadData.entrySet();
preloadMap = new HashMap();
ivMap = preloadMap;

// The dataChunkIndex represent the data chunk that is in
// processing

int dataChunkIndex = -1;
boolean shouldRecordPreloadStatus = false;
int numberOfDataChunk = entrySet.size();
System.out.println(" numberOfDataChunk to be preloaded = "

+ numberOfDataChunk);

Iterator it = entrySet.iterator();
int whileCounter = 0;
while (it.hasNext()) {

whileCounter++;
System.out.println("preloadStatusKey = " + preloadStatusKey

+ " ,
whileCounter = " + whileCounter);

dataChunkIndex++;

// if the current dataChunkIndex <= preloadedLastDataChunkIndex
// no need to process, becasue it has been preloaded by

// other JVM before. only need to process dataChunkIndex
// > preloadedLastDataChunkIndex

if (dataChunkIndex <= preloadedLastDataChunkIndex) {
System.out.println("ignore current dataChunkIndex =

" + dataChunkIndex + " that has been previously
preloaded.");

continue;
}

// Note: This sample simulate data chunk as an entry.
// each key represent a data chunk for simplicity.
// If the primary server or shard stopped for unknown

// reason, the preload status that indicates the progress
// of preload should be available in preloadStatusMap. A
// replica that become a primary can get the preload status
// and determine how to preload again.

// Note: recording preload status should be in the same
// tran as putting data into cache; so that if tran
// rollback or error, the recorded preload status is the
// actual status.

Map.Entry entry = (Entry) it.next();
Object key = entry.getKey();
Object value = entry.getValue();
boolean tranActive = false;

System.out.println("processing data chunk. map = " +
this.ivBackingMapName + ", current dataChunkIndex = " +
dataChunkIndex + ", key = " + key);

try {
shouldRecordPreloadStatus = false; // re-set to false
session.beginNoWriteThrough();
tranActive = true;

if (ivPartitionManager.getNumOfPartitions() == 1) {
// if just only 1 partition, no need to deal with

// partition.
// just push data into cache
map.put(key, value);
preloadMap.put(key, value);

Chapter 5. Developing applications 349

shouldRecordPreloadStatus = true;
} else if (ivPartitionManager.getPartition(key) ==

ivPartitionId) {
// if map is partitioned, need to consider the

// partition key only preload data that belongs
// to this partition.

map.put(key, value);
preloadMap.put(key, value);
shouldRecordPreloadStatus = true;

} else {
// ignore this entry, because it does not belong to

// this partition.
}

if (shouldRecordPreloadStatus) {
System.out.println("record preload status. map = " +

this.ivBackingMapName + ", preloadStatusKey = " +
preloadStatusKey + ", current dataChunkIndex ="
+ dataChunkIndex);

if (dataChunkIndex == numberOfDataChunk) {
System.out.println("record preload status. map = " +

this.ivBackingMapName + ", preloadStatusKey = " +
preloadStatusKey + ", mark complete =" +
preloadCompleteMark);

// means we are at the lastest data chunk, if commit
// successfully, record preload complete.
// at this point, the preload is considered to be done

// use -99 as special mark for preload complete status.

preloadStatusMap.get(preloadStatusKey);

// a put follow a get will become update if the get
// return an object, otherwise, it will be insert.

preloadStatusMap.put(preloadStatusKey, new
Integer(preloadCompleteMark));

} else {
// record preloaded current dataChunkIndex into

// preloadStatusMap a put follow a get will become
// update if teh get return an object, otherwise, it
// will be insert.

preloadStatusMap.get(preloadStatusKey);
preloadStatusMap.put(preloadStatusKey, new

Integer(dataChunkIndex));
}

}

session.commit();
tranActive = false;

// to simulate preloading large amount of data
// put this thread into sleep for 30 secs.
// The real app should NOT put this thread to sleep
Thread.sleep(10000);

} catch (Throwable e) {
e.printStackTrace();
throw new LoaderException("preload failed with

exception: " + e, e);
} finally {

if (tranActive && session != null) {
try {

session.rollback();
} catch (Throwable e1) {

// preload ignoring exception from rollback
}

}
}

}

// at this point, the preload is considered to be done for sure
// use -99 as special mark for preload complete status.
// this is a insurance to make sure the complete mark is set.
// besides, when partitioning, each partition does not know when

// is its last data chunk. so the following block serves as the
// overall preload status complete reporting.

System.out.println("Overall preload status complete -> record
preload status. map = " + this.ivBackingMapName + ",
preloadStatusKey = " + preloadStatusKey + ", mark complete =" +
preloadCompleteMark);

350 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

session.begin();
preloadStatusMap.get(preloadStatusKey);
// a put follow a get will become update if teh get return an object,
// otherwise, it will be insert.
preloadStatusMap.put(preloadStatusKey, new Integer(preloadCompleteMark));
session.commit();

ivMap = preloadMap;
} catch (Throwable e) {

e.printStackTrace();
throw new LoaderException("preload failed with exception: " + e, e);

}
}

}
}

Preload status map

You must use a preload status map to support the ReplicaPreloadController
interface implementation. The preloadMap method should always check the
preload status stored in the preload status map first and update the preload status
in the preload status map whenever it pushes data into the cache. The
checkPreloadStatus method can retrieve the preload status from preload status
map, determine the preload status, and return the status to its caller. The preload
status map should be in the same mapSet as other maps that have replica preload
controller Loaders.

Plug-ins for managing transaction life cycle events
Use the TransactionCallback plug-in to customize versioning and comparison
operations of cache objects when you are using the optimistic locking strategy.

You can provide a pluggable optimistic callback object that implements the
com.ibm.websphere.objectgrid.plugins.OptimisticCallback interface. For entity
maps, a high performance OptimisticCallback plug-in is automatically configured.

Purpose

Use the OptimisticCallback interface to provide optimistic comparison operations
for the values of a map. An OptimisticCallback implementation is required when
you use the optimistic locking strategy. WebSphere eXtreme Scale provides a
default OptimisticCallback implementation. However, usually the application must
plug in its own implementation of the OptimisticCallback interface. See “Locking
strategies” on page 221 the information about locking strategies in the Product
Overview for more information.

Default implementation

The eXtreme Scale framework provides a default implementation of the
OptimisticCallback interface that is used if the application does not plug in an
application-provided OptimisticCallback object, as demonstrated in the previous
section. The default implementation always returns the special value of
NULL_OPTIMISTIC_VERSION as the version object for the value and never
updates the version object. This action makes optimistic comparison a no operation
function. In most cases, you do not want the no operation function to occur when
you are using the optimistic locking strategy. Your applications must implement
the OptimisticCallback interface and plug in their own OptimisticCallback
implementations so that the default implementation is not used. However, at least
one scenario exists where the default provided OptimisticCallback implementation
is useful. Consider the following situation:
v A loader is plugged for the backing map.

Chapter 5. Developing applications 351

v The loader knows how to perform the optimistic comparison without assistance
from an OptimisticCallback plug-in.

How can the loader know how to deal with optimistic versioning without
assistance from an OptimisticCallback object? The loader has knowledge of the
value class object and knows which field of the value object is used as an
optimistic versioning value. For example, suppose the following interface is used
for the value object for the employees map:
public interface Employee
{

// Sequential sequence number used for optimistic versioning.
public long getSequenceNumber();
public void setSequenceNumber(long newSequenceNumber);
// Other get/set methods for other fields of Employee object.

}

In this case, the loader knows that it can use the getSequenceNumber method to
get the current version information for an Employee value object. The loader
increments the returned value to generate a new version number before updating
the persistent storage with the new Employee value. For a Java database
connectivity (JDBC) loader, the current sequence number in the where clause of an
overqualified SQL update statement is used, and it uses the new generated
sequence number to set the sequence number column to the new sequence number
value.

Another possibility is that the loader makes use of some backend-provided
function that automatically updates a hidden column that can be used for
optimistic versioning. In some cases, a stored procedure or trigger can possibly be
used to help maintain a column that holds versioning information. If the loader is
using one of these techniques for maintaining optimistic versioning information,
then the application does not need to provide an OptimisticCallback
implementation. You can use the default OptimisticCallback implementation
because the loader is able to handle optimistic versioning without any assistance
from an OptimisticCallback object.

Default implementation for entities

Entities are stored in the ObjectGrid using tuple objects. The default
OptimisticCallback implementation behaves similarly to the behavior for non-entity
maps. However, the version field in the entity is identified using the @Version
annotation or the version attribute in the entity descriptor XML file.

The version attribute can be of the following types: int, Integer, short, Short, long,
Long or java.sql.Timestamp. An entity should have only one version attribute
defined. The version attribute should be set only during construction. After the
entity is persisted, the value of the version attribute should not be modified.

If a version attribute is not configured and the optimistic locking strategy is used,
then the entire tuple is implicitly versioned using the entire state of the tuple.

In the following example, the Employee entity has a long version attribute named
SequenceNumber:
@Entity
public class Employee
{
private long sequence;

// Sequential sequence number used for optimistic versioning.
@Version

352 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

public long getSequenceNumber() {
return sequence;

}
public void setSequenceNumber(long newSequenceNumber) {

this.sequence = newSequenceNumber;
}
// Other get/set methods for other fields of Employee object.

}

Writing an OptimisticCallback implementation

An OptimisticCallback implementation must implement the OptimisticCallback
interface and follow the common ObjectGrid plug-in conventions

The following list provides a description or consideration for each of the methods
in the OptimisticCallback interface:

NULL_OPTIMISTIC_VERSION

This special value is returned by getVersionedObjectForValue method if the default
OptimisticCallback implementation is used instead of an application-provided
OptimisticCallback implementation.

getVersionedObjectForValue method

The getVersionedObjectForValue method might return a copy of the value or it
might return an attribute of the value that can be used for versioning purposes.
This method is called whenever an object is associated with a transaction. When no
Loader is set into a backing map, the backing map uses this value at commit time
to perform an optimistic version comparison. The optimistic version comparison is
used by the backing map to ensure that the version has not changed since this
transaction first accessed the map entry that was modified by this transaction. If
another transaction had already modified the version for this map entry, the
version comparison fails and the backing map displays an
OptimisticCollisionException exception to force rollback of the transaction. If a
Loader is plugged in, the backing map does not use the optimistic versioning
information. Instead, the Loader is responsible for performing the optimistic
versioning comparison and updating the versioning information when necessary.
The Loader typically gets the initial versioning object from the LogElement passed
to the batchUpdate method on the Loader, which is called when a flush operation
occurs or a transaction is committed.

The following code shows the implementation used by the
EmployeeOptimisticCallbackImpl object:
public Object getVersionedObjectForValue(Object value)
{

if (value == null)
{

return null;
}
else
{

Employee emp = (Employee) value;
return new Long(emp.getSequenceNumber());

}
}

As demonstrated in the previous example, the sequenceNumber attribute is
returned in a java.lang.Long object as expected by the Loader, which implies that

Chapter 5. Developing applications 353

the same person that wrote the Loader either wrote the
EmployeeOptimisticCallbackImpl implementation or worked closely with the
person that implemented the EmployeeOptimisticCallbackImpl implementation.
For example, these people agreed on the value that is returned by the
getVersionedObjectForValue method. As previously described, the default
OptimisticCallback implementation returns the special value
NULL_OPTIMISTIC_VERSION as the version object.

updateVersionedObjectForValue method

The updateVersionedObjectForValue method is called when a transaction has
updated a value and a new versioned object is needed. If the
getVersionedObjectForValue method returns an attribute of the value, this method
typically updates the attribute value with a new version object. If the
getVersionedObjectForValue method returns a copy of the value, this method
typically would not update. The default OptimisticCallback does not update
because the default implementation of the getVersionedObjectForValue method
always returns the special value NULL_OPTIMISTIC_VERSION as the version
object. The following example shows the implementation used by the
EmployeeOptimisticCallbackImpl object that is used in the OptimisticCallback
section:
public void updateVersionedObjectForValue(Object value)
{

if (value != null)
{

Employee emp = (Employee) value;
long next = emp.getSequenceNumber() + 1;
emp.updateSequenceNumber(next);

}
}

As demonstrated in the previous example, the sequenceNumber attribute is
increments by one so that the next time the getVersionedObjectForValue method is
called, the java.lang.Long value that is returned has a long value that is the
original sequence number value. Plus one, for example, is the next version value
for this employee instance. Again, this example implies that the same person that
wrote the Loader either wrote EmployeeOptimisticCallbackImpl implementation or
worked closely with the person that implemented the
EmployeeOptimisticCallbackImpl implementation.

serializeVersionedValue method

This method writes the versioned value to the specified stream. Depending on the
implementation, the versioned value can be used to identify optimistic update
collisions. In some implementations, the versioned value is a copy of the original
value. Other implementations might have a sequence number or some other object
to indicate the version of the value. Because the actual implementation is
unknown, this method is provided to perform the proper serialization. The default
implementation calls the writeObject method.

inflateVersionedValue method

This method takes the serialized version of the versioned value and returns the
actual versioned value object. Depending on the implementation, the versioned
value can be used to identify optimistic update collisions. In some
implementations, the versioned value is a copy of the original value. Other
implementations might have a sequence number or some other object to indicate

354 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

the version of the value. Because the actual implementation is unknown, this
method is provided to perform the proper deserialization. The default
implementation calls the readObject method.

Using an application-provided OptimisticCallback implementation

You have two approaches to add an application-provided OptimisticCallback into
the BackingMap configuration: programmatic configuration and XML
configuration.

Programmatically plug in an OptimisticCallback implementation

The following example demonstrates how an application can programmatically
plug in an OptimisticCallback object for the employee backing map in the grid1
ObjectGrid instance:
import com.ibm.websphere.objectgrid.ObjectGridManagerFactory;
import com.ibm.websphere.objectgrid.ObjectGridManager;
import com.ibm.websphere.objectgrid.ObjectGrid;
import com.ibm.websphere.objectgrid.BackingMap;
ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid og = ogManager.createObjectGrid("grid1");
BackingMap bm = dg.defineMap("employees");
EmployeeOptimisticCallbackImpl cb = new EmployeeOptimisticCallbackImpl();
bm.setOptimisticCallback(cb);

XML configuration approach to plug in an OptimisticCallback
implementation

The EmployeeOptimisticCallbackImpl object in the preceding example must
implement the OptimisticCallback interface. The application can also use an XML
file to plug in its OptimisticCallback object as shown in the following example:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="grid1">
<backingMap name="employees" pluginCollectionRef="employees" lockStrategy="OPTIMISTIC" />

</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="employees">

<bean id="OptimisticCallback" className="com.xyz.EmployeeOptimisticCallbackImpl" />
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

Transaction processing overview
WebSphere eXtreme Scale uses transactions as its mechanism for interaction with
data.

To interact with data, the thread in your application needs its own session. When
the application wants to use the ObjectGrid on a thread, call one of the
ObjectGrid.getSession methods to obtain a session. With the session, the
application can work with data that is stored in the ObjectGrid maps.

When an application uses a Session object, the session must be in the context of a
transaction. A transaction begins and commits or begins and rolls back using the
begin, commit, and rollback methods on the Session object. Applications can also
work in auto-commit mode, in which the Session automatically begins and
commits a transaction whenever an operation is performed on the map.
Auto-commit mode cannot group multiple operations into a single transaction, so

Chapter 5. Developing applications 355

it is the slower option if you are creating a batch of multiple operations into a
single transaction. However, for transactions that contain only one operation,
auto-commit is the faster option.

When your application is finished with the Session, use the optional Session.close()
method to close the session. Closing the Session releases it from the heap and
allows subsequent calls to the getSession() method to be reused, improving
performance.

Introduction to plug-in slots
A plug-in slot is a transactional storage space that is reserved for plug-ins that
share transactional context. These slots provide a way for eXtreme Scale plug-ins to
communicate with each other, share transactional context, and ensure that
transactional resources are used correctly and consistently within a transaction.

A plug-in can store transactional context, such as database connection, Java
Message Service (JMS) connection, and so on, in a plug-in slot. The stored
transactional context can be retrieved by any plug-in that knows the plug-in slot
number, which serves as the key to retrieve transactional context.

Using plug-in slots

Plug-in slots are part of the TxID Interface. See the API documentation for more
information about the interface.The slots are entries on an ArrayList array. Plug-ins
can reserve an entry in the ArrayList array by calling the ObjectGrid.reserveSlot
method and indicating that it wants a slot on all TxID objects. After the slots are
reserved, plug-ins can put transactional context into slots of each TxID object and
retrieve the context later. The put and get operations are coordinated by slot
numbers that are returned by the ObjectGrid.reserveSlot method.

A plug-in typically has a life cycle. Using plug-in slots has to fit into the life cycle
of plug-in. Typically, the plug-in must reserve plug-in slots during the initialization
stage and obtain slot numbers for each slot. During normal run time, the plug-in
puts transactional context into the reserved slot in the TxID object at the
appropriate point. This appropriate point is typically at the beginning of the
transaction. The plug-in or other plug-ins can then get the stored transactional
context by the slot number from the TxID within the transaction.

The plug-in typically performs a clean up by removing transactional context and
the slots. The following snippet of code illustrates how to use plug-in slots in a
TransactionCallback plug-in:
public class DatabaseTransactionCallback implements TransactionCallback {

int connectionSlot;
int autoCommitConnectionSlot;
int psCacheSlot;
Properties ivProperties = new Properties();

public void initialize(ObjectGrid objectGrid) throws TransactionCallbackException {
// In initialization stage, reserve desired plug-in slots by calling the
//reserveSlot method of ObjectGrid and
// passing in the designated slot name, TxID.SLOT_NAME.
// Note: you have to pass in this TxID.SLOT_NAME that is designated
// for application.
try {

// cache the returned slot numbers
connectionSlot = objectGrid.reserveSlot(TxID.SLOT_NAME);
psCacheSlot = objectGrid.reserveSlot(TxID.SLOT_NAME);
autoCommitConnectionSlot = objectGrid.reserveSlot(TxID.SLOT_NAME);

} catch (Exception e) {
}

}

public void begin(TxID tx) throws TransactionCallbackException {
// put transactional contexts into the reserved slots at the
// beginning of the transaction.

356 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

try {
Connection conn = null;
conn = DriverManager.getConnection(ivDriverUrl, ivProperties);
tx.putSlot(connectionSlot, conn);
conn = DriverManager.getConnection(ivDriverUrl, ivProperties);
conn.setAutoCommit(true);
tx.putSlot(autoCommitConnectionSlot, conn);
tx.putSlot(psCacheSlot, new HashMap());

} catch (SQLException e) {
SQLException ex = getLastSQLException(e);
throw new TransactionCallbackException("unable to get connection", ex);

}
}

public void commit(TxID id) throws TransactionCallbackException {
// get the stored transactional contexts and use them
// then, clean up all transactional resources.
try {

Connection conn = (Connection) id.getSlot(connectionSlot);
conn.commit();
cleanUpSlots(id);

} catch (SQLException e) {
SQLException ex = getLastSQLException(e);
throw new TransactionCallbackException("commit failure", ex);

}
}

void cleanUpSlots(TxID tx) throws TransactionCallbackException {
closePreparedStatements((Map) tx.getSlot(psCacheSlot));
closeConnection((Connection) tx.getSlot(connectionSlot));
closeConnection((Connection) tx.getSlot(autoCommitConnectionSlot));

}

/**
* @param map
*/
private void closePreparedStatements(Map psCache) {

try {
Collection statements = psCache.values();
Iterator iter = statements.iterator();
while (iter.hasNext()) {

PreparedStatement stmt = (PreparedStatement) iter.next();
stmt.close();

}
} catch (Throwable e) {
}

}

/**
* Close connection and swallow any Throwable that occurs.
*
* @param connection
*/
private void closeConnection(Connection connection) {

try {
connection.close();

} catch (Throwable e1) {
}

}

public void rollback(TxID id) throws TransactionCallbackException
// get the stored transactional contexts and use them
// then, clean up all transactional resources.
try {

Connection conn = (Connection) id.getSlot(connectionSlot);
conn.rollback();
cleanUpSlots(id);

} catch (SQLException e) {
}

}

public boolean isExternalTransactionActive(Session session) {
return false;

}

// Getter methods for the slot numbers, other plug-in can obtain the slot numbers
// from these getter methods.

public int getConnectionSlot() {
return connectionSlot;

}
public int getAutoCommitConnectionSlot() {

return autoCommitConnectionSlot;
}
public int getPreparedStatementSlot() {

return psCacheSlot;
}

Chapter 5. Developing applications 357

The following snippet of code illustrates how a Loader can get the stored
transactional context that is put by previous TransactionCallback plug-in example:
public class DatabaseLoader implements Loader
{

DatabaseTransactionCallback tcb;
public void preloadMap(Session session, BackingMap backingMap) throws LoaderException
{

// The preload method is the initialization method of the Loader.
// Obtain interested plug-in from Session or ObjectGrid instance.
tcb =

(DatabaseTransactionCallback)session.getObjectGrid().getTransactionCallback();
}
public List get(TxID txid, List keyList, boolean forUpdate) throws LoaderException
{

// get the stored transactional contexts that is put by tcb’s begin method.
Connection conn = (Connection)txid.getSlot(tcb.getConnectionSlot());
// implement get here
return null;

}
public void batchUpdate(TxID txid, LogSequence sequence) throws LoaderException,
OptimisticCollisionException
{

// get the stored transactional contexts that is put by tcb’s begin method.
Connection conn = (Connection)txid.getSlot(tcb.getConnectionSlot());
// implement batch update here ...

}
}

External transaction managers
Typically, eXtreme Scale transactions begin with the Session.begin method and end
with the Session.commit method. However, when an ObjectGrid is embedded, an
external transaction coordinator can start and end transactions. In this case, you do
not need to call the begin or commit methods.

External transaction coordination

The TransactionCallback plug-in is extended with the
isExternalTransactionActive(Session session) method that associates the eXtreme
Scale session with an external transaction. The method header follows:
public synchronized boolean isExternalTransactionActive(Session session)

For example, eXtreme Scale can be set up to integrate with WebSphere Application
Server and WebSphere Extended Deployment.

Also, eXtreme Scale provides a built in plug-in called the WebSphere “Plug-ins for
managing transaction life cycle events” on page 351, which describes how to build
the plug-in for WebSphere Application Server environments, but you can adapt the
plug-in for other frameworks.

The key to this seamless integration is the exploitation of the
ExtendedJTATransaction API in WebSphere Application Server Version 5.x and
Version 6.x. However, if you are using WebSphere Application Server Version 6.0.2,
you must apply APAR PK07848 to support this method. Use the following sample
code to associate an ObjectGrid session with a WebSphere Application Server
transaction ID:
/**
* This method is required to associate an objectGrid session with a WebSphere
* Application Server transaction ID.
*/
Map/**/ localIdToSession;
public synchronized boolean isExternalTransactionActive(Session session)
{

// remember that this localid means this session is saved for later.
localIdToSession.put(new Integer(jta.getLocalId()), session);
return true;

}

358 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Retrieve an external transaction

Sometimes you might need to retrieve an external transaction service object for the
TransactionCallback plug-in to use. In the WebSphere Application Server server,
look up the ExtendedJTATransaction object from its namespace as shown in the
following example:
public J2EETransactionCallback() {

super();
localIdToSession = new HashMap();
String lookupName="java:comp/websphere/ExtendedJTATransaction";
try
{

InitialContext ic = new InitialContext();
jta = (ExtendedJTATransaction)ic.lookup(lookupName);
jta.registerSynchronizationCallback(this);

}
catch(NotSupportedException e)
{

throw new RuntimeException("Cannot register jta callback", e);
}
catch(NamingException e){

throw new RuntimeException("Cannot get transaction object");
}

}

For other products, you can use a similar approach to retrieve the transaction
service object.

Control commit by external callback

The TransactionCallback plug-in must receive an external signal to commit or roll
back the eXtreme Scale session. To receive this external signal, use the callback
from the external transaction service. Implement the external callback interface and
register it with the external transaction service. For example, with WebSphere
Application Server, implement the SynchronizationCallback interface, as shown in
the following example:
public class J2EETransactionCallback implements
com.ibm.websphere.objectgrid.plugins.TransactionCallback, SynchronizationCallback {

public J2EETransactionCallback() {
super();
String lookupName="java:comp/websphere/ExtendedJTATransaction";
localIdToSession = new HashMap();
try {

InitialContext ic = new InitialContext();
jta = (ExtendedJTATransaction)ic.lookup(lookupName);
jta.registerSynchronizationCallback(this);

} catch(NotSupportedException e) {
throw new RuntimeException("Cannot register jta callback", e);

}
catch(NamingException e) {

throw new RuntimeException("Cannot get transaction object");
}

}

public synchronized void afterCompletion(int localId, byte[] arg1,boolean didCommit) {
Integer lid = new Integer(localId);
// find the Session for the localId
Session session = (Session)localIdToSession.get(lid);
if(session != null) {

try {
// if WebSphere Application Server is committed when
// hardening the transaction to backingMap.
// We already did a flush in beforeCompletion
if(didCommit) {

session.commit();
} else {

// otherwise rollback
session.rollback();

}
} catch(NoActiveTransactionException e) {

// impossible in theory
} catch(TransactionException e) {

Chapter 5. Developing applications 359

// given that we already did a flush, this should not fail
} finally {

// always clear the session from the mapping map.
localIdToSession.remove(lid);

}
}

}

public synchronized void beforeCompletion(int localId, byte[] arg1) {
Session session = (Session)localIdToSession.get(new Integer(localId));
if(session != null) {

try {
session.flush();

} catch(TransactionException e) {
// WebSphere Application Server does not formally define
// a way to signal the
// transaction has failed so do this
throw new RuntimeException("Cache flush failed", e);

}
}

}
}

Use eXtreme Scale APIs with the TransactionCallback plug-in

The TransactionCallback plug-in disables autocommit in eXtreme Scale. The normal
usage pattern for an eXtreme Scale follows:
Session ogSession = ...;
ObjectMap myMap = ogSession.getMap("MyMap");
ogSession.begin();
MyObject v = myMap.get("key");
v.setAttribute("newValue");
myMap.update("key", v);
ogSession.commit();

When this TransactionCallback plug-in is in use, eXtreme Scale assumes that the
application uses the eXtreme Scale when a container-managed transaction is
present. The previous code snippet changes the following code in this
environment:
public void myMethod() {

UserTransaction tx = ...;
tx.begin();
Session ogSession = ...;
ObjectMap myMap = ogSession.getMap("MyMap");
yObject v = myMap.get("key");
v.setAttribute("newValue");
myMap.update("key", v);
tx.commit();

}

The myMethod method is similar to a Web application scenario. The application
uses the normal UserTransaction interface to begin, commit, and roll back
transactions. The eXtreme Scale automatically begins and commits around the
container transaction. If the method is an Enterprise JavaBeans (EJB) method that
uses the TX_REQUIRES attribute, then remove the UserTransaction reference and
the calls to begin and commit transactions and the method works the same way. In
this case, the container is responsible for starting and ending the transaction.

WebSphereTransactionCallback plug-in
When you use the WebSphereTransactionCallback plug-in, enterprise applications
that are running in a WebSphere Application Server environment can manage
ObjectGrid transactions. This plug-in is deprecated. Use the WebSphere eXtreme
Scale resource adapter instead.

The WebSphereTransactionCallback interface has been replaced by the
WebSphere eXtreme Scale resource adapter, which enables Java Transaction API

360 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

(JTA) transaction management. You can install this resource adapter on WebSphere
Application Server or other Java Platform, Enterprise Edition (Java EE) application
servers. The WebSphereTransactionCallback plug-in is not an enlisted JTA API, and
therefore, is not designed to roll back the JTA transaction if the commit fails.

When you are using an ObjectGrid session within a method that is configured to
use container-managed transactions, the enterprise container automatically begins,
commits or rolls back the ObjectGrid transaction. When you are using Java
Transaction API (JTA) UserTransaction objects, the ObjectGrid transaction is
managed by the UserTransaction object automatically.

For a detailed discussion of the implementation of this plug-in, see “External
transaction managers” on page 358.

Note: The ObjectGrid does not support 2-phase, XA transactions. This plug-in does
not enlist the ObjectGrid transaction with the transaction manager. Therefore, if the
ObjectGrid fails to commit, any other resources that are managed by the XA
transaction do not roll back.

Programmatically plug in the WebSphereTransactionCallback object

You can enable the WebSphereTransactionCallback into the ObjectGrid
configuration with programmatic configuration or XML configuration. The
following code snippet uses the application to create the
WebSphereTransactionCallback object and add it to an ObjectGrid:
ObjectGridManager objectGridManager = ObjectGridManagerFactory.getObjectGridManager();
ObjectGrid myGrid = objectGridManager.createObjectGrid("myGrid", false);
WebSphereTransactionCallback wsTxCallback= new WebSphereTransactionCallback ();
myGrid.setTransactionCallback(wsTxCallback);

XML configuration approach to plug in the
WebSphereTransactionCallback object

The following XML configuration creates the WebSphereTransactionCallback object
and adds it to an ObjectGrid. The following text must be in the myGrid.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="myGrid">
<bean id="TransactionCallback" className=

"com.ibm.websphere.objectgrid.plugins.builtins.WebSphereTransactionCallback" />

</objectGrid>
</objectGrids>

</objectGridConfig>

Programming to use the OSGi framework
You can start eXtreme Scale servers and clients in an OSGi container, which allows
you to dynamically add and update eXtreme Scale plug-ins to the runtime
environment.

Building eXtreme Scale dynamic plug-ins
WebSphere eXtreme Scale includes ObjectGrid and BackingMap plug-ins. These
plug-ins are implemented in Java and are configured using the ObjectGrid
descriptor XML file. To create a dynamic plug-in that can be dynamically
upgraded, they need to be aware of ObjectGrid and BackingMap life cycle events
because they might need to complete some actions during an update. Enhancing a

Chapter 5. Developing applications 361

plug-in bundle with life cycle callback methods, event listeners, or both allows the
plug-in to complete those actions at the appropriate times.

Before you begin

This topic assumes that you have built the appropriate plug-in. For more
information about developing eXtreme Scale plug-ins, see the System APIs and
plug-ins topic.

About this task

All eXtreme Scale plug-ins apply to either a BackingMap or ObjectGrid instance.
Many plug-ins also interact with other plug-ins. For example, a Loader and
TransactionCallback plug-in work together to properly interact with a database
transaction and the various database JDBC calls. Some plug-ins might also need to
cache configuration data from other plug-ins to improve performance.

The BackingMapLifecycleListener and ObjectGridLifecycleListener plug-ins provide
life cycle operations for the respective BackingMap and ObjectGrid instances. This
process allows plug-ins to be notified when the parent BackingMap or ObjectGrid
and their respective plug-ins might be changed. BackingMap plug-ins implement
the BackingMapLifecyleListener interface, and ObjectGrid plug-ins implement the
ObjectGridLifecycleListener interface. These plug-ins are automatically invoked
when the life cycle of the parent BackingMap or ObjectGrid changes. For more
information about life cycle plug-ins, see the “Managing plug-in life cycles” on
page 279 topic.

You can expect to enhance bundles using the life cycle methods or event listeners
in the following common tasks:
v Starting and stopping resources, such as threads or messaging subscribers.
v Specifying that a notification occur when peer plug-ins have been updated,

allowing direct access to the plug-in and detecting any changes.

Whenever you access another plug-in directly, access that plug-in through the
OSGi container to ensure that all parts of the system reference the correct plug-in.
If, for example, some component in the application directly references, or caches,
an instance of a plug-in, it will maintain its reference to that version of the plug-in,
even after that plug-in has been dynamically updated. This behavior can cause
application-related problems as well as memory leaks. Therefore, write code that
depends on dynamic plug-ins that obtain its reference using OSGi, getService()
semantics. If the application must cache one or more plug-ins, it listens for life
cycle events using ObjectGridLifecycleListener and BackingMapLifecycleListener
interfaces. The application must also be able to refresh its cache when necessary, in
a thread safe manner.

All eXtreme Scale plug-ins used with OSGi must also implement the respective
BackingMapPlugin or ObjectGridPlugin interfaces. New plug-ins such as the
MapSerializerPlugin interface enforce this practice. These interfaces provide the
eXtreme Scale runtime environment and OSGi a consistent interface for injecting
state into the plug-in and controlling its life cycle.

Use this task to specify that a notification occurs when peer plug-ins are updated,
you might create a listener factory that produces a listener instance.

362 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Procedure
v Update the ObjectGrid plug-in class to implement the ObjectGridPlugin

interface. This interface includes methods that allow eXtreme Scale to initialize,
set the ObjectGrid instance and destroy the plug-in. See the following code
example:
package com.mycompany;
import com.ibm.websphere.objectgrid.plugins.ObjectGridPlugin;
...

public class MyTranCallback implements TransactionCallback, ObjectGridPlugin {

private ObjectGrid og = null;

private enum State {
NEW, INITIALIZED, DESTROYED

}

private State state = State.NEW;

public void setObjectGrid(ObjectGrid grid) {
this.og = grid;

}

public ObjectGrid getObjectGrid() {
return this.og;

}
void initialize() {

// Handle any plug-in initialization here. This is called by
// eXtreme Scale, and not the OSGi bean manager.
state = State.INITIALIZED;

}
boolean isInitialized() {

return state == State.INITIALIZED;
}

public void destroy() {
// Destroy the plug-in and release any resources. This
// can be callsed by the OSGi Bean Manager or by eXtreme Scale.
state = State.DESTROYED;

}

public boolean isDestroyed() {
return state == State.DESTROYED;

}
}

v Update the ObjectGrid plug-in class to implement the
ObjectGridLifecycleListener interface. See the following code example:
package com.mycompany;
import com.ibm.websphere.objectgrid.plugins.ObjectGridLifecycleListener;

import com.ibm.websphere.objectgrid.plugins.ObjectGridLifecycleListener.LifecycleEvent;
...

public class MyTranCallback implements TransactionCallback, ObjectGridPlugin, ObjectGridLifecycleListener{
public void objectGridStateChanged(LifecycleEvent event) {

switch(event.getState()) {
case NEW:
case DESTROYED:
case DESTROYING:
case INITIALIZING:

break;
case INITIALIZED:

// Lookup a Loader or MapSerializerPlugin using
// OSGi or directly from the ObjectGrid instance.
lookupOtherPlugins()
break;

case STARTING:
case PRELOAD:

break;
case ONLINE:

if (event.isWritable()) {
startupProcessingForPrimary();

} else {
startupProcessingForReplica();

}
break;

case QUIESCE:
if (event.isWritable()) {

quiesceProcessingForPrimary();
} else {

quiesceProcessingForReplica();
}
break;

case OFFLINE:
shutdownShardComponents();
break;

Chapter 5. Developing applications 363

}
}
...

}

v Update a BackingMap plug-in. Update the BackingMap plug-in class to
implement the BackingMap plu-in interface. This interface includes methods that
allow eXtreme Scale to initialize, set the BackingMap instance, and destroy the
plug-in. See the following code example:
package com.mycompany;
import com.ibm.websphere.objectgrid.plugins.BackingMapPlugin;
...

public class MyLoader implements Loader, BackingMapPlugin {

private BackingMap bmap = null;

private enum State {
NEW, INITIALIZED, DESTROYED

}

private State state = State.NEW;

public void setBackingMap(BackingMap map) {
this.bmap = map;

}

public BackingMap getBackingMap() {
return this.bmap;

}
void initialize() {

// Handle any plug-in initialization here. This is called by
// eXtreme Scale, and not the OSGi bean manager.
state = State.INITIALIZED;

}
boolean isInitialized() {

return state == State.INITIALIZED;
}

public void destroy() {
// Destroy the plug-in and release any resources. This
// can be callsed by the OSGi Bean Manager or by eXtreme Scale.
state = State.DESTROYED;

}

public boolean isDestroyed() {
return state == State.DESTROYED;

}
}

v Update the BackingMap plug-in class to implement the
BackingMapLifecycleListener interface. See the following code example:
package com.mycompany;

import com.ibm.websphere.objectgrid.plugins.BackingMapLifecycleListener;
import com.ibm.websphere.objectgrid.plugins.BackingMapLifecycleListener.LifecycleEvent;
...

public class MyLoader implements Loader, ObjectGridPlugin, ObjectGridLifecycleListener{
...
public void backingMapStateChanged(LifecycleEvent event) {

switch(event.getState()) {
case NEW:
case DESTROYED:
case DESTROYING:
case INITIALIZING:

break;
case INITIALIZED:

// Lookup a MapSerializerPlugin using
// OSGi or directly from the ObjectGrid instance.
lookupOtherPlugins()
break;

case STARTING:
case PRELOAD:

break;
case ONLINE:

if (event.isWritable()) {
startupProcessingForPrimary();

} else {
startupProcessingForReplica();

}
break;

case QUIESCE:
if (event.isWritable()) {

quiesceProcessingForPrimary();
} else {

quiesceProcessingForReplica();
}
break;

case OFFLINE:

364 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

shutdownShardComponents();
break;

}
}
...

}

Results

By implementing the ObjectGridPlugin or BackingMapPlugin interface, eXtreme
Scale can control the life cycle of your plug-in at the right times.

By implementing the ObjectGridLifecycleListener or BackingMapLifecycleListener
interface, the plug-in is automatically registered as a listener of the associated
ObjectGrid or BackingMap life cycle events. The INITIALIZING event is used to
signal that all of the ObjectGrid and BackingMap plug-ins have been initialized
and are available for lookup and use. The ONLINE event is used to signal that the
ObjectGrid is online and ready to start processing events.

Programming for JPA integration
The Java Persistence API (JPA) is a specification that allows mapping Java objects
to relational databases. JPA contains a full object-relational mapping (ORM)
specification using Java language metadata annotations, XML descriptors, or both
to define the mapping between Java objects and a relational database. A number of
open-source and commercial implementations are available.

To use JPA, you must have a supported JPA provider, such as OpenJPA or
Hibernate, JAR files, and a META-INF/persistence.xml file in your class path.

JPA Loaders
The Java Persistence API (JPA) is a specification that allows mapping Java objects
to relational databases. JPA contains a full object-relational mapping (ORM)
specification using Java language metadata annotations, XML descriptors, or both
to define the mapping between Java objects and a relational database. A number of
open-source and commercial implementations are available.

You can use a Java Persistence API (JPA) loader plug-in implementation with
eXtreme Scale to interact with any database supported by your chosen loader. To
use JPA, you must have a supported JPA provider, such as OpenJPA or Hibernate,
JAR files, and a META-INF/persistence.xml file in your class path.

The JPALoader com.ibm.websphere.objectgrid.jpa.JPALoader and the
JPAEntityLoader com.ibm.websphere.objectgrid.jpa.JPAEntityLoader plug-ins are
two built-in JPA loader plug-ins that are used to synchronize the ObjectGrid maps
with a database. You must have a JPA implementation, such as Hibernate or
OpenJPA, to use this feature. The database can be any back end that is supported
by the chosen JPA provider.

You can use the JPALoader plug-in when you are storing data using the ObjectMap
API. Use the JPAEntityLoader plug-in when you are storing data using the
EntityManager API.

JPA loader architecture

The JPA Loader is used for eXtreme Scale maps that store plain old Java objects
(POJO).

Chapter 5. Developing applications 365

When an ObjectMap.get(Object key) method is called, the eXtreme Scale run time
first checks whether the entry is contained in the ObjectMap layer. If not, the run
time delegates the request to the JPA Loader. Upon request of loading the key, the
JPALoader calls the JPA EntityManager.find(Object key) method to find the data
from the JPA layer. If the data is contained in the JPA entity manager, it is returned;
otherwise, the JPA provider interacts with the database to get the value.

When an update to ObjectMap occurs, for example, using the
ObjectMap.update(Object key, Object value) method, the eXtreme Scale run time
creates a LogElement for this update and sends it to the JPALoader. The JPALoader
calls the JPA EntityManager.merge(Object value) method to update the value to the
database.

For the JPAEntityLoader, the same four layers are involved. However, because the
JPAEntityLoader plug-in is used for maps that store eXtreme Scale entities,
relations among entities could complicate the usage scenario. An eXtreme Scale
entity is distinguished from JPA entity. For more details, see “JPAEntityLoader
plug-in” on page 339.

Methods

Loaders provide three main methods:
1. get: Returns a list of values that correspond to the list of keys that are passed in

by retrieving the data using JPA. The method uses JPA to find the entities in
the database. For the JPALoader plug-in, the returned list contains a list of JPA
entities directly from the find operation. For the JPAEntityLoader plug-in, the
returned list contains eXtreme Scale entity value tuples that are converted from
the JPA entities.

2. batchUpdate: Writes the data from ObjectGrid maps to the database.
Depending on different operation types (insert, update, or delete), the loader

Database

JPA Loader

Server Core Cache
(BackingMap)

Transactional Cache
(ObjectMap)

O
b
je

c
tG

ri
d

Transactional Cache
(ObjectMap)

JPA Provider

Primary Shard

JVM

S
e
rv

e
r

P
ro

c
e
s
s

Figure 29. JPA Loader architecture

366 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

uses the JPA persist, merge, and remove operations to update the data to the
database. For the JPALoader, the objects in the map are directly used as JPA
entities. For the JPAEntityLoader, the entity tuples in the map are converted
into objects which are used as JPA entities.

3. preloadMap: Preloads the map using the ClientLoader.load client loader
method. For partitioned maps, the preloadMap method is only called in one
partition. The partition is specified the preloadPartition property of the
JPALoader or JPAEntityLoader class. If the preloadPartition value is set to less
than zero, or greater than (total_number_of_partitions - 1), preload is disabled.

Both JPALoader and JPAEntityLoader plug-ins work with the JPATxCallback class
to coordinate the eXtreme Scale transactions and JPA transactions. JPATxCallback
must be configured in the ObjectGrid instance to use these two loaders.

Configuration and programming

If you are using JPA loaders in a multi-master environment, see “Loader
considerations in a multi-master topology” on page 109. For more information
about configuring JPA loaders, see the information about JPA loaders in the
Administration Guide. For more information about programming JPA loaders, see
theProgramming Guide.

Developing client-based JPA loaders
You can implement preloading and reloading of data in your application with a
Java Persistence API (JPA) utility. This capability can simplify loading the maps
when the queries to the database cannot be partitioned.

Before you begin
v You must be using a JPA provider with a supported database.
v Before you preload or reload maps, you must set the availability state of the

ObjectGrid to PRELOAD. You can set the availability state with the
setObjectGridState method of the StateManager interface. The StateManager
interface prevents other clients from accessing the ObjectGrid when it is not yet
online. After you preload or reload the map, you can set the state back to
ONLINE.

v When you are preloading different maps in one ObjectGrid, set the ObjectGrid
state to PRELOAD one time and set the value back to ONLINE after all maps finish
data loading. This coordination can be done by the ClientLoadCallback interface.
Set the ObjectGrid state to PRELOAD after the first preStart notification from the
ObjectGrid instance, and set it back to ONLINE after the last postFinish
notification.

v If you need to preload maps from different Java virtual machines, you have to
coordinate between multiple Java virtual machines. Set the ObjectGrid state to
PRELOAD one time before the first map is being preloaded in any of the Java
virtual machines, and set the value back to ONLINE after all maps finish data
loading in all the Java virtual machines. For more information, see Managing
ObjectGrid availability.

About this task

When you run a preload or reload operation on your map, the following actions
occur:
1. The initial action that is taken depends on if you are running a preload or

reload operation.

Chapter 5. Developing applications 367

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txssetavail.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txssetavail.html

v Preload operation: The map to be preloaded is cleared. For an entity map, if
any relation is configured as cascade-remove, any related maps are cleared.

v Reload operation: The provided query is run on the map and the results are
invalidated. For an entity map, if any relation is configured with the
CascadeType.INVALIDATE option, the related entities are also invalidated from
their maps.

2. Run the query to JPA for the entities in a batch.
3. For each batch, a key list and value list for each partition is built.
4. For each partition, the data grid agent is called to insert or update the data on

the server side directly if it is an eXtreme Scale client. If the data grid is a local
instance, the data in the maps is directly inserted or updated.

Client-based JPA preload utility overview
The client-based Java Persistence API (JPA) preload utility loads data into eXtreme
Scale backing maps using a client connection to the ObjectGrid.

This capability can simplify loading the maps when the queries to the database
cannot be partitioned. A loader, such as a JPA Loader can also be used and is ideal
when the data can be loaded in parallel.

The client-based JPA preload utility can use either the OpenJPA or Hibernate JPA
implementations to load the ObjectGrid from a database. Because WebSphere
eXtreme Scale does not directly interact with the database or Java Database
Connectivity (JDBC), any database that OpenJPA or Hibernate supports can be
used to load the ObjectGrid.

Typically, a user application provides a persistence unit name, an entity class name,
and a JPA query to the client loader. The client loader retrieves the JPA entity
manager based on the persistence unit name, uses the entity manager to query
data from the database with the provided entity class and JPA query, and finally
loads the data into the distributed ObjectGrid maps. When multi-level relations are

Database

Partition 0

S
e
rv

e
r

P
ro

c
e
s
s

Server Core Cache
(BackingMap)

ObjectGrid

Server Core Cache
(BackingMap)

Partition 1

S
e
rv

e
r

P
ro

c
e
s
s

Server Core Cache
(BackingMap)

ObjectGrid

Server Core Cache
(BackingMap)

Partition 2

S
e
rv

e
r

P
ro

c
e
s
s

Server Core Cache
(BackingMap)

ObjectGrid

Server Core Cache
(BackingMap)

JPA Client Loader

ObjectGrid

JPA Provider

C
lie

n
t
P

ro
c
e
s
s

Figure 30. Client loader that uses JPA implementation to load the ObjectGrid

368 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

involved in the query, can use a custom query string to optimize the performance.
Optionally, a persistence property map could be provided to override the
configured persistence properties.

A client loader can load data in two different modes, as displayed in the following
table:

Table 11. Client loader modes

Mode Description

Preload Clears and loads all entries into the backing
map. If the map is an entity map, any
related entity maps will also be cleared if the
ObjectGrid CascadeType.REMOVE option is
enabled.

Reload The JPA query is executed against the
ObjectGrid to invalidate all the entities in
the map that match the query. If the map is
an entity map, any related entity maps will
also be cleared if the ObjectGrid
CascadeType.INVALIDATE option is
enabled.

In either case, a JPA query is used to select and load the desired entities from the
database and to store them in the ObjectGrid maps. If the ObjectGrid map is a
non-entity map, the JPA entities will be detached and stored directly. If the
ObjectGrid map is an entity map, the JPA entities are stored as ObjectGrid entity
tuples. You can provide a JPA query or use the default query select o from
EntityName o.

For more information about configuring the client-based JPA preload utility, see
“Developing client-based JPA loaders” on page 367the information in the
Programming Guide

Example: Preloading a map with the ClientLoader interface
You can preload a map to populate the map data before clients begin accessing the
map.

Client-based preload example

The following sample code snippet shows a simple client loading. In this example,
the CUSTOMER map is configured as an entity map. The Customer entity class,
which is configured in the ObjectGrid entity metadata descriptor XML file, has a
one-to-many relation with Order entities. The Customer entity has the
CascadeType.ALL option enabled on the relation to the Order entity. Before the
ClientLoader.load method is called, the ObjectGrid state is set to PRELOAD. The
isPreload parameter on the load method is set to true.
// Get the StateManager
StateManager stateMgr = StateManagerFactory.getStateManager();

// Set ObjectGrid state to PRELOAD before calling ClientLoader.loader
stateMgr.setObjectGridState(AvailabilityState.PRELOAD, objectGrid);

ClientLoader c = ClientLoaderFactory.getClientLoader();

// Load the data
c.load(objectGrid, "CUSTOMER", "customerPU", null,

null, null, null, true, null);

Chapter 5. Developing applications 369

// Set ObjectGrid state back to ONLINE
stateMgr.setObjectGridState(AvailabilityState.ONLINE, objectGrid);

Example: Reloading a map with the ClientLoader interface
Reloading a map is the same as preloading a map, except that the isPreload
argument is set to false in the ClientLoader.load method.

Client-based reload example

The following sample shows how to reload maps. Compared to the preload
sample, the main difference is that a loadSql and parameters are provided. This
sample only reloads the Customer data with an ID between 1000 and 2000. The
isPreload parameter on the load method is set to false.
// Get the StateManager
StateManager stateMgr = StateManagerFactory.getStateManager();

// Set ObjectGrid state to PRELOAD before calling ClientLoader.loader
stateMgr.setObjectGridState(AvailabilityState.PRELOAD, objectGrid);

ClientLoader c = ClientLoaderFactory.getClientLoader();

// Load the data
String loadSql = "select c from CUSTOMER c

where c.custId >= :startCustId and c.custId < :endCustId ";
Map<String, Long> params = new HashMap<String, Long>();
params.put("startCustId", 1000L);
params.put("endCustId", 2000L);

c.load(objectGrid, "CUSTOMER", "customerPU", null, null,
loadSql, params, false, null);

// Set ObjectGrid state back to ONLINE
stateMgr.setObjectGridState(AvailabilityState.ONLINE, objectGrid);

Remember: This query string observes both JPA query syntax and eXtreme Scale
entity query syntax. This query string is important because it runs twice: to
invalidate the matched ObjectGrid entities and to load the matched JPA entities.

Example: Calling a client loader
You can use the preload method in the Loader interface to call a client loader.

Use the preload method in the Loader interface to call a client loader:
void preloadMap(Session session, BackingMap backingMap) throws LoaderException;

This method signals the loader to preload the data into the map. A loader
implementation can use a client loader to preload the data to all its partitions. For
example, the JPA loader uses the client loader to preload data into the map.

For more information, see the JPA loaders overview topic in the Product Overview.

Example: Calling a client loader with the preloadMap method

An example of how to preload the map using the client loader in the preloadMap
method follows. The example first checks whether the current partition number is
the same as the preload partition. If the partition number is not the same as the
preload partition, no action occurs. If the partition numbers match, the client
loader is called to load data into the maps. You must call the client loader in one
and only one partition.

370 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

void preloadMap (Session session, BackingMap backingMap) throws LoaderException {

....
ObjectGrid objectGrid = session.getObjectGrid();
int partitionId = backingMap.getPartitionId();
int numPartitions = backingMap.getPartitionManager().getNumOfPartitions();

// Only call client loader data in one partition
if (partitionId == preloadPartition) {

ClientLoader c = ClientLoaderFactory.getClientLoader();
// Call the client loader to load the data
try {

c.load(objectGrid, "CUSTOMER", "customerPU",
null, entityClass, null, null, true, null);
} catch (ObjectGridException e) {

LoaderException le = new LoaderException("Exception caught in ObjectMap " +
ogName + "." + mapName);

le.initCause(e);
throw le;

}
}
}

Remember: Configure the backingMap attribute "preloadMode" to true, so the
preload method runs asynchronously. Otherwise, the preload method blocks the
ObjectGrid instance from being activated.

Example: Creating a custom client-based JPA loader
The ClientLoader.load method in the Loader interface provides a client load
function that satisfies most scenarios. However, if you want to load data without
the ClientLoader.load method, you can implement your own preload utility.

Custom loader template

Use the following template to develop your loader:
// Get the StateManager
StateManager stateMgr = StateManagerFactory.getStateManager();

// Set ObjectGrid state to PRELOAD before calling ClientLoader.loader
stateMgr.setObjectGridState(AvailabilityState.PRELOAD, objectGrid);

// Load the data
...<your preload utility implementation>...

// Set ObjectGrid state back to ONLINE
stateMgr.setObjectGridState(AvailabilityState.ONLINE, objectGrid);

Developing a client-based JPA loader with a DataGrid agent
When loading from the client side, using a DataGrid agent could increase
performance. By using a DataGrid agent, all the data reads and writes occur in the
server process. You can also design your application to make sure that DataGrid
agents on multiple partitions run in parallel to further boost performance.

About this task

For more information about the DataGrid agent, see “DataGrid APIs and
partitioning” on page 248.

After you create the data preload implementation, you can create a generic Loader
to complete the following tasks:

Chapter 5. Developing applications 371

v Query the data from database in batches.
v Build a key list and value list for each partition.
v For each partition, call the agentMgr.callReduceAgent(agent, aKey) method to

run the agent in the server in a thread. By running in a thread, you can run
agents concurrently on multiple partitions.

Example

The following snippet of code is an example of how to load using a DataGrid
agent:
import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;

import com.ibm.websphere.objectgrid.NoActiveTransactionException;
import com.ibm.websphere.objectgrid.ObjectGridException;
import com.ibm.websphere.objectgrid.ObjectGridRuntimeException;
import com.ibm.websphere.objectgrid.ObjectMap;
import com.ibm.websphere.objectgrid.Session;
import com.ibm.websphere.objectgrid.TransactionException;
import com.ibm.websphere.objectgrid.datagrid.ReduceGridAgent;
import com.ibm.websphere.objectgrid.em.EntityManager;

public class InsertAgent implements ReduceGridAgent, Externalizable {

private static final long serialVersionUID = 6568906743945108310L;

private List keys = null;

private List vals = null;

protected boolean isEntityMap;

public InsertAgent() {
}

public InsertAgent(boolean entityMap) {
isEntityMap = entityMap;

}

public Object reduce(Session sess, ObjectMap map) {
throw new UnsupportedOperationException(

"ReduceGridAgent.reduce(Session, ObjectMap)");
}

public Object reduce(Session sess, ObjectMap map, Collection arg2) {
Session s = null;
try {

s = sess.getObjectGrid().getSession();
ObjectMap m = s.getMap(map.getName());
s.beginNoWriteThrough();
Object ret = process(s, m);
s.commit();
return ret;

} catch (ObjectGridRuntimeException e) {
if (s.isTransactionActive()) {

try {
s.rollback();

} catch (TransactionException e1) {

372 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

} catch (NoActiveTransactionException e1) {
}

}
throw e;

} catch (Throwable t) {
if (s.isTransactionActive()) {

try {
s.rollback();

} catch (TransactionException e1) {
} catch (NoActiveTransactionException e1) {
}

}
throw new ObjectGridRuntimeException(t);

}

}

public Object process(Session s, ObjectMap m) {
try {

if (!isEntityMap) {
// In the POJO case, it is very straightforward,
// we can just put everything in the
// map using insert
insert(m);

} else {
// 2. Entity case.
// In the Entity case, we can persist the entities
EntityManager em = s.getEntityManager();
persistEntities(em);

}
return Boolean.TRUE;

} catch (ObjectGridRuntimeException e) {
throw e;

} catch (ObjectGridException e) {
throw new ObjectGridRuntimeException(e);

} catch (Throwable t) {
throw new ObjectGridRuntimeException(t);

}

}

/**
* Basically this is fresh load.
* @param s
* @param m
* @throws ObjectGridException
*/
protected void insert(ObjectMap m) throws ObjectGridException {

int size = keys.size();

for (int i = 0; i < size; i++) {
m.insert(keys.get(i), vals.get(i));

}

}

protected void persistEntities(EntityManager em) {
Iterator<Object> iter = vals.iterator();

while (iter.hasNext()) {
Object value = iter.next();
em.persist(value);

}

Chapter 5. Developing applications 373

}

public Object reduceResults(Collection arg0) {
return arg0;

}

public void readExternal(ObjectInput in)
throws IOException, ClassNotFoundException {

int v = in.readByte();
isEntityMap = in.readBoolean();
vals = readList(in);
if (!isEntityMap) {

keys = readList(in);
}

}

public void writeExternal(ObjectOutput out) throws IOException {
out.write(1);
out.writeBoolean(isEntityMap);

writeList(out, vals);
if (!isEntityMap) {

writeList(out, keys);
}

}

public void setData(List ks, List vs) {
vals = vs;
if (!isEntityMap) {

keys = ks;
}

}

/**
* @return Returns the isEntityMap.
*/
public boolean isEntityMap() {

return isEntityMap;
}

static public void writeList(ObjectOutput oo, Collection l)
throws IOException {

int size = l == null ? -1 : l.size();
oo.writeInt(size);
if (size > 0) {

Iterator iter = l.iterator();
while (iter.hasNext()) {

Object o = iter.next();
oo.writeObject(o);

}
}

}

public static List readList(ObjectInput oi)
throws IOException, ClassNotFoundException {

int size = oi.readInt();
if (size == -1) {

return null;
}

ArrayList list = new ArrayList(size);
for (int i = 0; i < size; ++i) {

Object o = oi.readObject();
list.add(o);

374 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

}
return list;

}
}

Example: Using the Hibernate plug-in to preload data into the
ObjectGrid cache

You can use the preload method of the ObjectGridHibernateCacheProvider class to
preload data into the ObjectGrid cache for an entity class.

Example: Using the EntityManagerFactory class
EntityManagerFactory emf = Persistence.createEntityManagerFactory("testPU");
ObjectGridHibernateCacheProvider.preload("objectGridName", emf, TargetEntity.class, 100, 100);

Important: By default, entities are not part of the second level cache. In the Entity
classes that need caching, add the @cache annotation. An example follows:
import org.hibernate.annotations.Cache;
import org.hibernate.annotations.CacheConcurrencyStrategy;
@Entity
@Cache(usage=CacheConcurrencyStrategy.TRANSACTIONAL)
public class HibernateCacheTest { ... }

You can override this default by setting the shared-cache-mode element in your
persistence.xml file or by using the javax.persistence.sharedCache.mode property.

Example: Using the SessionFactory class
org.hibernate.cfg.Configuration cfg = new Configuration();
// use addResource, addClass, and setProperty method of Configuration to prepare
// configuration required to create SessionFactor
SessionFactory sessionFactory= cfg.buildSessionFactory();
ObjectGridHibernateCacheProvider.preload("objectGridName", sessionFactory,
TargetEntity.class, 100, 100);

Note:

1. In a distributed system, this preload mechanism can only be invoked from one
Java virtual machine. The preload mechanism cannot run simultaneously from
multiple Java virtual machines.

2. Before running the preload, you must initialize the eXtreme Scale cache by
creating EntityManager using EntityManagerFactory to have all corresponding
BackingMaps created; otherwise, the preload forces the cache to be initialized
with only one default BackingMap to support all entities. This means a single
BackingMap is shared by all entities.

Starting the JPA time-based updater
When you start the Java Persistence API (JPA) time-based updater, the ObjectGrid
maps are updated with the latest changes in the database.

Before you begin

Configure the time-based updater. See Configuring a JPA time-based data updater
the information about configuring a JPA time-based data updater in the
Administration Guide.

About this task

For more information about how the Java Persistence API (JPA) time-based data
updater works, see “JPA time-based data updater” on page 378.

Chapter 5. Developing applications 375

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsjpadbupd.html

Procedure
v Start a time-based database updater.

– Automatically for distributed eXtreme Scale:

If you create the timeBasedDBUpdate configuration for the backing map, the
time-based database updater is automatically started when a distributed
ObjectGrid primary shard is activated. For an ObjectGrid that has multiple
partitions, the time-based database updater only starts at partition 0.

– Automatically for local eXtreme Scale:

If you create the timeBasedDBUpdate configuration for the backing map, the
time-based database updater is automatically started when the local map is
activated.

– Manually:

You can also manually start or stop a time-based database updater using the
TimeBasedDBUpdater API.
public synchronized void startDBUpdate(ObjectGrid objectGrid, String mapName,
String punitName, Class entityClass, String timestampField, DBUpdateMode mode) {

1. ObjectGrid: the ObjectGrid instance (local or client).
2. mapName: the name of the backing map for which the time-based

database updater is started.
3. punitName: the JPA persistence unit name for creating a JPA entity

manager factory; the default value is the name of the first persistence unit
defined in the persistence.xml file.

4. entityClass: The entity class name used to interact with the Java
Persistence API (JPA) provider; the entity class name is used to get JPA
entities using entity queries.

5. timestampField: A timestamp field of the entity class to identify the time
or sequence when a database back end record was last updated or
inserted.

6. mode: The time-based database update mode; an INVALIDATE_ONLY
type causes it to invalidate the entries in the ObjectGrid map if the
corresponding records in the database have changed; an UPDATE_ONLY
type indicates to update the existing entries in the ObjectGrid map with
the latest values from the database; however, all the newly inserted
records to the database are ignored; an INSERT_UPDATE type indicates to
update the existing entries in the ObjectGrid map with the latest values
from the database; also, all the newly inserted records to the database are
inserted into the ObjectGrid map.

If you want to stop the time-based database updater, you can call the
following method to stop the updater:
public synchronized void stopDBUpdate(ObjectGrid objectGrid, String mapName)

The ObjectGrid and mapName parameters should be the same as those
passed in the startDBUpdate method.

v Create the timestamp field in your database.
– DB2

As a part of the optimistic locking feature, DB2 9.5 provides a row change
timestamp feature. You can define a column ROWCHGTS using the ROW
CHANGE TIMESTAMP format as follows:
ROWCHGTS TIMESTAMP NOT NULL

GENERATED ALWAYS
FOR EACH ROW ON UPDATE AS
ROW CHANGE TIMESTAMP

376 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Then you can indicate the entity field which corresponds to this column as
the timestamp field by either annotation or configuration. An example
follows:
@Entity(name = "USER_DB2")
@Table(name = "USER1")
public class User_DB2 implements Serializable {

private static final long serialVersionUID = 1L;

public User_DB2() {
}

public User_DB2(int id, String firstName, String lastName) {
this.id = id;
this.firstName = firstName;
this.lastName = lastName;

}

@Id
@Column(name = "ID")
public int id;

@Column(name = "FIRSTNAME")
public String firstName;

@Column(name = "LASTNAME")
public String lastName;

@com.ibm.websphere.objectgrid.jpa.dbupdate.annotation.Timestamp
@Column(name = "ROWCHGTS", updatable = false, insertable = false)
public Timestamp rowChgTs;

}

– Oracle

In Oracle, there is a pseudo-column ora_rowscn for the system change
number of the record. You can use this column for the same purpose. An
example of the entity that uses the ora_rowscn field as the time-based
database update timestamp field follows:
@Entity(name = "USER_ORA")
@Table(name = "USER1")
public class User_ORA implements Serializable {

private static final long serialVersionUID = 1L;

public User_ORA() {
}

public User_ORA(int id, String firstName, String lastName) {
this.id = id;
this.firstName = firstName;
this.lastName = lastName;

}

@Id
@Column(name = "ID")
public int id;

@Column(name = "FIRSTNAME")
public String firstName;

@Column(name = "LASTNAME")
public String lastName;

Chapter 5. Developing applications 377

@com.ibm.websphere.objectgrid.jpa.dbupdate.annotation.Timestamp
@Column(name = "ora_rowscn", updatable = false, insertable = false)
public long rowChgTs;

}

– Other databases

For other types of databases, you can create a table column to track the
changes. The column values have to be manually managed by the application
that updates the table.
Take an Apache Derby database as an example: You can create a column
"ROWCHGTS" to track the change numbers. Also, a latest change number is
tracked for this table. Every time a record is inserted or updated, the latest
change number for the table is incremented, and the ROWCHGTS column
value for the record is updated with this incremented number.
@Entity(name = "USER_DER")
@Table(name = "USER1")
public class User_DER implements Serializable {

private static final long serialVersionUID = 1L;

public User_DER() {
}

public User_DER(int id, String firstName, String lastName) {
this.id = id;
this.firstName = firstName;
this.lastName = lastName;

}

@Id
@Column(name = "ID")
public int id;

@Column(name = "FIRSTNAME")
public String firstName;

@Column(name = "LASTNAME")
public String lastName;

@com.ibm.websphere.objectgrid.jpa.dbupdate.annotation.Timestamp
@Column(name = "ROWCHGTS", updatable = true, insertable = true)
public long rowChgTs;

}

JPA time-based data updater
A Java Persistence API (JPA) time-based database updater updates the ObjectGrid
maps with the latest changes in the database.

When changes are made directly to a database that is being fronted by WebSphere
eXtreme Scale, those changes are not concurrently reflected in the eXtreme Scale
grid. To properly implement eXtreme Scale as an in-memory database processing
space, take into consideration that your grid can get out of sync with the database.
Time-based database updater uses the System Change Number (SCN) capability in
Oracle 10g and row change timestamp in DB2 9.5 to monitor changes in the
database for invalidation and update. The updater also allows applications to have
a user-defined field for the same purpose.

378 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

The time-based database updater periodically queries the database using JPA
interfaces to get the JPA entities that represent the newly inserted and updated
records in the database. To periodically update the records, every record in the
database should have a timestamp to identify the time or sequence in which the
record was last updated or inserted. It is not required that the timestamp be in a
timestamp format. The timestamp value can be in an integer or long format, if it
generates a unique, increasing value.

Several commercial databases have provided this capability.

For example, in DB2 9.5, you can define a column using the ROW CHANGE
TIMESTAMP format as follows:
ROWCHGTS TIMESTAMP NOT NULL

GENERATED ALWAYS
FOR EACH ROW ON UPDATE AS
ROW CHANGE TIMESTAMP

In Oracle, you can use the pseudo-column ora_rowscn, which represents the
system change number of the record.

The time-based database updater updates the ObjectGrid maps in three different
ways:
1. INVALIDATE_ONLY. Invalidate the entries in the ObjectGrid map if the

corresponding records in the database have changed.
2. UPDATE_ONLY. Update the entries in the ObjectGrid map if the corresponding

records in the database have changed. However, all the newly inserted records
to the database are ignored.

3. INSERT_UPDATE. Update the existing entries in the ObjectGrid map with the
latest values from the database. Also, all the newly inserted records to the
database are inserted into the ObjectGrid map.

For more information about configuring the JPA time-based data updater, see the
information in the Administration Guide.

Developing applications with the Spring framework
Learn how to integrate your eXtreme Scale applications with the popular Spring
framework.

DatabaseJPA Provider

select...

K1 V1

find (k1)

Read
Timer

v1

v1

insert (k1,v1)

Figure 31. Periodic refresh

Chapter 5. Developing applications 379

Spring framework overview
Spring is a framework for developing Java applications. WebSphere eXtreme Scale
provides support to allow Spring to manage transactions and configure the clients
and servers comprising your deployed in-memory data grid.

Spring cache provider

ring Framework Version 3.1 introduced a new cache abstraction. With this new
abstraction, you can transparently add caching to an existing Spring application.
You can use WebSphere eXtreme Scale as the cache provider for the cache
abstraction. For more information, see Configuring a Spring cache provider.

Spring managed native transactions

Spring provides container-managed transactions that are similar to a Java Platform,
Enterprise Edition application server. However, the Spring mechanism can use
different implementations. WebSphere eXtreme Scale provides transaction manager
integration which allows Spring to manage the ObjectGrid transaction life cycles.
For more information, see “Managing transactions with Spring” on page 381.

Spring managed extension beans and namespace support

Also, eXtreme Scale integrates with Spring to allow Spring-style beans defined for
extension points or plug-ins. This feature provides more sophisticated
configurations and more flexibility for configuring the extension points.

In addition to Spring managed extension beans, eXtreme Scale provides a Spring
namespace called "objectgrid". Beans and built-in implementations are pre-defined
in this namespace, which makes it easier for users to configure eXtreme Scale.

Shard scope support

With the traditional style Spring configuration, an ObjectGrid bean can either be a
singleton type or prototype type. ObjectGrid also supports a new scope called the
"shard" scope. If a bean is defined as shard scope, then only one bean is created
per shard. All requests for beans with an ID or IDs matching that bean definition
in the same shard results in that one specific bean instance being returned by the
Spring container.

The following example shows that a
com.ibm.ws.objectgrid.jpa.plugins.JPAPropFactoryImpl bean is defined with scope
set to shard. Therefore, only one instance of the JPAPropFactoryImpl class is
created per shard.
<bean id="jpaPropFactory" class="com.ibm.ws.objectgrid.jpa.plugins.JPAPropFactoryImpl" scope="shard" />

Spring Web Flow

Spring Web Flow stores its session state in an HTTP session by default. If a web
application uses eXtreme Scale for session management, then Spring automatically
stores state with eXtreme Scale. Also, fault tolerance is enabled in the same manner
as the session.

See the HTTP session management information in the Product Overview for further
details.

380 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsspringprovide.html

Packaging

The eXtreme Scale Spring extensions are in the ogspring.jar file. This Java archive
(JAR) file must be on the class path for Spring support to work. If a Java EE
application that is running in a WebSphere Extended Deployment augmented
WebSphere Application Server Network Deployment, put the spring.jar file and
its associated files in the enterprise archive (EAR) modules. You must also place
the ogspring.jar file in the same location.

Managing transactions with Spring
Spring is a popular framework for developing Java applications. WebSphere
eXtreme Scale provides support to allow Spring to manage eXtreme Scale
transactions and configure eXtreme Scale clients and servers.

About this task

The Spring Framework is highly integrable with eXtreme Scale, as discussed in the
following sections.

Procedure
v Native transactions: Spring provides container-managed transactions along the

style of a Java Platform, Enterprise Edition application server but has the
advantage that Springs mechanism can have different implementations plugged
in. This topic describes an eXtreme Scale Platform Transaction manager that can
be used with Spring. This allows programmers to annotate their POJOs (plain
old Java objects) and then have Spring automatically acquire Sessions from
eXtreme Scale and begin, commit, rollback, suspend, and resume eXtreme Scale
transactions. Spring transactions are described more fully in Chapter 10 of the
official Spring reference documentation. The following explains how to create an
eXtreme Scale transaction manager and use it with annotated POJOs. It also
explains how to use this approach with client or local eXtreme Scale as well as a
collocated Data Grid style application.

v Transaction manager: To work with Spring,, eXtreme Scale provides an
implementation of a Spring PlatformTransactionManager. This manager can
provide managed eXtreme Scale sessions to POJOs managed by Spring. Through
the use of annotations, Spring manages those sessions for the POJOs in terms of
transaction life cycle. The following XML snippet shows how to create a
transaction Manager:
<aop:aspectj-autoproxy/>
<tx:annotation-driven transaction-manager="transactionManager"/>

<bean id="ObjectGridManager"
class="com.ibm.websphere.objectgrid.ObjectGridManagerFactory"
factory-method="getObjectGridManager"/>

<bean id="ObjectGrid"
factory-bean="ObjectGridManager"
factory-method="createObjectGrid"/>

<bean id="transactionManager"
class="com.ibm.websphere.objectgrid.spring.ObjectGridSpringFactory"
factory-method="getLocalPlatformTransactionManager"/>

</bean>

<bean id="Service" class="com.ibm.websphere.objectgrid.spring.test.TestService">
<property name="txManager" ref+"transactionManager"/>
</bean>

This shows the transactionManager bean being declared and wired in to the
Service bean that will use Spring transactions. We will demonstrate this using
annotations and this is the reason for the tx:annotation clause at the beginning.

Chapter 5. Developing applications 381

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/transaction.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/transaction.html

v Obtaining an ObjectGrid session: A POJO that has methods managed by
Spring can now obtain the ObjectGrid session for the current transaction using
Session s = txManager.getSession();

This returns the session for the POJO to use. Beans participating in the same
transaction will receive the same session when they call this method. Spring will
automatically handle begin for the Session and also automatically invoke
commit or rollback when necessary. You can obtain an ObjectGrid
EntityManager also by simply calling getEntityManager from the Session object.

v Setting the ObjectGrid instance for a thread: A single Java Virtual Machine
(JVM) can host many ObjectGrid instances. Each primary shard placed in a JVM
has its own ObjectGrid instance. A JVM acting as a client to a remote ObjectGrid
uses an ObjectGrid instance returned from the connect method's
ClientClusterContext to interact with that Grid. Before invoking a method on a
POJO using Spring transactions for ObjectGrid, the thread must be primed with
the ObjectGrid instance to use. The TransactionManager instance has a method
allowing a specific ObjectGrid instance to be specified. Once specified then any
subsequent txManager.getSession calls will returns Sessions for that ObjectGrid
instance.
The following example shows a sample main for exercising this capability:
ClassPathXmlApplicationContext ctx = new ClassPathXmlApplicationContext(new String[]

{"applicationContext.xml"});
SpringLocalTxManager txManager = (SpringLocalTxManager)ctx.getBean("transactionManager");
txManager.setObjectGridForThread(og);

ITestService s = (ITestService)ctx.getBean("Service");
s.initialize();
assertEquals(s.query(), "Billy");
s.update("Bobby");
assertEquals(s.query(), "Bobby");
System.out.println("Requires new test");
s.testRequiresNew(s);
assertEquals(s.query(), "1");

Here we use a Spring ApplicationContext. The ApplicationContext is used to
obtain a reference to the txManager and specify an ObjectGrid to use on this
thread. The code then obtains a reference to the service and invokes methods on
it. Each method call at this level causes Spring to create a Session and do
begin/commit calls around the method call. Any exceptions will cause a
rollback.

v SpringLocalTxManager interface: The SpringLocalTxManager interface is
implemented by the ObjectGrid Platform Transaction Manager and has all public
interfaces. The methods on this interface are for selecting the ObjectGrid instance
to use on a thread and obtaining a Session for the thread. Any POJOs using
ObjectGrid local transactions should be injected with a reference to this manager
instance and only a single instance need be created, that is, its scope should be
singleton. This instance is created using a static method on
ObjectGridSpringFactory. getLocalPlatformTransactionManager().

Restriction: WebSphere eXtreme Scale does not support JTA or two-phase
commit for various reasons mainly to do with scalability. Thus, except at a last
single-phase participant, ObjectGrid does not interact in XA or JTA type global
transactions. This platform manager is intended to make using local ObjectGrid
transactions as easy as possible for Spring developers.

Spring managed extension beans
You can declare plain old Java objects (POJOs) to use as extension points in the
objectgrid.xml file. If you name the beans and then specify the class name,
eXtreme Scale normally creates instances of the specified class and uses those

382 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

instances as the plug-in. WebSphere eXtreme Scale can now delegate to Spring to
act as the bean factory for obtaining instances of these plug-in objects.

If an application uses Spring, POJOs have a requirement to be accessible to the rest
of the application.

An application can register a Spring Bean Factory instance to use for an ObjectGrid
specified by name. The application creates an instance of BeanFactory or a Spring
application context and then registers it with ObjectGrid using the following static
method:
void registerSpringBeanFactoryAdapter(String objectGridName, Object springBeanFactory)

The previous method applies to the case when eXtreme Scale finds an extension
bean whose className begins with the prefix {spring}. Such an extension bean,
which could be an ObjectTransformer, Loader, TransactionCallback, and so on, uses
the remainder of the name as a Spring Bean name. Then it obtains the bean
instance using the Spring Bean Factory.

The eXtreme Scale deployment environment can also create a Spring bean factory
from a default Spring XML configuration file. If no bean factory was registered for
a given ObjectGrid, then your deployment searches for an XML file called
"/<ObjectGridName>_spring.xml" automatically. For example, if your data grid is
called GRID, then the XML file is called "/GRID_spring.xml' and appears in the
class path in the root package. ObjectGrid constructs an ApplicationContext using
the "/<ObjectGridName>_spring.xml file and constructs beans from that bean
factory.

The following is an example class name:
"{spring}MyLoaderBean"

Using the previous class name allows eXtreme Scale to use Spring to search for a
bean named "MyLoaderBean". You can specify Spring-managed POJOs for any
extension point if the bean factory has been registered. The Spring extensions are
in the ogspring.jar file. This JAR file must be on the class path for Spring support.
If a J2EE application runs in WebSphere Application Server Network Deployment
augmented with WebSphere Extended Deployment, then you must place the
applicaitonhe application should place the spring.jar file and its associated files in
the EAR modules. The ogspring.jar must also be placed in the same location.

Spring extension beans and namespace support
WebSphere eXtreme Scale provides a feature to declare plain old Java objects
(POJOs) to use as extension points in the objectgrid.xml file and a way to name
the beans and then specify the class name. Normally, instances of the specified
class are created, and those objects are used as the plug-ins. Now, eXtreme Scale
can delegate to Spring to obtain instances of these plug-in objects. If an application
uses Spring then typically such POJOs have a requirement to be wired in to the
rest of the application.

In some scenarios, you must use Spring to configure a plug-in, as in the following
example:
<objectGrid name="Grid">

<bean id="TransactionCallback" className="com.ibm.websphere.objectgrid.jpa.JPATxCallback">
<property name="persistenceUnitName" type="java.lang.String" value="employeePU" />

</bean>
...

</objectGrid>

Chapter 5. Developing applications 383

The built-in TransactionCallback implementation, the
com.ibm.websphere.objectgrid.jpa.JPATxCallback class, is configured as the
TransactionCallback class. This class is configured with the persistenceUnitName
property as shown in the previous example. The JPATxCallback class also has the
JPAPropertyFactory attribute, which is of type java.lang.Object. The ObjectGrid
XML configuration cannot support this type of configuration.

The eXtreme Scale Spring integration solves this problem by delegating the bean
creation to the Spring framework. The revised configuration follows:
<objectGrid name="Grid">

<bean id="TransactionCallback" className="{spring}jpaTxCallback"/>
...

</objectGrid>

The spring file for the "Grid" object contains the following information:
<bean id="jpaTxCallback" class="com.ibm.websphere.objectgrid.jpa.JPATxCallback" scope="shard">

<property name="persistenceUnitName" value="employeeEMPU"/>
<property name="JPAPropertyFactory" ref ="jpaPropFactory"/>

</bean>

<bean id="jpaPropFactory" class="com.ibm.ws.objectgrid.jpa.plugins.
JPAPropFactoryImpl" scope="shard">
</bean>

Here, the TransactionCallback is specified as {spring}jpaTxCallback, and the
jpaTxCallback and jpaPropFactory bean are configured in the spring file as shown
in the previous example. The Spring configuration makes it possible to configure a
JPAPropertyFactory bean as a parameter of the JPATxCallback object.

Default Spring bean factory

When eXtreme Scale finds a plug-in or an extension bean (such as an
ObjectTransformer, Loader, TransactionCallback, and so on) with a classname value
that begins with the prefix {spring}, then eXtreme Scale uses the remainder of the
name as a Spring Bean name and obtain the bean instance using the Spring Bean
Factory.

By default, if no bean factory was registered for a given ObjectGrid, then it tries to
find an ObjectGridName_spring.xml file. For example, if your data grid is called
"Grid" then the XML file is called /Grid_spring.xml. This file should be in the class
path or in a META-INF directory which is in the class path. If this file is found, then
eXtreme Scale constructs an ApplicationContext using that file and constructs
beans from that bean factory.

Custom Spring bean factory

WebSphere eXtreme Scale also provides an ObjectGridSpringFactory API to register
a Spring Bean Factory instance to use for a specific named ObjectGrid. This API
registers an instance of BeanFactory with eXtreme Scale using the following static
method:

void registerSpringBeanFactoryAdapter(String objectGridName, Object
springBeanFactory)

Namespace support

Since version 2.0, Spring has a mechanism for schema-based extensions to the basic
Spring XML format for defining and configuring beans. ObjectGrid uses this new
feature to define and configure ObjectGrid beans. With Spring XML schema

384 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

extension, some of the built-in implementations of eXtreme Scale plug-ins and
some ObjectGrid beans are predefined in the "objectgrid" namespace. When writing
the Spring configuration files, you do not have to specify the full class name of the
built-in implementations. Instead, you can reference the predefined beans.

Also, with the attributes of the beans defined in the XML schema, you are less
likely to provide a wrong attribute name. XML validation based on the XML
schema can catch these kind of errors earlier in the development cycle.

These beans defined in the XML schema extensions are:
v transactionManager
v register
v server
v catalog
v catalogServerProperties
v container
v JPALoader
v JPATxCallback
v JPAEntityLoader
v LRUEvictor
v LFUEvictor
v HashIndex

These beans are defined in the objectgrid.xsd XML schema. This XSD file is
shipped as com/ibm/ws/objectgrid/spring/namespace/objectgrid.xsd file in the
ogspring.jar file . For detailed descriptions of the XSD file and the beans defined
in the XSD file, see Spring descriptor XML filethe information about the Spring
descriptor file in the Administration Guide.

Use the JPATxCallback example from the previous section. In the previous section,
the JPATxCallback bean is configured as the following:
<bean id="jpaTxCallback" class="com.ibm.websphere.objectgrid.jpa.JPATxCallback" scope="shard">

<property name="persistenceUnitName" value="employeeEMPU"/>
<property name="JPAPropertyFactory" ref ="jpaPropFactory"/>

</bean>

<bean id="jpaPropFactory" class="com.ibm.ws.objectgrid.jpa.plugins.JPAPropFactoryImpl" scope="shard">
</bean>

Using this namespace feature, the spring XML configuration can be written as the
following:
<objectgrid:JPATxCallback id="jpaTxCallback" persistenceUnitName="employeeEMPU"
jpaPropertyFactory="jpaPropFactory" />

<bean id="jpaPropFactory" class="com.ibm.ws.objectgrid.jpa.plugins.JPAPropFactoryImpl"
scope="shard">
</bean>

Notice here that instead of specifying the
com.ibm.websphere.objectgrid.jpa.JPATxCallback class as in the previous example,
we directly use the pre-defined objectgrid:JPATxCallback bean. As you can see, this
configuration is less verbose and more friendly to error checking.

For a description of working with Spring beans, consult “Starting a container
server with Spring” on page 386.

Chapter 5. Developing applications 385

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsxsdelements.html

Starting a container server with Spring
You can start a container server using Spring managed extension beans and
namespace support.

About this task

With several XML files configured for Spring, you can start basic eXtreme Scale
container servers.

Procedure
1. ObjectGrid XML file:

First of all, define a very simple ObjectGrid XML file which contains one
ObjectGrid "Grid" and one map "Test". The ObjectGrid has an
ObjectGridEventListener plug-in called "partitionListener", and the map "Test"
has an Evictor plugged in called "testLRUEvictor". Notice both the
ObjectGridEventListener plug-in and Evictor plug-in are configured using
Spring as their names contain "{spring}".
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">

<objectGrids>
<objectGrid name="Grid">

<bean id="ObjectGridEventListener" className="{spring}partitionListener" />
<backingMap name="Test" pluginCollectionRef="test" />

</objectGrid>
</objectGrids>

<backingMapPluginCollections>
<backingMapPluginCollection id="test">

<bean id="Evictor" className="{spring}testLRUEvictor"/>
</backingMapPluginCollection>

</backingMapPluginCollections>
</objectGridConfig>

2. ObjectGrid deployment XML file:

Now, create a simple ObjectGrid deployment XML file as follows. It partitions
the ObjectGrid into 5 partitions, and no replica is required.
<?xml version="1.0" encoding="UTF-8"?>
<deploymentPolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/deploymentPolicy ../deploymentPolicy.xsd"
xmlns="http://ibm.com/ws/objectgrid/deploymentPolicy">

<objectgridDeployment objectgridName="Grid">
<mapSet name="mapSet" numInitialContainers="1" numberOfPartitions="5" minSyncReplicas="0"

maxSyncReplicas="1" maxAsyncReplicas="0">
<map ref="Test"/>

</mapSet>
</objectgridDeployment>

</deploymentPolicy>

3. ObjectGrid Spring XML file:

Now we will use both ObjectGrid Spring managed extension beans and
namespace support features to configure the ObjectGrid beans. The spring xml
file is named Grid_spring.xml. Notice two schemas are included in the XML
file: spring-beans-2.0.xsd is for using the Spring managed beans, and
objectgrid.xsd is for using the beans predefined in the objectgrid namespace.
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xmlns:objectgrid="http://www.ibm.com/schema/objectgrid"
xsi:schemaLocation="
http://www.ibm.com/schema/objectgrid

http://www.ibm.com/schema/objectgrid/objectgrid.xsd

386 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

<objectgrid:register id="ogregister" gridname="Grid"/>

<objectgrid:server id="server" isCatalog="true" name="server">
<objectgrid:catalog host="localhost" port="2809"/>

</objectgrid:server>

<objectgrid:container id="container"
objectgridxml="com/ibm/ws/objectgrid/test/springshard/objectgrid.xml"

deploymentxml="com/ibm/ws/objectgrid/test/springshard/deployment.xml"
server="server"/>

<objectgrid:LRUEvictor id="testLRUEvictor" numberOfLRUQueues="31"/>

<bean id="partitionListener"
class="com.ibm.websphere.objectgrid.springshard.ShardListener" scope="shard"/>

</beans>

There were six beans defined in this spring XML file:
a. objectgrid:register: This register the default bean factory for the ObjectGrid

"Grid".
b. objectgrid:server: This defines an ObjectGrid server with name "server". This

server will also provide catalog service since it has an objectgrid:catalog
bean nested in it.

c. objectgrid:catalog: This defines an ObjectGrid catalog service endpoint, which
is set to "localhost:2809".

d. objectgrid:container: This defines an ObjectGrid container with specified
objectgrid XML file and deployment XML file as we discussed before. The
server property specifies which server this container is hosted in.

e. objectgrid:LRUEvictor: This defines an LRUEvictor with the number of LRU
queues to use set to 31.

f. bean partitionListener: This defines a ShardListener plug-in. You must provide
an implementation for this plug-in, so it cannot use the pre-defined beans.
Also this scope of the bean is set to "shard", which means there is only one
instance of this ShardListener per ObjectGrid shard.

4. Starting the server:

The snippet below starts the ObjectGrid server, which hosts both the container
service and the catalog service. As we can see, the only method we need to call
to start the server is to get a bean "container" from the bean factory. This
simplifies the programming complexity by moving most of the logic into
Spring configuration.
public class ShardServer extends TestCase
{

Container container;
org.springframework.beans.factory.BeanFactory bf;

public void startServer(String cep)
{

try
{

bf = new org.springframework.context.support.ClassPathXmlApplicationContext(
"/com/ibm/ws/objectgrid/test/springshard/Grid_spring.xml", ShardServer.class);

container = (Container)bf.getBean("container");
}
catch(Exception e)
{

throw new ObjectGridRuntimeException("Cannot start OG container", e);
}

}

public void stopServer()
{

Chapter 5. Developing applications 387

if(container != null)
container.teardown();

}
}

Configuring clients in the Spring framework
You can override client-side ObjectGrid settings with the Spring Framework.

About this task

The following example XML file shows how to build an ObjectGridConfiguration
element, and use it to override some client side settings. You can create a similar
configuration using programmatic configuration or by configuring the ObjectGrid
descriptor XML file.

For information about how to use the ObjectGridClientBean and
ObjectGridCatalogServiceDomainBean beans to support the Spring Framework
Version 3.1 cache abstraction, see Configuring a Spring cache provider.

Procedure
1. Create an XML file to configure clients with the Spring framework.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>
<bean id="companyGrid" factory-bean="manager" factory-method="getObjectGrid"
singleton="true">
<constructor-arg type="com.ibm.websphere.objectgrid.ClientClusterContext">
<ref bean="client" />

</constructor-arg>
<constructor-arg type="java.lang.String" value="CompanyGrid" />

</bean>

<bean id="manager" class="com.ibm.websphere.objectgrid.ObjectGridManagerFactory"
factory-method="getObjectGridManager" singleton="true">
<property name="overrideObjectGridConfigurations">
<map>
<entry key="DefaultDomain">
<list>
<ref bean="ogConfig" />

</list>
</entry>

</map>
</property>

</bean>

<bean id="ogConfig"
class="com.ibm.websphere.objectgrid.config.ObjectGridConfigFactory"
factory-method="createObjectGridConfiguration">
<constructor-arg type="java.lang.String">
<value>CompanyGrid</value>

</constructor-arg>
<property name="plugins">
<list>

<bean class="com.ibm.websphere.objectgrid.config.ObjectGridConfigFactory"
factory-method="createPlugin">
<constructor-arg type="com.ibm.websphere.objectgrid.config.PluginType"
value="TRANSACTION_CALLBACK" />

<constructor-arg type="java.lang.String"
value="com.company.MyClientTxCallback" />

</bean>
<bean class="com.ibm.websphere.objectgrid.config.ObjectGridConfigFactory"
factory-method="createPlugin">
<constructor-arg type="com.ibm.websphere.objectgrid.config.PluginType"
value="OBJECTGRID_EVENT_LISTENER" />

<constructor-arg type="java.lang.String" value="" />
</bean>

</list>
</property>

<property name="backingMapConfigurations">
<list>

<bean class="com.ibm.websphere.objectgrid.config.ObjectGridConfigFactory"
factory-method="createBackingMapConfiguration">

388 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsspringprovide.html

<constructor-arg type="java.lang.String" value="Customer" />
<property name="plugins">

<bean class="com.ibm.websphere.objectgrid.config.ObjectGridConfigFactory"
factory-method="createPlugin">
<constructor-arg type="com.ibm.websphere.objectgrid.config.PluginType"

value="EVICTOR" />
<constructor-arg type="java.lang.String"

value="com.ibm.websphere.objectgrid.plugins.builtins.LRUEvictor" />
</bean>

</property>
<property name="numberOfBuckets" value="1429" />

</bean>
<bean class="com.ibm.websphere.objectgrid.config.ObjectGridConfigFactory"
factory-method="createBackingMapConfiguration">
<constructor-arg type="java.lang.String" value="OrderLine" />
<property name="numberOfBuckets" value="701" />

<property name="timeToLive" value="800" />
<property name="ttlEvictorType">

<value type="com.ibm.websphere.objectgrid.
TTLType">LAST_ACCESS_TIME</value>

</property>
</bean>

</list>
</property>

</bean>

<bean id="client" factory-bean="manager" factory-method="connect"
singleton="true">
<constructor-arg type="java.lang.String">

<value>localhost:2809</value>
</constructor-arg>

<constructor-arg
type="com.ibm.websphere.objectgrid.security.

config.ClientSecurityConfiguration">
<null />

</constructor-arg>
<constructor-arg type="java.net.URL">
<null />

</constructor-arg>
</bean>

</beans>

2. Load the XML file you created and build the ObjectGrid.
BeanFactory beanFactory = new XmlBeanFactory(newUrlResource

("file:test/companyGridSpring.xml"));
ObjectGrid companyGrid = (ObjectGrid) beanFactory.getBean("companyGrid");

Read about the “Spring framework overview” on page 121 for more
information on creating an XML descriptor file.

Chapter 5. Developing applications 389

390 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Chapter 6. Tuning performance
You can tune settings in your environment to increase the overall performance of
your WebSphere eXtreme Scale environment.

Tuning the cache sizing agent for accurate memory consumption
estimates

WebSphere eXtreme Scale supports sizing the memory consumption of
BackingMap instances in distributed data grids. Memory consumption sizing is not
supported for local data grid instances. The value that is reported by WebSphere
eXtreme Scale for a given map is very close to the value that is reported by heap
dump analysis. If map object is complex, the sizings might be less accurate. The
CWOBJ4543 message is displayed in the log for any cache entry object that cannot
be accurately sized because it is overly complex. You can get a more accurate
measurement by avoiding unnecessary map complexity.

Procedure
v Enable the sizing agent.

If you are using a Java 5 or higher Java virtual machine (JVM), use the sizing
agent. With the sizing agent, WebSphere eXtreme Scale can obtain additional
information from the JVM to improve its estimates. The agent can be loaded by
adding the following argument to the JVM command line:
-javaagent:WXS lib directory/wxssizeagent.jar

For an embedded topology, add the argument to the command line of the
WebSphere Application Server process.
For a distributed topology, add the argument to command line of the eXtreme
Scale processes (containers) and the WebSphere Application Server process.
When loaded correctly, the following message is written to the SystemOut.log
file.
CWOBJ4541I: Enhanced BackingMap memory sizing is enabled.

v Prefer Java data types over custom data types, where possible.
WebSphere eXtreme Scale can accurately size the memory cost of the following
types:
– java.lang.String and arrays where String is the component class (String[])
– All primitive wrapper types (Byte, Short, Character, Boolean, Long, Double,

Float, Integer) and arrays where primitive wrappers are the component type
(for example, Integer[], Character[])

– java.math.BigDecimal and java.math.BigInteger, and arrays where these two
classes are the component type (BigInteger[] and BigDecimal[])

– Temporal types (java.util.Date, java.sql.Date, java.util.Time,
java.sql.Timestamp)

– java.util.Calendar and java.util.GregorianCalendar
v Avoid object internment, when possible.

When an object is inserted into a map, WebSphere eXtreme Scale assumes that it
holds the only reference to the object and all the objects to which the object
directly refers. If you insert 1000 custom Objects into a map, and each one has a

© Copyright IBM Corp. 2009, 2012 391

reference to the same string instance, then WebSphere eXtreme Scale sizes that
string instance 1000 times, overestimating the actual size of the map on the
heap. However, WebSphere eXtreme Scale correctly compensates for the
following common internment scenarios:
– References to Java 5 Enums
– References to Classes that follow the Typesafe Enum Pattern. Classes

following this pattern only have only private constructors defined, have at
least one private static final field of its own type, and if they implement
Serializable, the class implements the readResolve() method.

– Java 5 Primitive wrapper internment. For example, using Integer.valueOf(1)
instead of new Integer(1)

If you must use internment, use one of the preceding techniques to get more
accurate estimates.

v Use custom types thoughtfully.
When using custom types, prefer primitive data types for fields vs Object types.
Also, prefer the Object types listed in entry 2 over your own custom
implementations.
When using custom types, keep the Object tree to one level. When inserting a
custom Object into a map, WebSphere eXtreme Scale will only calculate the cost
of the inserted Object, which includes any primitive fields, and all the Objects it
directly references. WebSphere eXtreme Scale will not follow references further
down into the Object tree. If you insert an Object into the map, and WebSphere
eXtreme Scale detects references that were not followed during the sizing
process, a message coded CWOBJ4543 that includes the name of the Class that
could not be fully sized results. When this error occurs, treat the size statistics
on the map as trend data, rather than relying on the size statistics as an accurate
total.

v Use the CopyMode.COPY_TO_BYTES copy mode if possible.
Use the CopyMode.COPY_TO_BYTES copy mode to remove any uncertainty
from sizing the value Objects being inserted into the map, even when an Object
tree has too many levels to be sized normally (resulting in the CWOBJ4543
message).

Cache memory consumption sizing
WebSphere eXtreme Scale can accurately estimate the Java heap memory usage of
a given BackingMap in bytes. Use this capability to help correctly size your Java
virtual machine heap settings and eviction policies. The behavior of this feature
varies with the complexity of the Objects being placed in the backing map and
how the map is configured. Currently, this feature is supported only for distributed
data grids. Local data grid instances do not support used bytes sizing.

Heap consumption considerations

eXtreme Scale stores all of its data inside the heap space of the JVM processes that
make up the data grid. For a given map, the heap space it consumes can be broken
down into the following components:
v The size all the key objects currently in the map
v The size of all the value objects currently in the map
v The size of all the EvictorData objects that are in use by the Evictor plug-ins on

the map
v The overhead of the underlying data structure

392 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

The number of used bytes that is reported by the sizing statistics is the sum of
these four components. These values are calculated on a per entry basis on the
insert, update, and remove map operations, meaning that eXtreme Scale always
has a current value for the number of bytes that a given backing map is
consuming.

When data grids are partitioned, each partition contains a piece of the backing
map. Because the sizing statistics are calculated at the lowest level of the eXtreme
Scale code, each partition of a backing map tracks its own size. You can use the
eXtreme Scale Statistics APIs to track the cumulative size of the map, as well as the
size of its individual partitions.

In general, use the sizing data as a measure of the trends of data over time, not as
an accurate measurement of the heap space that is being used by the map. For
example, if the reported size of a map doubles from 5 MB to 10 MB, then view the
memory consumption of the map as having doubled. The actual measurement of
10 MB might be inaccurate for a number of reasons. If you take the reasons into
account and follow the best practices, then the accuracy of the size measurements
approaches that of post-processing a Java heap dump.

The main issue with accuracy is that the Java Memory Model is not restrictive
enough to allow for memory measurements that are certain to be accurate. The
fundamental problem is that an object can be live on the heap due to multiple
references. For example, if the same 5 KB object instance is inserted into three
separate maps, then any of those three maps prevent the object from being garbage
collected. In this situation, any of the following measurements would be justifiable:
v The size of each map is increased by 5 KB.
v The size of the first map the Object is placed into is increased by 5 KB.
v The other two maps are not increased in size. The size of each map is increased

by a fraction of the size of the object.

This ambiguity is why these measurements should be considered trend data,
unless you have removed the ambiguity through design choices, best practices, and
understanding of the implementation choices that can provide more accurate
statistics.

eXtreme Scale assumes that a given map holds the only long-lived reference to the
key and value Objects that it contains. If the same 5 KB object is put into three
maps, then the size of each map is increased by 5 KB. The increase usually is not a
problem, because the feature is supported only for distributed data grids. If you
insert the same Object into three different maps on a remote client, each map
receives its own copy of the Object. The default transactional COPY MODE
settings also usually guarantee that each map has its own copy of a given Object.

Object interning

Object interning can cause a challenge with estimating heap memory usage. When
you implement object interning, your application code purposely ensures that all
references to a given object value actually point to the same object instance on the
heap, and therefore the same location in memory. An example of this might be the
following class:
public class ShippingOrder implements Serializeable,Cloneable{

public static final STATE_NEW = “new”;
public static final STATE_PROCESSING = “processing”;
public static final STATE_SHIPPED = “shipped”;

Chapter 6. Tuning performance 393

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/cxsstatsintro.html

private String state;
private int orderNumber;

private int customerNumber;

public Object clone(){
ShippingOrder toReturn = new ShippingOrder();
toReturn.state = this.state;
toReturn.orderNumber = this.orderNumber;
toReturn.customerNumber = this.customerNumber;
return toReturn;

}

private void readResolve(){
if (this.state.equalsIgnoreCase(“new”)

this.state = STATE_NEW;
else if (this.state.equalsIgnoreCase(“processing”)

this.state = STATE_PROCESSING;
else if (this.state.equalsIgnoreCase(“shipped”)

this.state = STATE_SHIPPED:
}

}

Object interning causes overestimation by the sizing statistics because eXtreme
Scale assumes that the objects are using different memory locations. If a million
ShippingOrder objects exist, the sizing statistics display the cost of a million
Strings holding the state information. In reality, only three Strings exist that are
static class members. The memory cost for the static class members never should
be added to any eXtreme Scale map. However, this situation cannot be detected at
runtime. There are dozens of ways that similar object interning can be
implemented, which is why it is so hard to detect. It is not practical for eXtreme
Scale to protect against all possible implementations. However, eXtreme Scale does
protect against the most commonly used types of object interning. To optimize
memory usage with Object interning, implement interning only on custom objects
that fall into the following two categories to enhance the accuracy of the memory
consumption statistics:
v eXtreme Scale automatically adjusts for Java 5 enums and the Typesafe Enum

pattern, as described at Java 2 Platform Standard Edition 5.0 Overview: Enums.
v eXtreme Scale automatically accounts for the automatic interning of primitive

wrapper types, such as Integer. Automatic interning for primitive wrapper types
was introduced in Java 5 through the use of static valueOf methods.

Memory consumption statistics

Use one of the following methods to access the memory consumption statistics.

Statistics API

Use the MapStatsModule.getUsedBytes() method, which provides statistics
for a single map, including the number of entries and hit rate.

For details, see Statistics modules.

Managed Beans (MBeans)

Use the MapUsedBytes managed MBean statistic. You can use several
different types of Java Management Extensions (JMX) MBeans to
administer and monitor deployments. Each MBean refers to a specific
entity, such as a map, eXtreme Scale, server, replication group, or
replication group member.

For details, see Administering with Managed Beans (MBeans).

394 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/cxsstatsmodule.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsmbean.html

Performance monitoring infrastructure (PMI) modules

You can monitor the performance of your applications with the PMI
modules. Specifically, use the map PMI module for containers embedded in
WebSphere Application Server.

For details, see PMI modules.

WebSphere eXtreme Scale console

With the console, you can view the memory consumption statistics. See
Monitoring with the web console.

All of these methods access the same underlying measurement of the memory
consumption of a given BaseMap instance. The WebSphere eXtreme Scale runtime
attempts with a best effort to calculate the number of bytes of heap memory that is
consumed by the key and value objects that are stored in the map, as well as the
overhead of the map itself. You can see how much heap memory each map is
consuming across the whole distributed data grid.

In most cases the value reported by WebSphere eXtreme Scale for a given map is
very close to the value reported by heap dump analysis. WebSphere eXtreme Scale
accurately sizes its own overhead, but cannot account for every possible object that
might be put into a map. Following the best practices described in “Tuning the
cache sizing agent for accurate memory consumption estimates” on page 391 can
enhance the accuracy of the size in bytes measurements provided by WebSphere
eXtreme Scale.

Tuning and performance for application development
To improve performance for your in-memory data grid or database processing
space, you can investigate several considerations such using the best practices for
product features such as locking, serialization, and query performance.

Tuning the copy mode
WebSphere eXtreme Scale makes a copy of the value based on the available
CopyMode settings. Determine which setting works best for your deployment
requirements.

You can use the BackingMap API setCopyMode(CopyMode, valueInterfaceClass)
method to set the copy mode to one of the following final static fields that are
defined in the com.ibm.websphere.objectgrid.CopyMode class.

When an application uses the ObjectMap interface to obtain a reference to a map
entry, use that reference only within the data grid transaction that obtained the
reference. Using the reference in a different transaction can lead to errors. For
example, if you use the pessimistic locking strategy for the BackingMap, a get or
getForUpdate method call acquires an S (shared) or U (update) lock, depending on
the transaction. The get method returns the reference to the value and the lock that
is obtained is released when the transaction completes. The transaction must call
the get or getForUpdate method to lock the map entry in a different transaction.
Each transaction must obtain its own reference to the value by calling the get or
getForUpdate method instead of reusing the same value reference in multiple
transactions.

Chapter 6. Tuning performance 395

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxspmimodules.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsmonitoroversw.html

CopyMode for entity maps

When using a map associated with an EntityManager API entity, the map always
returns the entity Tuple objects directly without making a copy unless you are
using COPY_TO_BYTES copy mode. It is important that the CopyMode is updated
or the Tuple is copied appropriately when making changes.

COPY_ON_READ_AND_COMMIT

The COPY_ON_READ_AND_COMMIT mode is the default mode. The
valueInterfaceClass argument is ignored when this mode is used. This mode
ensures that an application does not contain a reference to the value object that is
in the BackingMap. Instead, the application is always working with a copy of the
value that is in the BackingMap. The COPY_ON_READ_AND_COMMIT mode
ensures that the application can never inadvertently corrupt the data that is cached
in the BackingMap. When an application transaction calls an ObjectMap.get
method for a given key, and it is the first access of the ObjectMap entry for that
key, a copy of the value is returned. When the transaction is committed, any
changes that are committed by the application are copied to the BackingMap to
ensure that the application does not have a reference to the committed value in the
BackingMap.

COPY_ON_READ

The COPY_ON_READ mode improves performance over the
COPY_ON_READ_AND_COMMIT mode by eliminating the copy that occurs
when a transaction is committed. The valueInterfaceClass argument is ignored
when this mode is used. To preserve the integrity of the BackingMap data, the
application ensures that every reference that it has for an entry is destroyed after
the transaction is committed. With this mode, the ObjectMap.get method returns a
copy of the value instead of a reference to the value to ensure that changes that are
made by the application to the value does not affect the BackingMap value until
the transaction is committed. However, when the transaction does commit, a copy
of changes is not made. Instead, the reference to the copy that was returned by the
ObjectMap.get method is stored in the BackingMap. The application destroys all
map entry references after the transaction is committed. If application does not
destroy the map entry references, the application might cause the data cached in
BackingMap to become corrupted. If an application is using this mode and is
having problems, switch to COPY_ON_READ_AND_COMMIT mode to see if the
problem still exists. If the problem goes away, then the application is failing to
destroy all of its references after the transaction has committed.

COPY_ON_WRITE

The COPY_ON_WRITE mode improves performance over the
COPY_ON_READ_AND_COMMIT mode by eliminating the copy that occurs
when the ObjectMap.get method is called for the first time by a transaction for a
given key. The ObjectMap.get method returns a proxy to the value instead of a
direct reference to the value object. The proxy ensures that a copy of the value is
not made unless the application calls a set method on the value interface that is
specified by the valueInterfaceClass argument. The proxy provides a copy on write
implementation. When a transaction commits, the BackingMap examines the proxy
to determine if any copy was made as a result of a set method being called. If a
copy was made, then the reference to that copy is stored in the BackingMap. The
big advantage of this mode is that a value is never copied on a read or at a
commit when the transaction never calls a set method to change the value.

396 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

The COPY_ON_READ_AND_COMMIT and COPY_ON_READ modes both make a
deep copy when a value is retrieved from the ObjectMap. If an application only
updates some of the values that are retrieved in a transaction then this mode is not
optimal. The COPY_ON_WRITE mode supports this behavior efficiently but
requires that the application uses a simple pattern. The value objects are required
to support an interface. The application must use the methods on this interface
when it is interacting with the value in a session. If this is the case, then proxies
are created for the values that are returned to the application. The proxy has a
reference to the real value. If the application performs read operations only, the
read operations always run against the real copy. If the application modifies an
attribute on the object, the proxy makes a copy of the real object and then modifies
the copy. The proxy then uses the copy from that point on. Using the copy allows
the copy operation to be avoided completely for objects that are only read by the
application. All modify operations must start with the set prefix. Enterprise
JavaBeans normally are coded to use this style of method naming for methods that
modify the objects attributes. This convention must be followed. Any objects that
are modified are copied at the time that they are modified by the application. This
read and write scenario is the most efficient scenario supported by eXtreme Scale.
To configure a map to use COPY_ON_WRITE mode, use the following example. In
this example, the application stores Person objects that are keyed using the name
in the Map. The person object is represented in the following code snippet.
class Person {

String name;
int age;
public Person() {
}
public void setName(String n) {

name = n;
}
public String getName() {

return name;
}
public void setAge(int a) {

age = a;
}
public int getAge() {

return age;
}

}

The application uses the IPerson interface only when it interacts with values that
are retrieved from a ObjectMap. Modify the object to use an interface as in the
following example.
interface IPerson
{

void setName(String n);
String getName();
void setAge(int a);
int getAge();

}
// Modify Person to implement IPerson interface
class Person implements IPerson {

...
}

The application then needs to configure the BackingMap to use COPY_ON_WRITE
mode, like in the following example:
ObjectGrid dg = ...;
BackingMap bm = dg.defineMap("PERSON");
// use COPY_ON_WRITE for this Map with

Chapter 6. Tuning performance 397

// IPerson as the valueProxyInfo Class
bm.setCopyMode(CopyMode.COPY_ON_WRITE,IPerson.class);
// The application should then use the following
// pattern when using the PERSON Map.
Session sess = ...;
ObjectMap person = sess.getMap("PERSON");
...
sess.begin();
// the application casts the returned value to IPerson and not Person
IPerson p = (IPerson)person.get("Billy");
p.setAge(p.getAge()+1);
...
// make a new Person and add to Map
Person p1 = new Person();
p1.setName("Bobby");
p1.setAge(12);
person.insert(p1.getName(), p1);
sess.commit();
// the following snippet WON’T WORK. Will result in ClassCastException
sess.begin();
// the mistake here is that Person is used rather than
// IPerson
Person a = (Person)person.get("Bobby");
sess.commit();

The first section of the application retrieves a value that was named Billy in the
map. The application casts the returned value to the IPerson object, not the Person
object because the proxy that is returned implements two interfaces:
v The interface specified in the BackingMap.setCopyMode method call
v The com.ibm.websphere.objectgrid.ValueProxyInfo interface

You can cast the proxy to two types. The last part of the preceding code snippet
demonstrates what is not allowed in COPY_ON_WRITE mode. The application
retrieves the Bobby record and tries to cast the record to a Person object. This
action fails with a class cast exception because the proxy that is returned is not a
Person object. The returned proxy implements the IPerson object and
ValueProxyInfo.

ValueProxyInfo interface and partial update support: This interface allows an
application to retrieve either the committed read-only value referenced by the
proxy or the set of attributes that have been modified during this transaction.
public interface ValueProxyInfo {

List /**/ ibmGetDirtyAttributes();
Object ibmGetRealValue();

}

The ibmGetRealValue method returns a read-only copy of the object. The
application must not modify this value. The ibmGetDirtyAttributes method returns
a list of strings that represent the attributes that were modified by the application
during this transaction. The main use case for the ibmGetDirtyAttributes method is
in a Java database connectivity (JDBC) or CMP-based loader. Only the attributes
that are named in the list need be updated on either the SQL statement or object
mapped to the table. This practice leads to more efficient SQL generated by the
Loader. When a copy on write transaction is committed and if a loader is plugged
in, the loader can cast the values of the modified objects to the ValueProxyInfo
interface to obtain this information.

Handling the equals method when using COPY_ON_WRITE or proxies: For
example, the following code constructs a Person object and then inserts it to an
ObjectMap. Next, it retrieves the same object using the ObjectMap.get method. The

398 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

value is cast to the interface. If the value is cast to the Person interface, a
ClassCastException exception results because the returned value is a proxy that
implements the IPerson interface and is not a Person object. The equality check
fails when using the == operation because they are not the same object.
session.begin();
// new the Person object
Person p = new Person(...);
personMap.insert(p.getName, p);
// retrieve it again, remember to use the interface for the cast
IPerson p2 = personMap.get(p.getName());
if(p2 == p) {

// they are the same
} else {

// they are not
}

Another consideration is when you must override the equals method. The equals
method must verify that the argument is an object that implements the IPerson
interface and cast the argument to be an IPerson object. Because the argument
might be a proxy that implements the IPerson interface, you must use the getAge
and getName methods when comparing instance variables for equality. See the
following example:
{

if (obj == null) return false;
if (obj instanceof IPerson) {

IPerson x = (IPerson) obj;
return (age.equals(x.getAge()) && name.equals(x.getName()))

}
return false;

}

ObjectQuery and HashIndex configuration requirements: When you are using
COPY_ON_WRITE with ObjectQuery or a HashIndex plug-ins, you must configure
the ObjectQuery schema and HashIndex plug-in to access the objects using
property methods, which is the default. If you configured field access, the query
engine and index attempts to access the fields in the proxy object, which always
returns null or 0 because the object instance is a proxy.

NO_COPY

The NO_COPY mode allows an application to obtain performance improvements,
but requires that application to never modify a value object that is obtained using
an ObjectMap.get method. The valueInterfaceClass argument is ignored when this
mode is used. If this mode is used, no copy of the value is ever made. If the
application modifies any value object instances that are retrieved from or added to
the ObjectMap, then the data in the BackingMap is corrupted. The NO_COPY
mode is primarily useful for read-only maps where data is never modified by the
application. If the application is using this mode and it is having problems, then
switch to the COPY_ON_READ_AND_COMMIT mode to see if the problem still
exists. If the problem goes away, then the application is modifying the value
returned by ObjectMap.get method, either during transaction or after transaction
has committed. All maps associated with EntityManager API entities automatically
use this mode regardless of what is specified in the eXtreme Scale configuration.

All maps associated with EntityManager API entities automatically use this mode
regardless of what is specified in the eXtreme Scale configuration.

Chapter 6. Tuning performance 399

COPY_TO_BYTES

You can store objects in a serialized format instead of POJO format. By using the
COPY_TO_BYTES setting, you can reduce the memory footprint that a large graph
of objects can consume. For more information, see “Improving performance with
byte array maps.”

COPY_TO_BYTES_RAW

With COPY_TO_BYTES_RAW, you can directly access the serialized form of your
data. This copy mode offers an efficient way for you to interact with serialized
bytes, which allows you to bypass the deserialization process to access objects in
memory.

In the ObjectGrid descriptor XML file, you can set the copy mode to
COPY_TO_BYTES, and programmatically set the copy mode to
COPY_TO_BYTES_RAW in the instances where you want to access the raw,
serialized data. Set the copy mode to COPY_TO_BYTES _RAW in the ObjectGrid
descriptor XML file only when your application uses the raw data as a part of a
main application process.

Incorrect use of CopyMode

Errors occur when an application attempts to improve performance by using the
COPY_ON_READ, COPY_ON_WRITE, or NO_COPY copy mode, as described
above. The intermittent errors do not occur when you change the copy mode to
the COPY_ON_READ_AND_COMMIT mode.

Problem

The problem might be due to corrupted data in the ObjectGrid map, which is a
result of the application violating the programming contract of the copy mode that
is being used. Data corruption can cause unpredictable errors to occur
intermittently or in an unexplained or unexpected fashion.

Solution

The application must comply with the programming contract that is stated for the
copy mode being used. For the COPY_ON_READ and COPY_ON_WRITE copy
modes, the application uses a reference to a value object outside of the transaction
scope from which the value reference was obtained. To use these modes, the
application must delete the reference to the value object after the transaction
completes, and obtain a new reference to the value object in each transaction that
accesses the value object. For the NO_COPY copy mode, the application must
never change the value object. In this case, either write the application so that it
does not change the value object, or set the application to use a different copy
mode.

Improving performance with byte array maps
You can store values in your maps in a byte array instead of POJO form, which
reduces the memory footprint that a large graph of objects can consume.

Advantages

The amount of memory that is consumed increases with the number of objects in a
graph of objects. By reducing a complicated graph of objects to a byte array, only

400 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

one object is maintained in the heap instead of several objects. With this reduction
of the number of objects in the heap, the Java run time has fewer objects to search
for during garbage collection.

The default copy mechanism used by WebSphere eXtreme Scale is serialization,
which is expensive. For instance, if using the default copy mode of
COPY_ON_READ_AND_COMMIT, a copy is made both at read time and at get time.
Instead of making a copy at read time, with byte arrays, the value is inflated from
bytes, and instead of making a copy at commit time, the value is serialized to
bytes. Using byte arrays results in equivalent data consistency to the default setting
with a reduction of memory used.

When using byte arrays, note that having an optimized serialization mechanism is
critical to seeing a reduction of memory consumption. For more information, see
“Tuning serialization performance” on page 407.

Configuring byte array maps

You can enable byte array maps with the ObjectGrid XML file by modifying the
CopyMode attribute that is used by a map to the setting COPY_TO_BYTES, shown
in the following example:
<backingMap name="byteMap" copyMode="COPY_TO_BYTES" />

Considerations

You must consider whether or not to use byte array maps in a given scenario.
Although you can reduce your memory use, processor use can increase when you
use byte arrays.

The following list outlines several factors that should be considered before
choosing to use the byte array map function.

Object type

Comparatively, memory reduction may not be possible when using byte array
maps for some object types. Consequently, several types of objects exist for which
you should not use byte array maps. If you are using any of the Java primitive
wrappers as values, or a POJO that does not contain references to other objects
(only storing primitive fields), the number of Java Objects is already as low as
possible–there is only one. Since the amount of memory used by the object is
already optimized, using a byte array map for these types of objects is not
recommended. Byte array maps are more suitable to object types that contain other
objects or collections of objects where the total number of POJO objects is greater
than one.

For example, if you have a Customer object that had a business Address and a
home Address, as well as a collection of Orders, the number of objects in the heap
and the number of bytes used by those objects can be reduced by using byte array
maps.

Local access

When using other copy modes, applications can be optimized when copies are
made if objects are Cloneable with the default ObjectTransformer or when a
custom ObjectTransformer is provided with an optimized copyValue method.
Compared to the other copy modes, copying on reads, writes, or commit

Chapter 6. Tuning performance 401

operations will have additional cost when accessing objects locally. For example, if
you have a near cache in a distributed topology or are directly accessing a local or
server ObjectGrid instance, the access and commit time will increase when using
byte array maps due to the cost of serialization. You will see a similar cost in a
distributed topology if you use data grid agents or you access the server primary
when using the ObjectGridEventGroup.ShardEvents plug-in.

Plug-in interactions

With byte array maps, objects are not inflated when communicating from a client
to a server unless the server needs the POJO form. Plug-ins that interact with the
map value will experience a reduction in performance due to the requirement to
inflate the value.

Any plug-in that uses LogElement.getCacheEntry or LogElement.getCurrentValue
will see this additional cost. If you want to get the key, you can use
LogElement.getKey, which avoids the additional overhead associated with the
LogElement.getCacheEntry().getKey method. The following sections discuss
plug-ins in light of the usage of byte arrays.

Indexes and queries

When objects are stored in POJO format, the cost of doing indexing and querying
is minimal because the object does not need to be inflated. When using a byte
array map you will have the additional cost of inflating the object. In general if
your application uses indexes or queries, it is not recommended to use byte array
maps unless you only run queries on key attributes.

Optimistic locking

When using the optimistic locking strategy, you will have the additional cost
during updates and invalidate operations. This comes from having to inflate the
value on the server to get the version value to do optimistic collision checking. If
you are just using optimistic locking to guarantee fetch operations and do not need
optimistic collision checking, you can use the
com.ibm.websphere.objectgrid.plugins.builtins.NoVersioningOptimisticCallback to
disable version checking.

Loader

With a Loader, you will also have the cost in the eXtreme Scale run time from
inflating and reserializing the value when it is used by the Loader. You can still
use byte array maps with Loaders, but consider the cost of making changes to the
value in such a scenario. For example, you can use the byte array feature in the
context of a read mostly cache. In this case, the benefit of having less objects in the
heap and less memory used will outweigh the cost incurred from using byte arrays
on insert and update operations.

ObjectGridEventListener

When using the transactionEnd method in the ObjectGridEventListener plug-in,
you will have an additional cost on the server side for remote requests when
accessing a LogElement's CacheEntry or current value. If the implementation of the
method does not access these fields, then you will not have the additional cost.

402 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Tuning copy operations with the ObjectTransformer interface
The ObjectTransformer interface uses callbacks to the application to provide
custom implementations of common and expensive operations such as object
serialization and deep copies on objects.

The ObjectTransformer interface has been replaced by the DataSerializer
plug-ins, which you can use to efficiently store arbitrary data in WebSphere
eXtreme Scale so that existing product APIs can efficiently interact with your data.

Overview

Copies of values are always made except when the NO_COPY mode is used. The
default copying mechanism that is employed in eXtreme Scale is serialization,
which is known as an expensive operation. The ObjectTransformer interface is used
in this situation. The ObjectTransformer interface uses callbacks to the application
to provide a custom implementation of common and expensive operations, such as
object serialization and deep copies on objects.

An application can provide an implementation of the ObjectTransformer interface
to a map, and eXtreme Scale then delegates to the methods on this object and
relies on the application to provide an optimized version of each method in the
interface. The ObjectTransformer interface follows:
public interface ObjectTransformer {

void serializeKey(Object key, ObjectOutputStream stream) throws IOException;
void serializeValue(Object value, ObjectOutputStream stream) throws IOException;
Object inflateKey(ObjectInputStream stream) throws IOException, ClassNotFoundException;
Object inflateValue(ObjectInputStream stream) throws IOException, ClassNotFoundException;
Object copyValue(Object value);
Object copyKey(Object key);

}

You can associate an ObjectTransformer interface with a BackingMap by using the
following example code:
ObjectGrid g = ...;
BackingMap bm = g.defineMap("PERSON");
MyObjectTransformer ot = new MyObjectTransformer();
bm.setObjectTransformer(ot);

Tune deep copy operations

After an application receives an object from an ObjectMap, eXtreme Scale performs
a deep copy on the object value to ensure that the copy in the BaseMap map
maintains data integrity. The application can then modify the object value safely.
When the transaction commits, the copy of the object value in the BaseMap map is
updated to the new modified value and the application stops using the value from
that point on. You could have copied the object again at the commit phase to make
a private copy. However, in this case the performance cost of this action was
traded off against requiring the application programmer not to use the value after
the transaction commits. The default ObjectTransformer attempts to use either a
clone or a serialize and inflate pair to generate a copy. The serialize and inflate pair
is the worst case performance scenario. If profiling reveals that serialize and inflate
is a problem for your application, write an appropriate clone method to create a
deep copy. If you cannot alter the class, then create a custom ObjectTransformer
plug-in and implement more efficient copyValue and copyKey methods.

Chapter 6. Tuning performance 403

Tuning evictors
If you use plug-in evictors, they are not active until you create them and associate
them with a backing map. The following best practices increase performance for
least frequently used (LFU) and least recently used (LRU) evictors.

Least frequently used (LFU) evictor

The concept of a LFU evictor is to remove entries from the map that are used
infrequently. The entries of the map are spread over a set amount of binary heaps.
As the usage of a particular cache entry grows, it becomes ordered higher in the
heap. When the evictor attempts a set of evictions it removes only the cache entries
that are located lower than a specific point on the binary heap. As a result, the
least frequently used entries are evicted.

Least recently used (LRU) evictor

The LRU Evictor follows the same concepts of the LFU Evictor with a few
differences. The main difference is that the LRU uses a first in, first out queue
(FIFO) instead of a set of binary heaps. Every time a cache entry is accessed, it
moves to the head of the queue. Consequently, the front of the queue contains the
most recently used map entries and the end becomes the least recently used map
entries. For example, the A cache entry is used 50 times, and the B cache entry is
used only once right after the A cache entry. In this situation, the B cache entry is
at the front of the queue because it was used most recently, and the A cache entry
is at the end of the queue. The LRU evictor evicts the cache entries that are at the
tail of the queue, which are the least recently used map entries.

LFU and LRU properties and best practices to improve
performance

Number of heaps

When using the LFU evictor, all of the cache entries for a particular map are
ordered over the number of heaps that you specify, improving performance
drastically and preventing all of the evictions from synchronizing on one binary
heap that contains all of the ordering for the map. More heaps also speeds up the
time that is required for reordering the heaps because each heap has fewer entries.
Set the number of heaps to 10% of the number of entries in your BaseMap.

Number of queues

When using the LRU evictor, all of the cache entries for a particular map are
ordered over the number of LRU queues that you specify, improving performance
drastically and preventing all of the evictions from synchronizing on one queue
that contains all of the ordering for the map. Set the number of queues to 10% of
the number of entries in your BaseMap.

MaxSize property

When an LFU or LRU evictor begins evicting entries, it uses the MaxSize evictor
property to determine how many binary heaps or LRU queue elements to evict.
For example, assume that you set the number of heaps or queues to have about 10
map entries in each map queue. If your MaxSize property is set to 7, the evictor
evicts 3 entries from each heap or queue object to bring the size of each heap or
queue back down to 7. The evictor only evicts map entries from a heap or queue

404 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

when that heap or queue has more than the MaxSize property value of elements in
it. Set the MaxSize to 70% of your heap or queue size. For this example, the value
is set to 7. You can get an approximate size of each heap or queue by dividing the
number of BaseMap entries by the number of heaps or queues that are used.

SleepTime property

An evictor does not constantly remove entries from your map. Instead it is idle for
a set amount of time, only checking the map every n number of seconds, where n
refers to the SleepTime property. This property also positively affects performance:
running an eviction sweep too often lowers performance because of the resources
that are needed for processing them. However, not using the evictor often can
result in a map that has entries that are not needed. A map full of entries that are
not needed can negatively affect both the memory requirements and processing
resources that are required for your map. Setting the eviction sweep interval to
fifteen seconds is a good practice for most maps. If the map is written to
frequently and is used at a high transaction rate, consider setting the value to a
lower time. If the map is accessed infrequently, you can set the time to a higher
value.

Example

The following example defines a map, creates a new LFU evictor, sets the evictor
properties, and sets the map to use the evictor:
//Use ObjectGridManager to create/get the ObjectGrid. Refer to
// the ObjectGridManger section
ObjectGrid objGrid = ObjectGridManager.create............
BackingMap bMap = objGrid.defineMap("SomeMap");

//Set properties assuming 50,000 map entries
LFUEvictor someEvictor = new LFUEvictor();
someEvictor.setNumberOfHeaps(5000);
someEvictor.setMaxSize(7);
someEvictor.setSleepTime(15);
bMap.setEvictor(someEvictor);

Using the LRU evictor is very similar to using an LFU evictor. An example follows:
ObjectGrid objGrid = new ObjectGrid;
BackingMap bMap = objGrid.defineMap("SomeMap");

//Set properties assuming 50,000 map entries
LRUEvictor someEvictor = new LRUEvictor();
someEvictor.setNumberOfLRUQueues(5000);
someEvictor.setMaxSize(7);
someEvictor.setSleepTime(15);
bMap.setEvictor(someEvictor);

Notice that only two lines are different from the LFUEvictor example.

Tuning locking performance
Locking strategies and transaction isolation settings affect the performance of your
applications.

Retrieve a cached instance

For more information, see “Lock manager” on page 220:

Chapter 6. Tuning performance 405

Pessimistic locking strategy

Use the pessimistic locking strategy for read and write map operations where keys
often collide. The pessimistic locking strategy has the greatest impact on
performance.

Read committed and read uncommitted transaction isolation

When you are using pessimistic locking strategy, set the transaction isolation level
using the Session.setTransactionIsolation method. For read committed or read
uncommitted isolation, use the Session.TRANSACTION_READ_COMMITTED or
Session.TRANSACTION_READ_UNCOMMITTED arguments depending on the
isolation. To reset the transaction isolation level to the default pessimistic locking
behavior, use the Session.setTransactionIsolation method with the
Session.REPEATABLE_READ argument.

Read committed isolation reduces the duration of shared locks, which can improve
concurrency and reduce the chance for deadlocks. This isolation level should be
used when a transaction does not need assurances that read values remain
unchanged for the duration of the transaction.

Use an uncommitted read when the transaction does not need to see the
committed data.

Optimistic locking strategy

Optimistic locking is the default configuration. This strategy improves both
performance and scalability compared to the pessimistic strategy. Use this strategy
when your applications can tolerate some optimistic update failures, while still
performing better than the pessimistic strategy. This strategy is excellent for read
operations and infrequent update applications.

OptimisticCallback plug-in

The optimistic locking strategy makes a copy of the cache entries and compares
them as needed. This operation can be expensive because copying the entry might
involve cloning or serialization. To implement the fastest possible performance,
implement the custom plug-in for non-entity maps.

See for more information. See the information about the OptimisticCallback plug-in
in the Product Overview for more information.

Use version fields for entities

When you are using optimistic locking with entities, use the @Version annotation
or the equivalent attribute in the Entity metadata descriptor file. The version
annotation gives the ObjectGrid a very efficient way of tracking the version of an
object. If the entity does not have a version field and optimistic locking is used for
the entity, then the entire entity must be copied and compared.

None locking strategy

Use the none locking strategy for applications that are read only. The none locking
strategy does not obtain any locks or use a lock manager. Therefore, this strategy
offers the most concurrency, performance and scalability.

406 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Tuning serialization performance
WebSphere eXtreme Scale uses multiple Java processes to hold data. These
processes serialize the data: That is, they convert the data (which is in the form of
Java object instances) to bytes and back to objects again as needed to move the
data between client and server processes. Marshalling the data is the most
expensive operation and must be addressed by the application developer when
designing the schema, configuring the data grid and interacting with the
data-access APIs.

The default Java serialization and copy routines are relatively slow and can
consume 60 to 70 percent of the processor in a typical setup. The following
sections are choices for improving the performance of the serialization.

The ObjectTransformer interface has been replaced by the DataSerializer
plug-ins, which you can use to efficiently store arbitrary data in WebSphere
eXtreme Scale so that existing product APIs can efficiently interact with your data.

Write an ObjectTransformer for each BackingMap

An ObjectTransformer can be associated with a BackingMap. Your application can
have a class that implements the ObjectTransformer interface and provides
implementations for the following operations:
v Copying values
v Serializing and inflating keys to and from streams
v Serializing and inflating values to and from streams

The application does not need to copy keys because keys are considered
immutable.

Note: The ObjectTransformer is only invoked when the ObjectGrid knows about
the data that is being transformed. For example, when DataGrid API agents are
used, the agents themselves as well as the agent instance data or data returned
from the agent must be optimized using custom serialization techniques. The
ObjectTransformer is not invoked for DataGrid API agents.

Using entities

When using the EntityManager API with entities, the ObjectGrid does not store the
entity objects directly into the BackingMaps. The EntityManager API converts the
entity object to Tuple objects. Entity maps are automatically associated with a
highly optimized ObjectTransformer. Whenever the ObjectMap API or
EntityManager API is used to interact with entity maps, the entity
ObjectTransformer is invoked.

Custom serialization

Some cases exist where objects must be modified to use custom serialization, such
as implementing the java.io.Externalizable interface or by implementing the
writeObject and readObject methods for classes implementing the
java.io.Serializable interface. Custom serialization techniques should be employed
when the objects are serialized using mechanisms other than the ObjectGrid API or
EntityManager API methods.

Chapter 6. Tuning performance 407

For example, when objects or entities are stored as instance data in a DataGrid API
agent or the agent returns objects or entities, those objects are not transformed
using an ObjectTransformer. The agent, will however, automatically use the
ObjectTransformer when using EntityMixin interface. See DataGrid agents and
entity based Maps for further details.

Byte arrays

When using the ObjectMap or DataGrid APIs, the key and value objects are
serialized whenever the client interacts with the data grid and when the objects are
replicated. To avoid the overhead of serialization, use byte arrays instead of Java
objects. Byte arrays are much cheaper to store in memory since the JDK has less
objects to search for during garbage collection and they are can be inflated only
when needed. Byte arrays should only be used if you do not need to access the
objects using queries or indexes. Since the data is stored as bytes, the data can only
be accessed through its key.

WebSphere eXtreme Scale can automatically store data as byte arrays using the
CopyMode.COPY_TO_BYTES map configuration option, or it can be handled
manually by the client. This option will store the data efficiently in memory and
can also automatically inflate the objects within the byte array for use by query
and indexes on demand.

A MapSerializerPlugin plug-in can be associated with a BackingMap plug-in when
you use the COPY_TO_BYTES or COPY_TO_BYTES_RAW copy modes. This
association allows data to be stored in serialized form in memory, rather than the
native Java object form. Storing serialized data conserves memory and improves
replication and performance on the client and server. You can use a DataSerializer
plug-in to develop high-performance serialization streams that can be compressed,
encrypted, evolved, and queried.

Tuning serialization
The DataSerializer plug-ins expose metadata that tells WebSphere eXtreme Scale
which attributes it can and cannot directly use during serialization, the path to the
data that will be serialized, and the type of data that is stored in memory. You can
optimize object serialization and inflation performance so that you can efficiently
interact with the byte array.

Overview

The ObjectTransformer interface has been replaced by the DataSerializer
plug-ins, which you can use to efficiently store arbitrary data in WebSphere
eXtreme Scale so that existing product APIs can efficiently interact with your data.

Copies of values are always made except when the NO_COPY mode is used. The
default copying mechanism that is employed in eXtreme Scale is serialization,
which is known as an expensive operation. The ObjectTransformer interface is used
in this situation. The ObjectTransformer interface uses callbacks to the application
to provide a custom implementation of common and expensive operations, such as
object serialization and deep copies on objects. However, for improved
performance in most cases, you can use the DataSerializer plug-ins to serialize
objects. You must use either the COPY_TO_BYTES or COPY_TO_BYTES_RAW
copy modes to exploit the DataSerializer plug-ins. For more information, see
Serialization using the DataSerializer plug-ins.

408 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/cxsserial.html

An application can provide an implementation of the ObjectTransformer interface
to a map, and eXtreme Scale then delegates to the methods on this object and
relies on the application to provide an optimized version of each method in the
interface. The ObjectTransformer interface follows:
public interface ObjectTransformer {

void serializeKey(Object key, ObjectOutputStream stream) throws IOException;
void serializeValue(Object value, ObjectOutputStream stream) throws IOException;
Object inflateKey(ObjectInputStream stream) throws IOException, ClassNotFoundException;
Object inflateValue(ObjectInputStream stream) throws IOException, ClassNotFoundException;
Object copyValue(Object value);
Object copyKey(Object key);

}

You can associate an ObjectTransformer interface with a BackingMap by using the
following example code:
ObjectGrid g = ...;
BackingMap bm = g.defineMap("PERSON");
MyObjectTransformer ot = new MyObjectTransformer();
bm.setObjectTransformer(ot);

Tune object serialization and inflation

Object serialization is typically the most important performance consideration with
eXtreme Scale, which uses the default serializable mechanism if an
ObjectTransformer plug-in is not supplied by the application. An application can
provide implementations of either the Serializable readObject and writeObject, or it
can have the objects implement the Externalizable interface, which is
approximately ten times faster. If the objects in the map cannot be modified, then
an application can associate an ObjectTransformer interface with the ObjectMap.
The serialize and inflate methods are provided to allow the application to provide
custom code to optimize these operations, given their large performance impact on
the system. The serialize method serializes the object to the provided stream. The
inflate method provides the input stream and expects the application to create the
object, inflate it using data in the stream and return the object. Implementations of
the serialize and inflate methods must mirror each other.

The DataSerializer plug-ins replace the ObjectTransformer plug-ins, which are
deprecated. To serialize your data in the most efficient way, use the DataSerializer
plug-ins to improve performance in most cases. For example, if you intend to use
functions, such as query and indexing, then you can immediately take advantage
of the performance improvement that the DataSerializer plug-ins yield without
making configuration or programmatic changes to your application code.

Tuning query performance
To tune the performance of your queries, use the following techniques and tips.

Using parameters

When a query runs, the query string must be parsed and a plan developed to run
the query, both of which can be costly.WebSphere eXtreme Scale caches query plans
by the query string. Since the cache is a finite size, it is important to reuse query
strings whenever possible. Using named or positional parameters also helps
performance by fostering query plan reuse.

Positional Parameter Example Query q = em.createQuery("select c from
Customer c where c.surname=?1"); q.setParameter(1, "Claus");

Chapter 6. Tuning performance 409

Using indexes

Proper indexing on a map might have a significant impact on query performance,
even though indexing has some overhead on overall map performance. Without
indexing on object attributes involved in queries, the query engine performs a table
scan for each attribute. The table scan is the most expensive operation during a
query run. Indexing on object attributes that are involved in queries allow the
query engine to avoid an unnecessary table scan, improving the overall query
performance. If the application is designed to use query intensively on a read-most
map, configure indexes for object attributes that are involved in the query. If the
map is mostly updated, then you must balance between query performance
improvement and indexing overhead on the map.

When plain old Java objects (POJO) are stored in a map, proper indexing can avoid
a Java reflection. In the following example, query replaces the WHERE clause with
range index search, if the budget field has an index built over it. Otherwise, query
scans the entire map and evaluates the WHERE clause by first getting the budget
using Java reflection and then comparing the budget with the value 50000:

SELECT d FROM DeptBean d WHERE d.budget=50000

See “Query plan” for details on how to best tune individual queries and how
different syntax, object models and indexes can affect query performance.

Using pagination

In client-server environments, the query engine transports the entire result map to
the client. The data that is returned should be divided into reasonable chunks. The
EntityManager Query and ObjectMap ObjectQuery interfaces both support the
setFirstResult and setMaxResults methods that allow the query to return a subset
of the results.

Return primitive values instead of entities

With the EntityManager Query API, entities are returned as query parameters. The
query engine currently returns the keys for these entities to the client. When the
client iterates over these entities using the Iterator from the getResultIterator
method, each entity is automatically inflated and managed as if it were created
with the find method on the EntityManager interface. The entire entity graph is
built from the entity ObjectMap on the client. The entity value attributes and any
related entities are eagerly resolved.

To avoid building the costly graph, modify the query to return the individual
attributes with path navigation.

For example:
// Returns an entity
SELECT p FROM Person p
// Returns attributes SELECT p.name, p.address.street, p.address.city, p.gender FROM Person p

Query plan
All eXtreme Scale queries have a query plan. The plan describes how the query
engine interacts with ObjectMaps and indexes. Display the query plan to
determine if the query string or indexes are being used appropriately. The query
plan can also be used to explore the differences that subtle changes in a query
string make in the way eXtreme Scale runs a query.

410 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

The query plan can be viewed one of two ways:
v EntityManager Query or ObjectQuery getPlan API methods
v ObjectGrid diagnostic trace

getPlan method

The getPlan method on the ObjectQuery and Query interfaces return a String that
describes the query plan. This string can be displayed to standard output or a log
to display a query plan.

Note: In a distributed environment, the getPlan method does not run against the
server and does not reflect any defined indexes. To view the plan, use an agent to
view the plan on the server.

Query plan trace

The query plan can be displayed using ObjectGrid trace. To enable query plan
trace, use the following trace specification:
QueryEnginePlan=debug=enabled

See “Collecting trace” on page 469 for details on how to enable trace and locate the
trace log files.

Query plan examples

Query plan uses the word for to indicate that the query is iterating through an
ObjectMap collection or through a derived collection such as: q2.getEmps(),
q2.dept, or a temporary collection returned by an inner loop. If the collection is
from an ObjectMap, the query plan shows whether a sequential scan (denoted by
INDEX SCAN), unique or non-unique index is used. Query plan uses a filter string to
list the condition expressions applied to a collection.

A Cartesian product is not commonly used in object query. The following query
scans the entire EmpBean map in the outer loop and scans the entire DeptBean
map in the inner loop:
SELECT e, d FROM EmpBean e, DeptBean d

Plan trace:

for q2 in EmpBean ObjectMap using INDEX SCAN
for q3 in DeptBean ObjectMap using INDEX SCAN

returning new Tuple(q2, q3)

The following query retrieves all employee names from a particular department by
sequentially scanning the EmpBean map to get an employee object. From the
employee object, the query navigates to its department object and applies the
d.no=1 filter. In this example, each employee has only one department object
reference, so the inner loop runs one time:
SELECT e.name FROM EmpBean e JOIN e.dept d WHERE d.no=1

Plan trace:

for q2 in EmpBean ObjectMap using INDEX SCAN
for q3 in q2.dept
filter (q3.getNo() = 1)

returning new Tuple(q2.name)

Chapter 6. Tuning performance 411

The following query is equivalent to the previous query. However, the following
query performs better because it first narrows the result down to one department
object by using the unique index that is defined over the DeptBean primary key
field number. From the department object, the query navigates to its employee
objects to get their names:
SELECT e.name FROM DeptBean d JOIN d.emps e WHERE d.no=1

Plan trace:

for q2 in DeptBean ObjectMap using UNIQUE INDEX key=(1)
for q3 in q2.getEmps()

returning new Tuple(q3.name)

The following query finds all the employees that work for development or sales.
The query scans the entire EmpBean map and performs additional filtering by
evaluating the expressions: d.name = 'Sales' or d.name='Dev'
SELECT e FROM EmpBean e, in (e.dept) d WHERE d.name = ’Sales’
or d.name=’Dev’

Plan trace:

for q2 in EmpBean ObjectMap using INDEX SCAN
for q3 in q2.dept
filter ((q3.getName() = Sales) OR (q3.getName() = Dev))

returning new Tuple(q2)

The following query is equivalent to the previous query, but this query runs a
different query plan and uses the range index built over the field name. In general,
this query performs better because the index over the name field is used for
narrowing down the department objects, which run quickly if only a few
departments are development or sales.
SELECT e FROM DeptBean d, in(d.emps) e WHERE d.name=’Dev’ or d.name=’Sales’

Plan trace:

IteratorUnionIndex of

for q2 in DeptBean ObjectMap using INDEX on name = (Dev)
for q3 in q2.getEmps()

for q2 in DeptBean ObjectMap using INDEX on name = (Sales)
for q3 in q2.getEmps()

The following query finds departments that do not have any employees:
SELECT d FROM DeptBean d WHERE NOT EXISTS(select e from d.emps e)

Plan trace:

for q2 in DeptBean ObjectMap using INDEX SCAN
filter (NOT EXISTS (correlated collection defined as

for q3 in q2.getEmps()
returning new Tuple(q3)

returning new Tuple(q2)

The following query is equivalent to the previous query but uses the SIZE scalar
function. This query has similar performance but is easier to write.

412 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

SELECT d FROM DeptBean d WHERE SIZE(d.emps)=0
for q2 in DeptBean ObjectMap using INDEX SCAN

filter (SIZE(q2.getEmps()) = 0)
returning new Tuple(q2)

The following example is another way of writing the same query as the previous
query with similar performance, but this query is easier to write as well:
SELECT d FROM DeptBean d WHERE d.emps is EMPTY

Plan trace:

for q2 in DeptBean ObjectMap using INDEX SCAN
filter (q2.getEmps() IS EMPTY)
returning new Tuple(q2)

The following query finds any employees with a home address matching at least
one of the addresses of the employee whose name equals the value of the
parameter. The inner loop has no dependency on the outer loop. The query runs
the inner loop one time.
SELECT e FROM EmpBean e WHERE e.home = any (SELECT e1.home FROM EmpBean e1
WHERE e1.name=?1)
for q2 in EmpBean ObjectMap using INDEX SCAN

filter (q2.home =ANY temp collection defined as

for q3 in EmpBean ObjectMap using INDEX on name = (?1)
returning new Tuple(q3.home)

)
returning new Tuple(q2)

The following query is equivalent to the previous query, but has a correlated
subquery; also, the inner loop runs repeatedly.
SELECT e FROM EmpBean e WHERE EXISTS(SELECT e1 FROM EmpBean e1 WHERE
e.home=e1.home and e1.name=?1)

Plan trace:

for q2 in EmpBean ObjectMap using INDEX SCAN
filter (EXISTS (correlated collection defined as

for q3 in EmpBean ObjectMap using INDEX on name = (?1)
filter (q2.home = q3.home)
returning new Tuple(q3)

returning new Tuple(q2)

Query optimization using indexes
Defining and using indexes properly can significantly improve query performance.

WebSphere eXtreme Scale queries can use built-in HashIndex plug-ins to improve
performance of queries. Indexes can be defined on entity or object attributes. The
query engine will automatically use the defined indexes if its WHERE clause uses
one of the following strings:
v A comparison expression with the following operators: =, <, >, <= or >= (any

comparison expressions except not equals <>)
v A BETWEEN expression
v Operands of the expressions are constants or simple terms

Chapter 6. Tuning performance 413

Requirements

Indexes have the following requirements when used by Query:
v All indexes must use the built-in HashIndex plug-in.
v All indexes must be statically defined. Dynamic indexes are not supported.
v The @Index annotation may be used to automatically create static HashIndex

plug-ins.
v All single-attribute indexes must have the RangeIndex property set to true.
v All composite indexes must have the RangeIndex property set to false.
v All association (relationship) indexes must have the RangeIndex property set to

false.

For information about configuring the HashIndex, refer to “Plug-ins for indexing
data” on page 304.

For information regarding indexing, see “Indexing” on page 103.

For a more efficient way to search for cached objects, see “Using a composite
index” on page 311

Using hints to choose an index

An index can be manually selected using the setHint method on the Query and
ObjectQuery interfaces with the HINT_USEINDEX constant. This can be helpful
when optimizing a query to use the best performing index.

Query examples that use attribute indexes

The following examples use simple terms: e.empid, e.name, e.salary, d.name,
d.budget and e.isManager. The examples assume that indexes are defined over the
name, salary and budget fields of an entity or value object. The empid field is a
primary key and isManager has no index defined.

The following query uses both indexes over the fields of name and salary. It
returns all employees with names that equal the value of the first parameter or a
salary equal to the value of the second parameter:

SELECT e FROM EmpBean e where e.name=?1 or e.salary=?2

The following query uses both indexes over the fields of name and budget. The
query returns all departments named 'DEV' with a budget that is greater than
2000.

SELECT d FROM DeptBean dwhere d.name=’DEV’ and d.budget>2000

The following query returns all employees with a salary greater than 3000 and
with an isManager flag value that equals the value of the parameter. The query
uses the index that is defined over the salary field and performs additional
filtering by evaluating the comparison expression: e.isManager=?1.

SELECT e FROM EmpBean e where e.salary>3000 and e.isManager=?1

The following query finds all employees who earn more than the first parameter,
or any employee that is a manager. Although the salary field has an index defined,

414 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

query scans the built-in index that is built over the primary keys of the EmpBean
field and evaluates the expression: e.salary>?1 or e.isManager=TRUE.

SELECT e FROM EmpBean e WHERE e.salary>?1 or e.isManager=TRUE

The following query returns employees with a name that contains the letter a.
Although the name field has an index defined, query does not use the index
because the name field is used in the LIKE expression.

SELECT e FROM EmpBean e WHERE e.name LIKE ’%a%’

The following query finds all employees with a name that is not "Smith". Although
the name field has an index defined, query does not use the index because the
query uses the not equals (<>) comparison operator.

SELECT e FROM EmpBean e where e.name<>’Smith’

The following query finds all departments with a budget less than the value of the
parameter, and with an employee salary greater than 3000. The query uses an
index for the salary, but it does not use an index for the budget because
dept.budget is not a simple term. The dept objects are derived from collection e.
You do not need to use the budget index to look for dept objects.

SELECT dept from EmpBean e, in (e.dept) dept where e.salary>3000 and
dept.budget<?

The following query finds all employees with a salary greater than the salary of
the employees that have the empid of 1, 2, and 3. The index salary is not used
because the comparison involves a subquery. The empid is a primary key, however,
and is used for a unique index search because all the primary keys have a built-in
index defined.

SELECT e FROM EmpBean e WHERE e.salary > ALL (SELECT e1.salary FROM
EmpBean e1 WHERE e1.empid=1 or e1.empid =2 or e1.empid=99)

To check if the index is being used by the query, you can view the “Query plan”
on page 410. Here is an example query plan for the previous query:
for q2 in EmpBean ObjectMap using INDEX SCAN

filter (q2.salary >ALL temp collection defined as
IteratorUnionIndex of

for q3 in EmpBean ObjectMap using UNIQUE INDEX key=(1)
)

for q3 in EmpBean ObjectMap using UNIQUE INDEX key=(2)
)

for q3 in EmpBean ObjectMap using UNIQUE INDEX key=(99)
)
returning new Tuple(q3.salary)

returning new Tuple(q2)

for q2 in EmpBean ObjectMap using RANGE INDEX on salary with range(3000,)
for q3 in q2.dept
filter (q3.budget < ?1)

returning new Tuple(q3)

Chapter 6. Tuning performance 415

Indexing attributes

Indexes can be defined over any single attribute type with the constraints
previously defined.

Defining entity indexes using @Index

To define an index on an entity, simply define an annotation:
Entities using annotations

@Entity
public class Employee {
@Id int empid;
@Index String name
@Index double salary
@ManyToOne Department dept;

}
@Entity

public class Department {
@Id int deptid;
@Index String name;
@Index double budget;
boolean isManager;
@OneToMany Collection<Employee> employees;
}

With XML

Indexes can also be defined using XML:
Entities without annotations

public class Employee {
int empid;
String name
double salary
Department dept;
}

public class Department {
int deptid;
String name;
double budget;
boolean isManager;
Collection employees;
}

ObjectGrid XML with attribute indexes

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="DepartmentGrid" entityMetadataXMLFile="entity.xml>
<backingMap name="Employee" pluginCollectionRef="Emp"/>
<backingMap name="Department" pluginCollectionRef="Dept"/>
</objectGrid>
</objectGrids>
<backingMapPluginCollections>
<backingMapPluginCollection id="Emp">
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Employee.name"/>
<property name="AttributeName" type="java.lang.String" value="name"/>
<property name="RangeIndex" type="boolean" value="true"
description="Ranges are must be set to true for attributes." />
</bean>
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Employee.salary"/>
<property name="AttributeName" type="java.lang.String" value="salary"/>
<property name="RangeIndex" type="boolean" value="true"
description="Ranges are must be set to true for attributes." />

416 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

</bean>
</backingMapPluginCollection>
<backingMapPluginCollection id="Dept">
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Department.name"/>
<property name="AttributeName" type="java.lang.String" value="name"/>
<property name="RangeIndex" type="boolean" value="true"
description="Ranges are must be set to true for attributes." />
</bean>
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Department.budget"/>
<property name="AttributeName" type="java.lang.String" value="budget"/>
<property name="RangeIndex" type="boolean" value="true"
description="Ranges are must be set to true for attributes." />
</bean>
</backingMapPluginCollection>
</backingMapPluginCollections>
</objectGridConfig>

Entity XML

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://ibm.com/ws/projector/config/emd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/projector/config/emd ./emd.xsd">

<description>Department entities</description>
<entity class-name="acme.Employee" name="Employee" access="FIELD">
<attributes>
<id name="empid" />
<basic name="name" />
<basic name="salary" />
<many-to-one name="department"
target-entity="acme.Department"
fetch="EAGER">
<cascade><cascade-persist/></cascade>
</many-to-one>
</attributes>
</entity>
<entity class-name="acme.Department" name="Department" access="FIELD">
<attributes>
<id name="deptid" />
<basic name="name" />
<basic name="budget" />
<basic name="isManager" />
<one-to-many name="employees"
target-entity="acme.Employee"
fetch="LAZY" mapped-by="parentNode">
<cascade><cascade-persist/></cascade>
</one-to-many>
</attributes>
</entity>
</entity-mappings>

Defining indexes for non-entities using XML

Indexes for non-entity types are defined in XML. There is no difference when
creating the MapIndexPlugin for entity maps and non-entity maps.
Java bean
public class Employee {

int empid;
String name
double salary
Department dept;

public class Department {
int deptid;
String name;
double budget;
boolean isManager;
Collection employees;
}

ObjectGrid XML with attribute indexes

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="DepartmentGrid">
<backingMap name="Employee" pluginCollectionRef="Emp"/>
<backingMap name="Department" pluginCollectionRef="Dept"/>

Chapter 6. Tuning performance 417

<querySchema>
<mapSchemas>
<mapSchema mapName="Employee" valueClass="acme.Employee"
primaryKeyField="empid" />
<mapSchema mapName="Department" valueClass="acme.Department"
primaryKeyField="deptid" />
</mapSchemas>
<relationships>
<relationship source="acme.Employee"
target="acme.Department"
relationField="dept" invRelationField="employees" />
</relationships>
</querySchema>
</objectGrid>
</objectGrids>
<backingMapPluginCollections>
<backingMapPluginCollection id="Emp">
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Employee.name"/>
<property name="AttributeName" type="java.lang.String" value="name"/>
<property name="RangeIndex" type="boolean" value="true"
description="Ranges are must be set to true for attributes." />
</bean>
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Employee.salary"/>
<property name="AttributeName" type="java.lang.String" value="salary"/>
<property name="RangeIndex" type="boolean" value="true"
description="Ranges are must be set to true for attributes." />
</bean>
</backingMapPluginCollection>
<backingMapPluginCollection id="Dept">
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Department.name"/>
<property name="AttributeName" type="java.lang.String" value="name"/>
<property name="RangeIndex" type="boolean" value="true"
description="Ranges are must be set to true for attributes." />
</bean>
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="Department.budget"/>
<property name="AttributeName" type="java.lang.String" value="budget"/>
<property name="RangeIndex" type="boolean" value="true"
description="Ranges are must be set to true for attributes." />
</bean>
</backingMapPluginCollection>
</backingMapPluginCollections>
</objectGridConfig>

Indexing relationships

WebSphere eXtreme Scale stores the foreign keys for related entities within the
parent object. For entities, the keys are stored in the underlying tuple. For
non-entity objects, the keys are explicitly stored in the parent object.

Adding an index on a relationship attribute can speed up queries that use cyclical
references or use the IS NULL, IS EMPTY, SIZE and MEMBER OF query filters.
Both single- and multi-valued associations may have the @Index annotation or a
HashIndex plug-in configuration in an ObjectGrid descriptor XML file.

Defining entity relationship indexes using @Index

The following example defines entities with @Index annotations:
Entity with annotation

@Entity
public class Node {

@ManyToOne @Index
Node parentNode;

@OneToMany @Index
List<Node> childrenNodes = new ArrayList();

@OneToMany @Index
List<BusinessUnitType> businessUnitTypes = new ArrayList();

}

418 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Defining entity relationship indexes using XML

The following example defines the same entities and indexes using XML with
HashIndex plug-ins:

Entity without annotations

public class Node {
int nodeId;
Node parentNode;
List<Node> childrenNodes = new ArrayList();
List<BusinessUnitType> businessUnitTypes = new ArrayList();
}

ObjectGrid XML

<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>
<objectGrid name="ObjectGrid_Entity" entityMetadataXMLFile="entity.xml>
<backingMap name="Node" pluginCollectionRef="Node"/>
<backingMap name="BusinessUnitType" pluginCollectionRef="BusinessUnitType"/>
</objectGrid>
</objectGrids>
<backingMapPluginCollections>
<backingMapPluginCollection id="Node">
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="parentNode"/>
<property name="AttributeName" type="java.lang.String" value="parentNode"/>

<property name="RangeIndex" type="boolean" value="false"
description="Ranges are not supported for association indexes." /> </bean>
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="businessUnitType"/>
<property name="AttributeName" type="java.lang.String" value="businessUnitTypes"/>

<property name="RangeIndex" type="boolean" value="false"
description="Ranges are not supported for association indexes." />
</bean>
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="childrenNodes"/>
<property name="AttributeName" type="java.lang.String" value="childrenNodes"/>

<property name="RangeIndex" type="boolean" value="false"
description="Ranges are not supported for association indexes." />
</bean>
</backingMapPluginCollection>
</backingMapPluginCollections>
</objectGridConfig>

Entity XML

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://ibm.com/ws/projector/config/emd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ibm.com/ws/projector/config/emd ./emd.xsd">

<description>My entities</description>
<entity class-name="acme.Node" name="Account" access="FIELD">
<attributes>
<id name="nodeId" />
<one-to-many name="childrenNodes"
target-entity="acme.Node"
fetch="EAGER" mapped-by="parentNode">
<cascade><cascade-all/></cascade>
</one-to-many>
<many-to-one name="parentNodes"
target-entity="acme.Node"
fetch="LAZY" mapped-by="childrenNodes">
<cascade><cascade-none/></cascade>
</one-to-many>
<many-to-one name="businessUnitTypes"
target-entity="acme.BusinessUnitType"
fetch="EAGER">
<cascade><cascade-persist/></cascade>
</many-to-one>

</attributes>
</entity>
<entity class-name="acme.BusinessUnitType" name="BusinessUnitType" access="FIELD">
<attributes>
<id name="buId" />
<basic name="TypeDescription" />
</attributes>
</entity>
</entity-mappings>

Chapter 6. Tuning performance 419

Using the previously defined indexes, the following entity query examples are
optimized:
SELECT n FROM Node n WHERE n.parentNode is null
SELECT n FROM Node n WHERE n.businessUnitTypes is EMPTY

SELECT n FROM Node n WHERE size(n.businessUnitTypes)>=10
SELECT n FROM BusinessUnitType b, Node n WHERE b member of n.businessUnitTypes and b.name=’TELECOM’

Defining non-entity relationship indexes

The following example defines a HashIndex plug-in for non-entity maps in an
ObjectGrid descriptor XML file:
<?xml version="1.0" encoding="UTF-8"?>
<objectGridConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ibm.com/ws/objectgrid/config ../objectGrid.xsd"
xmlns="http://ibm.com/ws/objectgrid/config">
<objectGrids>

<objectGrid name="ObjectGrid_POJO">
<backingMap name="Node" pluginCollectionRef="Node"/>
<backingMap name="BusinessUnitType" pluginCollectionRef="BusinessUnitType"/>
<querySchema>

<mapSchemas>
<mapSchema mapName="Node"

valueClass="com.ibm.websphere.objectgrid.samples.entity.Node"
primaryKeyField="id" />

<mapSchema mapName="BusinessUnitType"
valueClass="com.ibm.websphere.objectgrid.samples.entity.BusinessUnitType"
primaryKeyField="id" />

</mapSchemas>
<relationships>

<relationship source="com.ibm.websphere.objectgrid.samples.entity.Node"
target="com.ibm.websphere.objectgrid.samples.entity.Node"
relationField="parentNodeId" invRelationField="childrenNodeIds" />

<relationship source="com.ibm.websphere.objectgrid.samples.entity.Node"
target="com.ibm.websphere.objectgrid.samples.entity.BusinessUnitType"
relationField="businessUnitTypeKeys" invRelationField="" />

</relationships>
</querySchema>

</objectGrid>
</objectGrids>
<backingMapPluginCollections>

<backingMapPluginCollection id="Node">
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">

<property name="Name" type="java.lang.String" value="parentNode"/>
<property name="Name" type="java.lang.String" value="parentNodeId"/>
<property name="AttributeName" type="java.lang.String" value="parentNodeId"/>
<property name="RangeIndex" type="boolean" value="false"

description="Ranges are not supported for association indexes." />
</bean>
<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">

<property name="Name" type="java.lang.String" value="businessUnitType"/>
<property name="AttributeName" type="java.lang.String" value="businessUnitTypeKeys"/>

<property name="RangeIndex" type="boolean" value="false"
description="Ranges are not supported for association indexes." />
</bean>

<bean id="MapIndexPlugin" className="com.ibm.websphere.objectgrid.plugins.index.HashIndex">
<property name="Name" type="java.lang.String" value="childrenNodeIds"/>

<property name="AttributeName" type="java.lang.String" value="childrenNodeIds"/>
<property name="RangeIndex" type="boolean" value="false"

description="Ranges are not supported for association indexes." />
</bean>

</backingMapPluginCollection>
</backingMapPluginCollections>

</objectGridConfig>

Given the above index configurations, the following object query examples are
optimized:
SELECT n FROM Node n WHERE n.parentNodeId is null
SELECT n FROM Node n WHERE n.businessUnitTypeKeys is EMPTY
SELECT n FROM Node n WHERE size(n.businessUnitTypeKeys)>=10
SELECT n FROM BusinessUnitType b, Node n WHERE
b member of n.businessUnitTypeKeys and b.name=’TELECOM’

Tuning EntityManager interface performance
The EntityManager interface separates applications from the state held in its server
grid data store.

420 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

The cost of using the EntityManager interface is not high and depends on the type
of work being performed. Always use the EntityManager interface and optimize
the crucial business logic after the application is complete. You can rework any
code that uses EntityManager interfaces to use maps and tuples. Generally, this
code rework might be necessary for 10 percent of the code.

If you use relationships between objects, then the performance impact is lower
because an application that is using maps needs to manage those relationships
similarly to the EntityManager interface.

Applications that use the EntityManager interface do not need to provide an
ObjectTransformer implementation. The applications are optimized automatically.

Reworking EntityManager code for maps

A sample entity follows:
@Entity
public class Person
{
@Id
String ssn;
String firstName;
@Index
String middleName;
String surname;
}

Some code to find the entity and update the entity follows:
Person p = null;
s.begin();
p = (Person)em.find(Person.class, "1234567890");
p.middleName = String.valueOf(inner);
s.commit();

The same code using Maps and Tuples follows:
Tuple key = null;
key = map.getEntityMetadata().getKeyMetadata().createTuple();
key.setAttribute(0, "1234567890");

// The Copy Mode is always NO_COPY for entity maps if not using COPY_TO_BYTES.
// Either we need to copy the tuple or we can ask the ObjectGrid to do it for us:
map.setCopyMode(CopyMode.COPY_ON_READ);
s.begin();
Tuple value = (Tuple)map.get(key);
value.setAttribute(1, String.valueOf(inner));
map.update(key, value);
value = null;
s.commit();

Both of these code snippets have the same result, and an application can use either
or both snippets.

The second code snippet shows how to use maps directly and how to work with
the tuples (the key and value pairs). The value tuple has three attributes:
firstName, middlename, and surname, indexed at 0, 1, and 2. The key tuple has a
single attribute the ID number is indexed at zero. You can see how Tuples are
created by using the EntityMetadata#getKeyMetaData or
EntityMetadata#getValueMetaData methods. You must use these methods to create
Tuples for an Entity. You cannot implement the Tuple interface and pass an
instance of your Tuple implementation.

Chapter 6. Tuning performance 421

Entity performance instrumentation agent
You can improve the performance of field-access entities by enabling the
WebSphere eXtreme Scale instrumentation agent when using Java Development Kit
(JDK) Version 1.5 or later.

Enabling eXtreme Scale agent on JDK Version 1.5 or above

The ObjectGrid agent can be enabled with a Java command line option with the
following syntax:
-javaagent:jarpath[=options]

The jarpath value is the path to an eXtreme Scale runtime Java archive (JAR) file
that contains eXtreme Scale agent class and supporting classes such as the
objectgrid.jar, wsobjectgrid.jar, ogclient.jar, wsogclient.jar, and
ogagent.jar files. Typically, in a stand-alone Java program or in a Java Platform,
Enterprise Edition environment that is not running WebSphere Application Server,
use the objectgrid.jar or ogclient.jar file. In a WebSphere Application Server or
a multi-classloaders environment, you must use the ogagent.jar file in the Java
command line agent option. Provide the ogagent.config file in the class path or
use agent options to specify additional information.

eXtreme Scale agent options

config
Overrides the configuration file name.

include
Specifies or overrides transformation domain definition that is the first part
of the configuration file.

exclude
Specifies or overrides the @Exclude definition.

fieldAccessEntity
Specifies or overrides the @FieldAccessEntity definition.

trace Specifies a trace level. Levels can be ALL, CONFIG, FINE, FINER, FINEST,
SEVERE, WARNING, INFO, and OFF.

trace.file
Specifies the location of the trace file.

The semicolon (;) is used as a delimiter to separate each option. The comma (,)
is used as a delimiter to separate each element within an option. The following
example demonstrates the eXtreme Scale agent option for a Java program:
-javaagent:objectgridRoot/lib/objectgrid.jar=config=myConfigFile;
include=includedPackage;exclude=excludedPackage;
fieldAccessEntity=package1,package2

ogagent.config file

The ogagent.config file is the designated eXtreme Scale agent configuration file
name. If the file name is in the class path, the eXtreme Scale agent finds and parses
the file. You can override the designated file name through the config option of
eXtreme Scale agent. The following example shows how to specify the
configuration file:
-javaagent:objectgridRoot/lib/objectgrid.jar=config=myOverrideConfigFile

An eXtreme Scale agent configuration file has the following parts:

422 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

v Transformation domain: The transformation domain part is first in the
configuration file. The transformation domain is a list of packages and classes
that are included in the class transformation process. This transformation
domain must include all classes that are field-access entity classes, and other
classes that refer to these field-access entity classes. Field-access entity classes
and those classes that refer to these field-access entity classes construct the
transformation domain. If you plan to specify field-access entity classes in the
@FieldAccessEntity part, then you do not need to include field-access entity
classes here. The transformation domain must be complete. Otherwise, you
might see a FieldAccessEntityNotInstrumentedException exception.

v @Exclude: The @Exclude token indicates that packages and classes listed after
this token are excluded from the transformation domain.

v @FieldAccessEntity: The @FieldAccessEntity token indicates that packages and
classes listed after this token are field-access Entity packages and classes. If no
line exists after the @FieldAccessEntity token, then its equivalent is "No
@FieldAccessEntity specified". The eXtreme Scale agent determines that there are
no field-access Entity packages and classes defined. If there are lines after the
@FieldAccessEntity token, then they represent the user-specified field-access
Entity packages and classes. For example, "field-access entity domain". The
field-access entity domain is a sub-domain of the transformation domain.
Packages and classes that are listed in the field-access entity domain are a part
of the transformation domain, even when they are not listed in the
transformation domain. The @Exclude token, which lists packages and classes
that are excluded from transformation, has no impact on the field-access Entity
domain. When @FieldAccessEntity token is specified, all field-access entities
must be in this field-access Entity domain. Otherwise, a
FieldAccessEntityNotInstrumentedException exception might occur.

Example agent configuration file (ogagent.config)
################################
The # indicates comment line
################################
This is an ObjectGrid agent config file (the designated file name is ogagent.config) that can be found and parsed by the ObjectGrid agent
if it is in classpath.
If the file name is "ogagent.config" and in classpath, Java program runs with -javaagent:objectgridRoot/ogagent.jar will have
ObjectGrid agent enabled.
If the file name is not "ogagent.config" but in classpath, you can specify the file name in config option of ObjectGrid agent
-javaagent:objectgridRoot/lib/objectgrid.jar=config=myOverrideConfigFile
See comments below for more info regarding instrumentation setting override.

The first part of the configuration is the list of packages and classes that should be included in transformation domain.
The includes (packages/classes, construct the instrumentation doamin) should be in the beginning of the file.
com.testpackage
com.testClass

Transformation domain: The above lines are packages/classes that construct the transformation domain.
The system will process classes with name starting with above packages/classes for transformation.
#
@Exclude token : Exclude from transformation domain.
The @Exclude token indicates packages/classes after that line should be excluded from transformation domain.
It is used when user want to exclude some packages/classes from above specified included packages
#
@FieldAccessEntity token: Field-access Entity domain.
The @FieldAccessEntity token indicates packages/classes after that line are field-access Entity packages/classes.
If there is no lilne after the @FieldAccessEntity token, it is equivalent to "No @FieldAccessEntity specified".
The runtime will consider the user does not specify any field-access Entity packages/classes.
The "field-acces Entity domain" is a sub-domain of transformation domain.
#
Packages/classes listed in the "field-access Entity domain" will always be part of transformation domain,
even they are not listed in transformation domain.
The @Exclude, which lists packages/classes excluded from transformation, has no impact on the "field-acces Entity domain".
Note: When @FieldAccessEntity is specified, all field-access entities must be in this field-acces Entity domain,
otherwise, FieldAccessEntityNotInstrumentedException may occur.
#
The default ObjectGrid agent config file name is ogagent.config
The runtime will look for this file as a resource in classpath and process it.
Users can override this designated ObjectGrid agent config file name via config option of agent.
#
e.g.
javaagent:objectgridRoot/lib/objectgrid.jar=config=myOverrideConfigFile
#
The instrumentation definition, including transformation domain, @Exclude, and @FieldAccessEntity can be overriden individually
by corresponding designated agent options.
Designated agent options include:
include -> used to override instrumentation domain definition that is the first part of the config file
exclude -> used to override @Exclude definition
fieldAccessEntity -> used to override @FieldAccessEntity definition
#
Each agent option should be separated by ";"
Within the agent option, the package or class should be seperated by ","
#
The following is an example that does not override the config file name:
-javaagent:objectgridRoot/lib/objectgrid.jar=include=includedPackage;exclude=excludedPackage;fieldAccessEntity=package1,package2
#
################################

@Exclude

Chapter 6. Tuning performance 423

com.excludedPackage
com.excludedClass

@FieldAccessEntity

Performance consideration

For better performance, specify the transformation domain and field-access entity
domain.

424 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Chapter 7. Security
WebSphere eXtreme Scale can secure data access, including allowing for
integration with external security providers. Aspects of security include
authentication, authorization, transport security, data grid security, local security,
and JMX (MBean) security.

Configuring security profiles for the xscmd utility
By creating a security profile, you can use saved security parameters to use the
xscmd utility with secure environments.

Before you begin

For more information about setting up the xscmd utility, see Administering with the
xscmd utility.

About this task

You can use the -ssp profile_name or --saveSecProfile profile_name parameter with
the rest of your xscmd command. to save a security profile. The profile can contain
settings for user names and passwords, credential generators, keystores, truststores,
and transport types.

The ProfileManagement command group in the xscmd utility contains commands
for managing your security profiles.

Procedure
v Save a security profile.

To save a security profile, use the -ssp profile_name or --saveSecProfile
profile_name parameter with the rest of your command. Adding this parameter to
your command saves the following parameters:
-al,--alias <alias>
-arc,--authRetryCount <integer>
-ca,--credAuth <support>
-cgc,--credGenClass <className>
-cgp,--credGenProps <property>
-cxpv,--contextProvider <provider>
-ks,--keyStore <filePath>
-ksp,--keyStorePassword <password>
-kst,--keyStoreType <type>
-prot,--protocol <protocol>
-pwd,--password <password>
-ts,--trustStore <filePath>
-tsp,--trustStorePassword <password>
-tst,--trustStoreType <type>
-tt,--transportType <type>
-user,--username <username>

Security profiles are saved in the user_home\.xscmd\profiles\security\
<profile_name>.properties directory.

Important: Do not include the .properties file name extension on the
profile_name parameter. This extension is automatically added to the file name.

© Copyright IBM Corp. 2009, 2012 425

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsxscmd.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsxscmd.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html

v Use a saved security profile.
To use a saved security profile, add the -sp profile_name or --securityProfile
profile_name parameter to the command you are running. Command example:
xscmd -c listHosts -cep myhost.mycompany.com -sp myprofile

v List the commands in the ProfileManagement command group.
Run the following command: xscmd -lc ProfileManagement.

v List the existing security profiles.
Run the following command: xscmd -c listProfiles -v.

v Display the settings that are saved in a security profile.
Run the following command: xscmd -c showProfile -pn profile_name.

v Remove an existing security profile.
Run the following command: xscmd -c RemoveProfile -pn profile_name.

Securing J2C client connections
Use the Java 2 Connector (J2C) architecture to secure connections between
WebSphere eXtreme Scale clients and your applications.

About this task

Applications reference the connection factory, which establishes the connection to
the remote data grid. Each connection factory hosts a single eXtreme Scale client
connection that is reused for all application components.

Important: Since the eXtreme Scale client connection might include a near cache, it
is important that applications do not share a connection. A connection factory must
exist for a single application instance to avoid problems sharing objects between
applications.

You can set the credential generator with the API or in the client properties file. In
the client properties file, the securityEnabled and credentialGenerator properties
are used. The following code example is displayed on multiple lines for
publication purposes:
securityEnabled=true
credentialGeneratorClass=com.ibm.websphere.objectgrid.security.plugins.builtins.

UserPasswordCredentialGenerator
credentialGeneratorProps=operator XXXXXX

The credential generator and credential in the client properties file are used for the
eXtreme Scale connect operation and the default J2C credentials. Therefore, the
credentials that are specified with the API are used at J2C connect time for the J2C
connection. However, if no credentials are specified at J2C connect time, then the
credential generator in the client properties file is used.

Procedure
1. Set up secure access where the J2C connection represents the eXtreme Scale

client. Use the ClientPropertiesResource connection factory property or the
ClientPropertiesURL connection factory property to configure client
authentication.

2. Configure the client security properties to use the connection factory that
references the appropriate credential generator object for eXtreme Scale. These
properties are also compatible with eXtreme Scale server security. For example,
use the WSTokenCredentialGenerator credential generator for WebSphere
credentials when eXtreme Scale is installed with WebSphere Application Server.

426 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Alternatively, use the UserPasswordCredentialGenerator credential generator
when you run the eXtreme Scale in a stand-alone environment. In the following
example, credentials are passed programmatically using the API call instead of
using the configuration in the client properties:
XSConnectionSpec spec = new XSConnectionSpec();
spec.setCredentialGenerator(new UserPasswordCredentialGenerator("operator", "xxxxxx"));
Connection conn = connectionFactory.getConnection(spec);

3. (Optional) Disable the near cache, if required.
All J2C connections from a single connection factory share a single near cache.
Grid entry permissions and map permissions are validated on the server, but
not on the near cache. When an application uses multiple credentials to create
J2C connections, and the configuration uses specific permissions for grid entries
and maps for those credentials, then disable the near cache. Disable the near
cache using the connection factory property, ObjectGridResource or
ObjectGridURL. Set the numberOfBuckets property to 0.

4. (Optional) Set security policy settings, if required.
If the J2EE application contains the embedded eXtreme Scale resource adapter
archive (RAR) file configuration, you might be required to set additional
security policy settings in the security policy file for the application. For
example, these policies are required:
permission com.ibm.websphere.security.WebSphereRuntimePermission "accessRuntimeClasses";
permission java.lang.RuntimePermission "accessDeclaredMembers";
permission javax.management.MBeanTrustPermission "register";
permission java.lang.RuntimePermission "getClassLoader";

Additionally, any property or resource files used by connection factories require
file or other permissions, such as permission java.io.FilePermission
"filePath";. For WebSphere Application Server, the policy file is
META-INF/was.policy, and it is located in the J2EE EAR file.

Results

The client security properties that you configured on the catalog service domain
are used as default values. The values that you specify override any properties that
are defined in the client.properties files.

What to do next

Use eXtreme Scale data access APIs to develop client components that you want to
use transactions.

Programming for security
Use programming interfaces to handle various aspects of security in a WebSphere
eXtreme Scale environment.

Security API
WebSphere eXtreme Scale adopts an open security architecture. It provides a basic
security framework for authentication, authorization, and transport security, and
requires users to implement plug-ins to complete the security infrastructure.

The following image shows the basic flow of client authentication and
authorization for an eXtreme Scale server.

Chapter 7. Security 427

The authentication flow and authorization flow are as follows.

Authentication flow

1. The authentication flow starts with an eXtreme Scale client getting a credential.
This is done by the
com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator plug-in.

2. A CredentialGenerator object knows how to generate a valid client credential,
for example, a user ID and password pair, Kerberos ticket, and so on. This
generated credential is sent back to the client.

3. After the client retrieves the Credential object using the CredentialGenerator
object, this Credential object is sent along with the eXtreme Scale request to the
eXtreme Scale server.

4. The eXtreme Scale server authenticates the Credential object before processing
the eXtreme Scale request. Then the server uses the Authenticator plug-in to
authenticate the Credential object.

5. The Authenticator plug-in represents an interface to the user registry, for
example, a Lightweight Directory Access Protocol (LDAP) server or an
operating system user registry. The Authenticator consults the user registry and
makes authentication decisions.

6. If the authentication is successful, a Subject object is returned to represent this
client.
Authorization flow

WebSphere eXtreme Scale adopts a permission-based authorization mechanism,
and has different permission categories represented by different permission
classes. For example, a com.ibm.websphere.objectgrid.security.MapPermission
object represents permissions to read, write, insert, invalidate, and remove the
data entries in an ObjectMap. Because WebSphere eXtreme Scale supports Java
Authentication and Authorization Service (JAAS) authorization out-of-box, you
can use JAAS to handle authorization by providing authorization policies.
Also, eXtreme Scale supports custom authorizations. Custom authorizations are
plugged in by the plug-in
com.ibm.websphere.objectgrid.security.plugins.ObjectGridAuthorization. The
flow of the customer authorization is as follows.

7. The server runtime sends the Subject object and the required permission to the
authorization plug-in.

8. The authorization plug-in consults the Authorization service and makes an
authorization decision. If permission is granted for this Subject object, a value
of true is returned, otherwise falseis returned.

9. This authorization decision, true or false, is returned to the server runtime.

ObjectGrid
client

Credential
generator

1. Get
credential

2. Credential

Server
runtime

Authenticator

ObjectGrid
authorization

3. Send
credential

4. Credential

6. Subject

9. True/false

7. Subject
and Permission

ObjectGrid Shard (Server)

User
registry

Authorization
service

5. Credential

8. Subject
and
permission

Figure 32. Flow of client authentication and authorization

428 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Security implementation

The topics in this section discuss how to program a secure WebSphere eXtreme
Scale deployment and how to program the plug-in implementations. The section is
organized based on the various security features. In each subtopic, you will learn
about relevant plug-ins and how to implement the plug-ins. In the authentication
section, you will see how to connect to a secure WebSphere eXtreme Scale
deployment environment.

Client Authentication: The client authentication topic describes how a WebSphere
eXtreme Scale client gets a credential and how a server authenticates the client. It
will also discuss how a WebSphere eXtreme Scale client connects to a secure
WebSphere eXtreme Scale server.

Authorization: The authorization topic explains how to use the
ObjectGridAuthorization to do customer authorization besides JAAS authorization.

Grid Authentication: The data grid authentication topic discusses how you can use
SecureTokenManager to securely transport server secrets.

Java Management Extensions (JMX) programming: When the WebSphere eXtreme
Scale server is secured, the JMX client might need to send a JMX credential to the
server.

Client authentication programming
For authentication, WebSphere eXtreme Scale provides a runtime to send the
credential from the client to the server side, and then calls the authenticator
plug-in to authenticate the users.

WebSphere eXtreme Scale requires you to implement the following plug-ins to
complete the authentication.
v Credential: A Credential represents a client credential, such as a user ID and

password pair.
v CredentialGenerator: A CredentialGenerator represents a credential factory to

generate the credential.
v Authenticator: An Authenticator authenticates the client credential and retrieves

client information.

Credential and CredentialGenerator plug-ins

When an eXtreme Scale client connects to a server that requires authentication, the
client is required to provide a client credential. A client credential is represented by
a com.ibm.websphere.objectgrid.security.plugins.Credential interface. A client
credential can be a user name and password pair, a Kerberos ticket, a client
certificate, or data in any format that the client and server agree upon. This
interface explicitly defines the equals(Object) and hashCode methods. These two
methods are important because the authenticated Subject objects are cached by
using the Credential object as the key on the server side. WebSphere eXtreme Scale
also provides a plug-in to generate a credential. This plug-in is represented by the
com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator interface and is
useful when the credential can expire. In this case, the getCredential method is
called to renew a credential.

Chapter 7. Security 429

The Credential interface explicitly defines the equals(Object) and hashCode
methods. These two methods are important because the authenticated Subject
objects are cached by using the Credential object as the key on the server side.

You may also use the provided plug-in to generate a credential. This plug-in is
represented by the
com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator interface, and is
useful when the credential can expire. In this case, the getCredential method is
called to renew a credential. See the API documentation for more details.

There are three provided default implementations for the Credential interfaces:
v The

com.ibm.websphere.objectgrid.security.plugins.builtins.UserPasswordCredential
implementation, which contains a user ID and password pair.

v The com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenCredential
implementation, which contains WebSphere Application Server-specific
authentication and authorization tokens. These tokens can be used to propagate
the security attributes across the application servers in the same security
domain.

WebSphere eXtreme Scale also provides a plug-in to generate a credential. This
plug-in is represented by the
com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator
interface.WebSphere eXtreme Scale provides two default built-in implementations:
v The com.ibm.websphere.objectgrid.security.plugins.builtins.

UserPasswordCredentialGenerator constructor takes a user ID and a password.
When the getCredential method is called, it returns a UserPasswordCredential
object that contains the user ID and password.

v The com.ibm.websphere.objectgrid.security.plugins.builtins.
WSTokenCredentialGenerator represents a credential (security token) generator
when running in WebSphere Application Server. When the getCredential method
is called, the Subject that is associated with the current thread is retrieved. Then
the security information in this Subject object is converted into a
WSTokenCredential object. You can specify whether to retrieve a runAs subject
or a caller subject from the thread by using the constant
WSTokenCredentialGenerator.RUN_AS_SUBJECT or
WSTokenCredentialGenerator.CALLER_SUBJECT.

UserPasswordCredential and UserPasswordCredentialGenerator

For testing purposes, WebSphere eXtreme Scale provides the following plug-in
implementations:
1.

com.ibm.websphere.objectgrid.security.plugins.builtins.UserPasswordCredential

2.
com.ibm.websphere.objectgrid.security.plugins.builtins.UserPasswordCredentialGenerator

The user password credential stores a user ID and password. The user password
credential generator then contains this user ID and password.

The following example code shows how to implement these two plug-ins.
UserPasswordCredential.java
// This sample program is provided AS IS and may be used, executed, copied and modified
// without royalty payment by customer
// (a) for its own instruction and study,
// (b) in order to develop applications designed to run with an IBM WebSphere product,
// either for customer’s own internal use or for redistribution by customer, as part of such an
// application, in customer’s own products.

430 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

// Licensed Materials - Property of IBM
// 5724-J34 © COPYRIGHT International Business Machines Corp. 2007
package com.ibm.websphere.objectgrid.security.plugins.builtins;

import com.ibm.websphere.objectgrid.security.plugins.Credential;

/**
* This class represents a credential containing a user ID and password.
*
* @ibm-api
* @since WAS XD 6.0.1
*
* @see Credential
* @see UserPasswordCredentialGenerator#getCredential()
*/
public class UserPasswordCredential implements Credential {

private static final long serialVersionUID = 1409044825541007228L;

private String ivUserName;

private String ivPassword;

/**
* Creates a UserPasswordCredential with the specified user name and
* password.
*
* @param userName the user name for this credential
* @param password the password for this credential
*
* @throws IllegalArgumentException if userName or password is <code>null</code>
*/
public UserPasswordCredential(String userName, String password) {

super();
if (userName == null || password == null) {

throw new IllegalArgumentException("User name and password cannot be null.");
}
this.ivUserName = userName;
this.ivPassword = password;

}

/**
* Gets the user name for this credential.
*
* @return the user name argument that was passed to the constructor
* or the <code>setUserName(String)</code>
* method of this class
*
* @see #setUserName(String)
*/
public String getUserName() {

return ivUserName;
}

/**
* Sets the user name for this credential.
*
* @param userName the user name to set.
*
* @throws IllegalArgumentException if userName is <code>null</code>
*/
public void setUserName(String userName) {

if (userName == null) {
throw new IllegalArgumentException("User name cannot be null.");

}
this.ivUserName = userName;

}

/**
* Gets the password for this credential.
*
* @return the password argument that was passed to the constructor
* or the <code>setPassword(String)</code>
* method of this class
*
* @see #setPassword(String)
*/
public String getPassword() {

return ivPassword;
}

/**
* Sets the password for this credential.
*
* @param password the password to set.
*
* @throws IllegalArgumentException if password is <code>null</code>
*/
public void setPassword(String password) {

if (password == null) {
throw new IllegalArgumentException("Password cannot be null.");

Chapter 7. Security 431

}
this.ivPassword = password;

}

/**
* Checks two UserPasswordCredential objects for equality.
* <p>
* Two UserPasswordCredential objects are equal if and only if their user names
* and passwords are equal.
*
* @param o the object we are testing for equality with this object.
*
* @return <code>true</code> if both UserPasswordCredential objects are equivalent.
*
* @see Credential#equals(Object)
*/
public boolean equals(Object o) {

if (this == o) {
return true;

}
if (o instanceof UserPasswordCredential) {

UserPasswordCredential other = (UserPasswordCredential) o;
return other.ivPassword.equals(ivPassword) && other.ivUserName.equals(ivUserName);

}

return false;
}

/**
* Returns the hashcode of the UserPasswordCredential object.
*
* @return the hash code of this object
*
* @see Credential#hashCode()
*/
public int hashCode() {

return ivUserName.hashCode() + ivPassword.hashCode();
}

}

UserPasswordCredentialGenerator.java
// This sample program is provided AS IS and may be used, executed, copied and modified
// without royalty payment by customer
// (a) for its own instruction and study,
// (b) in order to develop applications designed to run with an IBM WebSphere product,
// either for customer’s own internal use or for redistribution by customer, as part of such an
// application, in customer’s own products.
// Licensed Materials - Property of IBM
// 5724-J34 © COPYRIGHT International Business Machines Corp. 2007
package com.ibm.websphere.objectgrid.security.plugins.builtins;

import java.util.StringTokenizer;

import com.ibm.websphere.objectgrid.security.plugins.Credential;
import com.ibm.websphere.objectgrid.security.plugins.CredentialGenerator;

/**
* This credential generator creates <code>UserPasswordCredential</code> objects.
* <p>
* UserPasswordCredentialGenerator has a one to one relationship with
* UserPasswordCredential because it can only create a UserPasswordCredential
* representing one identity.
*
* @since WAS XD 6.0.1
* @ibm-api
*
* @see CredentialGenerator
* @see UserPasswordCredential
*/
public class UserPasswordCredentialGenerator implements CredentialGenerator {

private String ivUser;

private String ivPwd;

/**
* Creates a UserPasswordCredentialGenerator with no user name or password.
*
* @see #setProperties(String)
*/
public UserPasswordCredentialGenerator() {

super();
}

/**
* Creates a UserPasswordCredentialGenerator with a specified user name and
* password
*
* @param user the user name
* @param pwd the password
*/
public UserPasswordCredentialGenerator(String user, String pwd) {

432 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

ivUser = user;
ivPwd = pwd;

}

/**
* Creates a new <code>UserPasswordCredential</code> object using this
* object’s user name and password.
*
* @return a new <code>UserPasswordCredential</code> instance
*
* @see CredentialGenerator#getCredential()
* @see UserPasswordCredential
*/
public Credential getCredential() {

return new UserPasswordCredential(ivUser, ivPwd);
}

/**
* Gets the password for this credential generator.
*
* @return the password argument that was passed to the constructor
*/
public String getPassword() {

return ivPwd;
}

/**
* Gets the user name for this credential.
*
* @return the user argument that was passed to the constructor
* of this class
*/
public String getUserName() {

return ivUser;
}
/**
* Sets additional properties namely a user name and password.
*
* @param properties a properties string with a user name and
* a password separated by a blank.
*
* @throws IllegalArgumentException if the format is not valid
*/
public void setProperties(String properties) {

StringTokenizer token = new StringTokenizer(properties, " ");
if (token.countTokens() != 2) {

throw new IllegalArgumentException(
"The properties should have a user name and password and separated by a blank.");

}

ivUser = token.nextToken();
ivPwd = token.nextToken();

}
/**
* Checks two UserPasswordCredentialGenerator objects for equality.
* <p>
* Two UserPasswordCredentialGenerator objects are equal if and only if
* their user names and passwords are equal.
*
* @param obj the object we are testing for equality with this object.
*
* @return <code>true</code> if both UserPasswordCredentialGenerator objects
* are equivalent.
*/
public boolean equals(Object obj) {

if (obj == this) {
return true;

}

if (obj != null && obj instanceof UserPasswordCredentialGenerator) {
UserPasswordCredentialGenerator other = (UserPasswordCredentialGenerator) obj;

boolean bothUserNull = false;
boolean bothPwdNull = false;

if (ivUser == null) {
if (other.ivUser == null) {

bothUserNull = true;
} else {

return false;
}

}

if (ivPwd == null) {
if (other.ivPwd == null) {

bothPwdNull = true;
} else {

return false;
}

}

Chapter 7. Security 433

return (bothUserNull || ivUser.equals(other.ivUser)) && (bothPwdNull || ivPwd.equals(other.ivPwd));
}

return false;
}

/**
* Returns the hashcode of the UserPasswordCredentialGenerator object.
*
* @return the hash code of this object
*/
public int hashCode() {

return ivUser.hashCode() + ivPwd.hashCode();
}

}

The UserPasswordCredential class contains two attributes: user name and
password. The UserPasswordCredentialGenerator serves as a factory that contains
the UserPasswordCredential objects.

WSTokenCredential and WSTokenCredentialGenerator

When the WebSphere eXtreme Scale clients and servers are all deployed in
WebSphere Application Server, the client application can use these two built-in
implementations when the following conditions are satisfied:
1. WebSphere Application Server global security is turned on.
2. All WebSphere eXtreme Scale clients and servers are running in WebSphere

Application Server Java virtual machines.
3. The application servers are in the same security domain.
4. The client is already authenticated in WebSphere Application Server.

In this situation, the client can use the
com.ibm.websphere.objectgrid.security.plugins.builtins.
WSTokenCredentialGenerator class to generate a credential. The server uses the
WSAuthenticator implementation class to authenticate the credential.

This scenario takes advantage of the fact that the eXtreme Scale client has already
been authenticated. Because the application servers that have the servers are in the
same security domain as the application servers that house the clients, the security
tokens can be propagated from the client to the server so that the same user
registry does not need to be authenticated again.

Note: Do not assume that a CredentialGenerator always generates the same
credential. For an expirable and refreshable credential, the CredentialGenerator
should be able to generate the latest valid credential to make sure the
authentication succeeds. One example is using the Kerberos ticket as a Credential
object. When the Kerberos ticket refreshes, the CredentialGenerator should retrieve
the refreshed ticket when CredentialGenerator.getCredential is called.

Authenticator plug-in

After the eXtreme Scale client retrieves the Credential object using the
CredentialGenerator object, this client Credential object is sent along with the client
request to the eXtreme Scale server. The server authenticates the Credential object
before processing the request. If the Credential object is authenticated successfully,
a Subject object is returned to represent this client.

This Subject object is then cached, and it expires after its lifetime reaches the
session timeout value. The login session timeout value can be set by using the

434 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

loginSessionExpirationTime property in the cluster XML file. For example, setting
loginSessionExpirationTime="300" makes the Subject object expire in 300 seconds.

This Subject object is then used for authorizing the request, which is shown later.
An eXtreme Scale server uses the Authenticator plug-in to authenticate the
Credential object. See the information about the Authenticator in the API
documentation for more details.

The Authenticator plug-in is where the eXtreme Scale runtime authenticates the
Credential object from the client user registry, for example, a Lightweight Directory
Access Protocol (LDAP) server.

WebSphere eXtreme Scale does not provide an immediately available user registry
configuration. The configuration and management of user registry is left outside of
WebSphere eXtreme Scale for simplicity and flexibility. This plug-in implements
connecting and authenticating to the user registry. For example, an Authenticator
implementation extracts the user ID and password from the credential, uses them
to connect and validate to an LDAP server, and creates a Subject object as a result
of the authentication. The implementation might use JAAS login modules. A
Subject object is returned as a result of authentication.

Notice that this method creates two exceptions: InvalidCredentialException and
ExpiredCredentialException. The InvalidCredentialException exception indicates
that the credential is not valid. The ExpiredCredentialException exception indicates
that the credential expired. If one of these two exceptions result from the
authenticate method, the exceptions are sent back to the client. However, the client
runtime handles these two exceptions differently:
v If the error is an InvalidCredentialException exception, the client run time

displays this exception. Your application must handle the exception. You can
correct the CredentialGenerator, for example, and then retry the operation.

v If the error is an ExpiredCredentialException exception, and the retry count is
not 0, the client run time calls the CredentialGenerator.getCredential method
again, and sends the new Credential object to the server. If the new credential
authentication succeeds, the server processes the request. If the new credential
authentication fails, the exception is sent back to the client. If the number of
authentication retries reaches the supported value and the client still gets an
ExpiredCredentialException exception, the ExpiredCredentialException exception
results. Your application must handle the error.

The Authenticator interface provides great flexibility. You can implement the
Authenticator interface in your own specific way. For example, you can implement
this interface to support two different user registries.

WebSphere eXtreme Scale provides sample authenticator plug-in implementations.
Except for the WebSphere Application Server authenticator plug-in, the other
implementations are only samples for testing purposes.

KeyStoreLoginAuthenticator

This example uses an eXtreme Scale built-in implementation:
KeyStoreLoginAuthenticator, which is for testing and sample purposes (a key store
is a simple user registry and should not be used for a production environment).
Again, the class is displayed to further demonstrate how to implement an
authenticator.

Chapter 7. Security 435

KeyStoreLoginAuthenticator.java
// This sample program is provided AS IS and may be used, executed, copied and modified
// without royalty payment by customer
// (a) for its own instruction and study,
// (b) in order to develop applications designed to run with an IBM WebSphere product,
// either for customer’s own internal use or for redistribution by customer, as part of such an
// application, in customer’s own products.
// Licensed Materials - Property of IBM
// 5724-J34 © COPYRIGHT International Business Machines Corp. 2007

package com.ibm.websphere.objectgrid.security.plugins.builtins;

import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;

import com.ibm.websphere.objectgrid.security.plugins.Authenticator;
import com.ibm.websphere.objectgrid.security.plugins.Credential;
import com.ibm.websphere.objectgrid.security.plugins.ExpiredCredentialException;
import com.ibm.websphere.objectgrid.security.plugins.InvalidCredentialException;
import com.ibm.ws.objectgrid.Constants;
import com.ibm.ws.objectgrid.ObjectGridManagerImpl;
import com.ibm.ws.objectgrid.security.auth.callback.UserPasswordCallbackHandlerImpl;

/**
* This class is an implementation of the <code>Authenticator</code> interface
* when a user name and password are used as a credential.
* <p>
* When user ID and password authentication is used, the credential passed to the
* <code>authenticate(Credential)</code> method is a UserPasswordCredential object.
* <p>
* This implementation will use a <code>KeyStoreLoginModule</code> to authenticate
* the user into the key store using the JAAS login module "KeyStoreLogin". The key
* store can be configured as an option to the <code>KeyStoreLoginModule</code>
* class. Please see the <code>KeyStoreLoginModule</code> class for more details
* about how to set up the JAAS login configuration file.
* <p>
* This class is only for sample and quick testing purpose. Users should
* write your own Authenticator implementation which can fit better into
* the environment.
*
* @ibm-api
* @since WAS XD 6.0.1
*
* @see Authenticator
* @see KeyStoreLoginModule
* @see UserPasswordCredential
*/
public class KeyStoreLoginAuthenticator implements Authenticator {

/**
* Creates a new KeyStoreLoginAuthenticator.
*/
public KeyStoreLoginAuthenticator() {

super();
}

/**
* Authenticates a <code>UserPasswordCredential</code>.
* <p>
* Uses the user name and password from the specified UserPasswordCredential
* to login to the KeyStoreLoginModule named "KeyStoreLogin".
*
* @throws InvalidCredentialException if credential isn’t a
* UserPasswordCredential or some error occurs during processing
* of the supplied UserPasswordCredential
*
* @throws ExpiredCredentialException if credential is expired. This exception
* is not used by this implementation
*
* @see Authenticator#authenticate(Credential)
* @see KeyStoreLoginModule
*/
public Subject authenticate(Credential credential) throws InvalidCredentialException,
ExpiredCredentialException {

if (credential == null) {
throw new InvalidCredentialException("Supplied credential is null");

}

if (! (credential instanceof UserPasswordCredential)) {
throw new InvalidCredentialException("Supplied credential is not a UserPasswordCredential");

}

UserPasswordCredential cred = (UserPasswordCredential) credential;
LoginContext lc = null;
try {

lc = new LoginContext("KeyStoreLogin",
new UserPasswordCallbackHandlerImpl(cred.getUserName(), cred.getPassword().toCharArray()));

lc.login();

436 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Subject subject = lc.getSubject();

return subject;
}
catch (LoginException le) {

throw new InvalidCredentialException(le);
}
catch (IllegalArgumentException ile) {

throw new InvalidCredentialException(ile);
}

}
}

KeyStoreLoginModule.java
// This sample program is provided AS IS and may be used, executed, copied and modified
// without royalty payment by customer
// (a) for its own instruction and study,
// (b) in order to develop applications designed to run with an IBM WebSphere product,
// either for customer’s own internal use or for redistribution by customer, as part of such an
// application, in customer’s own products.
// Licensed Materials - Property of IBM
// 5724-J34 © COPYRIGHT International Business Machines Corp. 2007
package com.ibm.websphere.objectgrid.security.plugins.builtins;

import java.io.File;
import java.io.FileInputStream;
import java.security.KeyStore;
import java.security.KeyStoreException;
import java.security.NoSuchAlgorithmException;
import java.security.PrivateKey;
import java.security.UnrecoverableKeyException;
import java.security.cert.Certificate;
import java.security.cert.CertificateException;
import java.security.cert.CertificateFactory;
import java.security.cert.X509Certificate;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;

import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.login.LoginException;
import javax.security.auth.spi.LoginModule;
import javax.security.auth.x500.X500Principal;
import javax.security.auth.x500.X500PrivateCredential;

import com.ibm.websphere.objectgrid.ObjectGridRuntimeException;
import com.ibm.ws.objectgrid.Constants;
import com.ibm.ws.objectgrid.ObjectGridManagerImpl;
import com.ibm.ws.objectgrid.util.ObjectGridUtil;

/**
* A KeyStoreLoginModule is keystore authentication login module based on
* JAAS authentication.
* <p>
* A login configuration should provide an option "<code>keyStoreFile</code>" to
* indicate where the keystore file is located. If the <code>keyStoreFile</code>
* value contains a system property in the form, <code>${system.property}</code>,
* it will be expanded to the value of the system property.
* <p>
* If an option "<code>keyStoreFile</code>" is not provided, the default keystore
* file name is <code>"${java.home}${/}.keystore"</code>.
* <p>
* Here is a Login module configuration example:
* <pre><code>
* KeyStoreLogin {
* com.ibm.websphere.objectgrid.security.plugins.builtins.KeystoreLoginModule required
* keyStoreFile="${user.dir}${/}security${/}.keystore";
* };
* </code></pre>
*
* @ibm-api
* @since WAS XD 6.0.1
*
* @see LoginModule
*/
public class KeyStoreLoginModule implements LoginModule {

private static final String CLASS_NAME = KeyStoreLoginModule.class.getName();

/**
* Key store file property name
*/
public static final String KEY_STORE_FILE_PROPERTY_NAME = "keyStoreFile";

/**
* Key store type. Only JKS is supported

Chapter 7. Security 437

*/
public static final String KEYSTORE_TYPE = "JKS";

/**
* The default key store file name
*/
public static final String DEFAULT_KEY_STORE_FILE = "${java.home}${/}.keystore";

private CallbackHandler handler;

private Subject subject;

private boolean debug = false;

private Set principals = new HashSet();

private Set publicCreds = new HashSet();

private Set privateCreds = new HashSet();

protected KeyStore keyStore;

/**
* Creates a new KeyStoreLoginModule.
*/
public KeyStoreLoginModule() {
}

/**
* Initializes the login module.
*
* @see LoginModule#initialize(Subject, CallbackHandler, Map, Map)
*/
public void initialize(Subject sub, CallbackHandler callbackHandler,

Map mapSharedState, Map mapOptions) {

// initialize any configured options
debug = "true".equalsIgnoreCase((String) mapOptions.get("debug"));

if (sub == null)
throw new IllegalArgumentException("Subject is not specified");

if (callbackHandler == null)
throw new IllegalArgumentException(
"CallbackHander is not specified");

// Get the key store path
String sKeyStorePath = (String) mapOptions

.get(KEY_STORE_FILE_PROPERTY_NAME);

// If there is no key store path, the default one is the .keystore
// file in the java home directory
if (sKeyStorePath == null) {

sKeyStorePath = DEFAULT_KEY_STORE_FILE;
}

// Replace the system enviroment variable
sKeyStorePath = ObjectGridUtil.replaceVar(sKeyStorePath);

File fileKeyStore = new File(sKeyStorePath);

try {
KeyStore store = KeyStore.getInstance("JKS");
store.load(new FileInputStream(fileKeyStore), null);

// Save the key store
keyStore = store;

if (debug) {
System.out.println("[KeyStoreLoginModule] initialize: Successfully loaded key store");

}
}
catch (Exception e) {

ObjectGridRuntimeException re = new ObjectGridRuntimeException(
"Failed to load keystore: " + fileKeyStore.getAbsolutePath());

re.initCause(e);
if (debug) {

System.out.println("[KeyStoreLoginModule] initialize: Key store loading failed with exception "
+ e.getMessage());

}
}

this.subject = sub;
this.handler = callbackHandler;

}

/**
* Authenticates a user based on the keystore file.
*
* @see LoginModule#login()
*/

438 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

public boolean login() throws LoginException {

if (debug) {
System.out.println("[KeyStoreLoginModule] login: entry");

}

String name = null;
char pwd[] = null;

if (keyStore == null || subject == null || handler == null) {
throw new LoginException("Module initialization failed");

}

NameCallback nameCallback = new NameCallback("Username:");
PasswordCallback pwdCallback = new PasswordCallback("Password:", false);

try {
handler.handle(new Callback[] { nameCallback, pwdCallback });

}
catch (Exception e) {

throw new LoginException("Callback failed: " + e);
}

name = nameCallback.getName();
char[] tempPwd = pwdCallback.getPassword();

if (tempPwd == null) {
// treat a NULL password as an empty password
tempPwd = new char[0];

}
pwd = new char[tempPwd.length];
System.arraycopy(tempPwd, 0, pwd, 0, tempPwd.length);

pwdCallback.clearPassword();

if (debug) {
System.out.println("[KeyStoreLoginModule] login: "

+ "user entered user name: " + name);
}

// Validate the user name and password
try {

validate(name, pwd);
}
catch (SecurityException se) {

principals.clear();
publicCreds.clear();
privateCreds.clear();
LoginException le = new LoginException(
"Exception encountered during login");
le.initCause(se);

throw le;
}

if (debug) {
System.out.println("[KeyStoreLoginModule] login: exit");

}
return true;

}

/**
* Indicates the user is accepted.
* <p>
* This method is called only if the user is authenticated by all modules in
* the login configuration file. The principal objects will be added to the
* stored subject.
*
* @return false if for some reason the principals cannot be added; true
* otherwise
*
* @exception LoginException
* LoginException is thrown if the subject is readonly or if
* any unrecoverable exceptions is encountered.
*
* @see LoginModule#commit()
*/
public boolean commit() throws LoginException {

if (debug) {
System.out.println("[KeyStoreLoginModule] commit: entry");

}

if (principals.isEmpty()) {
throw new IllegalStateException("Commit is called out of sequence");

}

if (subject.isReadOnly()) {
throw new LoginException("Subject is Readonly");

}

subject.getPrincipals().addAll(principals);

Chapter 7. Security 439

subject.getPublicCredentials().addAll(publicCreds);
subject.getPrivateCredentials().addAll(privateCreds);

principals.clear();
publicCreds.clear();
privateCreds.clear();

if (debug) {
System.out.println("[KeyStoreLoginModule] commit: exit");

}
return true;

}

/**
* Indicates the user is not accepted
*
* @see LoginModule#abort()
*/
public boolean abort() throws LoginException {

boolean b = logout();
return b;

}

/**
* Logs the user out. Clear all the maps.
*
* @see LoginModule#logout()
*/
public boolean logout() throws LoginException {

// Clear the instance variables
principals.clear();
publicCreds.clear();
privateCreds.clear();

// clear maps in the subject
if (!subject.isReadOnly()) {

if (subject.getPrincipals() != null) {
subject.getPrincipals().clear();

}

if (subject.getPublicCredentials() != null) {
subject.getPublicCredentials().clear();

}

if (subject.getPrivateCredentials() != null) {
subject.getPrivateCredentials().clear();

}
}
return true;

}

/**
* Validates the user name and password based on the keystore.
*
* @param userName user name
* @param password password
* @throws SecurityException if any exceptions encountered
*/
private void validate(String userName, char password[])

throws SecurityException {

PrivateKey privateKey = null;

// Get the private key from the keystore
try {

privateKey = (PrivateKey) keyStore.getKey(userName, password);
}
catch (NoSuchAlgorithmException nsae) {

SecurityException se = new SecurityException();
se.initCause(nsae);
throw se;

}
catch (KeyStoreException kse) {

SecurityException se = new SecurityException();
se.initCause(kse);
throw se;

}
catch (UnrecoverableKeyException uke) {

SecurityException se = new SecurityException();
se.initCause(uke);
throw se;

}

if (privateKey == null) {
throw new SecurityException("Invalid name: " + userName);

}

// Check the certificats
Certificate certs[] = null;

440 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

try {
certs = keyStore.getCertificateChain(userName);

}
catch (KeyStoreException kse) {

SecurityException se = new SecurityException();
se.initCause(kse);
throw se;

}

if (debug) {
System.out.println(" Print out the certificates:");
for (int i = 0; i < certs.length; i++) {

System.out.println(" certificate " + i);
System.out.println(" " + certs[i]);

}
}

if (certs != null && certs.length > 0) {

// If the first certificate is an X509Certificate
if (certs[0] instanceof X509Certificate) {

try {
// Get the first certificate which represents the user
X509Certificate certX509 = (X509Certificate) certs[0];

// Create a principal
X500Principal principal = new X500Principal(certX509

.getIssuerDN()

.getName());
principals.add(principal);

if (debug) {
System.out.println(" Principal added: " + principal);

}
// Create the certification path object and add it to the
// public credential set
CertificateFactory factory = CertificateFactory

.getInstance("X.509");
java.security.cert.CertPath certPath = factory

.generateCertPath(Arrays.asList(certs));
publicCreds.add(certPath);

// Add the private credential to the private credential set
privateCreds.add(new X500PrivateCredential(certX509,

privateKey, userName));

}
catch (CertificateException ce) {

SecurityException se = new SecurityException();
se.initCause(ce);
throw se;

}
}
else {

// The first certificate is not an X509Certificate
// We just add the certificate to the public credential set
// and the private key to the private credential set.
publicCreds.add(certs[0]);
privateCreds.add(privateKey);

}
}

}
}

Using the LDAP authenticator plug-in

You are provided with the
com.ibm.websphere.objectgrid.security.plugins.builtins.LDAPAuthenticator default
implementation to handle the user name and password authentication to an LDAP
server. This implementation uses the LDAPLogin login module to log the user into
a Lightweight Directory Access Protocol (LDAP) server.The following snippet
demonstrates how the authenticate method is implemented:
/**
* @see com.ibm.ws.objectgrid.security.plugins.Authenticator#
* authenticate(LDAPLogin)
*/
public Subject authenticate(Credential credential) throws
InvalidCredentialException, ExpiredCredentialException {

UserPasswordCredential cred = (UserPasswordCredential) credential;
LoginContext lc = null;
try {

lc = new LoginContext("LDAPLogin",
new UserPasswordCallbackHandlerImpl(cred.getUserName(),
cred.getPassword().toCharArray()));

Chapter 7. Security 441

lc.login();

Subject subject = lc.getSubject();

return subject;
}
catch (LoginException le) {

throw new InvalidCredentialException(le);
}
catch (IllegalArgumentException ile) {

throw new InvalidCredentialException(ile);
}

}

Also, eXtreme Scale ships a login module
com.ibm.websphere.objectgrid.security.plugins.builtins.LDAPLoginModule for this
purpose. You must provide the following two options in the JAAS login
configuration file.
v providerURL: The LDAP server provider URL
v factoryClass: The LDAP context factory implementation class

The LDAPLoginModule module calls the
com.ibm.websphere.objectgrid.security.plugins.builtins.
LDAPAuthenticationHelper.authenticate method. The following code snippet
shows how you can implement the authenticate method of the
LDAPAuthenticationHelper.
/**
* Authenticate the user to the LDAP directory.
* @param user the user ID, e.g., uid=xxxxxx,c=us,ou=bluepages,o=ibm.com
* @param pwd the password
*
* @throws NamingException
*/
public String[] authenticate(String user, String pwd)
throws NamingException {

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, factoryClass);
env.put(Context.PROVIDER_URL, providerURL);
env.put(Context.SECURITY_PRINCIPAL, user);
env.put(Context.SECURITY_CREDENTIALS, pwd);
env.put(Context.SECURITY_AUTHENTICATION, "simple");

InitialContext initialContext = new InitialContext(env);

// Look up for the user
DirContext dirCtx = (DirContext) initialContext.lookup(user);

String uid = null;
int iComma = user.indexOf(",");
int iEqual = user.indexOf("=");
if (iComma > 0 && iComma > 0) {

uid = user.substring(iEqual + 1, iComma);
}
else {

uid = user;
}

Attributes attributes = dirCtx.getAttributes("");

// Check the UID
String thisUID = (String) (attributes.get(UID).get());

String thisDept = (String) (attributes.get(HR_DEPT).get());

if (thisUID.equals(uid)) {
return new String[] { thisUID, thisDept };

442 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

}
else {

return null;
}

}

If authentication succeeds, the ID and password are considered valid. Then the
login module gets the ID information and department information from this
authenticate method. The login module creates two principals: SimpleUserPrincipal
and SimpleDeptPrincipal. You can use the authenticated subject for group
authorization (in this case, the department is a group) and individual
authorization.

The following example shows a login module configuration that is used to log in
to the LDAP server:
LDAPLogin { com.ibm.websphere.objectgrid.security.plugins.builtins.LDAPLoginModule required

providerURL="ldap://directory.acme.com:389/"
factoryClass="com.sun.jndi.ldap.LdapCtxFactory";

};

In the previous configuration, the LDAP server points to the ldap://
directory.acme.com:389/server. Change this setting to your LDAP server. This
login module uses the provided ID and password to connect to the LDAP server.
This implementation is for testing purposes only.

Using the WebSphere Application Server authenticator plug-in

Also, eXtreme Scale provides the
com.ibm.websphere.objectgrid.security.plugins.builtins.WSTokenAuthenticator
built-in implementation to use the WebSphere Application Server security
infrastructure. This built-in implementation can be used when the following
conditions are true.
1. WebSphere Application Server global security is turned on.
2. All eXtreme Scale clients and servers are launched in WebSphere Application

Server JVMs.
3. These application servers are in the same security domain.
4. The eXtreme Scale client is already authenticated in WebSphere Application

Server.

The client can use the com.ibm.websphere.objectgrid.security.plugins.builtins.
WSTokenCredentialGenerator class to generate a credential. The server uses this
Authenticator implementation class to authenticate the credential. If the token is
authenticated successfully, a Subject object returns.

This scenario takes advantage of the fact that the client has already been
authenticated. Because the application servers that have the servers are in the same
security domain as the application servers that house the clients, the security
tokens can be propagated from the client to the server so that the same user
registry does not need to be authenticated again.

Using the Tivoli® Access Manager authenticator plug-in

Tivoli Access Manager is used widely as a security server. You can also implement
Authenticator using the Tivoli Access Manager's provided login modules.

Chapter 7. Security 443

To authenticate a user for Tivoli Access Manager, apply the the
com.tivoli.mts.PDLoginModule login module, which requires that the calling
application provide the following information:
1. A principal name, specified as either a short name or an X.500 name (DN)
2. A password

The login module authenticates the principal and returns the Tivoli Access
Manager credential. The login module expects the calling application to provide
the following information:
1. The user name, through a javax.security.auth.callback.NameCallback object.
2. The password, through a javax.security.auth.callback.PasswordCallback object.

When the Tivoli Access Manager credential is successfully retrieved, the JAAS
LoginModule creates a Subject and a PDPrincipal. No built-in for Tivoli Access
Manager authentication is provided, because it is just with the PDLoginModule
module. See the IBM Tivoli Access Manager Authorization Java Classes Developer
Reference for more details.

Connecting to WebSphere eXtreme Scale securely

To connect an eXtreme Scale client to a server securely, you can use any connect
method in the ObjectGridManager interface which takes a
ClientSecurityConfiguration object. The following is a brief example.
public ClientClusterContext connect(String catalogServerEndpoints,

ClientSecurityConfiguration securityProps,
URL overRideObjectGridXml) throws ConnectException;

This method takes a parameter of the ClientSecurityConfiguration type, which is
an interface representing a client security configuration. You can use
com.ibm.websphere.objectgrid.security.config.ClientSecurityConfigurationFactory
public API to create an instance with default values, or you can create an instance
by passing the WebSphere eXtreme Scale client property file. This file contains the
following properties that are related to authentication. The value marked with a
plus sign (+) is the default.
v securityEnabled (true, false+): This property indicates if security is enabled.

When a client connects to a server, the securityEnabled value on the client and
server side must be both true or both false. For example, if the connected
server security is enabled, the client has to set this property to true to connect to
the server.

v authenticationRetryCount (an integer value, 0+): This property determines how
many retries are attempted for login when a credential is expired. If the value is
0, no retries are attempted. The authentication retry only applies to the case
when the credential is expired. If the credential is not valid, there is no retry.
Your application is responsible for retrying the operation.

After you create a
com.ibm.websphere.objectgrid.security.config.ClientSecurityConfiguration object, set
the credentialGenerator object on the client using the following method:
/**
* Set the {@link CredentialGenerator} object for this client.
* @param generator the CredentialGenerator object associated with this client
*/
void setCredentialGenerator(CredentialGenerator generator);

444 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame3.doc_5.1/am51_authJ_devref.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame3.doc_5.1/am51_authJ_devref.pdf

You can set the CredentialGenerator object in the WebSphere eXtreme Scale client
property file too, as follows.
v credentialGeneratorClass: The class implementation name for the

CredentialGenerator object. It must have a default constructor.
v credentialGeneratorProps: The properties for the CredentialGenerator class. If the

value is not null, it is set to the constructed CredentialGenerator object using the
setProperties(String) method.

Here is a sample to instantiate a ClientSecurityConfiguration and then use it to
connect to the server.
/**
* Get a secure ClientClusterContext
* @return a secure ClientClusterContext object
*/
protected ClientClusterContext connect() throws ConnectException {
ClientSecurityConfiguration csConfig = ClientSecurityConfigurationFactory
.getClientSecurityConfiguration("/properties/security.ogclient.props");

UserPasswordCredentialGenerator gen= new
UserPasswordCredentialGenerator("manager", "manager1");

csConfig.setCredentialGenerator(gen);

return objectGridManager.connect(csConfig, null);
}

When the connect is called, the WebSphere eXtreme Scale client calls the
CredentialGenerator.getCredential method to get the client credential. This
credential is sent along with the connect request to the server for authentication.

Using a different CredentialGenerator instance per session

In some cases, a WebSphere eXtreme Scale client represents just one client identity,
but in others, it might represent multiple identities. Here is one scenario for the
latter case: An WebSphere eXtreme Scale client is created and shared in a Web
server. All servlets in this Web server use this one WebSphere eXtreme Scale client.
Because every servlet represents a different Web client, use different credentials
when sending requests to WebSphere eXtreme Scale servers.

WebSphere eXtreme Scale provides for changing the credential on the session level.
Every session can uses a different CredentialGenerator object. Therefore, the
previous scenarios can be implemented by letting the servlet get a session with a
different CredentialGenerator object. The following example illustrates the
ObjectGrid.getSession(CredentialGenerator) method in the ObjectGridManager
interface.
/**

* Get a session using a <code>CredentialGenerator</code>.
* <p>
* This method can only be called by the ObjectGrid client in an ObjectGrid
* client server environment. If ObjectGrid is used in a local model, that is,
* within the same JVM with no client or server existing, <code>getSession(Subject)</code>
* or the <code>SubjectSource</code> plugin should be used to secure the ObjectGrid.
*
* <p>If the <code>initialize()</code> method has not been invoked prior to
* the first <code>getSession</code> invocation, an implicit initialization
* will occur. This ensures that all of the configuration is complete
* before any runtime usage is required.</p>
*
* @param credGen A <code>CredentialGenerator</code> for generating a credential
* for the session returned.
*
* @return An instance of <code>Session</code>
*
* @throws ObjectGridException if an error occurs during processing
* @throws TransactionCallbackException if the <code>TransactionCallback</code>

Chapter 7. Security 445

* throws an exception
* @throws IllegalStateException if this method is called after the
* <code>destroy()</code> method is called.
*
* @see #destroy()
* @see #initialize()
* @see CredentialGenerator
* @see Session
* @since WAS XD 6.0.1

*/
Session getSession(CredentialGenerator credGen) throws
ObjectGridException, TransactionCallbackException;

The following is an example:
ObjectGridManager ogManager = ObjectGridManagerFactory.getObjectGridManager();

CredentialGenerator credGenManager = new UserPasswordCredentialGenerator("manager", "xxxxxx");
CredentialGenerator credGenEmployee = new UserPasswordCredentialGenerator("employee", "xxxxxx");

ObjectGrid og = ogManager.getObjectGrid(ctx, "accounting");

// Get a session with CredentialGenerator;
Session session = og.getSession(credGenManager);

// Get the employee map
ObjectMap om = session.getMap("employee");

// start a transaction.
session.begin();

Object rec1 = map.get("xxxxxx");

session.commit();

// Get another session with a different CredentialGenerator;
session = og.getSession(credGenEmployee);

// Get the employee map
om = session.getMap("employee");

// start a transaction.
session.begin();

Object rec2 = map.get("xxxxx");

session.commit();

If you use the ObjectGird.getSession method to get a Session object, the session
uses the CredentialGenerator object set on the ClientConfigurationSecurity object.
The ObjectGrid.getSession(CredentialGenerator) method overrides the
CredentialGenerator set in the ClientSecurityConfiguration object.

If you can reuse the Session object, a performance gain results. However, calling
the ObjectGrid.getSession(CredentialGenerator) method is not very expensive. The
major overhead is the increased object garbage collection time. Make sure that you
release the references after you are done with the Session objects. Generally, if your
Session object can share the identity, try to reuse the Session object. If not, use the
ObjectGrid.getSession(CredentialGenerator) method.

Client authorization programming
WebSphere eXtreme Scale supports Java Authentication and Authorization Service
(JAAS) authorization that is ready to use and also supports custom authorization
using the ObjectGridAuthorization interface.

The ObjectGridAuthorization plug-in is used to authorize ObjectGrid, ObjectMap,
and JavaMap accesses to the Principals represented by a Subject object in a custom
way. A typical implementation of this plug-in is to retrieve the Principals from the
Subject object, and then check whether the specified permissions are granted to the
Principals.

A permission passed to the checkPermission(Subject, Permission) method can be
one of the following permissions:

446 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

v MapPermission
v ObjectGridPermission
v ServerMapPermission
v AgentPermission

Refer to ObjectGridAuthorization API documentation for more details.

MapPermission

The com.ibm.websphere.objectgrid.security.MapPermission public class represents
permissions to the ObjectGrid resources, specifically the methods of ObjectMap or
JavaMap interfaces. WebSphere eXtreme Scale defines the following permission
strings to access the methods of ObjectMap and JavaMap:
v read: Permission to read the data from the map. The integer constant is defined

as MapPermission.READ.
v write: Permission to update the data in the map. The integer constant is defined

as MapPermission.WRITE.
v insert: Permission to insert the data into the map. The integer constant is

defined as MapPermission.INSERT.
v remove: Permission to remove the data from the map. The integer constant is

defined as MapPermission.REMOVE.
v invalidate: Permission to invalidate the data from the map. The integer constant

is defined as MapPermission.INVALIDATE.
v all: All above permissions: read, write, insert, remote, and invalidate. The integer

constant is defined as MapPermission.ALL.

Refer to MapPermission API documentation for more details.

You can construct a MapPermission object by passing the fully qualified
ObjectGrid map name (in format [ObjectGrid_name].[ObjectMap_name]) and the
permission string or integer value. A permission string can be a comma-delimited
string of the previous permission strings such as read, insert, or it can be all. A
permission integer value can be any previously mentioned permission integer
constants or a mathematical value of several integer permission constants, such as
MapPermission.READ|MapPermission.WRITE.

The authorization occurs when an ObjectMap or JavaMap method is called. The
run time checks different permissions for different methods. If the required
permissions are not granted to the client, an AccessControlException results.

Chapter 7. Security 447

Table 12. List of methods and the required MapPermission

Permission ObjectMap/JavaMap

read Boolean containsKey(Object)

Boolean equals(Object)

Object get(Object)

Object get(Object, Serializable)

List getAll(List)

List getAll(List keyList, Serializable)

List getAllForUpdate(List)

List getAllForUpdate(List, Serializable)

Object getForUpdate(Object)

Object getForUpdate(Object, Serializable)

public Object getNextKey(long)

write Object put(Object key, Object value)

void put(Object, Object, Serializable)

void putAll(Map)

void putAll(Map, Serializable)

void update(Object, Object)

void update(Object, Object, Serializable)

insert public void insert (Object, Object)

void insert(Object, Object, Serializable)

remove Object remove (Object)

void removeAll(Collection)

void clear()

invalidate public void invalidate (Object, Boolean)

void invalidateAll(Collection, Boolean)

void invalidateUsingKeyword(Serializable)

int setTimeToLive(int)

Authorization is based solely on which method is used, rather than what the
method really does. For example, a put method can insert or update a record
based on whether the record exists. However, the insert or update cases are not
distinguished.

An operation type can be achieved by combinations of other types. For example,
an update can be achieved by a remove and then an insert. Consider these
combinations when designing your authorization policies.

ObjectGridPermission

A com.ibm.websphere.objectgrid.security.ObjectGridPermission represents
permissions to the ObjectGrid:
v Query: permission to create an object query or entity query. The integer constant

is defined as ObjectGridPermission.QUERY.

448 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

v Dynamic map: permission to create a dynamic map based on the map template.
The integer constant is defined as ObjectGridPermission.DYNAMIC_MAP.

Refer to ObjectGridPermission API documentation for more details.

The following table summarizes the methods and the required
ObjectGridPermission:

Table 13. List of methods and the required ObjectGridPermission
Permission action Methods

query com.ibm.websphere.objectgrid.Session.createObjectQuery(String)

query com.ibm.websphere.objectgrid.em.EntityManager.createQuery(String)

dynamicmap com.ibm.websphere.objectgrid.Session.getMap(String)

ServerMapPermission

An ServerMapPermission represents permissions to an ObjectMap hosted in a
server. The name of the permission is the full name of the ObjectGrid map name. It
has the following actions:
v replicate: permission to replicate a server map to near cache
v dynamicIndex: permission for a client to create or remove a dynamic index on a

server

Refer to ServerMapPermission API documentation for more details. The detailed
methods, which require different ServerMapPermission, are listed in the following
table:

Table 14. Permissions to a server-hosted ObjectMap
Permission action Methods

replicate com.ibm.websphere.objectgrid.ClientReplicableMap.enableClientReplication(Mode, int[], ReplicationMapListener)

dynamicIndex com.ibm.websphere.objectgrid.BackingMap.createDynamicIndex(String, Boolean, String, DynamicIndexCallback)

dynamicIndex com.ibm.websphere.objectgrid.BackingMap.removeDynamicIndex(String)

AgentPermission

An AgentPermission represents permissions to the datagrid agents. The name of
the permission is the full name of the ObjectGrid map, and the action is a
comma-delimited string of agent implementation class names or package names.

Refer to AgentPermission API documentation for more information.

The following methods in the class
com.ibm.websphere.objectgrid.datagrid.AgentManager require AgentPermission.
com.ibm.websphere.objectgrid.datagrid.AgentManager#callMapAgent(MapGridAgent, Collection)

com.ibm.websphere.objectgrid.datagrid.AgentManager#callMapAgent(MapGridAgent)

com.ibm.websphere.objectgrid.datagrid.AgentManager#callReduceAgent(ReduceGridAgent, Collection)

com.ibm.websphere.objectgrid.datagrid.AgentManager#callReduceAgent(ReduceGridAgent, Collection)

Authorization mechanisms

WebSphere eXtreme Scale supports two kinds of authorization mechanisms: Java
Authentication and Authorization Service (JAAS) authorization and custom
authorization. These mechanisms apply to all authorizations. JAAS authorization
augments the Java security policies with user-centric access controls. Permissions

Chapter 7. Security 449

can be granted based not just on what code is running, but also on who is running
it. JAAS authorization is part of the SDK Version 5 and later.

Additionally, WebSphere eXtreme Scale also supports custom authorization with
the following plug-in:
v ObjectGridAuthorization: custom way to authorize access to all artifacts.

You can implement your own authorization mechanism if you do not want to use
JAAS authorization. By using a custom authorization mechanism, you can use the
policy database, policy server, or Tivoli Access Manager to manage the
authorizations.

You can configure the authorization mechanism in two ways:
v XML configuration

You can use the ObjectGrid XML file to define an ObjectGrid and set the
authorization mechanism to either AUTHORIZATION_MECHANISM_JAAS or
AUTHORIZATION_MECHANISM_CUSTOM. Here is the secure-objectgrid-
definition.xml file that is used in the enterprise application ObjectGridSample:
<objectGrids>
<objectGrid name="secureClusterObjectGrid" securityEnabled="true"
authorizationMechanism="AUTHORIZATION_MECHANISM_JAAS">
<bean id="TransactionCallback"

classname="com.ibm.websphere.samples.objectgrid.HeapTransactionCallback" />
...
</objectGrids>

v Programmatic configuration
If you want to create an ObjectGrid using method
ObjectGrid.setAuthorizationMechanism(int), you can call the following method
to set the authorization mechanism. Calling this method applies only to the local
WebSphere eXtreme Scale programming model when you directly instantiate the
ObjectGrid instance:
/**
* Set the authorization Mechanism. The default is
* com.ibm.websphere.objectgrid.security.SecurityConstants.
* AUTHORIZATION_MECHANISM_JAAS.
* @param authMechanism the map authorization mechanism
*/
void setAuthorizationMechanism(int authMechanism);

JAAS authorization

A javax.security.auth.Subject object represents an authenticated user. A Subject
consists of a set of principals, and each Principal represents an identity for that
user. For example, a Subject can have a name principal, for example, Joe Smith,
and a group principal, for example, manager.

Using the JAAS authorization policy, permissions can be granted to specific
Principals. WebSphere eXtreme Scale associates the Subject with the current access
control context. For each call to the ObjectMap or Javamap method, the Java
runtime automatically determines if the policy grants the required permission only
to a specific Principal and if so, the operation is allowed only if the Subject
associated with the access control context contains the designated Principal.

You must be familiar with the policy syntax of the policy file. For detailed
description of JAAS authorization, refer to the JAAS Reference Guide.

450 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

WebSphere eXtreme Scale has a special code base that is used for checking the
JAAS authorization to the ObjectMap and JavaMap method calls. This special code
base is http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction.
Use this code base when granting ObjectMap or JavaMap permissions to
principals. This special code was created because the Java archive (JAR) file for
eXtreme Scale is granted with all permissions.

The template of the policy to grant the MapPermission permission is:
grant codeBase "http://www.ibm.com/com/ibm/ws/objectgrid/security/PrivilegedAction"

<Principal field(s)>{
permission com.ibm.websphere.objectgrid.security.MapPermission

"[ObjectGrid_name].[ObjectMap_name]", "action";
....
permission com.ibm.websphere.objectgrid.security.MapPermission

"[ObjectGrid_name].[ObjectMap_name]", "action";
};

A Principal field looks like the following example:
principal Principal_class "principal_name"

In this policy, only insert and read permissions are granted to these four maps to a
certain principal. The other policy file, fullAccessAuth.policy, grants all
permissions to these maps to a principal. Before running the application, change
the principal_name and principal class to appropriate values. The value of the
principal_name depends on the user registry. For example, if local OS is used as
user registry, the machine name is MACH1, the user ID is user1, and the
principal_name is MACH1/user1.

The JAAS authorization policy can be put directly into the Java policy file, or it can
be put in a separate JAAS authorization file and then set in either of two ways:
v Use the following JVM argument:

-Djava.security.auth.policy=file:[JAAS_AUTH_POLICY_FILE]

v Use the following property in the java.security file:
-Dauth.policy.url.x=file:[JAAS_AUTH_POLICY_FILE]

Custom ObjectGrid authorization

ObjectGridAuthorization plug-in is used to authorize ObjectGrid, ObjectMap, and
JavaMap accesses to the Principals represented by a Subject object in a custom way.
A typical implementation of this plug-in is to retrieve the Principals from the
Subject object, and then check whether or not the specified permissions are granted
to the Principals.

A permission passed to the checkPermission(Subject, Permission) method could be
one of the following:
v MapPermission
v ObjectGridPermission
v AgentPermission
v ServerMapPermission

Refer to ObjectGridAuthorization API documentation for more details.

The ObjectGridAuthorization plug-in can be configured in the following ways:
v XML configuration

Chapter 7. Security 451

You can use the ObjectGrid XML file to define an ObjectAuthorization plug-in.
Here is an example:
<objectGrids>
<objectGrid name="secureClusterObjectGrid" securityEnabled="true"
authorizationMechanism="AUTHORIZATION_MECHANISM_CUSTOM">

...
<bean id="ObjectGridAuthorization"

className="com.acme.ObjectGridAuthorizationImpl" />
</objectGrids>

v Programmatic configuration
If you want to create an ObjectGrid using the API method
ObjectGrid.setObjectGridAuthorization(ObjectGridAuthorization), you can call
the following method to set the authorization plug-in. This method only applies
to the local eXtreme Scale programming model when you directly instantiate the
ObjectGrid instance.
/**

* Sets the <code>ObjectGridAuthorization</code> for this ObjectGrid instance.
* <p>
* Passing <code>null</code> to this method removes a previously set
* <code>ObjectGridAuthorization</code> object from an earlier invocation of this method
* and indicates that this <code>ObjectGrid</code> is not associated with a
* <code>ObjectGridAuthorization</code> object.
* <p>
* This method should only be used when ObjectGrid security is enabled. If
* the ObjectGrid security is disabled, the provided <code>ObjectGridAuthorization</code> object
* will not be used.
* <p>
* A <code>ObjectGridAuthorization</code> plugin can be used to authorize
* access to the ObjectGrid and maps. Please refer to <code>ObjectGridAuthorization</code> for more details.
*
* <p>
* As of XD 6.1, the <code>setMapAuthorization</code> is deprecated and
* <code>setObjectGridAuthorization</code> is recommended for use. However,
* if both <code>MapAuthorization</code> plugin and <code>ObjectGridAuthorization</code> plugin
* are used, ObjectGrid will use the provided <code>MapAuthorization</code> to authorize map accesses,
* even though it is deprecated.
* <p>
* Note, to avoid an <code>IllegalStateException</code>, this method must be
* called prior to the <code>initialize()</code> method. Also, keep in mind
* that the <code>getSession</code> methods implicitly call the
* <code>initialize()</code> method if it has yet to be called by the
* application.
*
* @param ogAuthorization the <code>ObjectGridAuthorization</code> plugin
*
* @throws IllegalStateException if this method is called after the
* <code>initialize()</code> method is called.
*
* @see #initialize()
* @see ObjectGridAuthorization
* @since WAS XD 6.1
*/
void setObjectGridAuthorization(ObjectGridAuthorization ogAuthorization);

Implementing ObjectGridAuthorization

The Boolean checkPermission(Subject subject, Permission permission) method of
the ObjectGridAuthorization interface is called by theWebSphere eXtreme Scale run
time to check whether the passed-in subject object has the passed-in permission.
The implementation of the ObjectGridAuthorization interface returns true if the
object has the permission, and false if not.

A typical implementation of this plug-in is to retrieve the principals from the
Subject object and check whether the specified permissions are granted to the
principals by consulting specific policies. These policies are defined by users. For
example, the policies can be defined in a database, a plain file, or a Tivoli Access
Manager policy server.

For example, we can use Tivoli Access Manager policy server to manage the
authorization policy and use its API to authorize the access. For how to use Tivoli

452 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Access Manager Authorization APIs, refer to the IBM Tivoli Access Manager
Authorization Java Classes Developer Reference for more details.

This sample implementation has the following assumptions:
v Check authorization for MapPermission only. For other permissions, always

return true.
v The Subject object contains a com.tivoli.mts.PDPrincipal principal.
v The Tivoli Access Manager policy server has defined the following permissions

for the ObjectMap or JavaMap name object. The object that is defined in the
policy server must have the same name as the ObjectMap or JavaMap name in
the format of [ObjectGrid_name].[ObjectMap_name]. The permission is the first
character of the permission strings that are defined in the MapPermission
permission. For example, the permission "r" that is defined in the policy server
represents the read permission to the ObjectMap map.

The following code snippet demonstrates how to implement the checkPermission
method:
/**
* @see com.ibm.websphere.objectgrid.security.plugins.
* MapAuthorization#checkPermission
* (javax.security.auth.Subject, com.ibm.websphere.objectgrid.security.
* MapPermission)
*/
public boolean checkPermission(final Subject subject,
Permission p) {

// For non-MapPermission, we always authorize.
if (!(p instanceof MapPermission)){

return true;
}

MapPermission permission = (MapPermission) p;

String[] str = permission.getParsedNames();

StringBuffer pdPermissionStr = new StringBuffer(5);
for (int i=0; i<str.length; i++) {

pdPermissionStr.append(str[i].substring(0,1));
}

PDPermission pdPerm = new PDPermission(permission.getName(),
pdPermissionStr.toString());

Set principals = subject.getPrincipals();

Iterator iter= principals.iterator();
while(iter.hasNext()) {

try {
PDPrincipal principal = (PDPrincipal) iter.next();
if (principal.implies(pdPerm)) {

return true;
}

}
catch (ClassCastException cce) {

// Handle exception
}

}
return false;

}

Chapter 7. Security 453

Data grid authentication
You can use the secure token manager plug-in to enable server-to-server
authentication, which requires you to implement the SecureTokenManager
interface.

The generateToken(Object) method takes an object protect, and then generates a
token that cannot be understood by others. The verifyTokens(byte[]) method does
the reverse process: it converts the token back to the original object.

A simple SecureTokenManager implementation uses a simple encoding algorithm,
such as a XOR algorithm, to encode the object in serialized form and then use
corresponding decoding algorithm to decode the token. This implementation is not
secure and is easy to break.

WebSphere eXtreme Scale default implementation

WebSphere eXtreme Scale provides an immediately available implementation for
this interface. This default implementation uses a key pair to sign and verify the
signature, and uses a secret key to encrypt the content. Every server has a JCKES
type keystore to store the key pair, a private key and public key, and a secret key.
The keystore has to be the JCKES type to store secret keys. These keys are used to
encrypt and sign or verify the secret string on the sending end. Also, the token is
associated with an expiration time. On the receiving end, the data is verified,
decrypted, and compared to the receiver secret string. Secure Sockets Layer (SSL)
communication protocols are not required between a pair of servers for
authentication because the private keys and public keys serve the same purpose.
However, if server communication is not encrypted, the data can be stolen by
looking at the communication. Because the token expires soon, the replay attack
threat is minimized. This possibility is significantly decreased if all servers are
deployed behind a firewall.

The disadvantage of this approach is that the WebSphere eXtreme Scale
administrators have to generate keys and transport them to all servers, which can
cause security breach during transportation.

Local security programming
WebSphere eXtreme Scale provides several security endpoints to allow you to
integrate custom mechanisms. In the local programming model, the main security
function is authorization, and has no authentication support . You must
authenticate outside of WebSphere Application Server. However, there are provided
plug-ins to obtain and validate Subject objects.

Authentication

In the local programming model, eXtreme Scale does not provide any
authentication mechanism, but relies on the environment, either application servers
or applications, for authentication. When eXtreme Scale is used in WebSphere
Application Server or WebSphere Extended Deployment, applications can use the
WebSphere Application Server security authentication mechanism. When eXtreme
Scale is running in a Java 2 Platform, Standard Edition (J2SE) environment, the
application has to manage authentications with Java Authentication and
Authorization Service (JAAS) authentication or other authentication mechanisms.
For more information about using JAAS authentication, see the JAAS reference
guide. The contract between an application and an ObjectGrid instance is the
javax.security.auth.Subject object. After the client is authenticated by the application

454 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html

server or the application, the application can retrieve the authenticated
javax.security.auth.Subject object and use this Subject object to get a session from
the ObjectGrid instance by calling the ObjectGrid.getSession(Subject) method. This
Subject object is used to authorize accesses to the map data. This contract is called
a subject passing mechanism. The following example illustrates the
ObjectGrid.getSession(Subject) API.
/**
* This API allows the cache to use a specific subject rather than the one
* configured on the ObjectGrid to get a session.
* @param subject
* @return An instance of Session
* @throws ObjectGridException
* @throws TransactionCallbackException
* @throws InvalidSubjectException the subject passed in is not valid based
* on the SubjectValidation mechanism.
*/
public Session getSession(Subject subject)
throws ObjectGridException, TransactionCallbackException, InvalidSubjectException;

The ObjectGrid.getSession() method in the ObjectGrid interface can also be used to
get a Session object:
/**
* This method returns a Session object that can be used by a single thread at a time.
* You cannot share this Session object between threads without placing a
* critical section around it. While the core framework allows the object to move
* between threads, the TransactionCallback and Loader might prevent this usage,
* especially in J2EE environments. When security is enabled, this method uses the
* SubjectSource to get a Subject object.
*
* If the initialize method has not been invoked prior to the first
* getSession invocation, then an implicit initialization occurs. This
* initialization ensures that all of the configuration is complete before
* any runtime usage is required.
*
* @see #initialize()
* @return An instance of Session
* @throws ObjectGridException
* @throws TransactionCallbackException
* @throws IllegalStateException if this method is called after the
* destroy() method is called.
*/
public Session getSession()
throws ObjectGridException, TransactionCallbackException;

As the API documentation specifies, when security is enabled, this method uses
the SubjectSource plug-in to get a Subject object. The SubjectSource plug-in is one
of the security plug-ins defined in eXtreme Scale to support propagating Subject
objects. See Security-related plug-ins for more information. The getSession(Subject)
method can be called on the local ObjectGrid instance only. If you call the
getSession(Subject) method on a client side in a distributed eXtreme Scale
configuration, an IllegalStateException results.

Security plug-ins

WebSphere eXtreme Scale provides two security plug-ins that are related to the
subject passing mechanism: the SubjectSource and SubjectValidation plug-ins.

SubjectSource plug-in

The SubjectSource plug-in, represented by the
com.ibm.websphere.objectgrid.security.plugins.SubjectSource interface, is a plug-in
that is used to get a Subject object from an eXtreme Scale running environment.
This environment can be an application using the ObjectGrid or an application
server that hosts the application. Consider the SubjectSource plug-in an alternative

Chapter 7. Security 455

to the subject passing mechanism. Using the subject passing mechanism, the
application retrieves the Subject object and uses it to get the ObjectGrid session
object. With the SubjectSource plug-in, the eXtreme Scale runtime retrieves the
Subject object and uses it to get the session object. The subject passing mechanism
gives the control of Subject objects to applications, while the SubjectSource plug-in
mechanism frees applications from retrieving the Subject object. You can use the
SubjectSource plug-in to get a Subject object that represents an eXtreme Scale client
that is used for authorization. When the ObjectGrid.getSession method is called,
the Subject getSubject throws an ObjectGridSecurityException if security is enabled.
WebSphere eXtreme Scale provides a default implementation of this plug-in:
com.ibm.websphere.objectgrid.security.plugins.builtins.WSSubjectSourceImpl. This
implementation can be used to retrieve a caller subject or a RunAs subject from the
thread when an application is running in WebSphere Application Server. You can
configure this class in your ObjectGrid descriptor XML file as the SubjectSource
implementation class when using eXtreme Scale in WebSphere Application Server.
The following code snippet shows the main flow of the
WSSubjectSourceImpl.getSubject method.
Subject s = null;
try {

if (finalType == RUN_AS_SUBJECT) {
// get the RunAs subject
s = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();

}
else if (finalType == CALLER_SUBJECT) {

// get the callersubject
s = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();

}
}
catch (WSSecurityException wse) {

throw new ObjectGridSecurityException(wse);
}

return s;

For other details, refer to the API documentation for the SubjectSource plug-in and
the WSSubjectSourceImpl implementation.

SubjectValidation plug-in

The SubjectValidation plug-in, which is represented by the
com.ibm.websphere.objectgrid.security.plugins.SubjectValidation interface, is
another security plug-in. The SubjectValidation plug-in can be used to validate that
a javax.security.auth.Subject, either passed to the ObjectGrid or retrieved by the
SubjectSource plug-in, is a valid Subject that has not been tampered with.

The SubjectValidation.validateSubject(Subject) method in the SubjectValidation
interface takes a Subject object and returns a Subject object. Whether a Subject
object is considered valid and which Subject object is returned are all up to your
implementations. If the Subject object is not valid, an InvalidSubjectException
results.

You can use this plug-in if you do not trust the Subject object that is passed to this
method. This case is rare considering that you trust the application developers who
develop the code to retrieve the Subject object.

An implementation of this plug-in needs support from the Subject object creator
because only the creator knows if the Subject object has been tampered with.

456 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

However, some subject creator might not know if the Subject has been tampered
with. In this case, this plug-in is not useful.

WebSphere eXtreme Scale provides a default implementation of SubjectValidation:
com.ibm.websphere.objectgrid.security.plugins.builtins.WSSubjectValidationImpl.
You can use this implementation to validate the WebSphere Application
Server-authenticated subject. You can configure this class as the SubjectValidation
implementation class when using eXtreme Scale in WebSphere Application Server.
The WSSubjectValidationImpl implementation considers a Subject object valid only
if the credential token that is associated with this Subject has not been tampered
with. You can change other parts of the Subject object. The
WSSubjectValidationImpl implementation asks WebSphere Application Server for
the original Subject corresponding to the credential token and returns the original
Subject object as the validated Subject object. Therefore, the changes made to the
Subject contents other than the credential token have no effects. The following code
snippet shows the basic flow of the
WSSubjectValidationImpl.validateSubject(Subject).
// Create a LoginContext with scheme WSLogin and
// pass a Callback handler.
LoginContext lc = new LoginContext("WSLogin",
new WSCredTokenCallbackHandlerImpl(subject));

// When this method is called, the callback handler methods
// will be called to log the user in.
lc.login();

// Get the subject from the LoginContext
return lc.getSubject();

In the previous code snippet, a credential token callback handler object,
WSCredTokenCallbackHandlerImpl, is created with the Subject object to validate.
Then a LoginContext object is created with the login scheme WSLogin. When the
lc.login method is called, WebSphere Application Server security retrieves the
credential token from the Subject object and then returns the correspondent Subject
as the validated Subject object.

For other details, refer to the Java APIs of SubjectValidation and
WSSubjectValidationImpl implementation.

Plug-in configuration

You can configure the SubjectValidation plug-in and SubjectSource plug-in in two
ways:
v XML ConfigurationYou can use the ObjectGrid XML file to define an ObjectGrid

and set these two plug-ins. Here is an example, in which the
WSSubjectSourceImpl class is configured as the SubjectSource plug-in and the
WSSubjectValidation class is configured as the SubjectValidation plug-in.
<objectGrids>
<objectGrid name="secureClusterObjectGrid" securityEnabled="true"
authorizationMechanism="AUTHORIZATION_MECHANISM_JAAS">

<bean id="SubjectSource"
className="com.ibm.websphere.objectgrid.security.plugins.builtins.
WSSubjectSourceImpl" />

<bean id="SubjectValidation"
className="com.ibm.websphere.objectgrid.security.plugins.builtins.
WSSubjectValidationImpl" />

<bean id="TransactionCallback"

Chapter 7. Security 457

className="com.ibm.websphere.samples.objectgrid.
HeapTransactionCallback" />
...
</objectGrids>

v Programming If you want to create an ObjectGrid through APIs, you can call
the following methods to set the SubjectSource or SubjectValidation plug-ins.
**
* Set the SubjectValidation plug-in for this ObjectGrid instance. A
* SubjectValidation plug-in can be used to validate the Subject object
* passed in as a valid Subject. Refer to {@link SubjectValidation}
* for more details.
* @param subjectValidation the SubjectValidation plug-in
*/
void setSubjectValidation(SubjectValidation subjectValidation);

/**
* Set the SubjectSource plug-in. A SubjectSource plug-in can be used
* to get a Subject object from the environment to represent the
* ObjectGrid client.
*
* @param source the SubjectSource plug-in
*/
void setSubjectSource(SubjectSource source);

Write your own JAAS authentication code

You can write you own Java Authentication and Authorization Service (JAAS)
authentication code to handle the authentication. You need to write your own login
modules and then configure the login modules for your authentication module.

The login module receives information about a user and authenticates the user.
This information can be anything that can identify the user. For example, the
information can be a user ID and password, client certificate, and so on. After
receiving the information, the login module verifies that the information represents
a valid subject and then creates a Subject object. Currently, several implementations
of login modules are available to the public.

After a login module is written, configure this login module for the run time to
use. You must configure a JAAS login module. This login module contains the
login module and its authentication scheme. For example:
FileLogin
{

com.acme.auth.FileLoginModule required
};

The authentication scheme is FileLogin and the login module is
com.acme.auth.FileLoginModule. The required token indicates that the
FileLoginModule module must validate this login or the entire scheme fails.

Setting the JAAS login module configuration file can be done in one of the
following ways:
v Set the JAAS login module configuration file in the login.config.url property in

the java.security file, for example:
login.config.url.1=file:${java.home}/lib/security/file.login

v Set the JAAS login module configuration file from the command line by using
the -Djava.security.auth.login.config Java virtual machine (JVM) arguments, for
example, -Djava.security.auth.login.config ==$JAVA_HOME/lib/security/
file.login

458 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

If your code is running in WebSphere Application Server, you must configure the
JAAS login in the administrative console and store this login configuration in the
application server configuration. See Login configuration for Java Authentication
and Authorization Service for details.

Chapter 7. Security 459

460 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Chapter 8. Troubleshooting
In addition to the logs and trace, messages, and release notes discussed in this
section, you can use monitoring tools to figure out issues such as the location of
data in the environment, the availability of servers in the data grid, and so on. If
you are running in a WebSphere Application Server environment, you can use
Performance Monitoring Infrastructure (PMI). If you are running in a stand-alone
environment, you can use a vendor monitoring tool, such as CA Wily Introscope
or Hyperic HQ. You can also use and customize the xscmd utility to display
textual information about your environment.

Troubleshooting and support for WebSphere eXtreme Scale
To isolate and resolve problems with your IBM products, you can use the
troubleshooting and support information. This information contains instructions for
using the problem-determination resources that are provided with your IBM
products, including WebSphere eXtreme Scale .

Techniques for troubleshooting problems
Troubleshooting is a systematic approach to solving a problem. The goal of
troubleshooting is to determine why something does not work as expected and
how to resolve the problem. Certain common techniques can help with the task of
troubleshooting.

The first step in the troubleshooting process is to describe the problem completely.
Problem descriptions help you and the IBM technical-support representative know
where to start to find the cause of the problem. This step includes asking yourself
basic questions:
v What are the symptoms of the problem?
v Where does the problem occur?
v When does the problem occur?
v Under which conditions does the problem occur?
v Can the problem be reproduced?

The answers to these questions typically lead to a good description of the problem,
which can then lead you to a problem resolution.

What are the symptoms of the problem?

When starting to describe a problem, the most obvious question is “What is the
problem?” This question might seem straightforward; however, you can break it
down into several more-focused questions that create a more descriptive picture of
the problem. These questions can include:
v Who, or what, is reporting the problem?
v What are the error codes and messages?
v How does the system fail? For example, is it a loop, hang, crash, performance

degradation, or incorrect result?

© Copyright IBM Corp. 2009, 2012 461

Where does the problem occur?

Determining where the problem originates is not always easy, but it is one of the
most important steps in resolving a problem. Many layers of technology can exist
between the reporting and failing components. Networks, the data grid, and
servers are only a few of the components to consider when you are investigating
problems.

The following questions help you to focus on where the problem occurs to isolate
the problem layer:
v Is the problem specific to one platform or operating system, or is it common

across multiple platforms or operating systems?
v Is the current environment and configuration supported?
v Do all users have the problem?
v (For multi-site installations.) Do all sites have the problem?

If one layer reports the problem, the problem does not necessarily originate in that
layer. Part of identifying where a problem originates is understanding the
environment in which it exists. Take some time to completely describe the problem
environment, including the operating system and version, all corresponding
software and versions, and hardware information. Confirm that you are running
within an environment that is a supported configuration; many problems can be
traced back to incompatible levels of software that are not intended to run together
or have not been fully tested together.

When does the problem occur?

Develop a detailed timeline of events leading up to a failure, especially for those
cases that are one-time occurrences. You can most easily develop a timeline by
working backward: Start at the time an error was reported (as precisely as possible,
even down to the millisecond), and work backward through the available logs and
information. Typically, you need to look only as far as the first suspicious event
that you find in a diagnostic log.

To develop a detailed timeline of events, answer these questions:
v Does the problem happen only at a certain time of day or night?
v How often does the problem happen?
v What sequence of events leads up to the time that the problem is reported?
v Does the problem happen after an environment change, such as upgrading or

installing software or hardware?

Responding to these types of questions can give you a frame of reference in which
to investigate the problem.

Under which conditions does the problem occur?

Knowing which systems and applications are running at the time that a problem
occurs is an important part of troubleshooting. These questions about your
environment can help you to identify the root cause of the problem:
v Does the problem always occur when the same task is being performed?
v Does a certain sequence of events need to happen for the problem to occur?
v Do any other applications fail at the same time?

462 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Answering these types of questions can help you explain the environment in
which the problem occurs and correlate any dependencies. Remember that just
because multiple problems might have occurred around the same time, the
problems are not necessarily related.

Can the problem be reproduced?

From a troubleshooting standpoint, the ideal problem is one that can be
reproduced. Typically, when a problem can be reproduced you have a larger set of
tools or procedures at your disposal to help you investigate. Consequently,
problems that you can reproduce are often easier to debug and solve.

However, problems that you can reproduce can have a disadvantage: If the
problem is of significant business impact, you do not want it to recur. If possible,
recreate the problem in a test or development environment, which typically offers
you more flexibility and control during your investigation.
v Can the problem be recreated on a test system?
v Are multiple users or applications encountering the same type of problem?
v Can the problem be recreated by running a single command, a set of commands,

or a particular application?

Searching knowledge bases
You can often find solutions to problems by searching IBM knowledge bases. You
can optimize your results by using available resources, support tools, and search
methods.

About this task

You can find useful information by searching the information center for WebSphere
eXtreme Scale . However, sometimes you need to look beyond the information
center to answer your questions or resolve problems.

Procedure

To search knowledge bases for information that you need, use one or more of the
following approaches:
v Search for content by using the IBM Support Assistant (ISA).

ISA is a no-charge software serviceability workbench that helps you answer
questions and resolve problems with IBM software products. You can find
instructions for downloading and installing ISA on the ISA website.

v Find the content that you need by using the IBM Support Portal.
The IBM Support Portal is a unified, centralized view of all technical support
tools and information for all IBM systems, software, and services. The IBM
Support Portal lets you access the IBM electronic support portfolio from one
place. You can tailor the pages to focus on the information and resources that
you need for problem prevention and faster problem resolution. Familiarize
yourself with the IBM Support Portal by viewing the demo videos
(https://www.ibm.com/blogs/SPNA/entry/the_ibm_support_portal_videos)
about this tool. These videos introduce you to the IBM Support Portal, explore
troubleshooting and other resources, and demonstrate how you can tailor the
page by moving, adding, and deleting portlets.

v Search for content about WebSphere eXtreme Scale by using one of the following
additional technical resources:

Chapter 8. Troubleshooting 463

http://www.ibm.com/software/support/isa/
http://www.ibm.com/support/us/en/
https://www.ibm.com/blogs/SPNA/entry/the_ibm_support_portal_videos

– WebSphere eXtreme Scale release notes
– WebSphere eXtreme Scale Support website
– WebSphere eXtreme Scale forum

v Search for content by using the IBM masthead search. You can use the IBM
masthead search by typing your search string into the Search field at the top of
any ibm.com® page.

v Search for content by using any external search engine, such as Google, Yahoo,
or Bing. If you use an external search engine, your results are more likely to
include information that is outside the ibm.com domain. However, sometimes
you can find useful problem-solving information about IBM products in
newsgroups, forums, and blogs that are not on ibm.com.

Tip: Include “IBM” and the name of the product in your search if you are
looking for information about an IBM product.

Getting fixes
A product fix might be available to resolve your problem.

Procedure

To find and install fixes:
1. Obtain the tools required to get the fix. Use the IBM Update Installer to install

and apply various types of maintenance packages for WebSphere eXtreme Scale
or WebSphere eXtreme Scale Client. Because the Update Installer undergoes
regular maintenance, you must use the most current version of the tool.

2. Determine which fix you need. See the Recommended fixes for WebSphere
eXtreme Scale to select the latest fix. When you select a fix, the download
document for that fix opens.

3. Download the fix. In the download document, click the link for the latest fix in
the “Download package” section.

4. Apply the fix. Follow the instructions in the “Installation Instructions” section
of the download document.

5. Subscribe to receive weekly e-mail notifications about fixes and other IBM
Support information.

Getting fixes from Fix Central
You can use Fix Central to find the fixes that are recommended by IBM Support
for a variety of products, including WebSphere eXtreme Scale . With Fix Central,
you can search, select, order, and download fixes for your system with a choice of
delivery options. A WebSphere eXtreme Scale product fix might be available to
resolve your problem.

Procedure

To find and install fixes:
1. Obtain the tools that are required to get the fix. If it is not installed, obtain your

product update installer. You can download the installer from Fix Central. This
site provides download, installation, and configuration instructions for the
update installer.

2. Select as the product, and select one or more check boxes that are relevant to
the problem that you want to resolve.

3. Identify and select the fix that is required.

464 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrelnotes.html
http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_eXtreme_Scale
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=778
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsupdi.html
http://www-01.ibm.com/support/docview.wss?uid=swg27018991
http://www-01.ibm.com/support/docview.wss?uid=swg27018991
http://www.ibm.com/support/fixcentral

4. Download the fix.
a. Open the download document and follow the link in the “Download

Package” section.
b. When downloading the file, ensure that the name of the maintenance file is

not changed. This change might be intentional, or it might be an
inadvertent change that is caused by certain web browsers or download
utilities.

5. Apply the fix.
a. Follow the instructions in the “Installation Instructions” section of the

download document.
b. For more information, see the “Installing fixes with the Update Installer”

topic in the product documentation.
6. Optional: Subscribe to receive weekly e-mail notifications about fixes and other

IBM Support updates.

Contacting IBM Support
IBM Support provides assistance with product defects, answers FAQs, and helps
users resolve problems with the product.

Before you begin

After trying to find your answer or solution by using other self-help options, such
as release notes, you can contact IBM Support. Before contacting IBM Support,
your company or organization must have an active IBM maintenance contract, and
you must be authorized to submit problems to IBM. For information about the
types of available support, see the Support portfolio topic in the “Software Support
Handbook”.

Procedure

To contact IBM Support about a problem:
1. Define the problem, gather background information, and determine the severity

of the problem. For more information, see the Getting IBM support topic in the
Software Support Handbook.

2. Gather diagnostic information.
3. Submit the problem to IBM Support in one of the following ways:

v Using IBM Support Assistant (ISA):
v Online through the IBM Support Portal: You can open, update, and view all

of your service requests from the Service Request portlet on the Service
Request page.

v By phone: For the phone number to call in your region, see the Directory of
worldwide contacts web page.

Results

If the problem that you submit is for a software defect or for missing or inaccurate
documentation, IBM Support creates an Authorized Program Analysis Report
(APAR). The APAR describes the problem in detail. Whenever possible, IBM
Support provides a workaround that you can implement until the APAR is
resolved and a fix is delivered. IBM publishes resolved APARs on the IBM Support
website daily, so that other users who experience the same problem can benefit
from the same resolution.

Chapter 8. Troubleshooting 465

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/offerings.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/getsupport.html
http://www.ibm.com/software/support/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

Exchanging information with IBM
To diagnose or identify a problem, you might need to provide IBM Support with
data and information from your system. In other cases, IBM Support might
provide you with tools or utilities to use for problem determination.

Sending information to IBM Support
To reduce the time that is required to resolve your problem, you can send trace
and diagnostic information to IBM Support.

Procedure

To submit diagnostic information to IBM Support:
1. Open a problem management record (PMR).
2. Collect the diagnostic data that you need. Diagnostic data helps reduce the

time that it takes to resolve your PMR. You can collect the diagnostic data
manually or automatically:
v Collect the data manually.
v Collect the data automatically.

3. Compress the files by using the .zip or .tar file format.
4. Transfer the files to IBM. You can use one of the following methods to transfer

the files to IBM:
v IBM Support Assistant
v The Service Request tool
v Standard data upload methods: FTP, HTTP
v Secure data upload methods: FTPS, SFTP, HTTPS
v E-mail
If you are using a z/OS® product and you use ServiceLink / IBMLink to
submit PMRs, you can send diagnostic data to IBM Support in an e-mail or by
using FTP.
All of these data exchange methods are explained on the IBM Support website.

Receiving information from IBM Support
Occasionally an IBM technical-support representative might ask you to download
diagnostic tools or other files. You can use FTP to download these files.

Before you begin

Ensure that your IBM technical-support representative provided you with the
preferred server to use for downloading the files and the exact directory and file
names to access.

Procedure

To download files from IBM Support:
1. Use FTP to connect to the site that your IBM technical-support representative

provided and log in as anonymous. Use your e-mail address as the password.
2. Change to the appropriate directory:

a. Change to the /fromibm directory.
cd fromibm

b. Change to the directory that your IBM technical-support representative
provided.

466 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://www.ibm.com/software/support/isa/
http://www.ibm.com/support/servicerequest
http://www.ibm.com/software/support/exchangeinfo.html

cd nameofdirectory

3. Enable binary mode for your session.
binary

4. Use the get command to download the file that your IBM technical-support
representative specified.
get filename.extension

5. End your FTP session.
quit

Subscribing to Support updates
To stay informed of important information about the IBM products that you use,
you can subscribe to updates.

About this task

By subscribing to receive updates about the product, you can receive important
technical information and updates for specific IBM Support tools and resources.
You can subscribe to updates by using one of two approaches:

Social media subscriptions
The following RSS feed is available for the product:
v RSS feed for WebSphere eXtreme Scale forum

For general information about RSS, including steps for getting started and
a list of RSS-enabled IBM web pages, visit the IBM Software Support RSS
feeds site.

My Notifications
With My Notifications, you can subscribe to Support updates for any IBM
product. My Notifications replaces My Support, which is a similar tool that
you might have used in the past. With My Notifications, you can specify
that you want to receive daily or weekly e-mail announcements. You can
specify what type of information you want to receive, such as publications,
hints and tips, product flashes (also known as alerts), downloads, and
drivers. My Notifications enables you to customize and categorize the
products about which you want to be informed and the delivery methods
that best suit your needs.

Procedure

To subscribe to Support updates:
1. Subscribe to the RSS feed for the WebSphere eXtreme Scale forum .

a. On the subscription page, click the RSS feed icon.
b. Select the option that you want to use to subscribe to the feed.
c. Click Subscribe.

2. Subscribe to My Notifications by going to the IBM Support Portal and click My
Notifications in the Notifications portlet.

3. Sign in using your IBM ID and password, and click Submit.
4. Identify what and how you want to receive updates.

a. Click the Subscribe tab.
b. Select the appropriate software brand or type of hardware.
c. Select one or more products by name and click Continue.

Chapter 8. Troubleshooting 467

http://www.ibm.com/developerworks/forums/forum.jspa?forumID=778
http://www.ibm.com/software/support/rss/
http://www.ibm.com/software/support/rss/
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=778
http://www.ibm.com/software/support/

d. Select your preferences for how to receive updates, whether by e-mail,
online in a designated folder, or as an RSS or Atom feed.

e. Select the types of documentation updates that you want to receive, for
example, new information about product downloads and discussion group
comments.

f. Click Submit.

Results

Until you modify your RSS feeds and My Notifications preferences, you receive
notifications of updates that you have requested. You can modify your preferences
when needed; for example, if you stop using one product and begin using another
product.

Enabling logging
You can use logs to monitor and troubleshoot your environment.

About this task

Logs are saved different locations and formats depending on your configuration.

Procedure
v Enable logs in a stand-alone environment.

With stand-alone catalog servers, the logs are in the location where you run the
startOgServer command. For container servers, you can use the default location
or set a custom log location:
– Default log location: The logs are in the directory where the server command

was run. If you start the servers in the wxs_home/bin directory, the logs and
trace files are in the logs/<server_name> directories in the bin directory.

– Custom log location: To specify an alternate location for container server
logs, create a properties file, such as server.properties, with the following
contents:
workingDirectory=<directory>
traceSpec=
systemStreamToFileEnabled=true

The workingDirectory property is the root directory for the logs and optional
trace file. WebSphere eXtreme Scale creates a directory with the name of the
container server with a SystemOut.log file, a SystemErr.log file, and a trace
file. To use a properties file during container startup, use the -serverProps
option and provide the server properties file location.

v Enable logs in WebSphere Application Server.

See WebSphere Application Server: Enabling and disabling logging for more
information.

v Retrieve FFDC files.

FFDC files are for IBM support to aid in debug. These files might be requested
by IBM support when a problem occurs. These files are in a directory labeled,
ffdc, and contain files that resemble the following:
server2_exception.log
server2_20802080_07.03.05_10.52.18_0.txt

468 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-dist&topic=tprf_enablelog

What to do next

View the log files in their specified locations. Common messages to look for in the
SystemOut.log file are start confirmation messages, such as the following example:

CWOBJ1001I: ObjectGrid Server catalogServer01 is ready to process requests.

For more information about a specific message in the log files, see Messages.

Collecting trace
You can use trace to monitor and troubleshoot your environment. You must
provide trace for a server when you work with IBM support.

About this task

Collecting trace can help you monitor and fix problems in your deployment of
WebSphere eXtreme Scale. How you collect trace depends on your configuration.
See “Trace options” on page 470 for a list of the different trace specifications you
can collect.

Procedure
v Collect trace within a WebSphere Application Server environment.

If your catalog and container servers are in a WebSphere Application Server
environment, see WebSphere Application Server: Working with trace for more
information.

v Collect trace with the stand-alone catalog or container server start command.

You can set trace on a catalog service or container server by using the
-traceSpec and -traceFile parameters with the startOgServer command. For
example:
startOgServer.sh catalogServer -traceSpec ObjectGridPlacement=all=enabled -traceFile /home/user1/logs/trace.log

The -traceFile parameter is optional. If you do not set a -traceFile location,
the trace file goes to the same location as the system out log files.For more
information about these parameters, see the information about the startOgServer
script in the Administration Guide.

v Collect trace on the stand-alone catalog or container server with a properties
file.

To collect trace from a properties file, create a file, such as a server.properties
file, with the following contents:
workingDirectory=<directory>
traceSpec=<trace_specification>
systemStreamToFileEnabled=true

The workingDirectory property is the root directory for the logs and optional
trace file. If the workingDirectory value is not set, the default working directory
is the location used to start the servers, such as wxs_home/bin. To use a
properties file during server startup, use the -serverProps parameter with the
startOgServer command and provide the server properties file location.For more
information about the server properties file and how to use the file, see the
information about the server properties file in the Administration Guide.

v Collect trace on a stand-alone client.

You can start trace collection on a stand-alone client by adding system properties
to the startup script for the client application. In the following example, trace
settings are specified for the com.ibm.samples.MyClientProgram application:

Chapter 8. Troubleshooting 469

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsmessages.html
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=ttrb_trcover
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html

java -DtraceSettingsFile=MyTraceSettings.properties
-Djava.util.logging.manager=com.ibm.ws.bootstrap.WsLogManager
-Djava.util.logging.configureByServer=true com.ibm.samples.MyClientProgram

See WebSphere Application Server: Enabling trace on client and stand-alone
applications for more information.

v Collect trace with the ObjectGridManager interface.

You can also set trace during run time on an ObjectGridManager interface.
Setting trace on an ObjectGridManager interface can be used to get trace on an
eXtreme Scale client while it connects to an eXtreme Scale and commits
transactions. To set trace on an ObjectGridManager interface, supply a trace
specification and a trace log.
ObjectGridManager manager = ObjectGridManagerFactory.getObjectGridManager();
...
manager.setTraceEnabled(true);
manager.setTraceFileName("logs/myClient.log");
manager.setTraceSpecification("ObjectGridReplication=all=enabled");

For more information about the ObjectGridManager interface, see the
information about interacting with the ObjectGrid using the ObjectGridManager
interface in the Programming Guide.

v Collect trace on container servers with the xscmd utility.

To collect trace with the xscmd utility, use the -c setTraceSpec command. Use
the xscmd utility to collect trace on a stand-alone environment during run time
instead of during startup. You can collect trace on all servers and catalog
services or you can filter the servers based on the ObjectGrid name, and other
properties. For example, to collect ObjectGridReplication trace with access to the
catalog service server, run:
xscmd -c setTraceSpec "ObjectGridReplication=all=enabled"

You can also disable trace by setting the trace specification to *=all=disabled.

Results

Trace files are written to the specified location.

Trace options
You can enable trace to provide information about your environment to IBM
support.

About trace

WebSphere eXtreme Scale trace is divided into several different components. You
can specify the level of trace to use. Common levels of trace include: all, debug,
entryExit, and event.

An example trace string follows:
ObjectGridComponent=level=enabled

You can concatenate trace strings. Use the * (asterisk) symbol to specify a wildcard
value, such as ObjectGrid*=all=enabled. If you need to provide a trace to IBM
support, a specific trace string is requested. For example, if a problem with
replication occurs, the ObjectGridReplication=debug=enabled trace string might be
requested.

470 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=pix&product=was-nd-dist&topic=ttrb_entrstandal
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=pix&product=was-nd-dist&topic=ttrb_entrstandal

Trace specification

ObjectGrid
General core cache engine.

ObjectGridCatalogServer
General catalog service.

ObjectGridChannel
Static deployment topology communications.

ObjectGridClientInfo
DB2 client information.

ObjectGridClientInfoUser
DB2 user information.

ObjectgridCORBA
Dynamic deployment topology communications.

ObjectGridDataGrid
The AgentManager API.

ObjectGridDynaCache
The WebSphere eXtreme Scale dynamic cache provider.

ObjectGridEntityManager
The EntityManager API. Use with the Projector option.

ObjectGridEvictors
ObjectGrid built-in evictors.

ObjectGridJPA
Java Persistence API (JPA) loaders.

ObjectGridJPACache
JPA cache plug-ins.

ObjectGridLocking
ObjectGrid cache entry lock manager.

ObjectGridMBean
Management beans.

ObjectGridMonitor
Historical monitoring infrastructure.

ObjectGridNative
WebSphere eXtreme Scale native code trace, including eXtremeMemory
native code.

ObjectGridOSGi
The WebSphere eXtreme Scale OSGi integration components.

ObjectGridPlacement
Catalog server shard placement service.

ObjectGridQuery
ObjectGrid query.

ObjectGridReplication
Replication service.

ObjectGridRouting
Client/server routing details.

Chapter 8. Troubleshooting 471

ObjectGridSecurity
Security trace.

ObjectGridSerializer
The DataSerializer plug-in infrastructure.

ObjectGridStats
ObjectGrid statistics.

ObjectGridTransactionManager
The WebSphere eXtreme Scale transaction manager.

ObjectGridWriteBehind
ObjectGrid write behind.

ObjectGridXM
General IBM eXtremeMemory trace.

ObjectGridXMEviction
eXtremeMemory eviction trace.

ObjectGridXMTransport
eXtremeMemory general transport trace.

ObjectGridXMTransportInbound
eXtremeMemory inbound specific transport trace.

ObjectGridXMTransportOutbound
eXtremeMemory outbound specific transport trace.

Projector
The engine within the EntityManager API.

QueryEngine
The query engine for the Object Query API and EntityManager Query API.

QueryEnginePlan
Query plan trace.

TCPChannel
The IBM eXtremeIO TCP/IP channel.

XsByteBuffer
WebSphere eXtreme Scale byte buffer trace.

Analyzing log and trace data
You can use the log analysis tools to analyze how your runtime is performing and
solve problems that occur in the environment.

About this task

You can generate reports from the existing log and trace files in the environment.
These visual reports can be used for the following purposes:
v To analyze runtime environment status and performance:

– Deployment environment consistency
– Logging frequency
– Running topology versus configured topology
– Unplanned topology changes
– Quorum status
– Partition replication status

472 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

– Statistics of memory, throughput, processor usage, and so on
v To troubleshoot problems in the environment:

– Topology views at specific points in time
– Statistics of memory, throughput, processor usage during client failures
– Current fix pack levels, tuning settings
– Quorum status

Log analysis overview
You can use the xsLogAnalyzer tool to help troubleshoot issues in the environment.

All failover messages

Displays the total number of failover messages as a chart over time. Also displays
a list of the failover messages, including the servers that have been affected

All eXtreme Scale critical messages

Displays message IDs along with the associated explanations and user actions,
which can save you the time from searching for messages.

All exceptions

Displays the top five exceptions, including the messages and how many times they
occurred, and what servers were affected by the exception.

Topology summary

Displays a diagram of how your topology is configured according to the log files.
You can use this summary to compare to your actual configuration, possibly
identifying configuration errors.

Topology consistency: Object Request Broker (ORB) comparison
table

Displays ORB settings in the environment. You can use this table to help determine
if the settings are consistent across your environment.

Event timeline view

Displays a timeline diagram of different actions that have occurred on the data
grid, including life cycle events, exceptions, critical messages, and first-failure data
capture (FFDC) events.

Running log analysis
You can run the xsLogAnalyzer tool on a set of log and trace files from any
computer.

Before you begin
v Enable logs and trace. See “Enabling logging” on page 468 and “Collecting

trace” on page 469 for more information.
v Collect your log files. The log files can be in various locations depending on

how you configured them. If you are using the default log settings, you can get
the log files from the following locations:

Chapter 8. Troubleshooting 473

– In a stand-alone installation: wxs_install_root/bin/logs/<server_name>

– In an installation that is integrated with WebSphere Application Server:
was_root/logs/<server_name>

v Collect your trace files. The trace files can be in various locations depending on
how you configured them. If you are using the default trace settings, you can
get the trace files from the following locations:
– In a stand-alone installation: If no specific trace value is set, the trace files are

written to the same location as the system out log files.
– In an installation that is integrated with WebSphere Application Server:

was_root/profiles/server_name/logs.

Copy the log and trace files to the computer from which you are planning to use
the log analyzer tool.

v If you want to create custom scanners in your generated report, create a scanner
specifications properties file and configuration file before you run the tool. For
more information, see “Creating custom scanners for log analysis” on page 475.

Procedure
1. Run the xsLogAnalyzer tool.

The script is in the following locations :
v In a stand-alone installation: wxs_install_root/ObjectGrid/bin

v In an installation that is integrated with WebSphere Application Server:
was_root/bin

Tip: If your log files are large, consider using the -startTime, -endTime, and
-maxRecords parameters when you run the report to restrict the number of log
entries that are scanned. Using these parameters when you run the report
makes the reports easier to read and run more effectively. You can run multiple
reports on the same set of log files.
xsLogAnalyzer.sh|bat -logsRoot c:\myxslogs -outDir c:\myxslogs\out
-startTime 11.09.27_15.10.56.089 -endTime 11.09.27_16.10.56.089 -maxRecords 100

-logsRoot
Specifies the absolute path to the log directory that you want to
evaluate (required).

-outDir
Specifies an existing directory to write the report output. If you do not
specify a value, the report is written to the root location of the
xsLogAnalyzer tool.

-startTime
Specifies the start time to evaluate in the logs. The date is in the
following format: year.month.day_hour.minute.second.millisecond

-endTime
Specifies the end time to evaluate in the logs. The date is in the
following format: year.month.day_hour.minute.second.millisecond

-trace Specifies a trace string, such as ObjectGrid*=all=enabled.

-maxRecords
Specifies the maximum number of records to generate in the report.
The default is 100. If you specify the value as 50, the first 50 records are
generated for the specified time period.

474 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/rxsrestdir.html

2. Open the generated files. If you did not define an output directory, the reports
are generated in a folder called report_date_time. To open the main page of
the reports, open the index.html file.

3. Use the reports to analyze the log data. Use the following tips to maximize the
performance of the report displays:
v To maximize the performance of queries on the log data, use as specific

information as possible. For example, a query for server takes much longer
to run and returns more results than server_host_name.

v Some views have a limited number of data points that are displayed at one
time. You can adjust the segment of time that is being viewed by changing
the current data, such as start and end time, in the view.

What to do next

For more information about troubleshooting the xsLogAnalyzer tool and the
generated reports, see “Troubleshooting log analysis” on page 476.

Creating custom scanners for log analysis
You can create custom scanners for log analysis. After you configure the scanner,
the results are generated in the reports when you run the xsLogAnalyzer tool. The
custom scanner scans the logs for event records based on the regular expressions
that you specified.

Procedure
1. Create a scanner specifications properties file that specifies the general

expression to run for the custom scanner.
a. Create and save a properties file. The file must be in the

loganalyzer_root/config/custom directory. You can name the file as: you
like. The file is used by the new scanner, so naming the scanner in the
properties file is useful, for example:
my_new_server_scanner_spec.properties.

b. Include the following properties in the
my_new_server_scanner_spec.properties file:
include.regular_expression = REGULAR_EXPRESSION_TO_SCAN

The REGULAR_EXPRESSION_TO_SCAN variable is a regular expression on
which to filter the log files.
Example: To scan for instances of lines that contain both the "xception" and
"rror" strings regardless of the order, set the include.regular_expression
property to the following value:
include.regular_expression = (xception.+rror)|(rror.+xception)

This regular expression causes events to be recorded if the string "rror"
comes before or after the "xception" string.
Example:To scan through each line in the logs for instances of lines that
contain either the phrase "xception" or the phrase "rror" strings regardless
of the order, set the include.regular_expression property to the following
value:
include.regular_expression = (xception)|(rror)

This regular expression causes events to be recorded if the either the "rror"
string or the "xception" string exist.

2. Create a configuration file that the xsLogAnalyer tool uses to create the scanner.

Chapter 8. Troubleshooting 475

a. Create and save a configuration file. The file must be in the
loganalyzer_root/config/custom directory. You can name the file as
scanner_nameScanner.config, where scanner_name is a unique name for the
new scanner. For example, you might name the file serverScanner.config

b. Include the following properties in the scanner_nameScanner.config file:
scannerSpecificationFiles = LOCATION_OF_SCANNER_SPECIFICATION_FILE

The LOCATION_OF_SCANNER_SPECIFICATION_FILE variable is the path
and location of the specification file that you created in the previous step.
For example: loganalyzer_root/config/custom/
my_new_scanner_spec.properties. You can also specify multiple scanner
specification files by using a semi-colon separated list:

scannerSpecificationFiles = LOCATION_OF_SCANNER_SPECIFICATION_FILE1;LOCATION_OF_SCANNER_SPECIFICATION_FILE2

3. Run the xsLogAnalyzer tool. For more information, see “Running log analysis”
on page 473.

Results

After you run the xsLogAnalyzer tool, the report contains new tabs in the report
for the custom scanners that you configured. Each tab contains the following
views:

Charts A plotted graph that illustrates recorded events. The events are displayed
in the order in which the events were found.

Tables A tabular representation of the recorded events.

Summary reports

Troubleshooting log analysis
Use the following troubleshooting information to diagnose and fix problems with
the xsLogAnalyzer tool and its generated reports.

Procedure
v Problem: Out of memory conditions occur when you are using the

xsLogAnalyzer tool to generate reports. An example of an error that might occur
follows: java.lang.OutOfMemoryError: GC overhead limit exceeded.
Solution: The xsLogAnalyzer tool runs within a Java virtual machine (JVM). You
can configure the JVM to increase the heap size before you run the
xsLogAnalyzer tool by specifying some settings when you run the tool.
Increasing the heap size enables more event records to be stored in JVM
memory. Start with a setting of 2048M, assuming the operating system has
enough main memory. On the same command-line instance in which you are
planning to run the xsLogAnalyzer tool, set the maximum JVM heap size:
java -XmxHEAP_SIZEm

The HEAP_SIZE value can be any integer and represents the number of
megabytes that are allocated to JVM heap. For example, you might run java
-Xmx2048m. If the out of memory messages continue, or you do not have the
resources to allocate 2048m or more of memory, limit the number of events that
are being held in the heap. You can limit the number of events in the heap up
by passing the -maxRecords parameter to the .xsLogAnalyzer command

v Problem: When you open a generated report from the xsLogAnalyzer tool, the
browser hangs or does not load the page.

476 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Cause: The generated HTML files are too large and cannot be loaded by the
browser. These files are large because the scope of the log files that you are
analyzing is too broad.
Solution: Consider using the -startTime, -endTime, and -maxRecords parameters
when you run the xsLogAnalyzer tool to restrict the number of log entries that
are scanned. Using these parameters when you run the report makes the reports
easier to read and run more effectively. You can run multiple reports on the
same set of log files.

Troubleshooting client connectivity
There are several common problems specific to clients and client connectivity that
you can solve as described in the following sections.

Procedure
v Problem: If you are using the EntityManager API or byte array maps with the

COPY_TO_BYTES copy mode, client data access methods result in various
serialization-related exceptions or a NullPointerException exception.
– The following error occurs when you are using the COPY_TO_BYTES copy

mode:
java.lang.NullPointerException

at com.ibm.ws.objectgrid.map.BaseMap$BaseMapObjectTransformer2.inflateObject(BaseMap.java:5278)
at com.ibm.ws.objectgrid.map.BaseMap$BaseMapObjectTransformer.inflateValue(BaseMap.java:5155)

– The following error occurs when you are using the EntityManager API:
java.lang.NullPointerException
at com.ibm.ws.objectgrid.em.GraphTraversalHelper.fluffFetchMD(GraphTraversalHelper.java:323)
at com.ibm.ws.objectgrid.em.GraphTraversalHelper.fluffFetchMD(GraphTraversalHelper.java:343)
at com.ibm.ws.objectgrid.em.GraphTraversalHelper.getObjectGraph(GraphTraversalHelper.java:102)
at com.ibm.ws.objectgrid.ServerCoreEventProcessor.getFromMap(ServerCoreEventProcessor.java:709)
at com.ibm.ws.objectgrid.ServerCoreEventProcessor.processGetRequest(ServerCoreEventProcessor.java:323)

Cause: The EntityManager API and COPY_TO_BYTES copy mode use a
metadata repository that is embedded in the data grid. When clients connect, the
data grid stores the repository identifiers in the client and caches the identifiers
for the duration of the client connection. If you restart the data grid, you lose all
metadata and the regenerated identifiers do not match the cached identifiers on
the client.
Solution: If you are using the EntityManager API or the COPY_TO_BYTES copy
mode, disconnect and reconnect all of the clients if the ObjectGrid is stopped
and restarted. Disconnecting and reconnecting the clients refreshes the metadata
identifier cache. You can disconnect clients by using the
ObjectGridManager.disconnect method or the ObjectGrid.destroy method.

v Problem: The client hangs during a getObjectGrid method call.
A client might seem to hang when calling the getObjectGrid method on the
ObjectGridManager or throw an exception:
com.ibm.websphere.projector.MetadataException. The EntityMetadata repository
is not available and the timeout threshold is reached.
Cause: The reason is the client is waiting for the entity metadata on the
ObjectGrid server to become available.
Solution: This error can occur when a container server has been started, but
placement has not yet started. Take the following actions:
– Examine the deployment policy for the ObjectGrid and verify that the number

of active containers is greater than or equal to both the numInitialContainers
and minSyncReplicas attributes in the deployment policy descriptor file.

Chapter 8. Troubleshooting 477

– Examine the setting for the placementDeferralInterval property in the
container server server properties file to see how much time needs to pass
before placement operations occur.

– If you used the xscmd -c suspendBalancing command to stop the balancing
of shards for a specific data grid and map set, use the xscmd -c
resumeBalancing to start balancing again.

Troubleshooting cache integration
Use this information to troubleshoot issues with your cache integration
configuration, including HTTP session and dynamic cache configurations.

Procedure
v Problem: HTTP session IDs are not being reused.

Cause: You can reuse session IDs. If you create a data grid for session
persistence in Version 7.1.1 or later, session ID reuse is automatically
enabled. However, if you created prior configurations, this setting might already
be set with the wrong value.
Solution: Check the following settings to verify that you have HTTP session ID
reuse enabled:
– The reuseSessionId property in the splicer.properties file must be set to

true.
– The HttpSessionIdReuse custom property value must be set to true. This

custom property might be set on one of the following paths in the WebSphere
Application Server administrative console:
- Servers > server_name > Session management > Custom properties

- Dynamic clusters > dynamic_cluster_name > Server template > Session
management > Custom properties

- Servers > Server Types > WebSphere application servers > server_name,
and then, under Server Infrastructure, click Java and process management
> Process definition > Java virtual machine > Custom properties

- Servers > Server Types > WebSphere application servers > server_name >
Web container settings > Web container

If you update any custom property values, reconfigure eXtreme Scale session
management so the splicer.properties file becomes aware of the change.

v Problem: When you are using a data grid to store HTTP sessions and the
transaction load is high, a CWOBJ0006W message displays in the SystemOut.log
file.
CWOBJ0006W: An exception occurred:
com.ibm.websphere.objectgrid.ObjectGridRuntimeException:
java.util.ConcurrentModificationException

This message occurs only when the replicationInterval parameter in the
splicer.properties file is set to a value greater than zero and the Web
application modifies a List object that was set as an attribute on the
HTTPSession.
Solution: Clone the attribute that contains the modified List object and put the
cloned attribute into the session object.

478 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Troubleshooting the JPA cache plug-in
Use this information to troubleshoot issues with your JPA cache plug-in
configuration. These problems can occur in both Hibernate and OpenJPA
configurations.

Procedure
v Problem: The following exception displays: CacheException: Failed to get

ObjectGrid server.
With either an EMBEDDED or EMBEDDED_PARTITION ObjectGridType attribute value,
the eXtreme Scale cache tries to obtain a server instance from the run time. In a
Java Platform, Standard Edition environment, an eXtreme Scale server with
embedded catalog service is started. The embedded catalog service tries to listen
to port 2809. If that port is being used by another process, the error occurs.
Solution: If external catalog service endpoints are specified, for example, with
the objectGridServer.properties file, this error occurs if the host name or port
is specified incorrectly. Correct the port conflict.

v Problem: The following exception displays: CacheException: Failed to get
REMOTE ObjectGrid for configured REMOTE ObjectGrid. objectGridName =
[ObjectGridName], PU name = [persistenceUnitName]

This error occurs because the cache cannot get the ObjectGrid instance from the
provided catalog service end points.
Solution: This problem typically occurs because of an incorrect host name or
port.

v Problem: The following exception displays: CacheException: Cannot have two
PUs [persistenceUnitName_1, persistenceUnitName_2] configured with same
ObjectGridName [ObjectGridName] of EMBEDDED ObjectGridType

This exception results if you have many persistence units configured and the
eXtreme Scale caches of these units are configured with the same ObjectGrid
name and EMBEDDED ObjectGridType attribute value. These persistence unit
configurations could be in the same or different persistence.xml files.
Solution: You must verify that the ObjectGrid name is unique for each
persistence unit when the ObjectGridType attribute value is EMBEDDED.

v Problem: The following exception displays: CacheException: REMOTE ObjectGrid
[ObjectGridName] does not include required BackingMaps [mapName_1,
mapName_2,...]

With a REMOTE ObjectGrid type, if the obtained client-side ObjectGrid does not
have complete entity backing maps to support the persistence unit cache, this
exception occurs. For example, five entity classes are listed in the persistence
unit configuration, but the obtained ObjectGrid only has two BackingMaps. Even
though the obtained ObjectGrid might have 10 BackingMaps, if any one of the
five required entity BackingMaps are not found in the 10 backing maps, this
exception still occurs.
Solution: Make sure that your backing map configuration supports the
persistence unit cache.

Troubleshooting IBM eXtremeMemory and IBM eXtremeIO
Use the following information to troubleshoot eXtremeMemory and eXtremeIO.

Chapter 8. Troubleshooting 479

Procedure

Problem: If the shared resource, libstdc++.so.5, is not installed, then when you
start the container server, IBM eXtremeMemory native libraries do not load.

Linux Symptom: On a Linux 64-bit operating system, if you try to start a
container server with the enableXM server property set to true, and the
libstdc++.so.5 shared resource is not installed, you get an error similar to the
following example:
00000000 Initialization W CWOBJ0006W: An exception occurred: java.lang.reflect.InvocationTargetException
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:56)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:39)
at java.lang.reflect.Constructor.newInstance(Constructor.java:527)
at com.ibm.websphere.objectgrid.server.ServerFactory.initialize(ServerFactory.java:350)
at com.ibm.websphere.objectgrid.server.ServerFactory$2.run(ServerFactory.java:303)
at java.security.AccessController.doPrivileged(AccessController.java:202)
at com.ibm.websphere.objectgrid.server.ServerFactory.getInstance(ServerFactory.java:301)
at com.ibm.ws.objectgrid.InitializationService.main(InitializationService.java:302)

Caused by: com.ibm.websphere.objectgrid.ObjectGridRuntimeException: java.lang.UnsatisfiedLinkError:
OffheapMapdbg (Not found in java.library.path)
at com.ibm.ws.objectgrid.ServerImpl.<init>(ServerImpl.java:1033)
... 9 more Caused by: java.lang.UnsatisfiedLinkError: OffheapMapdbg (Not found in java.library.path)
at java.lang.ClassLoader.loadLibraryWithPath(ClassLoader.java:1011)
at java.lang.ClassLoader.loadLibraryWithClassLoader(ClassLoader.java:975)
at java.lang.System.loadLibrary(System.java:469)
at com.ibm.ws.objectgrid.io.offheap.ObjectGridHashTableOH.initializeNative(ObjectGridHashTableOH.java:112)
at com.ibm.ws.objectgrid.io.offheap.ObjectGridHashTableOH.<clinit>(ObjectGridHashTableOH.java:87)
at java.lang.J9VMInternals.initializeImpl(Native Method)
at java.lang.J9VMInternals.initialize(J9VMInternals.java:200)
at com.ibm.ws.objectgrid.ServerImpl.<init>(ServerImpl.java:1028)
... 9 more

Cause: The shared resource libstdc++.so.5 has not been installed.
Diagnosing the problem: To verify that the resource libstdc++.so.5 is installed,
issue the following command from the ObjectGrid/native directory of your
installation:
ldd libOffheapMap.so

If you do not have the shared library installed, you get the following error:
ldd libOffheapMap.so
libstdc++.so.5 => not found

Resolving the problem: Use the package installer of your 64-bit Linux distribution
to install the required resource file. The package might be listed as
compat-libstdc++-33.x86_64 or libstdc++5. After installing the required resource,
verify that the libstdc++5package is installed by issuing the following command
from the ObjectGrid directory of your installation:
ldd libOffheapMap.so

Troubleshooting administration
Use the following information to troubleshoot administration, including starting
and stopping servers, using the xscmd utility, and so on.

Procedure
v Problem: Administration scripts are missing from the profile_root/bin

directory of a WebSphere Application Server installation.
Cause: When you update the installation, new script files do not automatically
get installed in the profiles.
Solution: If you want to run a script from your profile_root/bin directory,
unaugment and reaugment the profile with the latest release. For more

480 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

information, see Unaugmenting a profile using the command prompt and
Creating and augmenting profiles for WebSphere eXtreme Scale.

v Problem: When you are running a xscmd command, the following message is
printed to the screen:
java.lang.IllegalStateException: Placement service MBean not available.
[]

at
com.ibm.websphere.samples.objectgrid.admin.OGAdmin.main(OGAdmin.java:1449)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at

sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:60)
at

sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:37)
at java.lang.reflect.Method.invoke(Method.java:611)
at com.ibm.ws.bootstrap.WSLauncher.main(WSLauncher.java:267)

Ending at: 2011-11-10 18:13:00.000000484

Cause: A connection problem has occurred with the catalog server.
Solution: Verify that your catalog servers are running and are available through
the network. This message can also occur when you have a catalog service
domain defined, but less than two catalog servers are running. The environment
is not available until two catalog servers are started.

v Problem: When you are running a xscmd command, the following
message is printed to the screen:
CWXSI0066E: Unmatched argument .. was detected

Cause: You entered a command format that the xscmd utility did not recognize.
Solution: Check the format of the command. You might encounter this issue
when running regular expressions with the -c findbyKey command. See
Querying and invalidating data for more information.

Troubleshooting multiple data center configurations
Use this information to troubleshoot multiple data center configurations, including
linking between catalog service domains.

Procedure

Problem: Data is missing in one or more catalog service domains. For example,
you might run the xscmd -c establishLink command. When you look at the data
for each linked catalog service domain, the data looks different, for example from
the xscmd -c showMapSizes command.
Solution: You can troubleshoot this problem with the xscmd -c
showLinkedPrimaries command. This command prints out each primary shard, and
including which foreign primaries are linked.
In the described scenario, you might discover from running the xscmd -c
showLinkedPrimaries command that the first catalog service domain primary
shards are linked to the second catalog service domain primary shards, but the
second catalog service domain does not have links to the first catalog service
domain. You might consider rerunning the xscmd -c establishLink command
from the second catalog service domain to the first catalog service domain.

Troubleshooting loaders
Use this information to troubleshoot issues with your database loaders.

Procedure
v Problem: The loader is unable to communicate with the database. A

LoaderNotAvailableException exception occurs.

Chapter 8. Troubleshooting 481

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.xmlfep.multiplatform.doc/info/ae/ae/txml_wsfpunaugment.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txspmtovr.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v8r5/topic/com.ibm.websphere.extremescale.doc/txsquerygrid.html

Explanation: The loader plug-in can fail when it is unable to communicate to the
database back end. This failure can happen if the database server or the network
connection is down. The write-behind loader queues the updates and tries to
push the data changes to the loader periodically. The loader must notify the
ObjectGrid run time that there is a database connectivity problem by throwing a
LoaderNotAvailableException exception.
Solution: The Loader implementation must be able to distinguish a data failure
or a physical loader failure. Data failure should be thrown or rethrown as a
LoaderException or an OptimisticCollisionException, but a physical loader
failure must be thrown or rethrown as a LoaderNotAvailableException.
ObjectGrid handles these two exceptions differently:
– If a LoaderException is caught by the write-behind loader, the write-behind

loader considers the exception a failure, such as duplicate key failure. The
write-behind loader unbatches the update, and tries the update one record at
one time to isolate the data failure. If A {{LoaderException}}is caught again
during the one record update, a failed update record is created and logged in
the failed update map.

– If a LoaderNotAvailableException is caught by the write-behind loader, the
write-behind loader considers it failed because it cannot connect to the
database end, for example, the database back-end is down, a database
connection is not available, or the network is down. The write-behind loader
waits for 15 seconds and then try the batch update to the database again.

The common mistake is to throw a LoaderException while a
LoaderNotAvailableException must be thrown. All the records queued in the
write-behind loader become failed update records, which defeats the purpose of
back-end failure isolation.

v Problem: When you are using an OpenJPA loader with DB2 in WebSphere
Application Server, a closed cursor exception occurs.
The following exception is from DB2 in the
org.apache.openjpa.persistence.PersistenceException log file:
[jcc][t4][10120][10898][3.57.82] Invalid operation: result set is closed.

Solution: By default, the application server configures the resultSetHoldability
custom property with a value of 2 (CLOSE_CURSORS_AT_COMMIT). This
property causes DB2 to close its resultSet/cursor at transaction boundaries. To
remove the exception, change the value of the custom property to 1
(HOLD_CURSORS_OVER_COMMIT). Set the resultSetHoldability custom
property on the following path in the WebSphere Application Server cell:
Resources > JDBC provider > DB2 Universal JDBC Driver Provider >
DataSources > data_source_name > Custom properties > New.

v Problem DB2 displays an exception: The current transaction has been rolled
back because of a deadlock or timeout. Reason code "2".. SQLCODE=-911,
SQLSTATE=40001, DRIVER=3.50.152

This exception occurs because of a lock contention problem when you are
running with OpenJPA with DB2 in WebSphere Application Server. The default
isolation level for WebSphere Application Server is Repeatable Read (RR), which
obtains long-lived locks with DB2.Solution:

Set the isolation level to Read Committed to reduce the lock contention. Set the
webSphereDefaultIsolationLevel data source custom property to set the isolation
level to 2(TRANSACTION_READ_COMMITTED) on the following path in the
WebSphere Application Server cell: Resources > JDBC provider >
JDBC_provider > Data sources > data_source_name > Custom properties >

482 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

New. For more information about the webSphereDefaultIsolationLevel custom
property and transaction isolation levels, see Requirements for setting data
access isolation levels.

v Problem: When you are using the preload function of the JPALoader or
JPAEntityLoader, the following CWOBJ1511 message does not display for the
partition in a container server: CWOBJ1511I:
GRID_NAME:MAPSET_NAME:PARTITION_ID (primary) is open for business.
Instead, a TargetNotAvailableException exception occurs in the container server,
which activates the partition that is specified by the preloadPartition property.
Solution: Set the preloadMode attribute to true if you use a JPALoader or
JPAEntityLoader to preload data into the map. If the preloadPartition property
of the JPALoader and JPAEntityLoader is set to a value between 0 and
total_number_of_partitions - 1, then the JPALoader and JPAEntityLoader try
to preload the data from backend database into the map. The following snippet
of code illustrates how the preloadMode attribute is set to enable asynchronous
preload:
BackingMap bm = og.defineMap("map1");
bm.setPreloadMode(true);

You can also set the preloadMode attribute by using an XML file as illustrated in
the following example:
<backingMap name="map1" preloadMode="true" pluginCollectionRef="map1"
lockStrategy="OPTIMISTIC" />

Troubleshooting deadlocks
The following sections describe some of the most common deadlock scenarios and
suggestions on how to avoid them.

Before you begin

Implement exception handling in your application. See “Implementing exception
handling in locking scenarios” on page 238 for more information.

The following exception displays as a result:
com.ibm.websphere.objectgrid.plugins.LockDeadlockException: Message

This message represents the string that is passed as a parameter when the
exception is created and thrown.

Procedure
v Problem: LockTimeoutException exception.

Description: When a transaction or client asks for a lock to be granted for a
specific map entry, the request often waits for the current client to release the
lock before the request is submitted. If the lock request remains idle for an
extended period of time, and a lock is never granted, LockTimeoutException
exception is created to prevent a deadlock, which is described in more detail in
the following section. You are more likely to see this exception when using a
pessimistic locking strategy, because the lock never releases until the transaction
commits.
Retrieve more details:

The LockTimeoutException exception contains the getLockRequestQueueDetails
method, which returns a string. You can use this method to see a detailed

Chapter 8. Troubleshooting 483

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=isolevel
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=isolevel

description of the situation that triggers the exception. The following is an
example of code that catches the exception, and displays an error message.
try {

...
}
catch (LockTimeoutException lte) {

System.out.println(lte.getLockRequestQueueDetails());
}

The output result is:
lock request queue
−>[TX:163C269E−0105−4000−E0D7−5B3B090A571D, state =

Granted 5348 milli−seconds ago, mode = U]
−>[TX:163C2734−0105−4000−E024−5B3B090A571D, state =

Waiting for 5348 milli−seconds, mode = U]
−>[TX:163C328C−0105−4000−E114−5B3B090A571D, state =

Waiting for 1402 milli−seconds, mode = U]

If you receive the exception in an ObjectGridException exception catch block, the
following code determines the exception and displays the queue details. It also
uses the findRootCause utility method.
try {
...
}
catch (ObjectGridException oe) {

Throwable Root = findRootCause(oe);
if (Root instanceof LockTimeoutException) {

LockTimeoutException lte = (LockTimeoutException)Root;
System.out.println(lte.getLockRequestQueueDetails());

}
}

Solution: A LockTimeoutException exception prevents possible deadlocks in
your application. An exception of this type results when the exception waits a
set amount of time. You can set the amount of time that the exception waits by
using the setLockTimeout(int) method, which is available for the BackingMap. If
a deadlock does not actually exist in your application, adjust the lock timeout to
avoid the LockTimeoutException.
The following code shows how to create an ObjectGrid object, define a map, and
set its LockTimeout value to 30 seconds:
ObjectGrid objGrid = new ObjectGrid();
BackingMap bMap = objGrid.defineMap("MapName");
bMap.setLockTimeout(30);

Use the previous hardcoded example to set ObjectGrid and map properties. If
you create ObjectGrid from an XML file, set the LockTimeout attribute within the
backingMap element. The following is an example of a backingMap element that
sets a map LockTimeout value to 30 seconds.
<backingMap name="MapName" lockStrategy="PESSIMISTIC" lockTimeout="30">

v Problem: Single key deadlocks.
Description: The following scenarios describe how deadlocks can occur when a
single key is accessed using a S lock and later updated. When this happens from
two transactions simultaneously, it results in a deadlock.

Table 15. Single key deadlocks scenario

Thread 1 Thread 2

1 session.begin() session.begin() Each thread establishes an
independent transaction.

2 map.get(key1) map.get(key1) S lock granted to both
transactions for key1.

484 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Table 15. Single key deadlocks scenario (continued)

Thread 1 Thread 2

3 map.update(Key1,v) No U lock. Update performed
in transactional cache.

4 map.update(key1,v) No U lock. Update performed
in the transactional cache

5 session.commit() Blocked: The S lock for key1
cannot be upgraded to an X
lock because Thread 2 has an S
lock.

6 session.commit() Deadlock: The S lock for key1
cannot be upgraded to an X
lock because T1 has an S lock.

Table 16. Single key deadlocks, continued

Thread 1 Thread 2

1 session.begin() session.begin() Each thread establishes an
independent transaction.

2 map.get(key1) S lock granted for key1

3 map.getForUpdate(key1,v) S lock is upgraded to a U lock
for key1.

4 map.get(key1) S lock granted for key1.

5 map.getForUpdate(key1,v) Blocked: T1 already has U lock.

6 session.commit() Deadlock: The U lock for key1
cannot be upgraded.

7 session.commit() Deadlock: The S lock for key1
cannot be upgraded.

Table 17. Single key deadlocks, continued

Thread 1 Thread 2

1 session.begin() session.begin() Each thread establish an
independent transaction

2 map.get(key1) S lock granted for key1.

3 map.getForUpdate(key1,v) S lock is upgraded to a U lock
for key1

4 map.get(key1) S lock is granted for key1.

5 map.getForUpdate(key1,v) Blocked: Thread 1 already has
a U lock.

6 session.commit() Deadlock: The U lock for key1
cannot be upgraded to an X
lock because Thread 2 has an S
lock.

If the ObjectMap.getForUpdate is used to avoid the S lock, then the deadlock is
avoided:

Table 18. Single key deadlocks, continued

Thread 1 Thread 2

1 session.begin() session.begin() Each thread establishes an
independent transaction.

2 map.getForUpdate(key1) U lock granted to thread 1 for
key1.

3 map.getForUpdate(key1) U lock request is blocked.

4 map.update(key1,v) <blocked>

Chapter 8. Troubleshooting 485

Table 18. Single key deadlocks, continued (continued)

Thread 1 Thread 2

5 session.commit() <blocked> The U lock for key1 can be
successfully upgraded to an X
lock.

6 <released> The U lock is finally granted to
key1 for thread 2.

7 map.update(key2,v) U lock granted to thread 2 for
key2.

8 session.commit() The U lock for key1 can
successfully be upgraded to an
X lock.

Solutions:
1. Use the getForUpdate method instead of get to acquire a U lock instead of

an S lock.
2. Use a transaction isolation level of read committed to avoid holding S locks.

Reducing the transaction isolation level increases the possibility of
non-repeatable reads. However, non-repeatable reads from one client are only
possible if the transaction cache is explicitly invalidated by the same client.

3. Use the optimistic lock strategy. Using the optimistic lock strategy requires
handling optimistic collision exceptions.

v Problem: Ordered multiple key deadlock
Description: This scenario describes what happens if two transactions attempt to
update the same entry directly and hold S locks to other entries.

Table 19. Ordered multiple key deadlock scenario

Thread 1 Thread 2

1 session.begin() session.begin() Each thread establishes an
independent transaction.

2 map.get(key1) map.get(key1) S lock granted to both
transactions for key1.

3 map.get(key2) map.get(key2) S lock granted to both
transactions for key2.

4 map.update(key1,v) No U lock. Update performed
in transactional cache.

5 map.update(key2,v) No U lock. Update performed
in transactional cache.

6. session.commit() Blocked: The S lock for key 1
cannot be upgraded to an X
lock because thread 2 has an S
lock.

7 session.commit() Deadlock: The S lock for key 2
cannot be upgraded because
thread 1 has an S lock.

You can use the ObjectMap.getForUpdate method to avoid the S lock, then you
can avoid the deadlock:

Table 20. Ordered multiple key deadlock scenario, continued

Thread 1 Thread 2

1 session.begin() session.begin() Each thread establishes an
independent transaction.

2 map.getForUpdate(key1) U lock granted to transaction
T1 for key1.

3 map.getForUpdate(key1) U lock request is blocked.

486 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Table 20. Ordered multiple key deadlock scenario, continued (continued)

Thread 1 Thread 2

4 map.get(key2) <blocked> S lock granted for T1 for key2.

5 map.update(key1,v) <blocked>

6 session.commit() <blocked> The U lock for key1 can be
successfully upgraded to an X
lock.

7 <released> The U lock is finally granted to
key1 for T2

8 map.get(key2) S lock granted to T2 for key2.

9 map.update(key2,v) U lock granted to T2 for key2.

10 session.commit() The U lock for key1 can be
successfully upgraded to an X
lock.

Solutions:
1. Use the getForUpdate method instead of the get method to acquire a U lock

directly for the first key. This strategy works only if the method order is
deterministic.

2. Use a transaction isolation level of read committed to avoid holding S locks.
This solution is the easiest to implement if the method order is not
deterministic. Reducing the transaction isolation level increases the
possibility of non-repeatable reads. However, non-repeatable reads are only
possible if the transaction cache is explicitly invalidated.

3. Use the optimistic lock strategy. Using the optimistic lock strategy requires
handling optimistic collision exceptions.

v Problem: Out of order with U lock
Description: If the order in which keys are requested cannot be guaranteed, then
a deadlock can still occur.

Table 21. Out of order with U lock scenario

Thread 1 Thread 2

1 session.begin() session.begin() Each thread establishes an
independent transaction.

2 map.getforUpdate(key1) map.getForUpdate(key2) U locks successfully granted
for key1 and key2.

3 map.get(key2) map.get(key1) S lock granted for key1 and
key2.

4 map.update(key1,v) map.update(key2,v)

5 session.commit() The U lock cannot be
upgraded to an X lock because
T2 has an S lock.

6 session.commit() The U lock cannot be
upgraded to an X lock because
T1 has an S lock.

Solutions:

1. Wrap all work with a single global U lock (mutex). This method reduces
concurrency, but handles all scenarios when access and order is
non-deterministic.

2. Use a transaction isolation level of read committed to avoid holding S locks.
This solution is the easiest to implement if the method order is not
deterministic and provides the greatest amount of concurrency. Reducing the

Chapter 8. Troubleshooting 487

transaction isolation level increases the possibility of non-repeatable reads.
However, non-repeatable reads are only possible if the transaction cache is
explicitly invalidated.

3. Use the optimistic lock strategy. Using the optimistic lock strategy requires
handling optimistic collision exceptions.

IBM Support Assistant for WebSphere eXtreme Scale
You can use the IBM Support Assistant to collect data, analyze symptoms, and
access product information.

IBM Support Assistant Lite

IBM Support Assistant Lite for WebSphere eXtreme Scale provides automatic data
collection and symptom analysis support for problem determination scenarios.

IBM Support Assistant Lite reduces the amount of time it takes to reproduce a
problem with the proper Reliability, Availability, and Serviceability tracing levels
set (trace levels are set automatically by the tool) to streamline problem
determination. If you need further assistance, IBM Support Assistant Lite also
reduces the effort required to send the appropriate log information to IBM
Support.

IBM Support Assistant Lite is included in each installation of WebSphere eXtreme
Scale Version 7.1.0

IBM Support Assistant

IBM® Support Assistant (ISA) provides quick access to product, education, and
support resources that can help you answer questions and resolve problems with
IBM software products on your own, without needing to contact IBM Support.
Different product-specific plug-ins let you customize IBM Support Assistant for the
particular products you have installed. IBM Support Assistant can also collect
system data, log files, and other information to help IBM Support determine the
cause of a particular problem.

IBM Support Assistant is a utility to be installed on your workstation, not directly
onto the WebSphere eXtreme Scale server system itself. The memory and resource
requirements for the Assistant could negatively affect the performance of the
WebSphere eXtreme Scale server system. The included portable diagnostic
components are designed for minimal impact to the normal operation of a server.

You can use IBM Support Assistant to help you in the following ways:
v To search through IBM and non-IBM knowledge and information sources across

multiple IBM products to answer a question or solve a problem
v To find additional information through product-specific Web resources; including

product and support home pages, customer news groups and forums, skills and
training resources and information about troubleshooting and commonly asked
questions

v To extend your ability to diagnose product-specific problems with targeted
diagnostic tools available in the Support Assistant

v To simplify collection of diagnostic data to help you and IBM resolve your
problems (collecting either general or product/symptom-specific data)

488 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

v To help in reporting of problem incidents to IBM Support through a customized
online interface, including the ability to attach the diagnostic data referenced
above or any other information to new or existing incidents

Finally, you can use the built-in Updater facility to obtain support for additional
software products and capabilities as they become available. To set up IBM
Support Assistant for use with WebSphere eXtreme Scale, first install IBM Support
Assistant using the files provided in the downloaded image from the IBM Support
Overview Web page at: http://www-947.ibm.com/support/entry/portal/
Overview/Software/Other_Software/IBM_Support_Assistant. Next, use IBM
Support Assistant to locate and install any product updates. You can also choose to
install plug-ins available for other IBM software in your environment. More
information and the latest version of the IBM Support Assistant are available from
the IBM Support Assistant Web page at: http://www.ibm.com/software/support/
isa/.

Chapter 8. Troubleshooting 489

http://www-947.ibm.com/support/entry/portal/Overview/Software/Other_Software/IBM_Support_Assistant
http://www-947.ibm.com/support/entry/portal/Overview/Software/Other_Software/IBM_Support_Assistant
http://www.ibm.com/software/support/isa/
http://www.ibm.com/software/support/isa/

490 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, New York 10594 USA

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
USA
Attention: Information Requests

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

© Copyright IBM Corp. 2009, 2012 491

492 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the U.S., other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

© Copyright IBM Corp. 2009, 2012 493

494 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

Index

A
administration

troubleshooting 480
AP 105
APIs

ClientLoader 370
DataGrid 248
DynamicIndexCallBack 145
EntityAgentMixin 248
EntityManager 164, 173
EntityTransaction 190
Index 142
JavaMap 160
ObjectMap 160
statistics 380
system 279

application development
overview 125
planning 116

architecture
topologies 83

authorization 446
availability

replication
client side 325

availability partition (AP) 105

B
back-end 333
backing maps

lock strategy 220
batchUpdate method 342
benefits

write-behind caching 95, 330
best practices

tuning evictors 404
byte array maps

performance improvement 400

C
cache

distributed 88
embedded 87
local 84

cache integration
troubleshooting 478

caching
configuring loader support 329

class loaders
planning for 122

classpaths
planning for 122

client connections
administering

using JCA 71
clients

programmatic configuration 253
troubleshooting 477

coherent cache 90
complete cache 92
connecting

to a distributed data grid 130
connection factories

configuring 63
creating resource references 65

CopyMode
best practices 395

create ObjectGrid 135

D
data access

indexes 142
ObjectGrid shard 141
overview 215
partitions 215
queries 215
REST data service 255
sessions 146
stored data 215
transactions 215
with applications 130

database
data preloading 98
data preparation 98
database synchronization

techniques 100
read-through cache 93
side cache 92
sparse and complete cache 92
synchronization 100
write-behind cache 95, 330
write-through cache 93

DataGrid agent
overview 248

DataGrid API
example 249
overview 248
partitioning with 248

deadlock
troubleshooting 483

deadlocks
scenarios for 234

development environment 125
distributed cache 88
distributing changes

using Java message service 223
dynamic maps

maps 157

E
Eclipse Equinox

environment setup 37
embedded cache 87
entities

relationships 122, 164

entity
life cycles of 177
listener 182
schema 166

entity manager 9, 10
creating an entity class 9
entity relationship 10
fetch plan 183
querying 17
tutorial 9, 10
updating entries 15, 17
using an index to update and remove

entries 16
entity managerEntityManager

creating an order entity schema 12
entity maps

creating 342
entity schema

entity 166
EntityManager API

distributed 173
fetch plan 183
for caching objects 164
performance 421
simple queries for 203

EntityTransaction interface 190
event listeners 296
event-based validation 101
evictors

configuring
with a stand-alone server 125
with Apache Tomcat 127
with WebSphere Application

Server 129
map update 132

exception handling
collision exception 246
implementation with locking 238

exclusive lock 234
external transaction manager 358

F
failed updates 333
FetchPlan 183
FIFO queues

maps 161
fixes

getting 464

G
get method

loaders
entity maps and tuples 342

get ObjectGrid instance 139
getting started

overview 73
with development 81

grid authorization 454

© Copyright IBM Corp. 2009, 2012 495

H
heaps 404
Hibernate

preload data
example 375

I
IBM Support Assistant 488
in-line cache 92
indexes

configuration 305
data quality 103
DynamicIndexCallBack 145
HashIndex 305
performance 103

indexing
composite index 311
hash index 311

instrumentation agent 422
isolation

for transactions 244
pessimistic locking 244
repeatable read 244

J
Java Persistence API (JPA)

client-based loader
development 367
development with DataGrid

agent 371
example 370
example for custom 371

JPAEntityLoader plug-in
introduction 340

preload utility
example 369
overview 368

reload
example 370

time-based data updater
overview 378

time-based updater
starting 375

using with eXtreme Scale
overview 365

JavaMap interface 160
JCA

administering
client connections 71

JPA cache plug-in
troubleshooting 479

L
listeners

callback methods 179
for backing map objects 296
introduction 296
MapEventListener plug-in 297
ObjectGridEventListener 298
ObjectGridEventListener plug-in 298
plug-ins 296

load balancing 325

loader
replica preload 346

loaders
database 97
Java Persistence API (JPA)

overview 365
JPA programming considerations 338
overview 313
preloading 315
troubleshooting 481
update failures 333
update tracking 132
using with entity maps and

tuples 342
writing 321

local cache
peer replication 85

local security
programming 454

locking
configuration with XML 239
configuring programmatically 239
no 239
optimistic 221, 239
performance 405
pessimistic 221, 239
strategies for 221

locks
compatibility 234
life cycle 234
time out 234
timeout 241
usage overview 234

log analysis
custom 475
overview 473
running 473
troubleshooting 476

log data 472
log element 132
log sequence 132
LogElement 132
logs 468
LogSequence 132

M
map entry locks

indexes 242
query 242

map pre-loading 325
multi-master data grid replication

planning 105
multi-master replication

configuration planning 109
custom arbiters 283
design planning 111
planning 105
planning for loaders 109

multimaster replication
topologies 105

multiple data center configurations 481

O
object query

index 3
map schema 1
primary key 1
tutorial 1, 3, 5

ObjectGridManager interface
controlling life cycle with 140
createObjectGrid methods 135
getObjectGrid methods 139
removeObjectGrid methods 139
using to interact with an

ObjectGrid 135
ObjectMap API

caching objects with 152
overview 154

ObjectTransformer
best practices for 403, 408

OSGi
administering applications 41
administering servers 41
administering services 54
building dynamic plug-ins 43, 362
building plug-ins 42
configuring plug-ins 50
configuring servers 57
developing plug-ins 35
Eclipse Equinox environment 37
installing bundles 38
installing plug-ins 48
overview 35
programming 361
running containers 40

with non-dynamic plug-ins 50
running plug-ins 35
starting servers 51
tutorials

configuration files 21
configuring containers 26
configuring servers 25
finding service rankings 33
installing bundles 24
installing protocol buffers 27
overview 18
preparing to install bundles 19
querying bundles 31
querying service rankings 31
running bundles 18
running clients 29
sample bundles 20
setting up Eclipse to run

clients 29
starting bundles 24, 28
starting clients 30
updating service rankings 34
upgrading bundles 31

OSGi container
Apache Aries Blueprint

configuration 46

P
partitions

transactions 225
using non-keys to find objects in 153

496 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

performance
best practices

locking 405
database 325
EntityManager 421
evictors 404
locking 405
tuning

application development 395
Performance Monitoring Infrastructure

(PMI) 380
performance tuning 391
planning 83

application development 116
cache keys 124
class loaders 122
classpaths 122

plug-ins
BackingMapLifeCycleListener 300
BackingMapPlugin 281
HashIndex 305, 306
index 308
introduction 117
lifecycle management 279
multi-master replication 283
ObjectGridLifeCycleListener 302
ObjectGridPlugin 280
ObjectTransformer 292
OptimisticCallback 284
plug-in slots 356
TransactionCallback 351
WebSphereTransactionCallback 360

Programming eXtreme Scale 116

Q
query

Backus Naur 212
BNF 212
clauses 204
client failure 186
composite index 311
entity 200
example 203
functions 204
get plan 411
index 203, 413
key collision 186
methods 190
object map 196
ObjectQuery schema 198
optimization with indexes 413
pagination 203
parameters 203
predicates 204
query plan 411
queue 186
schema 198
search elements 190
tuning 409
valid attributes 198

queues 404

R
replication

enabling client-side 254
preload 346

request
per-container 150
routing 150
Session 150

resource adapters
installing 61

REST data service
delete requests 277
insert requests 270
non-entity retrieval 265
operations 255
optimistic concurrency 257
overview 119
planning 119
request protocols 258
retrieve request 258
update requests 273

S
scenarios 35
security

client authentication 429
J2C client connections 65, 426
local 454
overview 425
plug-ins 454
programming 427

security profile 425
securityAPI 427
serialization

locking 407
performance 407

serializer
APIs 290
developing 290
overview 288
plug-ins 288

SessionHandle
routing 149

sessions
access data 146
collision 246
transaction 246

shared lock 234
side cache

database integration 92
sizing 392
sparse cache 92
Spring

clients 388
container servers 386
extension beans 121, 380, 383
framework 121, 380
namespace 383
namespace support 121, 380
native transactions 121, 380
packaging 121, 380
shard scope 121, 380
transactions 381
webflow 121, 380

starting
container servers

Spring 386
statistics API 380
Support 488
system API 279

T
time zones

inserting data 124, 195
querying data in 194

topologies
plan 83

trace
options for configuring 470
troubleshooting 469

trace data 472
transactions

callback 315
connecting applications 58
copyMode 219
cross-grid 225
data access 215
developing client components 67,

230
external managers 358
ID 315
overview 218
processing 59
processing overview 214, 355
programming for 214
single-partition 225
Spring 381

troubleshoot
cache integration 478
HTTP session 478

troubleshooting 461
administration 480
identifying problems, techniques

for 461
trace 469

troubleshooting and support
getting fixes 464

Fix Central 464
IBM Support 465
overview 461
search known problems 463
subscribing to IBM Support 467
troubleshooting techniques 461

tuple objects
creating 342

tutorials 1
configuration files 21
configuring eXtreme Scale

containers 26
configuring eXtreme Scale servers 25
creating entity classes 9
finding service rankings 33
forming entity manager

relationships 10
installing bundles 24
installing eXtreme Scale bundles 24
installing Google Protocol Buffers 27
object query 1, 3, 5
ordering entity schemas 12

Index 497

tutorials (continued)
OSGi

configuration files 21
configuring containers 26
configuring servers 25
finding service rankings 33
installing bundles 24
installing protocol buffers 27
overview 18
preparing to install bundles 19
querying bundles 31
querying service rankings 31
running clients 29
sample bundles 20
setting up Eclipse to run

clients 29
starting bundles 18, 24, 28
starting clients 30
updating service rankings 34
upgrading bundles 31

overview
starting servers and containers 18

preparing to install eXtreme Scale
bundles 19

querying bundles 31
querying local data grids 1
querying service rankings 31
running sample clients

in OSGi 29
sample OSGi bundles 20
setting up Eclipse

for OSGi 29
start OSGi bundles 28
starting bundles 18
starting client applications

in the OSGi framework 30
storing information in entities 9
updating and removing entities

using queries 17
updating and removing entries

using an index 16
updating bundles 31
updating entries 15
updating service rankings 34

U
upgradeable lock 234

W
write-behind

configuring loader support 329
database integration 95, 330
example 335
failed updates 333

X
xscmd

security profile 425
xsloganalyzer 473, 475

498 IBM WebSphere eXtreme Scale: Programming Guide April 27, 2012

����

Printed in USA

	Contents
	Figures
	Tables
	About the Programming Guide
	Chapter 1. Tutorials
	Tutorial: Querying a local in-memory data grid
	ObjectQuery tutorial - step 1
	ObjectQuery tutorial - step 2
	ObjectQuery tutorial - step 3
	ObjectQuery tutorial - step 4

	Tutorial: Storing order information in entities
	Entity manager tutorial: Creating an entity class
	Entity manager tutorial: Forming entity relationships
	Entity manager tutorial: Order Entity Schema
	Entity manager tutorial: Updating entries
	Entity manager tutorial: Updating and removing entries with an index
	Entity manager tutorial: Updating and removing entries by using a query

	Tutorial: Running eXtreme Scale bundles in the OSGi framework
	Introduction: Starting and configuring the eXtreme Scale server and container to run plug-ins in the OSGi framework
	Module 1: Preparing to install and configure eXtreme Scale server bundles
	Lesson 1.1: Understand the OSGi sample bundles
	Lesson 1.2: Understand the OSGi configuration files

	Module 2: Installing and starting eXtreme Scale bundles in the OSGi framework
	Lesson 2.1: Start the console and install the eXtreme Scale server bundle
	Lesson 2.2: Customize and configure the eXtreme Scale server
	Lesson 2.3: Configure the eXtreme Scale container
	Lesson 2.4: Install the Google Protocol Buffers and sample plug-in bundles
	Lesson 2.5: Start the OSGi bundles

	Module 3: Running the eXtreme Scale sample client
	Lesson 3.1: Set up Eclipse to run the client and build the samples
	Lesson 3.2: Start a client and insert data into the grid

	Module 4: Querying and upgrading the sample bundle
	Lesson 4.1: Query service rankings
	Lesson 4.2: Determine whether specific service rankings are available
	Lesson 4.3: Update the service rankings

	Chapter 2. Scenarios
	Using an OSGi environment to develop and run eXtreme Scale plug-ins
	OSGi framework overview
	Installing the Eclipse Equinox OSGi framework with Eclipse Gemini for clients and servers
	Installing eXtreme Scale bundles

	Running eXtreme Scale containers with non-dynamic plug-ins in an OSGi environment
	Administering eXtreme Scale servers and applications in an OSGi environment
	Building and running eXtreme Scale dynamic plug-ins for use in an OSGi environment
	Building eXtreme Scale dynamic plug-ins
	Configuring eXtreme Scale plug-ins with OSGi Blueprint
	Installing and starting OSGi-enabled plug-ins

	Running eXtreme Scale containers with dynamic plug-ins in an OSGi environment
	Configuring OSGi-enabled plug-ins using the ObjectGrid descriptor XML file
	Starting eXtreme Scale servers using the Eclipse Equinox OSGi framework
	Administering OSGi-enabled services using the xscmd utility
	Configuring servers with OSGi Blueprint

	Using JCA to connect transactional applications to eXtreme Scale clients
	Transaction processing in Java EE applications
	Installing an eXtreme Scale resource adapter
	Configuring eXtreme Scale connection factories
	Configuring Eclipse environments to use eXtreme Scale connection factories
	Configuring applications to connect with eXtreme Scale
	Securing J2C client connections
	Developing eXtreme Scale client components to use transactions
	Administering J2C client connections

	Chapter 3. Getting started
	Tutorial: Getting started with WebSphere eXtreme Scale
	Getting started tutorial lesson 1: Defining data grids with configuration files
	ObjectGrid descriptor XML file
	Deployment policy descriptor XML file
	Lesson checkpoint

	Getting started tutorial lesson 2: Creating a client application
	Lesson checkpoint

	Getting started tutorial lesson 3: Running the getting started sample client application
	Lesson checkpoint

	Getting started tutorial lesson 4: Monitor your environment
	Monitoring with the web console
	Monitoring with the xscmd utility
	Stopping the servers
	Lesson checkpoint

	Getting started with developing applications

	Chapter 4. Planning
	Planning the topology
	Local in-memory cache
	Peer-replicated local cache
	Embedded cache
	Distributed cache
	Database integration: Write-behind, in-line, and side caching
	Sparse and complete cache
	Side cache
	In-line cache
	Write-behind caching
	Loaders
	Data pre-loading and warm-up
	Database synchronization techniques
	Data invalidation
	Indexing

	Planning multiple data center topologies
	Topologies for multimaster replication
	Configuration considerations for multi-master topologies
	Loader considerations in a multi-master topology
	Design considerations for multi-master replication

	Planning to develop WebSphere eXtreme Scale applications
	API overview
	Plug-ins overview
	REST data services overview
	Spring framework overview
	Class loader and classpath considerations
	Relationship management
	Cache key considerations
	Data for different time zones

	Chapter 5. Developing applications
	Setting up the development environment
	Setting up a stand-alone development environment
	Running a WebSphere eXtreme Scale client or server application with Apache Tomcat in Rational Application Developer
	Running an integrated client or server application with WebSphere Application Server in Rational Application Developer

	Accessing data with client applications
	Connecting to distributed ObjectGrid instances programmatically
	Tracking map updates by an application
	Interacting with an ObjectGrid using the ObjectGridManager interface
	Creating ObjectGrid instances with the ObjectGridManager interface
	Retrieving a ObjectGrid instance with the ObjectGridManager interface
	Removing ObjectGrid instances with the ObjectGridManager interface
	Controlling the lifecycle of an ObjectGrid with the ObjectGridManager interface
	Accessing the ObjectGrid shard

	Accessing data with indexes (Index API)
	DynamicIndexCallback interface

	Using Sessions to access data in the grid
	SessionHandle for routing
	SessionHandle integration

	Caching objects with no relationships involved (ObjectMap API)
	Routing cache objects to the same partition
	Introduction to ObjectMap
	Dynamic maps
	ObjectMap and JavaMap
	Maps as FIFO queues

	Caching objects and their relationships (EntityManager API)
	Relationship management
	Defining an entity schema
	Entity manager in a distributed environment
	Interacting with EntityManager
	EntityManager fetch plan support
	Entity query queues
	EntityTransaction interface

	Retrieving entities and objects (Query API)
	Querying data in multiple time zones
	Data for different time zones
	Using the ObjectQuery API
	EntityManager Query API
	Reference for eXtreme Scale queries

	Programming for transactions
	Transaction processing overview
	Developing eXtreme Scale client components to use transactions
	Using locking
	Transaction isolation
	Optimistic collision exception
	Running parallel business logic on the data grid (DataGrid API)

	Configuring clients programmatically
	Enabling client-side map replication

	Accessing data with the REST data service
	Operations with the REST data service
	Optimistic concurrency in the REST data service
	Request protocols for the REST data service
	Retrieve requests with the REST data service
	Retrieving non-entities with REST data services
	Insert requests with REST data services
	Update requests with REST data services
	Delete requests with REST data services

	System APIs and plug-ins
	Managing plug-in life cycles
	Writing an ObjectGridPlugin plug-in
	Writing a BackingMapPlugin plug-in

	Plug-ins for multimaster replication
	Developing custom arbiters for multi-master replication

	Plug-ins for versioning and comparing cache objects
	Plug-ins for serializing cached objects
	Serializer programming overview
	Avoiding object inflation when updating and retrieving cache data
	ObjectTransformer plug-in

	Plug-ins for providing event listeners
	MapEventListener plug-in
	ObjectGridEventListener plug-in
	BackingMapLifecycleListener plug-in
	ObjectGridLifecycleListener plug-in

	Plug-ins for indexing data
	Configuring the HashIndex plug-in

	Plug-ins for communicating with databases
	Configuring database loaders
	Writing a loader
	Map pre-loading
	Configuring write-behind loader support
	JPA loader programming considerations
	Using a loader with entity maps and tuples
	Writing a loader with a replica preload controller

	Plug-ins for managing transaction life cycle events
	Transaction processing overview
	Introduction to plug-in slots
	External transaction managers
	WebSphereTransactionCallback plug-in

	Programming to use the OSGi framework
	Building eXtreme Scale dynamic plug-ins

	Programming for JPA integration
	JPA Loaders
	Developing client-based JPA loaders
	Client-based JPA preload utility overview
	Example: Preloading a map with the ClientLoader interface
	Example: Reloading a map with the ClientLoader interface
	Example: Calling a client loader
	Example: Creating a custom client-based JPA loader
	Developing a client-based JPA loader with a DataGrid agent

	Example: Using the Hibernate plug-in to preload data into the ObjectGrid cache
	Starting the JPA time-based updater
	JPA time-based data updater

	Developing applications with the Spring framework
	Spring framework overview
	Managing transactions with Spring
	Spring managed extension beans
	Spring extension beans and namespace support
	Starting a container server with Spring
	Configuring clients in the Spring framework

	Chapter 6. Tuning performance
	Tuning the cache sizing agent for accurate memory consumption estimates
	Cache memory consumption sizing

	Tuning and performance for application development
	Tuning the copy mode
	Improving performance with byte array maps
	Tuning copy operations with the ObjectTransformer interface

	Tuning evictors
	Tuning locking performance
	Tuning serialization performance
	Tuning serialization

	Tuning query performance
	Query plan
	Query optimization using indexes

	Tuning EntityManager interface performance
	Entity performance instrumentation agent

	Chapter 7. Security
	Configuring security profiles for the xscmd utility
	Securing J2C client connections
	Programming for security
	Security API
	Client authentication programming
	Client authorization programming
	Data grid authentication
	Local security programming

	Chapter 8. Troubleshooting
	Troubleshooting and support for WebSphere eXtreme Scale
	Techniques for troubleshooting problems
	Searching knowledge bases
	Getting fixes
	Getting fixes from Fix Central

	Contacting IBM Support
	Exchanging information with IBM
	Sending information to IBM Support
	Receiving information from IBM Support

	Subscribing to Support updates

	Enabling logging
	Collecting trace
	Trace options

	Analyzing log and trace data
	Log analysis overview
	Running log analysis
	Creating custom scanners for log analysis
	Troubleshooting log analysis

	Troubleshooting client connectivity
	Troubleshooting cache integration
	Troubleshooting the JPA cache plug-in
	Troubleshooting IBM eXtremeMemory and IBM eXtremeIO
	Troubleshooting administration
	Troubleshooting multiple data center configurations
	Troubleshooting loaders
	Troubleshooting deadlocks
	IBM Support Assistant for WebSphere eXtreme Scale

	Notices
	Trademarks
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	W
	X

