
WebSphere eXtreme Scale REST data service
Version 7.0.0.0
User Guide

December, 2009

WebSphere eXtreme Scale
REST data service

Version 7.0.0.0

User Guide

Document version [7.0.0.0]

ii

iii

CONTENTS

List of Figures ... vi

List of Tables ... vii

Revision History .. viii

1 Introduction .. 1

1.1 Available features ... 2

1.2 Known problems and limitations ... 3

2 Directory conventions .. 3

3 Getting started ... 5

3.1 Getting started sample overview .. 6

3.1.1 Creating a scalable data model in eXtreme Scale 6

3.1.2 Retrieving and updating data .. 9

3.2 Starting the sample eXtreme Scale grid ... 11

3.2.1 Starting the sample grid for a stand-alone deployment 11

3.2.2 Starting the sample grid for a WebSphere Application Server integrated
deployment .. 12

3.3 Configuring and starting your web server ... 14

3.3.1 Getting started with WebSphere Application Server version 7.0 14

3.3.2 Getting started with WebSphere eXtreme Scale integrated with
WebSphere Application Server version 7.0 ... 16

3.3.3 Getting started with WebSphere Application Server Community Edition 17

3.3.4 Getting started with Tomcat .. 19

3.4 Adding data with the sample Java client application 21

3.4.1 Java client command syntax ... 22

iv

3.4.2 Running and building the sample grid and Java client with Eclipse 23

3.5 Using a web browser to view sample data .. 23

3.5.1 Configuring Internet Explorer Version 8 ... 23

3.5.2 Configuring Firefox Version 3 ... 24

3.5.3 Example URLs .. 25

3.6 Using the sample Visual Studio 2008 WCF Data Services client application
 26

3.6.1 Software requirements .. 26

3.6.2 Building and running the getting started client .. 27

3.6.3 WCF Data Services C# client command syntax 27

4 Installing the REST data service .. 28

4.1 Software requirements ... 28

4.2 Packaging overview ... 29

4.3 Packaging and deploying the REST data service 29

4.4 Deploying on WebSphere Application Server ... 31

4.5 Deploying on WebSphere Application Server Community Edition 34

4.6 Deploying on Apache Tomcat .. 37

5 Configuring the REST data service .. 39

5.1 Configuring the REST data service properties file 39

5.2 Configuring WebSphere eXtreme Scale ... 40

5.2.1 Creating an entity model ... 40

6 Using the REST data service ... 50

6.1 Service root URI ... 50

v

6.2 Request types .. 51

6.2.1 Insert request types .. 51

6.2.2 Update request types .. 51

6.2.3 Delete request types ... 51

6.2.4 Retrieve request types .. 52

6.2.5 Invoke request .. 53

6.2.6 Batch request .. 53

6.2.7 Tunneled requests .. 53

6.3 Request Protocols and Examples ... 53

6.3.1 Retrieve requests .. 53

6.3.2 Insert Request... 70

6.3.3 Update Requests .. 75

6.3.4 Delete Requests ... 81

vi

LIST OF FIGURES

Figure 1: Microsoft WCF Data Services .. 1

Figure 2: WebSphere eXtreme Scale REST data service... 2

Figure 3: Getting started sample topology... 6

Figure 4: The Microsoft SQL Server Northwind sample schema diagram 7

Figure 5: The Customer and Order entity schema diagram .. 8

Figure 6: The Category and Product entity schema diagram .. 9

Figure 7: Configuring Internet Explorer 8 to display ATOM feeds as XML 24

Figure 8: Firefox Application Chooser Window ... 24

Figure 9: WebSphere eXtreme Scale REST Data Service Files ... 30

file:///D:\work\objectgrid\features\rest\WXS_REST_Data_Service_V7_P4R1F_Final.doc%23_Toc248824745
file:///D:\work\objectgrid\features\rest\WXS_REST_Data_Service_V7_P4R1F_Final.doc%23_Toc248824746
file:///D:\work\objectgrid\features\rest\WXS_REST_Data_Service_V7_P4R1F_Final.doc%23_Toc248824747
file:///D:\work\objectgrid\features\rest\WXS_REST_Data_Service_V7_P4R1F_Final.doc%23_Toc248824749
file:///D:\work\objectgrid\features\rest\WXS_REST_Data_Service_V7_P4R1F_Final.doc%23_Toc248824750
file:///D:\work\objectgrid\features\rest\WXS_REST_Data_Service_V7_P4R1F_Final.doc%23_Toc248824753

vii

LIST OF TABLES

Table 1 Java Type to EDM Type Mapping for Retrieve Requests .. 42

Table 2 Compatible EDM type to Java type .. 44

viii

REVISION HISTORY

Date Version Revised By Comments

7/28/2009 1.0.0.0 cdjohnson Initial version for Technology Preview drop 1.0

9/17/2009 2.0.0.0 cdjohnson Added new information for Technology Preview drop 2

10/29/2009 3.0.0.0 cdjohnson Added new information for Technology Preview drop 3

12/17/2009 7.0.0.0 cdjohnson First release, available in eXtreme Scale 7.0.0.0
cumulative fix 2.

1

1 Introduction

This document describes the WebSphere eXtreme Scale REST data service, Version
7.0.0.0.

The WebSphere eXtreme Scale REST data service is a Java HTTP service that is
compatible with Microsoft WCF Data Services (formally ADO.NET Data Services) and
implements the Open Data Protocol (OData). The REST data service allows any HTTP
client to access a WebSphere eXtreme Scale Version 7.0.0.0 with cumulative fix 2 or later
grid, and is compatible with the WCF Data Services support that is supplied with the
Microsoft .NET Framework 3.5 SP1. RESTful applications can be developed with the rich
tooling provided by Microsoft Visual Studio 2008 SP1. Figure 1 shows a general overview
of how WCF Data Services interacts with clients and databases.

WebSphere eXtreme Scale includes a function-rich API set for Java clients. As shown in
Figure 2, the REST data service is a gateway between HTTP clients and the eXtreme
Scale grid, communicating with the grid through an eXtreme Scale client. The REST data
service is a Java servlet, which allows flexible deployments for common Java Platform,
Enterprise Edition (JEE) platforms such as WebSphere Application Server. The REST
data service communicates with the eXtreme Scale grid using the eXtreme Scale Java
APIs and allows WCF Data Services clients or any other client that can communicate with
HTTP and XML.

Database

Rest Service

WCF DS HTTP Clients

.NET/WCF

AJAX

OData
PHP

More…

Figure 1: Microsoft WCF Data Services

http://odata.org/

2

Use the following links to find additional information about WCF Data Services:

 Microsoft WCF Data Services Developer Center

 ADO.NET Data Services overview on MSDN

 Whitepaper: Using ADO.NET Data Services

 Atom Publish Protocol: Data Services URI and Payload Extensions

 Conceptual Schema Definition File Format

 Entity Data Model for Data Services Packaging Format

 Open Data Protocol

 Open Data Protocol FAQ

1.1 Available features

The eXtreme Scale REST data service, Version 7.0.0.0 implements a subset of the
Microsoft Atom Publishing Protocol: Data Services URI and Payload Extensions
specification, Version 1.0 which is part of the OData protocol. Microsoft WCF Data
Services is compatible with this specification when using Visual Studio 2008 SP1 and the
.NET Framework 3.5 SP1.

This version of the eXtreme Scale REST data service supports the following features:

 Automatic modeling of eXtreme Scale EntityManager API entities as WCF Data
Services entities which includes (see section 5.2.1 for additional detail):

o Java data type to Entity Data Model type conversion.

o Entity association support.

o Schema root and key association support which is required for partitioned
grids.

Database

REST Service

WebSphere eXtreme Scale HTTP Clients

Grid .NET/WCF

AJAX

PHP

More…

OData

Figure 2: WebSphere eXtreme Scale REST data service

http://msdn.microsoft.com/en-us/data/bb931106.aspx
http://msdn.microsoft.com/en-us/library/cc956153.aspx
http://msdn.microsoft.com/en-us/library/cc907912.aspx
http://msdn.microsoft.com/en-us/library/dd541188(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541474%28PROT.10%29.aspx
http://msdn.microsoft.com/en-us/library/dd541284%28PROT.10%29.aspx
http://odata.org/
http://msdn.microsoft.com/en-us/data/ee844254.aspx
http://msdn.microsoft.com/en-us/library/dd541188%28PROT.10%29.aspx

3

 Atom Publish Protocol (AtomPub or APP) XML and JavaScript Object Notation
(JSON) data payload format.

 Create, Read, Update and Delete (CRUD) operations using the respective HTTP
request methods: POST, GET, PUT and DELETE. In addition, the Microsoft
extension: MERGE is supported.

 Simple queries are supported using filters. See section 6.2.4 for details on which
query features are supported.

 Batch retrieval and change set requests are supported. See section 6.2.6.

 Partitioned grid support for high availability.

 Interoperability with eXtreme Scale EntityManager API clients.

 Support for standard JEE web servers.

1.2 Known problems and limitations

 Security is not supported. User authorization and authentication is not supported
between the REST data service and the eXtreme Scale grid. Java SE security is
also not supported.

 Mixed character sets are not supported in batches. Each batch part must contain
the same character set as the request.

 ETags are not supported. Concurrent update collisions are only detected if using
entity versioning and the version field is supplied in the data payload.

 Tunneled requests are not supported.

Additional details can be found in section 5.2.1: Creating an entity model.

2 Directory conventions

This document describes many examples and command-line syntax that must reference
special directories such as wxs_install_root, and wxs_home. These directories are defined
as follows and are displayed throughout this document in italics:

wxs_install_root

The wxs_install_root directory is the root directory where WebSphere eXtreme
Scale product files are installed. This can be the directory in which the trial zip file
is extracted or the directory in which the eXtreme Scale product is installed.

Example when extracting the trial:

/opt/IBM/WebSphere/eXtremeScale

Example when eXtreme Scale is installed to a stand-alone directory:

/opt/IBM/eXtremeScale

4

Example when eXtreme Scale is integrated with WebSphere Application Server:

/opt/IBM/WebSphere/AppServer

wxs_home

The wxs_home directory is the root directory of the WebSphere eXtreme Scale
product libraries, samples and components. This is the same as the
wxs_install_root directory when the trial is extracted. For standalone installations,

this is the ObjectGrid sub-directory within the wxs_install_root. For installations

that are integrated with WebSphere Application Server, this directory is the

optionalLibraries/ObjectGrid directory within wxs_install_root.

Example when extracting the trial:

/opt/IBM/WebSphere/eXtremeScale

Example when eXtreme Scale is installed to a stand-alone directory:

/opt/IBM/eXtremeScale/ObjectGrid

Example when eXtreme Scale is integrated with WebSphere Application Server:

/opt/IBM/WebSphere/AppServer/optionalLibraries/ObjectGrid

was_root

The was_root directory is the root directory of a WebSphere Application Server
installation.

Example /opt/IBM/WebSphere/AppServer

restservice_home

The restservice_home directory is the directory in which the eXtreme Scale REST
data service libraries and samples are located. This directory is named restservice
and is a sub-directory under the wxs_home directory.

Example for stand-alone deployments:

/opt/IBM/WebSphere/eXtremeScale/ObjectGrid/restservice

Example for WebSphere Application Server integrated deployments:

/opt/IBM/WebSphere/AppServer/optionalLibraries/ObjectGrid/

restservice

tomcat_root

The tomcat_root is the root directory of the Apache Tomcat installation.

Example /opt/tomcat5.5

wasce_root

The wasce_root is the root directory of the WebSphere Application Server
Community Edition installation.

5

Example /opt/IBM/WebSphere/AppServerCE

java_home

The java_home is the root directory of a Java SE Development Kit (JDK)
installation.

Example /opt/java

3 Getting started

This topic describes how to quickly get started with the WebSphere eXtreme Scale REST
data service. Instructions are provided for WebSphere Application Server version 7.0,
WebSphere Application Server Community Edition and Apache Tomcat.

The included sample has source code and compiled binaries to run a partitioned eXtreme
Scale grid. This sample demonstrates how to create a simple grid, model the data using
eXtreme Scale entities and provides two command-line client applications that allow
adding and querying entities using Java or C# (see Figure 3).

The sample Java client uses the eXtreme Scale Java EntityManager API to persist and
query data in the grid. This client can be run in Eclipse or using a command-line script.
Note that the sample Java client does not demonstrate the REST data service, but allows
updating data in the grid, so a web browser or other clients can read the data. The sample
Java client and web browser, as shown in Figure 3, illustrate HTTP clients using the REST
data service and eXtreme Scale Java clients using the same eXtreme Scale grid and data
contained therein.

The sample Microsoft WCF Data Services C# client communicates with the eXtreme Scale
grid through the REST data service using the .NET framework. The WCF Data Services
client can be used to both update and query the grid.

In general, the following steps need to be completed in order to use the sample:

1. Configure and start the eXtreme Scale grid (see section 3.3)

2. Configure and start the REST data service in a web server (see section 3.3).

3. Run a client to interact with the REST data service. Two options are available:

a. Run the sample Java client to populate the grid with data using the
EntityManager API and query the data in the grid using a web browser and the
eXtreme Scale REST data service. See sections 3.4 and 3.4.2).

b. Run the sample WCF Data Services C# client, see section 3.6.

6

3.1 Getting started sample overview

The getting started sample uses entities similar to the tables included with the Microsoft
SQL Server Northwind database sample. Each database table is modeled in eXtreme
Scale using EntityManager API entities and maps. The eXtreme Scale REST data service
then utilizes the eXtreme Scale entity metadata to represent each entity as an EntitySet.

3.1.1 Creating a scalable data model in eXtreme Scale

The Microsoft Northwind sample uses the Order Detail table to establish a many-to-many
association between Orders and Products. Object to relational mapping specifications
(ORMs) such as the ADO.NET Entity Framework and Java Persistence API (JPA) can map
the tables and relationships using entities. However, this architecture is does not scale.
Everything must be located on the same machine, or an expensive cluster of machines to
perform well.

REST Service

HTTP Client

NorthwindGrid

Java Client

Eclipse

runclient.sh|bat

Browser

WCF DS

Figure 3: Getting started sample topology

http://www.microsoft.com/Downloads/details.aspx?FamilyID=06616212-0356-46a0-8da2-eebc53a68034
http://www.microsoft.com/Downloads/details.aspx?FamilyID=06616212-0356-46a0-8da2-eebc53a68034
http://www.microsoft.com/Downloads/details.aspx?FamilyID=06616212-0356-46a0-8da2-eebc53a68034

7

Categories

C a tegory ID

C a tegory N am e

D escription

P icture

Customers

C ustom erID

C om pany N am e

C ontactN am e

C ontactT itle

A ddress

C ity

R egion

Order Deta ils

O rderID

P roductID

U nitP rice

Q uantity

D iscount

Orders

O rderID

C ustom erID

E m ploy ee ID

O rde rD a te

R equiredD a te

S hippedD a te

S hipV ia

Products

P roductID

P roductN am e

S upplie rID

C a tegory ID

Q uantity P e rU nit

Figure 4: The Microsoft SQL Server Northwind sample schema diagram

In order to create a scalable version of the sample, the entities must be modeled such that
each entity or group of related entities can be partitioned based off a single key. By doing
this, requests can be spread out among multiple, independent servers. To achieve this,
the entities have been divided into two trees: The Customer/Order tree (see Figure 5) and
the Product/Category tree (see Figure 6). In this model, each tree can be partitioned
independently and therefore can grow at different rates and scale.

8

For example, both Order and Product have unique, separate integers as keys. In fact, the
Order and Product tables are really independent of each other. For example, consider the
effect of the size of a catalog (number of products you sell) with the total number of orders.
Intuitively, it may seem that having many products implies also having many orders, but
this is not necessarily the case. If this were true, you could easily increase sales by just
adding more products to your catalog. Orders and products have their own independent
tables. You can further extend this concept so that orders and products each have their
own separate, eXtreme Scale grids. With independent grids, you can control the number
of partitions and servers, in addition to the size of each grid separately so that your
application can scale. If you double the size of your catalog, you must double the products
grid, but the ogrid may be unchanged. The converse is true for an order surge, or
expected order surge.

In the schema, a Customer has zero or more Orders, and an Order has line items
(OrderDetail), each with one specific product. A Product is identified by id (the Product
key) in each OrderDetail. A single grid stores Customers, Orders and, with Customer as
the root entity of the grid. You can retrieve Customers by Id, but you have to get Orders

String customerId (key)
String companyName
String contactName
String city
String country
int version

<<Root Entity>>

Customer

int orderId (key)
Date orderDate
String shipCity
String shipCountry
int version
String customer_customerId (key)

Order

int productId (key)
String categoryId
float discount
short quantity
double unitPrice
int version
String order_customer_customerId (key)

String order_orderId (key)

OrderDetail

orders
1

customer (key)
*

orderDetails
1

order (key)
*

Figure 5: The Customer and Order entity schema diagram

9

starting with the Customer id. So customer id is added to Order as part of its key.
Likewise, the customer id and order id are part of the OrderDetail id.

In the Category and Product schema, the Category is the schema root. This allows
customers to query products by category. See the following section 3.1.2 for additional
details on key associations and their importance.

3.1.2 Retrieving and updating data

The OData protocol requires that all entities can be addressed by their canonical form.
This means that each entity must include the key of the partitioned, root entity (the schema
root).

For example, in eXtreme Scale, you can use the association from the root entity to address

the child: /Customer('ACME')/order(100)

In WCF Data Services, the child entity must be directly addressable, meaning that the key
in the schema root must be a part of the key of the child:
 /Order(customer_customerId='ACME', orderId=100).

This is achieved by creating an association to the root entity where the one-to-one or
many-to-one association to the root entity is also identified as a key. When entities are
included as part of the key, the attributes of the parent entity are exposed as key
properties.

In Figure 5, the Customer/Order entity schema diagram illustrates how each entity is
partitioned using the Customer. The Order entity includes the Customer as part of its key
and is therefore directly accessible. The REST data service exposes all key associations
as individual properties: Order has customer_customerId and OrderDetail has
order_customer_customerId and order_orderId.

Using the EntityManager API, you can find the Order using the Customer and order id:

String categoryId (key)
String categoryName
String description
int version

<<Root Entity>

Category

int productId (key)
String productName
double unitPrice
boolean discontinued
short unitsInStock
int version
String category_categoryId (key)

Product

products
1

category (key)
*

Figure 6: The Category and Product entity schema diagram

10

transaction.begin();

// Look-up the Order using the Customer. We only include the Id

// in the Customer class when building the OrderId key instance.

Order order = (Order) em.find(Order.class,

 new OrderId(100, new Customer('ACME')));

...

transaction.commit();

When using the REST data service, the Order can be retrieved with either of the URLs:

 /Order(orderId=100, customer_customerId='ACME')

 /Customer('ACME')/orders?$filter=orderId eq 100

The customer key is addressed using the attribute name of the Customer entity, an
underscore character and the attribute name of the customer id: customer_customerId.

An entity can also include a non-root entity as part of its key if all of the ancestors to the
non-root entity have key associations to the root. In this example, OrderDetail has a key-
association to Order and Order has a key-association to the root Customer entity. Using
the EntityManager API:

transaction.begin();

// Construct an OrderDetailId key instance. It includes

// The Order and Customer with only the keys set.

Customer customerACME = new Customer("ACME");

Order order100 = new Order(100, customerACME)

OrderDetailId orderDetailKey =

 new OrderDetailId(order100, "COMP");

OrderDetail orderDetail = (OrderDetail)

 em.find(OrderDetail.class, orderDetailKey);

...

The REST data service allows addressing the OrderDetail directly:

 /OrderDetail(productId=500, order_customer_customerId='ACME',

order_orderId =100)

The association from the OrderDetail entity to the Product entity has been broken to allow
partitioning the Orders and Product inventory independently. The OrderDetail entity stores
the category and product id instead of a hard relationship. By decoupling the two entity
schemas, only one partition is accessed at a time.

The Category and Product schema, illustrated in Figure 6, shows that the root entity is
Category and each Product has an association to a Category entity. The Category entity is
included in the Product identity. The REST data service exposes a key property:
category_categoryId which allows directly addressing the Product.

Since Category is the root entity, in a partitioned environment, the Category must be
known in order to find the Product. Using the EntityManager API, the transaction must be
pinned to the Category entity prior to finding the Product. Using the EntityManager API:

transaction.begin();

// Create the Category root entity with only the key. This

// allows us to construct a ProductId without needing to find

// The Category first. The transaction is now pinned to the

11

// partition where Category "COMP" is stored.

Category cat = new Category("COMP");

Product product = (Product) em.find(Product.class,

 new ProductId(500, cat));

...

The REST data service allows addressing the Product directly:

 /Product(productId=500, category_categoryId='COMP')

3.2 Starting the sample eXtreme Scale grid

Before starting the REST data service, start the eXtreme Scale grid. The following steps
will start a single eXtreme Scale catalog service process and two container server
processes.

WebSphere eXtreme Scale can be installed using three different methods:

 Trial install - See section 3.2.1.

 Stand-alone deployment - See section 3.2.1.

 WebSphere Application Server integrated deployment – See section 3.2.2.

3.2.1 Starting the sample grid for a stand-alone deployment

Follow these steps to start the WebSphere eXtreme Scale REST service sample grid for a
stand-alone eXtreme Scale deployment.

Before you begin

Install the WebSphere eXtreme Scale Trial or full product:

 Install the stand-alone version of the WebSphere eXtreme Scale 7.0 product and
apply WebSphere eXtreme Scale 7.0.0.0 cumulative fix 2.

 Download and extract the WebSphere eXtreme Scale Version 7.0 trial which
includes the WebSphere eXtreme Scale REST data service.

About this task

Start the WebSphere eXtreme Scale sample grid:

A. Start the catalog service process:

1. Open a command-line or terminal window and set the JAVA_HOME
environment variable:

set JAVA_HOME=<java_home

>

export JAVA_HOME=<java_home

>

2. cd restservice_home/gettingstarted

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/topic/com.ibm.websphere.extremescale.admin.doc/txsinstallovr.html
http://www.ibm.com/developerworks/downloads/ws/wsdg/learn.html

12

3. Start the catalog service process:

 runcat.bat

./runcat.sh

B. Start two container server processes:

1. Open another command-line or terminal window and set the JAVA_HOME
environment variable:

set JAVA_HOME=<java_home

>

export JAVA_HOME=<java_home

>

2. cd restservice_home/gettingstarted

3. Start a container server process:

runcontainer.bat container0

./runcontainer.sh container0

4. Open another command-line or terminal window and set the JAVA_HOME
environment variable:

set JAVA_HOME=<java_home

>

export JAVA_HOME=<java_home

>

5. cd restservice_home/gettingstarted

6. Start a second container server process:

runcontainer.bat container1

./runcontainer.sh container1

7. Wait until the eXtreme Scale containers are ready before proceeding with the
next steps. The container servers are ready when the following message is
displayed in the terminal window:

CWOBJ1001I: ObjectGrid Server <container name> is ready to

process requests.

Where <container name> is the name of the container that was started in the
previous step.

3.2.2 Starting the sample grid for a WebSphere Application Server
integrated deployment

Follow these steps to start a stand-alone WebSphere eXtreme Scale REST service sample
grid for a WebSphere eXtreme Scale deployment that is integrated with WebSphere
Application Server. Although eXtreme Scale is integrated with WebSphere Application

13

Server, these steps will start a stand-alone eXtreme Scale catalog service process and
container

Before you begin

Install the WebSphere eXtreme Scale 7.0 product into a WebSphere Application Server
Version 7.0.0.5 or later installation directory (with security disabled), augment at least one
Application Server profile and apply WebSphere eXtreme Scale 7.0.0.0 cumulative fix 2.

About this task

Start the WebSphere eXtreme Scale sample grid:

A. Start the catalog service process:

1. Open a command-line or terminal window.

2. cd restservice_home/gettingstarted

3. Start the catalog service process:

 runcat.bat

./runcat.sh

B. Start two container server processes:

1. Open another command-line or terminal window.

2. cd restservice_home/gettingstarted

3. Start a container server process:

runcontainer.bat container0

./runcontainer.sh container0

4. Open another command-line or terminal window.

5. cd restservice_home/gettingstarted

6. Start a second container server process:

runcontainer.bat container1

./runcontainer.sh container1

7. Wait until the eXtreme Scale containers are ready before proceeding with the
next steps. The container servers are ready when the following message is
displayed in the terminal window:

CWOBJ1001I: ObjectGrid Server <container name> is ready to

process requests.

Where <container name> is the name of the container that was started in the
previous step.

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/topic/com.ibm.websphere.extremescale.admin.doc/txsinstallovr.html

14

3.3 Configuring and starting your web server

The eXtreme Scale REST data service is hosted by a JEE web server. The following web
servers are supported (see section 4.1 for detailed software requirements):

 WebSphere Application Server (see section 3.3.1),

 WebSphere Application Server integrated with WebSphere eXtreme Scale (see
section 3.3.2),

 WebSphere Application Server Community Edition (see section3.3.3) and

 Apache Tomcat (see section 3.3.4)

The following sections describe how to install the eXtreme Scale REST data service into
the web server.

Note: These instructions assume you will use the trial version of WebSphere eXtreme
Scale. To run the REST data service with your installed version of WebSphere
eXtreme Scale version 7, see section 3.3.2.

3.3.1 Getting started with WebSphere Application Server version 7.0

This topic describes how to configure and start the eXtreme Scale REST data service
using WebSphere Application Server version 7.0.

If the WebSphere Application Server installation is integrated with WebSphere eXtreme
Scale, see section 3.3.2.

Before you begin

Verify that the sample eXtreme Scale grid is started. See section 3.2.1 for details on how
to start the grid.

About this task

To get started with the WebSphere eXtreme Scale REST data service using WebSphere
Application Server, follow these steps:

A. Download and install WebSphere Application Server Version 7.0 for Developers.

Note: Do not enable security.

B. Download and install WebSphere Application Server Version 7.0 Fix Pack 5 or
later.

C. Add the WebSphere eXtreme Scale client runtime JAR, wsogclient.jar, and the
REST data service configuration JAR or directory to the application server
classpath:

1. Open the WebSphere Administration Console

2. Navigate to Environment -> Shared libraries

3. Click New

4. Add the following entries into the fields:

a. Name: extremescale_client_v7

http://www.ibm.com/developerworks/downloads/ws/wasdevelopers/learn.html
http://www.ibm.com/support/docview.wss?rs=0&uid=swg24023707

15

b. Classpath:
wxs_home/lib/wsogclient.jar

5. Click OK

6. Click New

7. Add the following entries into the appropriate fields:

a. Name: extremescale_gettingstarted_config

b. Classpath:
restservice_home/gettingstarted/restclient/bin
restservice_home/gettingstarted/common/bin

Note: Add each path on a separate line.

8. Click OK

9. Save the changes to the master configuration

D. Install the REST data service web module, wxsrestservice.war, to the WebSphere
Application Server using the WebSphere administration console:

1. Open the WebSphere administration console

2. Navigate to Applications -> New Application

3. Browse to the restservice_home/lib/wxsrestservice.war, select the file and
click Next.

4. Choose the detailed installation options, and click Next.

5. On the application security warnings screen, click Continue.

6. Choose the default installation options, and click Next.

7. Choose a server to map the application to, and click Next.

8. On the JSP reloading page, use the defaults, and click Next.

9. On the shared libraries page, map the "wxsrestservice_war" module to the
following shared libraries that were defined during step C:

 extremescale_client_v7

 extremescale_ gettingstarted _config

10. On the map shared library relationship page, use the defaults, and click Next.

11. On the map virtual hosts page, use the defaults, and click Next

12. On the map context roots page, set the context root to: /wxsrestservice

13. On the Summary screen, click Finish to complete the installation.

13. Save the changes to the master configuration

E. Start the application server and the "wxsrestservice_war" eXtreme Scale REST
data service application.

1. After the application is started review the SystemOut.log for the application
server and verify that the following message appears:
CWOBJ4000I: The WebSphere eXtreme Scale REST data service has been
started.

F. Verify that the REST data service is working:

16

1. Open a browser and navigate to:
http://localhost:9080/wxsrestservice/restservice/NorthwindGrid
The service document for the NorthwindGrid is displayed.

2. Navigate to:
http://localhost:9080/wxsrestservice/restservice/NorthwindGrid/$metadata
The Entity Model Data Extensions (EDMX) document is displayed.

G. To stop the grid processes, use CTRL+C in the respective command window.

3.3.2 Getting started with WebSphere eXtreme Scale integrated with
WebSphere Application Server version 7.0

This topic describes how to configure and start the eXtreme Scale REST data service
using WebSphere Application Server version 7.0 that has been integrated and augmented
with WebSphere eXtreme Scale. If using WebSphere Application Server version 7.0 that
has not been integrated with WebSphere eXtreme Scale, see section 3.3.1.

Before you begin

Verify that the sample stand-alone eXtreme Scale grid is started. See section 3.2.2 for
details on how to start a stand-alone grid in an environment that has WebSphere
Application Server integrated with WebSphere eXtreme Scale

About this task

To get started with the WebSphere eXtreme Scale REST data service using WebSphere
Application Server, follow these steps:

A. Add the WebSphere eXtreme Scale REST data service sample configuration JAR
to the classpath:

1. Open the WebSphere Administration Console

2. Navigate to Environment -> Shared libraries

3. Click New

4. Add the following entries into the appropriate fields:

a. Name: extremescale_gettingstarted_config

b. Classpath:
restservice_home/gettingstarted/restclient/bin
restservice_home/gettingstarted/common/bin

Note: Each path must appear on a different line.

5. Click OK

6. Save the changes to the master configuration

B. Install the REST data service web module, wxsrestservice.war, to the WebSphere
Application Server using the WebSphere administration console:

1. Open the WebSphere administration console

2. Navigate to Applications -> New Application

3. Browse to restservice_home/lib/wxsrestservice.war file on the file system.
Select the file and click Next.

4. Choose the detailed installation options, and click Next.

http://localhost:9080/wxsrestservice/restservice/NorthwindGrid
http://localhost:9080/wxsrestservice/restservice/NorthwindGrid/$metadata

17

5. On the application security warnings screen, click Continue.

6. Choose the default installation options, and click Next.

7. Choose a server to map the application to, and click Next.

8. On the JSP reloading page, use the defaults, and click Next.

9. On the shared libraries page, map the "wxsrestservice_war" module to the
following shared libraries that were defined during step A:

 extremescale_ gettingstarted _config

10. On the map shared library relationship page, use the defaults, and click Next.

11. On the map virtual hosts page, use the defaults, and click Next

12. On the map context roots page, set the context root to: /wxsrestservice

13. On the Summary screen, click Finish to complete the installation.

14. Save the changes to the master configuration

C. Start the application server and the "wxsrestservice_war" eXtreme Scale REST
data service application.

1. After the application is started review the SystemOut.log for the application
server and verify that the following message appears:
CWOBJ4000I: The WebSphere eXtreme Scale REST data service has been
started.

D. Verify that the REST data service is working:

1. Open a browser and navigate to:
http://localhost:9080/wxsrestservice/restservice/NorthwindGrid
The service document for the NorthwindGrid is displayed.

2. Navigate to:
http://localhost:9080/wxsrestservice/restservice/NorthwindGrid/$metadata
The Entity Model Data Extensions (EDMX) document is displayed.

E. To stop the grid processes, use CTRL+C in the respective command window to
stop the process.

3.3.3 Getting started with WebSphere Application Server Community
Edition

This topic describes how to configure and start the eXtreme Scale REST data service
using WebSphere Application Server Community Edition.

Before you begin

Verify that the sample eXtreme Scale grid is started. See section 3.2 for details on how to
start the grid.

About this task

To get started with the WebSphere eXtreme Scale REST data service using WebSphere
Application Server Community Edition (CE), follow these steps:

A. Download and install WebSphere Application Server CE 2.1.1.3 or later to
wasce_root.
For example: /opt/IBM/wasce

http://localhost:9080/wxsrestservice/restservice/NorthwindGrid
http://localhost:9080/wxsrestservice/restservice/NorthwindGrid/$metadata
http://www.ibm.com/software/webservers/appserv/community/

18

B. Start the WebSphere Application Server CE server by running the following
command:

wasce_root/bin/startup.bat

wasce_root/bin/startup.sh

C. Install the eXtreme Scale REST data service and the provided sample into the
WebSphere Application Server CE server:

1. Add the ObjectGrid client runtime JAR to the WebSphere Application Server
CE repository:

a. Open the WebSphere Application Server CE administration console and
log in.

Note: The default URL is: http://localhost:8080/console
and the default userid is "system" and password is "manager".

b. Click the "Repository" link on the left side of the console window, in the
Services folder.

c. In the "Add Archive to Repository" section, fill in the following into the input
text boxes:

File: wxs_home/lib/ogclient.jar

Group: com.ibm.websphere.xs
Artifact: ogclient
Version: 7.0
Type: jar

d. Click the Install button.

Note: See the following tech note for details on different methods of
configuration class and library dependencies:
http://www.ibm.com/support/docview.wss?uid=swg21266061

2. Deploy the REST data service module: wxsrestservice.war to the WebSphere
Application Server CE server.

a. Edit the sample restservice_home/gettingstarted/wasce/geronimo-web.xml
deployment XML file to include path dependencies to the getting started
sample classpath directories:

▫ Change the "classesDirs" for the two getting started client GBeans:

The "classesDirs" path for the GettingStarted_Client_SharedLib
GBean should be set to:
restservice_home/gettingstarted/restclient/bin

The "classesDirs" path for the GettingStarted_Common_SharedLib
GBean should be set to:
restservice_home/gettingstarted/common/bin

b. Open the WebSphere Application Server CE administration console and
log in.

Note: The default URL is: http://localhost:8080/console
and the default userid is "system" and password is "manager".

c. Click on the "Deploy New" link on the left side of the console window.

http://localhost:8080/console
http://www.ibm.com/support/docview.wss?uid=swg21266061
http://localhost:8080/console

19

d. On the "Install New Applications" page, enter the following values into the
text boxes:

▫ Archive: restservice_home/lib/wxsrestservice.war

▫ Plan: restservice_home/gettingstarted/wasce/geronimo-web.xml

e. Click on the Install button.
The console page should indicate that the application was successfully
installed and started.

f. Examine the WebSphere Application Server CE system output log or
console to verify that the REST data service has started successfully by
verify that the following message is present:

CWOBJ4000I: The WebSphere eXtreme Scale REST data service has been
started.

D. Verify that the REST data service is working:

1. Open a browser and navigate to:
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid
The service document for the NorthwindGrid grid is displayed.

2. Navigate to:
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/$metadata
The Entity Model Data Extensions (EDMX) document is displayed.

E. To stop the grid processes, use CTRL+C in the respective command window to kill
the process.

F. To stop WebSphere Application Server CE, use the following command:

wasce_root\bin\shutdown.bat

wasce_root/bin/shutdown.sh

Note: The default userid is "system" and password is "manager". If using a

custom port use the -port option.

3.3.4 Getting started with Tomcat

This topic describes how to configure and start the eXtreme Scale REST data service
using Apache Tomcat, version 5.5 or later.

Before you begin

Verify that the sample eXtreme Scale grid is started. See section 3.2 for details on how to
start the grid.

About this task

To get started with the WebSphere eXtreme Scale REST data service using Apache
Tomcat, follow these steps:

A. Download and install Apache Tomcat Version 5.5 or later to tomcat_root.
For example: /opt/tomcat

B. Install the eXtreme Scale REST data service and the provided sample into the
Tomcat server

1. If using a Sun JRE or JDK, you must install the IBM ORB into Tomcat:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/$metadata
http://tomcat.apache.org/

20

If using Tomcat version 5.5:

a. Copy all of the JAR files from:
wxs_home/lib/endorsed
to:
tomcat_root/common/endorsed

If using Tomcat version 6.0:

a. Create an "endorsed" directory:

md tomcat_root/endorsed

mkdir tomcat_root/endorsed

b. Copy all of the JAR files from:
wxs_home/lib/endorsed
to:
tomcat_root/endorsed

2. Deploy the REST data service module: wxsrestservice.war to the Tomcat
server.

a. Copy the wxsrestservice.war file from:
restservice_home/lib
to:
tomcat_root/webapps

3. Add the ObjectGrid client runtime JAR and the application JAR to the shared
classpath in Tomcat:

a. Edit the tomcat_root/conf/catalina.properties file

b. Append the following path names to the end of the shared.loader

property, separating each with a comma:

▫ wxs_home/lib/ogclient.jar

▫ restservice_home/gettingstarted/restclient/bin

▫ restservice_home/gettingstarted/common/bin

Note: The path separator must be a forward slash.

C. Start the Tomcat server with the REST data service:

If using Tomcat 5.5 on UNIX or Windows, or Tomcat 6.0 on UNIX:

1. cd tomcat_root/bin

2. Start the server:

catalina.bat run

./catalina.sh run

3. The Apache Tomcat logs are displayed to the console. When the REST data
service has started successfully, the following message is displayed in the
administration console:
CWOBJ4000I: The WebSphere eXtreme Scale REST data service has been
started.

If using Tomcat 6.0 on Windows:

21

1. cd tomcat_root/bin

2. Start the Apache Tomcat 6 configuration tool:

tomcat6w.exe

3. Click on the Start button on the Apache Tomcat 6 properties window to start
the Tomcat server.

4. Review the following logs to verify that the Tomcat server has started
successfully:

 tomcat_root/bin/catalina.log

Displays the status of the Tomcat server engine

 tomcat_root/bin/stdout.log

Displays the system output log.

5. When the REST data service has started successfully, the following message is
displayed in the system output log:
CWOBJ4000I: The WebSphere eXtreme Scale REST data service has been
started.

D. Verify that the REST data service is working:

1. Open a browser and navigate to:
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid
The service document for the NorthwindGrid is displayed.

2. Navigate to:
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/$metadata
The Entity Model Data Extensions (EDMX) document is displayed.

E. To stop the grid processes, use CTRL+C in the respective command window.

F. To stop Tomcat, use CTRL +C in the window in which you started it.

3.4 Adding data with the sample Java client application

The previous sections described how to create an eXtreme Scale grid and configure and
start the eXtreme Scale REST data service. The Java client application uses the eXtreme
Scale EntityManager API to insert data into the grid. It does not demonstrate how to use
the REST interfaces. The purpose of this client is to demonstrate how the EntityManager
API is used to interact with the eXtreme Scale grid, and allow modifying data in the grid.
To view data in the grid using the REST data service, use a web browser or use the Visual
Studio 2008 client application described in section 3.4.2.

To quickly add content to the eXtreme Scale grid, run the following command:

1. Open a command-line or terminal window and set the JAVA_HOME environment
variable:

set JAVA_HOME=<java_home

>

export JAVA_HOME=<java_home

>

2. cd restservice_home/gettingstarted

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/$metadata

22

3. Insert some data into the grid. The data that is inserted will be retrieved later using
a Web browser and the REST data service.

runclient.bat load default

./runclient.sh load default

3.4.1 Java client command syntax

runclient.bat <command>

runclient.sh <command>

The following commands are available:

 load default

Loads a predefined set of Customer, Category and Product entities into the grid
and creates a random set of Orders for each customer.

 load category <categoryId> <categoryName> <firstProductId>

<numProducts>

Creates a product Category and a fixed number of Product entities in the grid. The
firstProductId parameter identifies the id number of the the first product and each
subsequent product is assigned the next id until the specified number of products
is created.

 load customer <companyCode> <contactName> <companyName>

<numOrders> <firstOrderId> <shipCity> <maxItems>

<discountPct>

Loads a new Customer into the grid and creates a fixed set of Order entities for
any random product currently loaded in the grid. The number of Orders is
determined by setting the <numOrders> parameter. Each Order will have a
random number of OrderDetail entities up to <maxItems>

 display customer <companyCode>

Display a Customer entity and the associated Order and OrderDetail entities.

 display category <categoryId>

Display a product Category entity and the associated Product entities.

Examples:

 runclient.bat load default

 runclient.bat load customer IBM "John Doe" "IBM Corporation"

5 5000 Rochester 5 0.05

 runclient.bat load category 5 "Household Items" 100 5

 runclient.bat display customer IBM

 runclient.bat display category 5

23

3.4.2 Running and building the sample grid and Java client with Eclipse

The REST data service getting started sample can be updated and enhanced using
Eclipse. For details on how to setup your Eclipse environment see the text document:
restservice_home/gettingstarted/ECLIPSE_README.txt.

Once the WXSRestGettingStarted project is imported into Eclipse and is building
successfully, the sample will automatically re-compile and the script files used to start the
container server and client will automatically pick up the class files and XML files. The
REST data service will also automatically detect any changes since the Web server is
configured to read the Eclipse build directories automatically.

Note: When changing source or configuration files, both the eXtreme Scale container
server and the REST data service application must be restarted. The eXtreme
Scale container server must be started before the REST data service Web
application.

3.5 Using a web browser to view sample data

The eXtreme Scale REST data service creates ATOM feeds by default when using a web
browser. The ATOM feed format may not be compatible with older browsers or may be
interpreted such that the data cannot be viewed as XML. For older browsers, you will be
prompted to save the files to disk. Once the files are downloaded, use your favorite XML
reader to look at the files. The generated XML is not formatted to be displayed, so
everything will be printed on one line. Most XML reading programs, such as Eclipse,
support reformatting the XML into a readable format.

For modern browsers, such as Microsoft Internet Explorer Version 8 and Firefox Version 3,
the ATOM XML files can be displayed natively in the browser. The following topics provide
details on how to configure Internet Explorer Version 8 and Firefox Version 3 to display the
ATOM feeds and XML within the browser.

Once the browser is configured, see section 3.5.3 for example URLs.

3.5.1 Configuring Internet Explorer Version 8

To enable Internet Explorer to read the ATOM feeds that the REST data service generates
use the following steps, as shown in Error! Reference source not found.:

1. Click Tools -> Internet Options

2. Click the Content tab

3. Click the Settings button in the Feeds and Web Slices section.

4. Uncheck the box: Turn on feed reading view.

5. Click OK to return to the browser and restart Internet Explorer.

24

Figure 7: Configuring Internet Explorer 8 to display ATOM feeds as XML

3.5.2 Configuring Firefox Version 3

Firefox will not automatically display pages with content type: application/atom+xml. The
first time a page is displayed, it will prompt to save the file. To display the page, open the
file itself with Firefox:

1. From the application chooser dialog box (See Select the Open with radio button
and click the Browse button.

Figure 8: Firefox Application Chooser Window

2. Navigate to your Firefox installation directory. For example: C;\Program
Files\Mozilla Firefox

3. Select firefox.exe and hit the OK button.

25

4. Check the “Do this automatically for files like this…” check box.

5. Click the OK button.

6. The ATOM XML page is now displayed in a new Firefox browser window or tab.

Firefox automatically renders ATOM feeds in readable format. However, the feeds that the
REST data service creates include XML. Firefox cannot display the XML unless you
disable the feed renderer. Unlike Internet Explorer, in Firefox, the ATOM feed rendering
plug-in must be explicitly edited. To configure Firefox to read ATOM feeds as XML files,
follow these steps:

1. Open the following file in a text editor:
<firefoxInstallRoot>\components\FeedConverter.js
Where <firefoxInstallRoot> is the root directory where Firefox is installed.

For Windows operating systems, the default directory is: C:\Program Files\Mozilla
Firefox.

2. Search for the line that looks as follows:

// show the feed page if it wasn't sniffed and we have a document,

// or we have a document, title, and link or id

if (result.doc && (!this._sniffed ||

 (result.doc.title && (result.doc.link || result.doc.id)))) {

3. Comment out the two lines that begin with if and result by placing two // forward
slashes in front of them.

4. Add the following if statement below:

if(0) {

5. The resulting text should look as follows:

// show the feed page if it wasn't sniffed and we have a document,

// or we have a document, title, and link or id

//if (result.doc && (!this._sniffed ||

// (result.doc.title && (result.doc.link || result.doc.id)))) {

if(0) {

6. Save the file.

7. Restart Firefox.

8. All feeds should now be automatically displayed in the browser.

3.5.3 Example URLs

This section describes some URLs that can be used to view the data that was added by
the getting started sample provided with the eXtreme Scale REST data service. Before
using the following URLs, add the default data set to the eXtreme Scale sample grid using
either the sample Java client (see section 3.3.4) or the sample Visual Studio WCF Data
Services client (see section 3.6).

The following examples assume the port is 8080 which can vary. See section 3.3 for
details on how to configure the REST data service on different application servers.

26

View a single customer with the id of "ACME":
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('ACME')

View all of the orders for customer "ACME":
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('ACME')/orders

View the customer "ACME" and the orders:
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('ACME')?$expan
d=orders

View order 1000 for customer "ACME":
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Order(orderId=1000,custom
er_customerId='ACME')

View order 1000 for customer "ACME" and its associated Customer:
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Order(orderId=1000,custom
er_customerId='ACME')?$expand=customer

View order 1000 for customer "ACME" and its associated Customer and
OrderDetails:
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Order(orderId=1000,custom
er_customerId='ACME')?$expand=customer,orderDetails

View all orders for customer "ACME" for the month of October, 2009 (GMT):
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer(customerId='AC
ME')/orders?$filter=orderDate ge datetime'2009-10-01T00:00:00' and orderDate lt
datetime'2009-11-01T00:00:00'

View all the first 3 orders and orderDetails for customer "ACME" for the month of
October, 2009 (GMT):
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer(customerId='AC
ME')/orders?$filter=orderDate ge datetime'2009-10-01T00:00:00' and orderDate lt
datetime'2009-11-01T00:00:00'&$orderby=orderDate&$top=3&$expand=orderDetails

3.6 Using the sample Visual Studio 2008 WCF Data Services
client application

The eXtreme Scale REST data service getting started sample includes a WCF Data
Services client that can interact with the eXtreme Scale REST data service. The sample is
written as a command-line application in C#.

3.6.1 Software requirements

The WCF Data Services C# sample client requires the following:

 One of the following operating systems:

o Microsoft Windows XP

o Microsoft Windows Server 2003

o Microsoft Windows Server 2008

o Microsoft Windows Vista

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('ACME')
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('ACME')/orders
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('ACME')?$expand=orders
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('ACME')?$expand=orders
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Order(orderId=1000,customer_customerId='ACME')
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Order(orderId=1000,customer_customerId='ACME')
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Order(orderId=1000,customer_customerId='ACME')?$expand=customer
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Order(orderId=1000,customer_customerId='ACME')?$expand=customer
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Order(orderId=1000,customer_customerId='ACME')?$expand=customer,orderDetails
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Order(orderId=1000,customer_customerId='ACME')?$expand=customer,orderDetails
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer(customerId='ACME')/orders?$filter=orderDate%20ge%20datetime'2009-10-01T00:00:00'%20and%20orderDate%20lt%20datetime'2009-11-01T00:00:00'
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer(customerId='ACME')/orders?$filter=orderDate%20ge%20datetime'2009-10-01T00:00:00'%20and%20orderDate%20lt%20datetime'2009-11-01T00:00:00'
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer(customerId='ACME')/orders?$filter=orderDate%20ge%20datetime'2009-10-01T00:00:00'%20and%20orderDate%20lt%20datetime'2009-11-01T00:00:00'
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer(customerId='ACME')/orders?$filter=orderDate%20ge%20datetime'2009-10-01T00:00:00'%20and%20orderDate%20lt%20datetime'2009-11-01T00:00:00'&$orderby=orderDate&$top=3&$expand=orderDetails
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer(customerId='ACME')/orders?$filter=orderDate%20ge%20datetime'2009-10-01T00:00:00'%20and%20orderDate%20lt%20datetime'2009-11-01T00:00:00'&$orderby=orderDate&$top=3&$expand=orderDetails
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer(customerId='ACME')/orders?$filter=orderDate%20ge%20datetime'2009-10-01T00:00:00'%20and%20orderDate%20lt%20datetime'2009-11-01T00:00:00'&$orderby=orderDate&$top=3&$expand=orderDetails

27

 Microsoft Visual Studio 2008 with Service Pack 1
http://www.microsoft.com/downloads/details.aspx?FamilyID=fbee1648-7106-44a7-
9649-6d9f6d58056

Note: See the previous link for additional hardware and software requirements.

 Microsoft .NET Framework 3.5 Service Pack 1
http://www.microsoft.com/downloads/details.aspx?FamilyID=AB99342F-5D1A-
413D-8319-81DA479AB0D7

 Microsoft .NET Framework 3.5 Service Pack 1 Update
http://support.microsoft.com/kb/959209

3.6.2 Building and running the getting started client

The WCF Data Services sample client includes a Visual Studio 2008 project and solution
and the source code for running the sample. The sample must be loaded into Visual
Studio 2008 and compiled into a Windows runnable program before it can be run.

To build and run the sample, see the text document:
restservice_home/gettingstarted/VS2008_README.txt.

3.6.3 WCF Data Services C# client command syntax

WXSRESTGettingStarted.exe <service URL> <command>

The <service URL> is the URL of the eXtreme Scale REST data service configured in
section 3.3.

The following commands are available:

 load default

Loads a predefined set of Customer, Category and Product entities into the grid
and creates a random set of Orders for each customer.

 load category <categoryId> <categoryName> <firstProductId>

<numProducts>

Creates a product Category and a fixed number of Product entities in the grid. The
firstProductId parameter identifies the id number of the the first product and each
subsequent product is assigned the next id until the specified number of products
is created.

 load customer <companyCode> <contactName> <companyName>

<numOrders> <firstOrderId> <shipCity> <maxItems>

<discountPct>

Loads a new Customer into the grid and creates a fixed set of Order entities for
any random product currently loaded in the grid. The number of Orders is
determined by setting the <numOrders> parameter. Each Order will have a
random number of OrderDetail entities up to <maxItems>

 display customer <companyCode>

Display a Customer entity and the associated Order and OrderDetail entities.

 display category <categoryId>

Display a product Category entity and the associated Product entities.

http://www.microsoft.com/downloads/details.aspx?FamilyID=fbee1648-7106-44a7-9649-6d9f6d58056
http://www.microsoft.com/downloads/details.aspx?FamilyID=fbee1648-7106-44a7-9649-6d9f6d58056
http://www.microsoft.com/downloads/details.aspx?FamilyID=AB99342F-5D1A-413D-8319-81DA479AB0D7
http://www.microsoft.com/downloads/details.aspx?FamilyID=AB99342F-5D1A-413D-8319-81DA479AB0D7
http://support.microsoft.com/kb/959209

28

 unload

Remove all entities that were loaded using the "default load" command.

Examples:

 WXSRestGettingStarted.exe

http://localhost:8080/wxsrestservice/restservice/NorthwindGri

d load default

 WXSRestGettingStarted.exe

http://localhost:8080/wxsrestservice/restservice/NorthwindGri

d load customer IBM "John Doe" "IBM Corporation" 5 5000

Rochester 5 0.05

 WXSRestGettingStarted.exe

http://localhost:8080/wxsrestservice/restservice/NorthwindGri

d load category 5 "Household Items" 100 5

 WXSRestGettingStarted.exe

http://localhost:8080/wxsrestservice/restservice/NorthwindGri

d display customer IBM

 WXSRestGettingStarted.exe

http://localhost:8080/wxsrestservice/restservice/NorthwindGri

d display category 5

4 Installing the REST data service

This topic describes how to install the eXtreme Scale REST data service into a Web
server.

4.1 Software requirements

The WebSphere eXtreme Scale REST data service is a Java Web application that can be
deployed to any application server that supports Java servlet specification, Version 2.3 and
a Java runtime environment, Version 5 or later.

The following software is required:

 Java Standard Edition 5 or later
1

 Web servlet container, Version 2.3 or later, which includes one of the following:

o WebSphere Application Server Version 6.1.0.25 or later

o WebSphere Application Server Version 7.0.0.5 or later

o WebSphere Community Edition Version 2.1.1.3 or later

o Apache Tomcat Version 5.5 or later

1
 Note that while WebSphere eXtreme Scale supports Java Standard Edition 1.4 or later, the REST data

service requires Java Standard Edition 5 or later.

29

 WebSphere eXtreme Scale, Version 7.0.0.0 cumulative fix 2 or later (including the
trial)

4.2 Packaging overview

The WebSphere eXtreme Scale REST data service includes a single WAR file
wxsrestservice.war. The wxsrestservice.war includes a single servlet that acts as a
gateway between your WCF Data Services client applications or any other HTTP REST
client and an eXtreme Scale grid.

The REST data service includes a sample that allows you to quickly create an eXtreme
Scale grid and interact with it using an eXtreme Scale client or the REST data service. See
the Getting started topic, section 3 for details on using the sample.

When WebSphere eXtreme Scale 7.0.0.0 with cumulative fix 2 is installed or the
WebSphere eXtreme Scale Version 7.0 trial is extracted, the following directories and files
are included:

restservice_home/lib

The lib directory contains the wxsrestservice.war web application. The
wxsrestservice.war is tightly coupled with the WebSphere eXtreme Scale runtime.
If eXtreme Scale is upgraded to a new version or a fix pack applied, the
wxsrestservice.war will need to be manually upgraded to the version installed in
this directory.

restservice_home/gettingstarted

The gettingstarted directory contains a simple sample that demonstrates how to
use the eXtreme Scale REST data service with an eXtreme Scale grid.

4.3 Packaging and deploying the REST data service

The REST data service is designed as a self-contained WAR module. To configure the
REST data service, you must first package the REST data service configuration and
optional eXtreme Scale configuration files into a JAR file or directory. This application
packaging is then referenced by the web container server runtime. Figure 9 illustrates files
used by the eXtreme Scale REST data service.

30

The REST service configuration JAR or directory must contain the following file:

 wxsRestService.properties – The wxsRestService.properties file includes the
configuration options for the REST data service. This includes the catalog service
endpoints, ObjectGrid names to expose, trace options and more. See section 5.1:
Configuring the REST data service properties file for details.

The following ObjectGrid client files are optional:

 META-INF/objectGridClient.xml – The ObjectGrid client override XML file is used
to connect to the remote eXtreme Scale grid. By default this file is not required. If
not present, the REST service will use the server configuration, disabling the near
cache.

The name of the file can be overridden using the objectGridClientXML REST data
service configuration property. If provided, this XML file should include:

1. Include any ObjectGrids that you want to expose to the REST data service.

2. Include a reference to the entity descriptor xml file associated with each
ObjectGrid configuration.

 META-INF/<entity descriptor xml files> - One or more entity descriptor XML files
are required only if the client needs to override the entity definition of the client.
The entity descriptor XML file must be used in conjunction with the ObjectGrid
client override XML descriptor file. For details on the eXtreme Scale configuration
files, see the eXtreme Scale administration guide.

Grid Client

 ObjectGrid Client
Override XML

 Entity XML

 Entity Classes

wxsrestservice.war

REST Service
Servlet

Grid Client Files
(optional)

 wxsRestService
properties

REST Service Files
(required)

REST Data Service Config Jar or Directory

Figure 9: WebSphere eXtreme Scale REST Data Service Files

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/topic/com.ibm.websphere.extremescale.admin.doc/welcome_admin.html

31

 Entity classes – Annotated entity classes or an entity descriptor XML file can be
used to describe the entity metadata. The REST service only requires entity
classes in the classpath if the eXtreme Scale servers are configured with entity
metadata classes and a client override entity XML descriptor is not used.

An example with the minimum required configuration file, where the entities are defined in
XML on the servers:

restserviceconfig.jar:

wxsRestService.properties

The property file contains:

catalogServiceEndPoints=localhost:2809

objectGridNames=NorthwindGrid

An example with one entity, override XML files and entity classes:

restserviceconfig.jar:

wxsRestService.properties

The property file contains:

catalogServiceEndPoints=localhost:2809

objectGridNames=NorthwindGrid

com/acme/entities/Customer.class

META-INF/objectGridClient.xml

 The client ObjectGrid descriptor XML file contains:

 <objectGrid name="CustomerGrid"

entityMetadataXMLFile="emd.xml"/>

META-INF/emd.xml

 The entity metadata descriptor XML file contains:

 <entity class-name="com.acme.entities.Customer"

name="Customer"/>

For details on the EntityManager API and configuring an eXtreme Scale client and server,
see the WebSphere eXtreme Scale version 7 administration guide.

4.4 Deploying on WebSphere Application Server

This topic describes how to configure the eXtreme Scale REST data service on
WebSphere Application Server or WebSphere Network Deployment Version 6.1.0.25 or
later. These instructions also apply to deployments where WebSphere eXtreme Scale is
integrated with the WebSphere Application Server deployment.

Prerequisites:

One of the following:

1. WebSphere Application Server with the stand-alone eXtreme Scale client:

o The WebSphere eXtreme Scale Trial Version 7.0 with the REST data service
is downloaded and extracted or the WebSphere eXtreme Scale 7.0.0.0 with
cumulative fix 2 product is installed into a stand-alone directory.

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/topic/com.ibm.websphere.extremescale.admin.doc/welcome_admin.html

32

o WebSphere Application Server Version 6.1.0.25 or 7.0.0.5 or later is installed
and running with security disabled.

2. WebSphere Application Server integrated with WebSphere eXtreme Scale:

o WebSphere eXtreme Scale Version 7.0.0.0 with cumulative fix 2 is installed on
top of WebSphere Application Server Version 6.1.0.25 or 7.0 (or later) with
security disabled.

The eXtreme Scale REST data service only requires that the eXtreme Scale
Client option be installed. The profile does not need to be augmented.

Procedure:

A. Configure and start an eXtreme Scale grid.

1. For details on configuring an eXtreme Scale grid for use with the REST data
service, see the Configuring WebSphere eXtreme Scale topic.

2. Verify that an eXtreme Scale client can connect to and access entities in the
grid. For an example, see the Getting Started section of this document.

B. Build the eXtreme Scale REST service configuration JAR or directory. See the
Packaging and deploying the REST data service topic for details.

C. Add the REST data service configuration JAR or directory to the application server
classpath:

1. Open the WebSphere administration console

2. Navigate to Environment -> Shared libraries

3. Click New

4. Add the following entries into the appropriate fields:

a. Name: extremescale_rest _configuration

b. Classpath: <REST service configuration jar or directory>

5. Click OK

6. Save the changes to the master configuration

D. If eXtreme Scale is integrated with the WebSphere Application Server installation,
skip this step and proceed to step E. Otherwise, continue:

Add the WebSphere eXtreme Scale client runtime JAR, wsogclient.jar, and the
REST data service configuration JAR or directory to the application server
classpath:

1. Open the WebSphere administration console

2. Navigate to Environment -> Shared libraries

3. Click New

4. Add the following entries into the fields:

a. Name: extremescale_client_v7

b. Classpath: wxs_home/lib/wsogclient.jar

5. Click OK

6. Save the changes to the master configuration

33

E. Install the REST data service Web module, wxsrestservice.war, to the WebSphere
Application Server using the WebSphere administration console:

1. Open the WebSphere administration console

2. Navigate to Applications -> New Application

3. Browse to restservice_home/lib/wxsrestservice.war file on the file system and
select it and click Next.

a. If using WebSphere Application Server version 7.0, click Next.

b. If using WebSphere Application Server version 6.1, enter a Context Root

value with the name: /wxsrestservice and continue to the next step.

4. Choose the detailed installation option, and click Next.

5. On the application security warnings screen, click Continue.

6. Choose the default installation options, and click Next.

7. Choose a server to map the application to, and click Next.

8. On the JSP reloading page, use the defaults, and click Next.

9. On the shared libraries page, map the "wxsrestservice_war" module to the
following shared libraries defined in steps C and D:

 extremescale_rest _configuration

 extremescale_client_v7
Note: This shared library is required only if eXtreme Scale is not
integrated with WebSphere Application Server)

10. On the map shared library relationship page, use the defaults, and click Next.

11. On the map virtual hosts page, use the defaults, and click Next.

12. On the map context roots page, set the context root to: /wxsrestservice

13. On the Summary screen, click Finish to complete the installation.

13. Save the changes to the master configuration.

F. Start the "wxsrestservice_war" eXtreme Scale REST data service application:

1. If using WebSphere Application Server version 7.0:
In the administration console, click on Applications -> Application Types ->
WebSphere Applications.

If using WebSphere Application Server version 6.1:
In the administration console, click on Applications -> Enterprise
Applications

2. Check the check box next to the "wxsrestservice_war" application, and click
Start.

3. Review the SystemOut.log for the application server profile. When the REST
data service has started successfully, the following message is displayed in
the SystemOut.log for the server profile:
CWOBJ4000I: The WebSphere eXtreme Scale REST data service has been
started.

G. Verify the REST data service is working:

1. Open a Web browser and navigate to the following URL:
http://<host>:<port>/wxsrestservice/restservice/<Grid Name>

34

The port number can be found in the SystemOut.log within the application
server profile logs directory by looking at the first port displayed for message
identifier: SRVE0250I. The default port is 9080.

For example:
http://localhost:9080/wxsrestservice/restservice/NorthwindGrid/

Result: The AtomPub service document is displayed.

4.5 Deploying on WebSphere Application Server Community
Edition

This topic describes how to configure the eXtreme Scale REST data service on
WebSphere Application Server Community Edition Version 2.1.1.3 or later.

Prerequisites:

 An IBM (recommended) or Sun JRE or JDK, Version 5 or later is installed and the
JAVA_HOME environment variable is set.

 Download and install WebSphere Application Server CE 2.1.1.3 or later to
wasce_root. See this link for 2.1.1 installation instructions. Use this link for other
versions.

 The eXtreme Scale Trial Version 7.0 with the REST data service is downloaded
and extracted or the WebSphere eXtreme Scale 7.0.0.0 with cumulative fix 2
product is installed into a stand-alone directory.

Procedure:

A. Configure and start an eXtreme Scale grid.

1. For details on configuring an eXtreme Scale grid for use with the REST data
service, see the Configuring WebSphere eXtreme Scale topic.

2. Verify that an eXtreme Scale client can connect to and access entities in the
grid. For an example, see the Getting Started section of this document.

B. Build the eXtreme Scale REST service configuration JAR or directory. See the
Packaging and deploying the REST data service topic for details.

C. Add the ObjectGrid client runtime JAR to the WebSphere Application Server CE
repository:

1. Open the WebSphere Application Server CE administration console and log in.
The default URL is: http://localhost:8080/console
and the default userid is "system" and password is "manager".

2. Click the "Repository" link on the left side of the console window, in the
"Services" folder.

3. In the "Add Archive to Repository" section, fill in the following into the input text
boxes:

File: wxs_home/lib/ogclient.jar

Group: com.ibm.websphere.xs
Artifact: ogclient
Version: 7.0
Type: jar

http://localhost:9080/wxsrestservice/restservice/NorthwindGrid/
http://www.ibm.com/software/webservers/appserv/community/
http://publib.boulder.ibm.com/wasce/V2.1.1/en/installing-an-application-server.html
http://publib.boulder.ibm.com/wasce/Front_en.html
http://localhost:8080/console

35

d. Click the Install button.

Note: See the following tech note for details on different ways class and
library dependencies can be configured:
http://www.ibm.com/support/docview.wss?uid=swg21266061

D. Deploy and start the REST data service module: wxsrestservice.war to the
WebSphere Application Server CE server.

1. Copy and edit the sample deployment plan XML file:
restservice_home/gettingstarted/wasce/geronimo-web.xml to include path
dependencies to your REST data service configuration JAR or directory. See
section 3.3.3 for an example on setting the classpath to include your
wxsRestService.properties file and other configuration files and metadata
classes.

2. Open the WebSphere Application Server CE administration console and log in.

Note: The default URL is: http://localhost:8080/console
and the default userid is "system" and password is "manager".

3. Click on the "Deploy New" link on the left side of the console window.

4. On the "Install New Applications" page, enter the following values into the text
boxes:

 Archive: restservice_home/lib/wxsrestservice.war

 Plan: restservice_home/gettingstarted/wasce/geronimo-web.xml

Note: Use the path to the geronimo-web.xml that you copied and
edited in step C.1.

5. Click on the Install button.
The console page should indicate that the application was successfully
installed and started.

6. Examine the WebSphere Application Server CE system output log or console
to verify that the REST data service has started successfully by verify that the
following message is present:

CWOBJ4000I: The WebSphere eXtreme Scale REST data service has been
started.

E. Start the WebSphere Application Server CE server by running the following
command:

wasce_root/bin/startup.bat

wasce_root/bin/startup.sh

F. Install the eXtreme Scale REST data service and the provided sample into the
WebSphere Application Server CE server:

1. Add the ObjectGrid client runtime JAR to the WebSphere Application Server
CE repository:

a. Open the WebSphere Application Server CE administration console and
log in. (The default settings are http://localhost:8080/console/ with userid
of system and password of manager.)

http://www.ibm.com/support/docview.wss?uid=swg21266061
http://localhost:8080/console

36

b. Click the "Repository" link on the left side of the console window, in the
Services folder.

c. In the "Add Archive to Repository" section, fill in the following into the input
text boxes:

File: wxs_home/lib/ogclient.jar

Group: com.ibm.websphere.xs
Artifact: ogclient
Version: 7.0
Type: jar

d. Click the Install button.

Note: See the following tech note for details on different ways class
and library dependencies can be configured:
http://www.ibm.com/support/docview.wss?uid=swg21266061

2. Deploy the REST data service module: wxsrestservice.war to the WebSphere
Application Server CE server.

a. Edit the sample restservice_home/gettingstarted/wasce/geronimo-web.xml
deployment XML file to include path dependencies to the getting started
sample classpath directories:

▫ Change the "classesDirs" for the two getting started client GBeans:

The "classesDirs" path for the GettingStarted_Client_SharedLib
GBean should be set to:
restservice_home/gettingstarted/restclient/bin

The "classesDirs" path for the GettingStarted_Common_SharedLib
GBean should be set to:
restservice_home/gettingstarted/common/bin

b. Open the WebSphere Application Server CE administration console and
log in.

c. Click on the "Deploy New" link on the left side of the console window.

d. On the "Install New Applications" page, enter the following values into the
text boxes:

▫ Archive: restservice_home/lib/wxsrestservice.war

▫ Plan: restservice_home/gettingstarted/wasce/geronimo-web.xml

e. Click on the Install button.
The console page should indicate that the application was successfully
installed and started.

f. Examine the WebSphere Application Server CE system output log to verify
that the REST data service has started successfully by verifying that the
following message is present:

CWOBJ4000I: The WebSphere eXtreme Scale REST data service has been
started.

G. Verify that the REST data service is working:

1. Open a Web browser and navigate to the following URL:
http://<host>:<port>/<context root>/restservice/<Grid Name>

The default port for WebSphere Application Server CE is 8080 and is defined

http://www.ibm.com/support/docview.wss?uid=swg21266061

37

using the "HTTPPort" property in the wasce_root/var/config/config-

substitutions.properties file.

For example:
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Result: The AtomPub service document is displayed.

4.6 Deploying on Apache Tomcat

This topic describes how to configure the eXtreme Scale REST data service on Apache
Tomcat Version 5.5 or later.

Prerequisites:

 An IBM or Sun JRE or JDK, Version 5 or later is installed and the JAVA_HOME
environment variable is set.

 Apache Tomcat Version 5.5 or later is installed. See http://tomcat.apache.org for
details on how to install Tomcat.

 The eXtreme Scale Trial Version 7.0 with the REST data service is downloaded
and extracted or the WebSphere eXtreme Scale 7.0.0.0 with cumulative fix 2
product is installed into a stand-alone directory.

Procedure:

A. If using a Sun JRE or JDK, install the IBM ORB into Tomcat:

If using Tomcat version 5.5:

1. Copy all of the JAR files from:
wxs_home/lib/endorsed
to:
tomcat_root/common/endorsed

If using Tomcat version 6.0:

1. Create an "endorsed" directory:

md tomcat_root/endorsed

mkdir tomcat_root/endorsed

2. Copy all of the JAR files from:
wxs_home/lib/endorsed
to:
tomcat_root/endorsed

B. Configure and start an eXtreme Scale grid.

1. For details on configuring an eXtreme Scale grid for use with the REST data
service, see the Configuring WebSphere eXtreme Scale topic.

2. Verify that an eXtreme Scale client can connect to and access entities in the
grid. For an example, see the Getting Started section of this document.

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/
http://tomcat.apache.org/

38

C. Build the eXtreme Scale REST service configuration JAR or directory. See the
Packaging and deploying the REST data service topic for details.

D. Deploy the REST data service module: wxsrestservice.war to the Tomcat server.

1. Copy the wxsrestservice.war file from:
restservice_home/lib
to:
tomcat_root/webapps

E. Add the ObjectGrid client runtime JAR and the application JAR to the shared
classpath in Tomcat:

1. Edit the tomcat_root/conf/catalina.properties file

2. Append the following path names to the end of the shared.loader property
separating each with a comma:

 wxs_home/lib/ogclient.jar

 restservice_home/gettingstarted/restclient/bin

 restservice_home/gettingstarted/common/bin

F. Start the Tomcat server:

If using Tomcat 5.5 on UNIX or Windows, or the Tomcat 6.0 ZIP distribution:

1. cd tomcat_root/bin

2. Start the server:

catalina.bat run

./catalina.sh run

3. The Apache Tomcat logs are displayed to the console. When the REST data
service has started successfully, the following message is displayed in the
administration console:
CWOBJ4000I: The WebSphere eXtreme Scale REST data service has been
started.

If using Tomcat 6.0 on Windows using the Windows installer distribution:

1. cd tomcat_root/bin

2. Start the Apache Tomcat 6 configuration tool:

tomcat6w.exe

3. Click on the Start button on the Apache Tomcat 6 properties window to start
the Tomcat server.

4. Review the following logs to verify that the Tomcat server has started
successfully:

 tomcat_root/bin/catalina.log

Displays the status of the Tomcat server engine

 tomcat_root/bin/stdout.log

Displays the system output log.

5. When the REST data service has started successfully, the following message is
displayed in the system output log:

39

CWOBJ4000I: The WebSphere eXtreme Scale REST data service has been
started.

G. Verify the REST data service is working:

1. Open a Web browser and navigate to the following URL:
http://<host>:<port>/<context root>/restservice/<Grid Name>

The default port for Tomcat is 8080 and is configured in the
tomcat_root/conf/server.xml file in the <Connector> element.

For example:
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Result: The AtomPub service document is displayed.

5 Configuring the REST data service

The REST data service requires two configuration steps:

Step 1) Configuring the REST data service properties file

Step 2) Configuring WebSphere eXtreme Scale

5.1 Configuring the REST data service properties file

The REST data service properties file is the main configuration file for the eXtreme Scale
REST data service. This file is a typical Java property file with key and value pairs. By
default, the REST data service runtime will look for a well-named

wxsRestService.properties file in the classpath. The file can also be explicitly

defined by using the system property: wxs.restservice.props.

Example -Dwxs.restservice.props=/usr/configs/dataservice.properties

When the REST data service is loaded, the property file used is displayed in the log files:
CWOBJ4004I: The eXtreme Scale REST data service properties files were loaded:
[/usr/configs/RestService.properties]

The REST data service properties file supports the following properties:

Property Description

catalogServiceEndPoints The required comma-delimited list of hosts and ports of a catalog
service grid in the format: <host:port>. This is optional if using
WebSphere Application Server integrated with eXtreme Scale to host
the REST data service. See the WebSphere eXtreme Scale product
documentation for details on how to configure and start a catalog
service.

Example catalogServiceEndPoints=server1:2809,server2:2809

objectGridNames The required names of the ObjectGrids to expose to the REST
service. At least one ObjectGrid name is required. Separate multiple
ObjectGrid names using a comma:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/topic/com.ibm.websphere.extremescale.admin.doc/txsadmdev.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/topic/com.ibm.websphere.extremescale.admin.doc/txsadmdev.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/topic/com.ibm.websphere.extremescale.admin.doc/txsadmdev.html

40

Example ECommerceGrid,InventoryGrid

objectGridClientXML The optional name of the ObjectGrid client override XML file. The
name specified here will be loaded from the classpath. The default is:

/META-INF/objectGridClient.xml. See the WebSphere

eXtreme Scale product documentation for details on how to configure
an eXtreme Scale client.

traceFile The optional name of the file to redirect the trace output to. The
default is logs/trace.log.

traceSpec The optional trace specification that the eXtreme Scale runtime server

should initially use. The default is *=all=disabled. To trace the

entire REST data service, use: ObjectGridRest*=all=enabled

verboseOutput If set to true, REST data service clients will receive additional
diagnostic information when failures occur. The default is false. This
optional value should be set to false for production environments as
sensitive information may be revealed.

5.2 Configuring WebSphere eXtreme Scale

The eXtreme Scale REST data service interacts with eXtreme Scale using the
EntityManager API. An entity schema is defined for an eXtreme Scale grid and the meta-
data for the entities is automatically consumed by the REST data service. For details on
how to configure an entity schema, see the eXtreme Scale EntityManager documentation.

For example, you can define an entity representing a Person in an eXtreme Scale grid is
as follows:

@Entity

public class Person {

 @Id String taxId;

 String firstName;

 String lastName;

}

Note: The annotations used here are in the com.ibm.websphere.projector.annotations
package.

The REST service will automatically create an ADO.NET Entity Data Model for Data
Services (EDMX) document, which is available using the $metadata URI:

Example http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/$metadata

Once the eXtreme Scale grid is configured and running, an eXtreme Scale client should be
configured and packaged. For details on configuring the eXtreme Scale REST data
service client package, see topic: Packaging and deploying the REST data service.

The following topics describe how eXtreme Scale is exposed as a REST service.

5.2.1 Creating an entity model

WebSphere eXtreme Scale entities are modeled using the entity annotations or an entity
metadata descriptor file. See the topic on defining an entity schema in the Programming

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/topic/com.ibm.websphere.extremescale.admin.doc/cxscliconfig.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/topic/com.ibm.websphere.extremescale.admin.doc/cxscliconfig.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/topic/com.ibm.websphere.extremescale.admin.doc/cxscliconfig.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/topic/com.ibm.websphere.extremescale.prog.doc/cxsemgrapi.html
http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/$metadata
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/topic/com.ibm.websphere.extremescale.prog.doc/rxsentmgrschema.html

41

Guide of the WebSphere eXtreme Scale V7.0 documentation for details on how to
configure an eXtreme Scale entity schema. The eXtreme Scale REST service uses the
entity metadata to automatically create an EDMX model for the data service.

This version of the WebSphere eXtreme Scale REST data service has the following
schema restrictions:

 When defining entities in a partitioned grid, all entities must have a direct or
indirect single valued association to the root entity (a key association). The WCF
data service client runtime must be able to access every entity directly through its
canonical address. Therefore, the key of the root entity that is used for partition
routing (the schema root) must be part of the key in the child entity.

For example:

@Entity(schemaRoot=true)

public class Person {

 @Id String taxId;

 String firstName;

 String lastName;

 @OneToMany(mappedBy="person")

 List<Address> addresses;

}

@Entity

public class Address {

 @Id int addrId;

 @Id @ManyToOne Person person;

 String street;

}

 Bi-directional and uni-directional associations are supported. However, uni-
directional associations may not always work from a Microsoft WCF Data Services
client since they can only be navigated in one direction and the Microsoft
specification requires all associations to be bi-directional.

 Referential constraints are not supported. The eXtreme Scale runtime does not
validate keys between entities. Associations between entities must be managed
by the client.

 Complex types are not supported. The eXtreme Scale EntityManager API does
not support embeddable attributes. All attributes are expected to be simple type
attributes (see the simple attribute types listed below). Non-simple type attributes
are treated as a binary object from the perspective of the client.

 Entity inheritance is not supported. The eXtreme Scale EntityManager API does
not support inheritance.

 Media Resources and Media Links are not supported. The HasStream attribute of
the EntityType in the Conceptual Schema Definition Language Document for Data
Services is never used.

42

Mapping between EDM data types and Java data types

The OData protocol defines the following list of Entity Data Model (EDM) types in its
abstract type system. The following topics describe how the eXtreme Scale REST adapter
chooses the EDM type based on the basic type defined in the entity. For details on EDM
types, see: http://msdn.microsoft.com/en-us/library/dd541295(PROT.10).aspx.

The following EDM types are available in WCF Data Services:

 Edm.Binary

 Edm.Boolean

 Edm.Byte

 Edm.DateTime

 Edm.Time

 Edm.Decimal

 Edm.Double

 Edm.Single

 Edm.Float

 Edm.Guid *

 Edm.Int16

 Edm.Int32

 Edm.Int64

 Edm.SByte

 Edm.String

* The EDM type: Edm.Guid is not supported by the eXtreme Scale REST data service.

Mapping Java Types to EDM Types

The eXtreme Scale REST data service will automatically convert basic entity types into
EDM types. The type mapping can be seen by displaying the Entity Data Model
Extensions (EDMX) metadata document using the $metadata URI. The EDM type is what
is used by clients to read and write data to the REST data service.

Table 1 shows the mapping from the Java type defined for an entity to the EDM data type.
When retrieving data using a query, the data will be represented with these types:

Table 1 Java Type to EDM Type Mapping for Retrieve Requests

Java Type EDM Type

boolean

java.lang.Boolean

Edm.Boolean

http://msdn.microsoft.com/en-us/library/dd541295(PROT.10).aspx

43

byte

java.lang.Byte

Edm.SByte

short

java.lang.Short

Edm.Int16

int

java.lang.Integer

Edm.Int32

long

java.lang.Long

Edm.Int64

float

java.lang.Float

Edm.Single

double

java.lang.Double

Edm.Double

java.math.BigDecimal

java.math.BigInteger

Edm.Decimal

java.lang.String

char

java.lang.Character

Char[]

java.lang.Character[]

Edm.String

java.util.Calendar

java.util.Date

java.sql.Date

java.sql.Timestamp

java.sql.Time

Edm.DateTime

Other types Edm.Binary

Mapping from EDM types to Java Types

For Update requests and Insert requests, the payload specifies the data to be updated or
inserted into the eXtreme Scale REST data service. The service can automatically convert
compatible data types to the data types defined in the EDMX document. The REST data
service converts the XML encoded string representations of the value into the correct type
using the following two-step process:

Step 1) a type check is performed to make sure the EDM type is compatible with the
Java type. An EDM type is compatible with a Java type if the data supported
by the EDM type is a subset of the data supported by the Java type. For
example, Edm.int32 type is compatible with a Java long type, but Edm.int32
type is not compatible with a Java short type.

Step 2) a target Java type object will be created which represents the string value in
the payload.

44

Table 2 describes which EDM types and their compatibility with Java types.

Table 2 Compatible EDM type to Java type

EDM type Java type

Edm.Boolean boolean

java.lang.Boolean

Edm.SByte byte

java.lang.Byte

short

java.lang.Short

int

java.lang.Integer

long

java.lang.Long

float

java.lang.Float

double

java.lang.Double

java.math.BigDecimal

java.math.BigInteger

char

java.lang.Character

Edm.Byte

Edm.Int16

short

java.lang.Short

int

java.lang.Integer

long

java.lang.Long

float

java.lang.Float

double

java.lang.Double

java.math.BigDecimal

java.math.BigInteger

char

java.lang.Character

Edm.Int32 int

java.lang.Integer

long

java.lang.Long

45

float

java.lang.Float

double

java.lang.Double

java.math.BigDecimal

java.math.BigInteger

Edm.Int64 long

java.lang.Long

double

java.lang.Double

java.math.BigDecimal

java.math.BigInteger

Edm.Double double

java.lang.Double

java.math.BigDecimal

Edm.Decimal double

java.lang.Double

java.math.BigDecimal

java.math.BigInteger

Edm.Single float

java.lang.Float

double

java.lang.Double

java.math.BigDecimal

Edm.String java.lang.String

char

java.lang.Character

Char[]

java.lang.Character[]

java.math.BigDecimal

java.math.BigInteger

Edm.DateTime java.util.Calendar

java.util.Date

java.sql.Date

java.sql.Time

java.sql.Timestamp

Edm.Time java.sql.Time

java.sql.Timestamp

46

Mapping temporal types

Java includes five temporal types for storing date, time or both: java.util.Date,
java.sql.Date, java.sql.Time, java.sql.Timestamp and java.util.Calendar. All of these types
are expressed in the entity data model as Edm.DateTime. The eXtreme Scale REST
service automatically converts and normalizes the data depending on the Java type. This
topic describes several issues that developers must be aware of when using any temporal
type.

Time zone differences

In WCF Data Services, the descriptions of time values in the Edm.DateTime type are
always expressed using the Coordinated Universal Time (UTC) standard, which is the
internationally recognized name for Greenwich Mean Time (GMT). Coordinated Universal
Time is the time as measured at zero degrees longitude, the UTC origin point. Daylight
saving time is not applicable to UTC.

Converting between entity and EDM types

When a client sends a request to the REST data service, the date and time is represented
as a GMT time zone time.

Example "2000-02-29T21:30:30.654123456"

The REST data service will then construct the appropriate Java temporal type instance and
insert it into the entity in the grid.

When a client requests a property which is a Java temporal type from the eXtreme Scale
REST data service, the value is always normalized as a GMT time zone value. For
example, if an entity java.util.Date is constructed as follows:

Calendar c = Calendar.getInstance();

c.clear();

c.set(2000, 1, 29, 21, 30, 30);

Date d = c.getTime();

The date and time are represented using the default time zone of the Java process
because Calendar.getInstance() will create a Calendar object with local time zone. If the
local time zone is CST, then the date, when retrieved from the REST data service will be
the GMT representation of the time:

"2000-03-01T03:30:30"

 java.sql.Date normalization

An eXtreme Scale entity can define an attribute with Java type java.sql.Date. This data
type does not include the time and is normalized by the REST data service. This means
that the eXtreme Scale runtime does not store any hours, minutes, seconds, or
milliseconds information in the java.sql.Date attribute. Regardless of the time zone offset,
the date is always represented as a local date.

For example, if the client updates a java.sql.Date property with the value “2009-01-
01T03:00:00”, the REST data service, which is in the CST time zone (-06:00), will simply
create a java.sql.Date instance of which the time is set to “2009-01-01T00:00:00” of the
local CST time. There is no time zone conversion done to create the java.sql.Date value.
When the REST service client retrieves the value of this attribute, it will be displayed as

47

“2009-01-01T00:00:00Z”. If a time zone conversion were done, the value would be
displayed as having the date of “2008-12-31”, which would be incorrect.

java.sql.Time normalization

Similar to java.sql.Date, the java.sql.Time values are normalized and do not include date
information. This means that the eXtreme Scale run time does not store the year, month or
day. The time is stored using the GMT time from the epoch January 1, 1970, which is
consistent with the java.sql.Time implementation.

For example, if the client updates a java.sql.Time property with the value "2009-01-
01T03:00:00", the REST data service, will create a java.sql.Time instance with the
milliseconds set to 3*60*60*1000, which is equal to 3 hours. When the rest service
retrieves the value, it will be displayed as "1970-01-01:03:00:00Z".

Associations

Associations define the relationship between two peer entities. The eXtreme Scale REST
service reflects the associations modeled with entities defined with eXtreme Scale
annotated entities or entities defined using an entity descriptor XML file.

Association maintenance

The eXtreme Scale REST data service does not support referential integrity constraints.
The client should ensure that references are updated when entities are removed or added.
If a target entity of an association is removed from the grid, but the link between the source
and target entity is not removed, then the link is broken. The eXtreme Scale REST data
service and EntityManager API tolerates broken links and will log them as CWPRJ1022W
warnings. Broken associations will simply be removed from the request payload.

Use a batch request to group association updates in a single transaction to avoid broken
links. See section 6.2.6 for details on batch requests.

The ADO.NET Entity Data Model ReferentialConstraint element is not used by the eXtreme
Scale REST data service.

Association multiplicity

Entities can have multi-valued associations or single-valued associations. Multi-valued
associations, or collections, are one-to-many or many-to-many associations. Single-valued
associations are one-to-one or many-to-one associations.

In a partitioned grid, all entities should have a single-valued key-association path to a root
entity. Because the root entity is used to partition the entity, many-to-many associations
are not allowed for partitioned grids. For an example on how to model a relational entity
schema for a partitioned grid, see section 3.1.1. See the following section: Key for details
on how to define a key association.

The following example describes how the EntityManager API association types, modeled
using annotated Java classes map to the ADO.NET Entity Data Model:

@Entity

public class Customer {

 @Id String customerId;

48

 @OneToOne TaxInfo taxInfo;

 @ManyToOne Address homeAddress;

 @OneToMany Collection<Order> orders;

 @ManyToMany Collection<SalesPerson> salespersons;

}

<Association Name="Customer_TaxInfo">

 <End Type="Model1.Customer" Role="Customer" Multiplicity="1" />

 <End Type="Model1.TaxInfo " Role="TaxInfo" Multiplicity="1" />

</Association>

<Association Name="Customer_Address">

 <End Type="Model1.Customer" Role="Customer" Multiplicity="1" />

 <End Type="Model1.Address" Role="TaxInfo" Multiplicity="*" />

</Association>

<Association Name="Customer_Order">

 <End Type="Model1.Customer" Role="Customer" Multiplicity="*" />

 <End Type="Model1.Order" Role="TaxInfo" Multiplicity="1" />

</Association>

<Association Name="Customer_SalesPerson">

 <End Type="Model1.Customer" Role="Customer" Multiplicity="*" />

 <End Type="Model1.SalesPerson" Role="TaxInfo" Multiplicity="*"

/>

</Association>

Bi-directional and uni-directional associations

Entities associations can be uni-directional or bi-directional. By specifying the "mappedBy"
attribute on the @OneToOne, @OneToMany or @ManyToMany annotation or the
"mapped-by" attribute on the one-to-one, one-to-many or many-to-many XML attribute tag,
the entity becomes bi-directional. The OData protocol currently requires all entities to be
bi-directional, allowing clients to generate navigation paths in both directions. The eXtreme
Scale EntityManager API allows modeling uni-directional associations which can save
memory and simplify maintenance of the associations. If a uni-directional association is
used, the REST data services client must only navigate through the association using the
defined association.

For example: If a uni-directional many-to-one association is defined between Address and
Country, the following URI is not allowed:

/restservice/CustomerGrid/Country('USA')/addresses

Key associations

Single-valued associations (one-to-one and many-to-one) can also be included as all or
part of the entities key. This is known as a key-association.

Key associations are required when using a partitioned grid. The key association must be
defined for all child entities in a partitioned entity schema. The OData protocol requires
that all entities are directly addressable. This means that the key in the child entity must
include the key used for partitioning.

49

In the following example, Customer has a one-to-many association to Order. The
Customer entity is the root entity and the customerId attribute is used to partition the entity.
Order has included the Customer as part of its identity:

@Entity(schemaRoot="true")

public class Customer {

 @Id String customerId;

 @OneToMany(mappedBy="customer") Order orders

}

@Entity

public class Order {

 @Id int orderId;

 @Id @ManyToOne Customer customer;

 java.util.Date orderDate;

}

When the REST data service generates the EDMX document for this model, the Customer
key fields are automatically included as part of the Order entity:

<EntityType Name="Order">

<Key>

 <PropertyRef Name="orderId"/>

 <PropertyRef Name="customer_customerId"/>

</Key>

<Property Name="orderId" Type="Edm.Int64" Nullable="false"/>

<Property Name="customer_customerId" Type="Edm.String"

 Nullable="false"/>

<Property Name="orderDate" Type="Edm.DateTime" Nullable="true"/>

<NavigationProperty Name="customer"

 Relationship="NorthwindGridModel.Customer_orders"

 FromRole="Order" ToRole="Customer"/>

<NavigationProperty Name="orderDetails"

 Relationship="NorthwindGridModel.Order_orderDetails"

 FromRole="Order" ToRole="OrderDetail"/>

</EntityType>

When an entity is created, the key must never change. This means if the key association
between a child entity and its parent must change, the child entity must be removed and
re-created with a different parent. In a partitioned grid, this will require two different batch
change sets since the move will likely involve more than one partition.

Cascading operations

The EntityManager API allows a flexible cascade policy. Associations can be marked to
cascade a persist, remove, invalidate or merge operation. Such cascade operations can
happen on one or both sides of a bi-directional association.

The OData protocol only allows cascade delete operations on the single-side of the
association. The CascadeType.REMOVE annotation or cascade-remove XML attribute
cannot be defined on both sides of a one-to-one bi-directional association or on the many-

50

side of a one-to-many association. The following example illustrates a valid
Cascade.REMOVE bi-directional association:

@Entity(schemaRoot="true")

public class Customer {

 @Id String customerId;

 @OneToMany(mappedBy="customer", cascade=CascadeType.REMOVE)

 Order orders

}

@Entity

public class Order {

 @Id int orderId;

 @Id @ManyToOne Customer customer;

 java.util.Date orderDate;

}

The resulting EDMX association looks as follows:

<Association Name="Customer_orders">

 <End Type="NorthwindGridModel.Customer" Role="Customer"

 Multiplicity="1">

 <OnDelete Action="Cascade"/>

 </End>

 <End Type="NorthwindGridModel.Order" Role="Order"

 Multiplicity="*"/>

</Association>

6 Using the REST data service

After you start the eXtreme Scale REST data service, you can use any HTTP client to
interact with it. A Web browser, PHP client, Java client or WCF Data Services client can
be used to issue any of the supported request operations.

The REST service implements a subset of the Microsoft Atom Publishing Protocol: Data
Services URI and Payload Extensions specification, Version 1.0 which is part of OData
protocol. This chapter describes which of the features of the specification are supported
and how they are mapped to eXtreme Scale.

6.1 Service root URI

Microsoft WCF Data Services typically defines a service per data source or entity model.
The eXtreme Scale REST data service defines a service per defined ObjectGrid. Each
ObjectGrid that is defined in the eXtreme Scale ObjectGrid client override XML file is
automatically exposed as a separate REST service root.

The URI for the service root is:

http://<host>:<port>/<contextroot>/restservice/<gridname>

Where contextroot is defined when the REST data service application is deployed, and is
dependent on the application server, and gridname is the name of the ObjectGrid.

http://msdn.microsoft.com/en-us/library/dd541188%28PROT.10%29.aspx
http://msdn.microsoft.com/en-us/library/dd541188%28PROT.10%29.aspx
http://msdn.microsoft.com/en-us/library/dd541188%28PROT.10%29.aspx
http://odata.org/
http://odata.org/
http://odata.org/

51

6.2 Request types

The following list describes the Microsoft WCF Data Services request types which the
eXtreme Scale REST data service supports.

For details on each request type that WCF Data Services supports, see:
http://msdn.microsoft.com/en-us/library/dd541602%28PROT.10%29.aspx

6.2.1 Insert request types

Clients can insert resources using the POST HTTP verb with the following limitations:

 InsertEntity Request: Supported.

 InsertLink request: Supported.

 InsertMediaResource request: Not supported due to media resource support
restriction.

For additional information, see:
http://msdn.microsoft.com/en-us/library/dd541376(PROT.10).aspx

6.2.2 Update request types

Clients can update resources using the PUT and MERGE HTTP verbs with the following
limitations:

 UpdateEntity Request: Supported.

 UpdateComplexType Request: Not Supported due to complex type restriction.

 UpdatePrimitivePropety Request: Supported.

 UpdateValue Request: Supported.

 UpdateLink Request: Supported.

 UpdateMediaResource Request: Not supported due to media resource support
restriction.

For additional information, see:
http://msdn.microsoft.com/en-us/library/dd541376(PROT.10).aspx

6.2.3 Delete request types

Clients can delete resources using the DELETE HTTP verb with the following limitations:

 DeleteEntity Request: Supported.

 DeleteLink Request: Supported.

 DeleteValue request: Supported.

For additional information, see:
http://msdn.microsoft.com/en-us/library/dd541534(PROT.10).aspx

http://msdn.microsoft.com/en-us/library/dd541602%28PROT.10%29.aspx
http://msdn.microsoft.com/en-us/library/dd541376(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541376(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541534(PROT.10).aspx

52

6.2.4 Retrieve request types

Clients can retrieve resources using the GET HTTP verb with the following limitations:

 RetrieveEntitySet Request: Supported.

 RetrieveEntity Request: Supported.

 RetrieveComplexType Request: Not supported due to complex type restriction.

 RetrievePrimitiveProperty Request: Supported.

 RetrieveValue Request: Supported.

 RetrieveServiceMetadata Request: Supported.

 RetrieveServiceDocument Request: Supported.

 RetrieveLink Request: Supported.

 Retrieve Request Containing a Customizable Feed Mapping: Not supported

 RetrieveMediaResource: Not supported due to media resource restriction.

For additional information, see:
http://msdn.microsoft.com/en-us/library/dd541450(PROT.10).aspx

System query options

Queries are supported which allow clients to identify a collection of entities or a single
entity. System query options are specified in a data service URI and are supported with
the following limitations:

o $expand: Supported

o $filter: Supported.

o $orderby: Supported.

o $format: Not supported. The acceptable format is identified in the HTTP
Accept request header.

o $skip: Supported

o $top: Supported

For additional information, see:
http://msdn.microsoft.com/en-us/library/dd541320(PROT.10).aspx

Partition routing

Partition routing is based on the root entity. A request URI infers a root entity if its resource
path starts with a root entity or with an entity that has a direct or indirect association to the
entity.

In a partitioned environment, any request that cannot infer a root entity will be rejected. Any
request that infers a root entity will be routed to the correct partition.

http://msdn.microsoft.com/en-us/library/dd541450(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541320(PROT.10).aspx

53

For additional information on defining a schema with associations and root entities, see
section 3.1.1 in this document and the partitioning topic in the Product Overview of the
WebSphere eXtreme Scale documentation.

6.2.5 Invoke request

Invoke requests are not supported.

For additional information, see:
http://msdn.microsoft.com/en-us/library/dd541482(PROT.10).aspx

6.2.6 Batch request

Clients can batch multiple Change Sets or Query Operations within a single request. This
can reduce the number of round trips to the server and allows multiple requests to
participate in a single transaction.

For additional information, see:
http://msdn.microsoft.com/en-us/library/dd541539(PROT.10).aspx

6.2.7 Tunneled requests

Tunneled requests are not supported.

For additional information, see:
http://msdn.microsoft.com/en-us/library/dd541243(PROT.10).aspx

6.3 Request Protocols and Examples

This topic describes the request protocols when interacting with the REST service. In
general, the protocols are the same as those described in the WCF Data Services
AtomPub protocol directly. However, we do provide additional details from eXtreme Scale
Entity Model perspective. Users are expected to be familiar with the WCF Data Services
protocols before reading this section. Alternatively, users can read this section with the
WCF Data Services protocol section.

Examples are provided to illustrate the request and response. These examples apply to
both the eXtreme Scale REST data service and WCF Data Services.

Since Web browsers can only retrieve data, the CUD (create, update and delete)
operations must be performed by another client such as Java, JavaScript, RUBY or PHP.

6.3.1 Retrieve requests

6.3.1.1 Retrieving an entity

A RetrieveEntity Request is used by a client to retrieve an eXtreme Scale entity. The
response payload contains the entity data in AtomPub or JSON format.

Also, the system operator $expand can be used to expand the relations. The relations are
represented in line within the data service’s response as an Atom Feed Document (to-
many relation) or an Atom Entry Document (to-one relation).

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/topic/com.ibm.websphere.extremescale.over.doc/cxspartition.html
http://msdn.microsoft.com/en-us/library/dd541482(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541539(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541243(PROT.10).aspx

54

For more details on the RetrieveEntity protocol defined in WCF Data Services, refer to
http://msdn.microsoft.com/en-us/library/dd541268(PROT.10).aspx

The following RetrieveEntity example retrieves a Customer entity with key.

AtomPub

Method:

GET

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('ACME')

Request Header:

Accept: application/atom+xml

Request Payload:

None

Response Header:

Content-Type: application/atom+xml

Response Header:

Content-Type: application/atom+xml

Response Payload:

<?xml version="1.0" encoding="ISO-8859-1"?>

<entry xml:base =

"http://localhost:8080/wxsrestservice/restservice" xmlns:d =

"http://schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m =

"http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

xmlns = "http://www.w3.org/2005/Atom">

 <category term = "NorthwindGridModel.Customer" scheme =

"http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

<id>http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('ACME')</id>

 <title type = "text"/>

 <updated>2009-12-16T19:52:10.593Z</updated>

 <author>

 <name/>

 </author>

 <link rel = "edit" title = "Customer" href =

"Customer('ACME')"/>

 <link rel =

"http://schemas.microsoft.com/ado/2007/08/dataservices/related/orde

rs" type = "application/atom+xml;type=feed" title = "orders" href =

"Customer('ACME')/orders"/>

 <content type = "application/xml">

 <m:properties>

 <d:customerId>ACME</d:customerId>

http://msdn.microsoft.com/en-us/library/dd541268(PROT.10).aspx

55

 <d:city m:null = "true"/>

 <d:companyName>RoaderRunner</d:companyName>

 <d:contactName>ACME</d:contactName>

 <d:country m:null = "true"/>

 <d:version m:type = "Edm.Int32">3</d:version>

 </m:properties>

 </content>

</entry>

Response Code:

200 OK

JSON

Method:

GET

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('ACME')

Request Header:

Accept: application/json

Request Payload:

None

Response Header:

Content-Type: application/json

Response Payload:

{"d":{"__metadata":{"uri":"http://localhost:8080/wxsrestservice/res

tservice/NorthwindGrid/Customer('ACME')",

"type":"NorthwindGridModel.Customer"},

"customerId":"ACME",

"city":null,

"companyName":"RoaderRunner",

"contactName":"ACME",

"country":null,

"version":3,

"orders":{"__deferred":{"uri":"http://localhost:8080/wxsrestservice

/restservice/NorthwindGrid/Customer('ACME')/orders"}}}}

Response Code:

200 OK

6.3.1.1.1 Queries

56

A query can also be used with a RetrieveEntitySet or RetrieveEntity request. A query is
specified by the system $filter operator.

For details on the $filter operator, refer to:
http://msdn.microsoft.com/en-us/library/dd541344(PROT.10).aspx

The OData protocol supports several common expressions. The eXtreme Scale REST
data service supports a subset of the expressions defined in the specification:

 Boolean expressions:

o eq, ne, lt, le, gt, ge

o negate

o not

o parenthesis

o and, or

 Arithmetic expressions

o add, sub, mul, div

 Primitive literals

o String, date-time, decimal, single, double, int16, int32, int64, binary, null and
byte.

The following expressions are NOT available:

 Boolean expressions:

o isof

o cast

 Method call expressions

 Arithmetic expressions

o mod

 Primitive literals:

o Guid

 Member expressions

For a complete list and description of the expressions that are available in Microsoft WCF
Data Services, see section 2.2.3.6.1.1:
http://msdn.microsoft.com/en-us/library/dd541448%28PROT.10%29.aspx

The following example demonstrates a RetrieveEntity request with a query. In this
example, all customers whose contact name is “RoadRunner” are retrieved. The only
customer which matches this filter is Customer('ACME') as shown in the response payload.

Note: This query will only work for non-partitioned entities. If Customer is partitioned,
then the customer's key is required.

AtomPub

Method:

http://msdn.microsoft.com/en-us/library/dd541344(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541448%28PROT.10%29.aspx

57

GET

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer?$filter=contactNa
me eq 'RoadRunner'

Request Header:

Accept: application/atom+xml

Input Payload:

None

Response Header:

Content-Type: application/atom+xml

Response Payload:

<?xml version="1.0" encoding="iso-8859-1"?>

<feed

 xml:base="http://localhost:8080/wxsrestservice/restservice"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadat

a"

 xmlns="http://www.w3.org/2005/Atom">

 <title type="text">Customer</title>

 <id>

 http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Custome

r </id>

 <updated>2009-09-16T04:59:28.656Z</updated>

 <link rel="self" title="Customer" href="Customer" />

 <entry>

 <category term="NorthwindGridModel.Customer"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"

/>

 <id>

 http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Custome

r('ACME') </id>

 <title type="text" />

 <updated>2009-09-16T04:59:28.656Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Customer" href="Customer('ACME')" />

 <link

 rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/ord

ers"

58

 type="application/atom+xml;type=feed" title="orders"

 href="Customer('ACME')/orders" />

 <content type="application/xml">

 <m:properties>

 <d:customerId>ACME</d:customerId>

 <d:city m:null = "true"/>

 <d:companyName>RoaderRunner</d:companyName>

 <d:contactName>ACME</d:contactName>

 <d:country m:null = "true"/>

 <d:version m:type = "Edm.Int32">3</d:version>

 </m:properties>

 </content>

 </entry>

</feed>

Response Code:

200 OK

JSON

Method:

GET

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer?$filter=contactNa
me eq 'RoadRunner'

Request Header:

Accept: application/json

Request Payload:

None

Response Header:

Content-Type: application/json

Response Payload:

{"d":[{"__metadata":{"uri":"http://localhost:8080/wxsrestservice/re

stservice/NorthwindGrid/Customer('ACME')",

"type":"NorthwindGridModel.Customer"},

"customerId":"ACME",

"city":null,

"companyName":"RoaderRunner",

"contactName":"ACME",

"country":null,

"version":3,

"orders":{"__deferred":{"uri":"http://localhost:8080/wxsrestservice

/restservice/NorthwindGrid/Customer('ACME')/orders"}}}]}

Response Code:

59

200 OK

6.3.1.1.2 System operator $expand

The system operator $expand can be used to expand associations. The associations are
represented in line in the data service response. Multi-valued (to-many) associations are
represented as an Atom Feed Document or JSON array. Single-valued (to-one)
associations, are represented as n Atom Entry Document or JSON object.

For more details on the $expand system operator, refer to:
http://msdn.microsoft.com/en-us/library/dd541606(PROT.10).aspx

Here is an example of using the $expand system operator. In this example, we retrieve the

entity Customer('IBM')which has an Orders 5000, 5001 and others associated with it.

The $expand clause is set to “orders”, so the order collection is expand as inline in the
response payload. Only orders 5000 and 5001 are displayed here.

AtomPub

Method:

GET

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('IBM')?$expan

d=orders

Request Header:

Accept: application/atom+xml

Request Payload:

None

Response Header:

Content-Type: application/atom+xml

Response Payload:

<?xml version="1.0" encoding="utf-8"?>

<entry xml:base =

"http://localhost:8080/wxsrestservice/restservice" xmlns:d =

"http://schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m =

"http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

xmlns = "http://www.w3.org/2005/Atom">

 <category term = "NorthwindGridModel.Customer" scheme =

"http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

<id>http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')</id>

 <title type = "text"/>

 <updated>2009-12-16T22:50:18.156Z</updated>

http://msdn.microsoft.com/en-us/library/dd541606(PROT.10).aspx

60

 <author>

 <name/>

 </author>

 <link rel = "edit" title = "Customer" href =

"Customer('IBM')"/>

 <link rel =

"http://schemas.microsoft.com/ado/2007/08/dataservices/related/orde

rs" type = "application/atom+xml;type=feed" title = "orders" href =

"Customer('IBM')/orders">

 <m:inline>

 <feed>

 <title type = "text">orders</title>

<id>http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('IBM')/orders</id>

 <updated>2009-12-16T22:50:18.156Z</updated>

 <link rel = "self" title = "orders" href =

"Customer('IBM')/orders"/>

 <entry>

 <category term = "NorthwindGridModel.Order"

scheme =

"http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

<id>http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Order(orderId=5000,customer_customerId='IBM')</id>

 <title type = "text"/>

 <updated>2009-12-16T22:50:18.156Z</updated>

 <author>

 <name/>

 </author>

 <link rel = "edit" title = "Order" href =

"Order(orderId=5000,customer_customerId='IBM')"/>

 <link rel =

"http://schemas.microsoft.com/ado/2007/08/dataservices/related/cust

omer" type = "application/atom+xml;type=entry" title = "customer"

href = "Order(orderId=5000,customer_customerId='IBM')/customer"/>

 <link rel =

"http://schemas.microsoft.com/ado/2007/08/dataservices/related/orde

rDetails" type = "application/atom+xml;type=feed" title =

"orderDetails" href =

"Order(orderId=5000,customer_customerId='IBM')/orderDetails"/>

 <content type = "application/xml">

 <m:properties>

 <d:orderId m:type =

"Edm.Int32">5000</d:orderId>

<d:customer_customerId>IBM</d:customer_customerId>

 <d:orderDate m:type =

"Edm.DateTime">2009-12-16T19:46:29.562</d:orderDate>

 <d:shipCity>Rochester</d:shipCity>

 <d:shipCountry m:null = "true"/>

 <d:version m:type =

"Edm.Int32">0</d:version>

 </m:properties>

 </content>

 </entry>

 <entry>

61

 <category term = "NorthwindGridModel.Order"

scheme =

"http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

<id>http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Order(orderId=5001,customer_customerId='IBM')</id>

 <title type = "text"/>

 <updated>2009-12-16T22:50:18.156Z</updated>

 <author>

 <name/>

 </author>

 <link rel = "edit" title = "Order" href =

"Order(orderId=5001,customer_customerId='IBM')"/>

 <link rel =

"http://schemas.microsoft.com/ado/2007/08/dataservices/related/cust

omer" type = "application/atom+xml;type=entry" title = "customer"

href = "Order(orderId=5001,customer_customerId='IBM')/customer"/>

 <link rel =

"http://schemas.microsoft.com/ado/2007/08/dataservices/related/orde

rDetails" type = "application/atom+xml;type=feed" title =

"orderDetails" href =

"Order(orderId=5001,customer_customerId='IBM')/orderDetails"/>

 <content type = "application/xml">

 <m:properties>

 <d:orderId m:type =

"Edm.Int32">5001</d:orderId>

<d:customer_customerId>IBM</d:customer_customerId>

 <d:orderDate m:type =

"Edm.DateTime">2009-12-16T19:50:11.125</d:orderDate>

 <d:shipCity>Rochester</d:shipCity>

 <d:shipCountry m:null = "true"/>

 <d:version m:type =

"Edm.Int32">0</d:version>

 </m:properties>

 </content>

 </entry>

 </feed>

 </m:inline>

 </link>

 <content type = "application/xml">

 <m:properties>

 <d:customerId>IBM</d:customerId>

 <d:city m:null = "true"/>

 <d:companyName>IBM Corporation</d:companyName>

 <d:contactName>John Doe</d:contactName>

 <d:country m:null = "true"/>

 <d:version m:type = "Edm.Int32">4</d:version>

 </m:properties>

 </content>

</entry>

Response Code:

200 OK

62

JSON

Method:

GET

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('IBM')?$expan

d=orders

Request Header:

Accept: application/json

Request Payload:

None

Response Header:

Content-Type: application/json

Response Payload:

{"d":{"__metadata":{"uri":"http://localhost:8080/wxsrestservice/res

tservice/NorthwindGrid/Customer('IBM')",

"type":"NorthwindGridModel.Customer"},

"customerId":"IBM",

"city":null,

"companyName":"IBM Corporation",

"contactName":"John Doe",

"country":null,

"version":4,

"orders":[{"__metadata":{"uri":"http://localhost:8080/wxsrestservic

e/restservice/NorthwindGrid/Order(orderId=5000,customer_customerId=

'IBM')",

"type":"NorthwindGridModel.Order"},

"orderId":5000,

"customer_customerId":"IBM",

"orderDate":"\/Date(1260992789562)\/",

"shipCity":"Rochester",

"shipCountry":null,

"version":0,

"customer":{"__deferred":{"uri":"http://localhost:8080/wxsrestservi

ce/restservice/NorthwindGrid/Order(orderId=5000,customer_customerId

='IBM')/customer"}},

"orderDetails":{"__deferred":{"uri":"http://localhost:8080/wxsrests

ervice/restservice/NorthwindGrid/Order(orderId=5000,customer_custom

erId='IBM')/orderDetails"}}},

{"__metadata":{"uri":"http://localhost:8080/wxsrestservice/restserv

ice/NorthwindGrid/Order(orderId=5001,customer_customerId='IBM')",

"type":"NorthwindGridModel.Order"},

"orderId":5001,

"customer_customerId":"IBM",

"orderDate":"\/Date(1260993011125)\/",

"shipCity":"Rochester",

"shipCountry":null,

63

"version":0,

"customer":{"__deferred":{"uri":"http://localhost:8080/wxsrestservi

ce/restservice/NorthwindGrid/Order(orderId=5001,customer_customerId

='IBM')/customer"}},

"orderDetails":{"__deferred":{"uri":"http://localhost:8080/wxsrests

ervice/restservice/NorthwindGrid/Order(orderId=5001,customer_custom

erId='IBM')/orderDetails"}}}]}}

Response Code:

200 OK

6.3.1.2 Retrieving an entity collection

A RetrieveEntitySet Request can be used by a client to retrieve a set of eXtreme Scale
entities. The entities are represented as an Atom Feed Document or JSON array in the
response payload.

For more details on the RetrieveEntitySet protocol defined in WCF Data Services, refer to
http://msdn.microsoft.com/en-us/library/dd541423(PROT.10).aspx

The following RetrieveEntitySet request example retrieves all the Order entities associated
with the Customer('IBM') entity. Only orders 5000 and 5001 are displayed here.

AtomPub

Method:

GET

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('IBM')/orders

Request Header:

Accept: application/atom+xml

Request Payload:

None

Response Header:

Content-Type: application/atom+xml

Response Payload:

<?xml version="1.0" encoding="utf-8"?>

<feed xml:base = "http://localhost:8080/wxsrestservice/restservice"

xmlns:d = "http://schemas.microsoft.com/ado/2007/08/dataservices"

xmlns:m =

"http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

xmlns = "http://www.w3.org/2005/Atom">

 <title type = "text">Order</title>

http://msdn.microsoft.com/en-us/library/dd541423(PROT.10).aspx

64

<id>http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Order</id>

 <updated>2009-12-16T22:53:09.062Z</updated>

 <link rel = "self" title = "Order" href = "Order"/>

 <entry>

 <category term = "NorthwindGridModel.Order" scheme =

"http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

<id>http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Order(orderId=5000,customer_customerId='IBM')</id>

 <title type = "text"/>

 <updated>2009-12-16T22:53:09.062Z</updated>

 <author>

 <name/>

 </author>

 <link rel = "edit" title = "Order" href =

"Order(orderId=5000,customer_customerId='IBM')"/>

 <link rel =

"http://schemas.microsoft.com/ado/2007/08/dataservices/related/cust

omer" type = "application/atom+xml;type=entry" title = "customer"

href = "Order(orderId=5000,customer_customerId='IBM')/customer"/>

 <link rel =

"http://schemas.microsoft.com/ado/2007/08/dataservices/related/orde

rDetails" type = "application/atom+xml;type=feed" title =

"orderDetails" href =

"Order(orderId=5000,customer_customerId='IBM')/orderDetails"/>

 <content type = "application/xml">

 <m:properties>

 <d:orderId m:type = "Edm.Int32">5000</d:orderId>

 <d:customer_customerId>IBM</d:customer_customerId>

 <d:orderDate m:type = "Edm.DateTime">2009-12-

16T19:46:29.562</d:orderDate>

 <d:shipCity>Rochester</d:shipCity>

 <d:shipCountry m:null = "true"/>

 <d:version m:type = "Edm.Int32">0</d:version>

 </m:properties>

 </content>

 </entry>

 <entry>

 <category term = "NorthwindGridModel.Order" scheme =

"http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

<id>http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Order(orderId=5001,customer_customerId='IBM')</id>

 <title type = "text"/>

 <updated>2009-12-16T22:53:09.062Z</updated>

 <author>

 <name/>

 </author>

 <link rel = "edit" title = "Order" href =

"Order(orderId=5001,customer_customerId='IBM')"/>

 <link rel =

"http://schemas.microsoft.com/ado/2007/08/dataservices/related/cust

omer" type = "application/atom+xml;type=entry" title = "customer"

href = "Order(orderId=5001,customer_customerId='IBM')/customer"/>

65

 <link rel =

"http://schemas.microsoft.com/ado/2007/08/dataservices/related/orde

rDetails" type = "application/atom+xml;type=feed" title =

"orderDetails" href =

"Order(orderId=5001,customer_customerId='IBM')/orderDetails"/>

 <content type = "application/xml">

 <m:properties>

 <d:orderId m:type = "Edm.Int32">5001</d:orderId>

 <d:customer_customerId>IBM</d:customer_customerId>

 <d:orderDate m:type = "Edm.DateTime">2009-12-

16T19:50:11.125</d:orderDate>

 <d:shipCity>Rochester</d:shipCity>

 <d:shipCountry m:null = "true"/>

 <d:version m:type = "Edm.Int32">0</d:version>

 </m:properties>

 </content>

 </entry>

</feed>

Response Code:

200 OK

JSON

Method:

GET

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('IBM')/orders

Request Header:

Accept: application/json

Request Payload:

None

Response Header:

Content-Type: application/json

Response Payload:

{"d":[{"__metadata":{"uri":"http://localhost:8080/wxsrestservice/re

stservice/NorthwindGrid/Order(orderId=5000,customer_customerId='IBM

')",

"type":"NorthwindGridModel.Order"},

"orderId":5000,

"customer_customerId":"IBM",

"orderDate":"\/Date(1260992789562)\/",

"shipCity":"Rochester",

"shipCountry":null,

"version":0,

66

"customer":{"__deferred":{"uri":"http://localhost:8080/wxsrestservi

ce/restservice/NorthwindGrid/Order(orderId=5000,customer_customerId

='IBM')/customer"}},

"orderDetails":{"__deferred":{"uri":"http://localhost:8080/wxsrests

ervice/restservice/NorthwindGrid/Order(orderId=5000,customer_custom

erId='IBM')/orderDetails"}}},

{"__metadata":{"uri":"http://localhost:8080/wxsrestservice/restserv

ice/NorthwindGrid/Order(orderId=5001,customer_customerId='IBM')",

"type":"NorthwindGridModel.Order"},

"orderId":5001,

"customer_customerId":"IBM",

"orderDate":"\/Date(1260993011125)\/",

"shipCity":"Rochester",

"shipCountry":null,

"version":0,

"customer":{"__deferred":{"uri":"http://localhost:8080/wxsrestservi

ce/restservice/NorthwindGrid/Order(orderId=5001,customer_customerId

='IBM')/customer"}},

"orderDetails":{"__deferred":{"uri":"http://localhost:8080/wxsrests

ervice/restservice/NorthwindGrid/Order(orderId=5001,customer_custom

erId='IBM')/orderDetails"}}}]}

Response Code:

200 OK

6.3.1.3 Retrieve a Property

A RetrievePrimitiveProperty request can be used to get the value of a property of an
eXtreme Scale entity instance. The property value is represented as XML format for
AtomPub requests and a JSON object for JSON requests in the response payload.

For more details on RetrievePrimitiveProperty request, refer to
http://msdn.microsoft.com/en-us/library/dd541245(PROT.10).aspx

The following RetrievePrimitiveProperty request example retrieves the contactName
property of the Customer('IBM') entity.

AtomPub

Method:

GET

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('IBM')/contactNa
me

Request Header:

Accept: application/xml

Request Payload:

None

http://msdn.microsoft.com/en-us/library/dd541245(PROT.10).aspx

67

Response Header:

Content-Type: application/atom+xml

Response Payload:

<contactName

xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices">

 John Doe

</contactName>

Response Code:

200 OK

JSON

Method:

GET

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('IBM')/contactNa
me

Request Header:

Accept: application/json

Request Payload:

None

Response Header:

Content-Type: application/json

Response Payload:

{"d":{"contactName":"John Doe"}}

Response Code:

200 OK

6.3.1.4 Retrieve a Property Value

A RetrieveValue request can be used to get the raw value of a property on an eXtreme
Scale entity instance. The property value is represented as a raw value in the response
payload.

68

If the entity type is one of the following, then the media type of the response is “text/plain”.
Otherwise the response’ media type is “application/octet-stream”. These types are:

 Java primitive types and its wrappers

 java.lang.String

 byte[],

 Byte[],

 char[],

 Character[],

 enums;

 java.math.BigInteger

 java.math.BigDecimal

 java.util.Date

 java.util.Calendar

 java.sql.Date

 java.sql.Time

 java.sql.Timestamp

For more details on the RetrieveValue request, refer to http://msdn.microsoft.com/en-
us/library/dd541523(PROT.10).aspx

The following RetrieveValue request example retrieves the raw value of the contactName
property of the Customer('IBM') entity.

Request Method:

GET

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('IBM')/contactNa
me/$value

Request Header:

Accept: text/plain

Request Payload:

None

Response Header:

Content-Type: text/plain

Response Payload:

John Doe

http://msdn.microsoft.com/en-us/library/dd541523(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541523(PROT.10).aspx

69

Response Code:

200 OK

6.3.1.5 Retrieve a Link

A RetrieveLink Request can be used to get the link(s) representing a to-one association or
to-many association. For the to-one association, the link is from one eXtreme Scale Entity
instance to another, and the link is represented in the response payload. For the to-many
association, the links are from one eXtreme Scale Entity instance to all others in a
specified eXtreme Scale entity collection, and the response is represented as a set of links
in the response payload.

For more details on RetrieveValue request, refer to:
http://msdn.microsoft.com/en-us/library/dd541339(PROT.10).aspx

Here is a RetrieveLink request example. In this example, we retrieve the association
between entity Order(orderId=5000,customer_customerId='IBM’) and its customer. The
response shows the Customer entity URI.

AtomPub

Method:

GET

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Order(orderId=5000,custom
er_customerId='IBM')/$links/customer

Request Header:

Accept: application/xml

Request Payload:

None

Response Header:

Content-Type: application/xml

Response Payload:

<?xml version="1.0" encoding="utf-8"?>

<uri>http://localhost:8080/wxsrestservice/restservice/NorthwindGrid

/Customer('IBM')</uri>

Response Code:

200 OK

JSON

http://msdn.microsoft.com/en-us/library/dd541339(PROT.10).aspx

70

Method:

GET

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Order(orderId=5000,custom
er_customerId='IBM')/$links/customer

Request Header:

Accept: application/json

Request Payload:

None

Response Header:

Content-Type: application/json

Response Payload:

{"d":{"uri":"http:\/\/localhost:8080\/wxsrestservice\/restservice\/

NorthwindGrid\/Customer('IBM')"}}

6.3.1.6 Retrieve Service Metadata

A RetrieveServiceMetadata Request can be used to get the conceptual schema definition
language (CSDL) document, which describes the data model associated with the eXtreme
Scale REST data service.

For more details on RetrieveServiceMetadata request, refer to
http://msdn.microsoft.com/en-us/library/dd541530(PROT.10).aspx

6.3.1.7 Retrieve Service Document

A RetrieveServiceDocument Request can be used to retrieve the Service Document
describing the collection of resources exposed by the eXtreme Scale REST data service,

For more details on RetrieveServiceMetadata request, refer to
http://msdn.microsoft.com/en-us/library/dd541594(PROT.10).aspx

6.3.2 Insert Request

6.3.2.1 Insert Entity Request

An InsertEntity Request can be used to insert a new eXtreme Scale entity instance,
potentially with new related entities, into the eXtreme Scale REST data service.

When inserting an entity, the client may specify if the resource or entity should be
automatically linked to other existing entities in the data service. The client must include

http://msdn.microsoft.com/en-us/library/dd541288%28PROT.10%29.aspx#csdl
http://msdn.microsoft.com/en-us/library/dd541288%28PROT.10%29.aspx#csdl
http://msdn.microsoft.com/en-us/library/dd541288%28PROT.10%29.aspx#csdl
http://msdn.microsoft.com/en-us/library/dd541081%28PROT.10%29.aspx#data_service
http://msdn.microsoft.com/en-us/library/dd541530(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541288%28PROT.10%29.aspx#collection
http://msdn.microsoft.com/en-us/library/dd541081%28PROT.10%29.aspx#resource
http://msdn.microsoft.com/en-us/library/dd541081%28PROT.10%29.aspx#data_service
http://msdn.microsoft.com/en-us/library/dd541594(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541081%28PROT.10%29.aspx#resource

71

the required binding information in the representation of the associated relation in the
request payload.

In addition to supporting the insertion of a new EntityType instance (E1), the InsertEntity
request also allows inserting new entities related to E1 (described by an entity relation) in a
single Request. For example, when inserting a Customer('IBM'), we can insert all the
orders with Customer('IBM'). This form of an InsertEntity Request is also known as a "deep
insert". In the “deep insert” case, the related entities must be represented using the inline
representation of the relation associated with E1 that identifies the link to the (to-be-
inserted) related entities.

The properties of the entity to be inserted are specified in the request payload. The
properties are parsed by the REST data service and then set to the correspondent property
on the entity instance. For the AtomPub format, the property is specified as a
<d:PROPERTY_NAME> XML element. For JSON, the property is specified as a property
of a JSON object.

If a property is missing in the request payload, then the REST data service sets the entity
property value to the java default value. However, the database backend might reject such
a default value, for example, if the column is not nullable in the database. Then a 500
response code will be returned to indicate an Internal Server error.

If there are duplicate properties specified in the payload, the last property will be used. All
the previous values for the same property name are ignored by the REST data service.

If the payload contains a non-existent property, then the REST data service returns a 400
(Bad Request) response code to indicate the request sent by the client was syntactically
incorrect.

If the key properties are missing, then the REST data service returns a response code of
400 (Bad Request) to indicate a missing key property.

If the payload contains a link to a related entity with a non-existent key, then the REST
data service returns a 404 (Not Found) response code to indicate the linked entity cannot
be found.

If the payload contains a link to a related entity with an incorrect association name, then
the REST data service returns a 400 (Bad Request) response code to indicate the link
cannot be found.

If the payload contains more than one link to a to-one relation, the last link will be used. All
the previous links for the same association are ignored.

For more details on InsertEntity request, refer to:
http://msdn.microsoft.com/en-us/library/dd541128(PROT.10).aspx

An InsertEntity request inserts a Customer entity with key 'IBM'.

AtomPub

Method:

POST

Request URI:

http://msdn.microsoft.com/en-us/library/dd541128(PROT.10).aspx

72

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('IBM')

Request Header:

Accept: application/atom+xml

Content-Type: application/atom+xml

Request Payload:

<?xml version="1.0" encoding="ISO-8859-1"?>

<entry

xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/meta

data"

 xmlns="http://www.w3.org/2005/Atom">

 <category term="NorthwindGridModel.Customer"

scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/schem

e" />

<content type="application/xml">

 <m:properties>

 <d:customerId>Rational</d:customerId>

 <d:city>Rochester</d:city>

 <d:companyName>Rational</d:companyName>

 <d:contactName>John Doe</d:contactName>

 <d:country>USA</d:country>

 </m:properties>

 </content>

</entry>

Response Header:

Content-Type: application/atom+xml

Response Payload:

<?xml version="1.0" encoding="utf-8"?>

<entry xml:base =

"http://localhost:8080/wxsrestservice/restservice" xmlns:d =

"http://schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m =

"http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

xmlns = "http://www.w3.org/2005/Atom">

 <category term = "NorthwindGridModel.Customer" scheme =

"http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>

<id>http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/

Customer('Rational')</id>

 <title type = "text"/>

 <updated>2009-12-16T23:25:50.875Z</updated>

 <author>

 <name/>

 </author>

 <link rel = "edit" title = "Customer" href =

"Customer('Rational')"/>

 <link rel =

"http://schemas.microsoft.com/ado/2007/08/dataservices/related/orde

73

rs" type = "application/atom+xml;type=feed" title = "orders" href =

"Customer('Rational')/orders"/>

 <content type = "application/xml">

 <m:properties>

 <d:customerId>Rational</d:customerId>

 <d:city>Rochester</d:city>

 <d:companyName>Rational</d:companyName>

 <d:contactName>John Doe</d:contactName>

 <d:country>USA</d:country>

 <d:version m:type = "Edm.Int32">0</d:version>

 </m:properties>

 </content>

</entry>

Response Code:

201 Created

JSON

Method:

POST

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer

Request Header:

Accept: application/json

Content-Type: application/json

Request Payload:

{"customerId":"Rational",

"city":null,

"companyName":"Rational",

"contactName":"John Doe",

"country": "USA",}

Response Header:

Content-Type: application/json

Response Payload:

{"d":{"__metadata":{"uri":"http://localhost:8080/wxsrestservice/res

tservice/NorthwindGrid/Customer('Rational')",

"type":"NorthwindGridModel.Customer"},

"customerId":"Rational",

"city":null,

"companyName":"Rational",

"contactName":"John Doe",

"country":"USA",

"version":0,

74

"orders":{"__deferred":{"uri":"http://localhost:8080/wxsrestservice

/restservice/NorthwindGrid/Customer('Rational')/orders"}}}}

Response Code:

201 Created

6.3.2.2 Insert Link Request

An InsertLink Request can be used to create a new Link between two eXtreme Scale entity
instances. The URI of the request must resolve to an eXtreme Scale to-many association.
The payload of the request contains a single link which points to the to-many association
target entity.

If the URI of the InsertLink request represents a to-one association, the REST data service
returns a 400 (Bad request) response.

If the URI of the InsertLink request points to an association which does not exist, the REST
data service returns a 404 (Not Found) response to indicate the link cannot be found.

If the payload contains a link with a key which does not exist, the REST data service
returns a 404 (Not Found) response to indicate the linked entity cannot be found.

If the payload contains more than one link, the eXtreme Scale Rest Data Service will parse
the first link. The remaining links are ignored.

For more details on InsertLink request, refer to:
http://msdn.microsoft.com/en-us/library/dd541360(PROT.10).aspx

The following InsertLink request example creates a link from Customer('IBM') to
Order(orderId=5000,customer_customerId='IBM').

AtomPub

Method:

POST

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('IBM')/$link/order
s

Request Header:

Content-Type: application/xml

Request Payload:

<?xml version="1.0" encoding="ISO-8859-1"?>

<uri>http://host:1000/wxsrestservice/restservice/NorthwindGrid/Orde

r(orderId=5000,customer_customerId='IBM')</uri>

Response Payload:

http://msdn.microsoft.com/en-us/library/dd541081%28PROT.10%29.aspx#link
http://msdn.microsoft.com/en-us/library/dd541360(PROT.10).aspx

75

None

Response Code:

204 No Content

JSON

Method:

POST

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('IBM')/$links/orde
rs

Request Header:

Content-Type: application/json

Request Payload:

{"uri":

"http://host:1000/wxsrestservice/restservice/NorthwindGrid/Order(or

derId=5000,customer_customerId='IBM')"}

Response Payload:

None

Response Code:

204 No Content

6.3.3 Update Requests

6.3.3.1 Update an entity

An UpdateEntity Request can be used to update an existing eXtreme Scale entity. The
client can use an HTTP PUT method to replace an existing eXtreme Scale entity, or use an
HTTP MERGE method to merge the changes into an existing eXtreme Scale entity.

When updating the entity, the client may specify if the entity (in addition to being updated)
should be automatically linked to other existing entities in the data service that are related
through single valued (to-one) associations.

The property of the entity to be updated is in the request payload. The property is parsed
by the REST data service and then set to the correspondent property on the entity. For the
AtomPub format, the property is specified as a <d:PROPERTY_NAME> XML element. For
JSON, the property is specified as a property of a JSON object.

If a property is missing in the request payload, the REST data service sets the entity
property value to the java default value for HTTP PUT method. However, the database

76

backend might reject such a default value if, for example, the column is not nullable in the
database. Then a 500 (Internal Server Error) response code will be returned to indicate an
Internal Server Error. If a property is missing in the HTTP MERGE request payload, the
REST data service will not change the existing property value.

If there are duplicate properties specified in the payload, the last property will be used. All
the previous values with the same property name are ignored by the REST data service.

If the payload contains a non-existent property, the REST data service returns a 400 (Bad
Request) response code to indicate the request sent by the client was syntactically
incorrect.

As part of the serialization of a resource, if the payload of an Update request contains any
of the key properties for the entity, the REST data service ignores those key values since
entity keys are immutable.

For details on UpdateEntity request, refer to http://msdn.microsoft.com/en-
us/library/dd541157(PROT.10).aspx

An UpdateEntity request updates the city name of Customer('IBM') to 'Raleigh'.

AtomPub

Method:

PUT

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('IBM')

Request Header:

Content-Type: application/atom+xml

Request Payload:

<?xml version="1.0" encoding="ISO-8859-1"?>

<entry

xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/meta

data"

 xmlns="http://www.w3.org/2005/Atom">

 <category term="NorthwindGridModel.Customer"

scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/schem

e" />

 <title />

 <updated>2009-07-28T21:17:50.609Z</updated>

 <author>

 <name />

 </author>

 <id />

 <content type="application/xml">

 <m:properties>

http://msdn.microsoft.com/en-us/library/dd541157(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541157(PROT.10).aspx

77

 <d:customerId>IBM</d:customerId>

 <d:city>Raleigh</d:city>

 <d:companyName>IBM Corporation</d:companyName>

 <d:contactName>Big Blue</d:contactName>

 <d:country>USA</d:country>

 </m:properties>

 </content>

</entry>

Response Payload:

None

Response Code:

204 No Content

JSON

Method:

PUT

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('IBM')

Request Header:

Content-Type: application/json

Request Payload:

{"customerId":"IBM",

"city":"Raleigh",

"companyName":"IBM Corporation",

"contactName":"Big Blue",

"country":"USA",}

Response Payload:

None

Response Code:

204 No Content

6.3.3.2 Update an Entity Primitive Property

The UpdatePrimitiveProperty Request can update a property value of an eXtreme Scale
entity. The property and value to be updated are in the request payload. The property
cannot be a key property since eXtreme Scale does not allow clients to change entity keys.

For more details on the UpdatePrimitiveProperty request, refer to:
http://msdn.microsoft.com/en-us/library/dd541206(PROT.10).aspx

http://msdn.microsoft.com/en-us/library/dd541206(PROT.10).aspx

78

Here is an UpdatePrimitiveProperty request example. In this example, we update the city
name of Customer('IBM') to 'Raleigh'.

AtomPub

Method:

PUT

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('IBM')/city

Request Header:

Content-Type: application/xml

Request Payload:

<?xml version="1.0" encoding="ISO-8859-1"?>

<city xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices">

 Raleigh

</city>

Response Payload:

None

Response Code:

204 No Content

JSON

Method:

PUT

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('IBM')/city

Request Header:

Content-Type: application/json

Request Payload:

{"city":"Raleigh"}

Response Payload:

None

79

Response Code:

204 No Content

6.3.3.3 Update an Entity Primitive Property value

The UpdateValue Request can update a raw property value of an eXtreme Scale entity.
The value to be updated is represented as a raw value in the request payload. The
property cannot be a key property since eXtreme Scale does not allow clients to change
entity keys.

The content type of the request can be “text/plain” or “application/octet-stream” depending
on the property type. Refer to section 6.3.1.4for more details.

For more details on the UpdateValue request, refer to http://msdn.microsoft.com/en-
us/library/dd541483(PROT.10).aspx

Here is an UpdateValue request example. In this example we update the city name of
Customer('IBM') to 'Raleigh'.

Method:

PUT

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('IBM')/city/$value

Request Header:

Content-Type: text/plain

Request Payload:

Raleigh

Response Payload:

None

Response Code:

204 No Content

6.3.3.4 Update a Link

The UpdateLink request can be used to establish an association between two eXtreme
Scale entity instances. The association can be a single valued (to-one) relation or a multi
valued (to-many) relation.

Updating a link between two eXtreme Scale entity instances can not only establish
associations, but also remove associations. For example, if the client establishes a to-one
association between an Order(orderId=5000,customer_customerId='IBM') entity and entity

http://msdn.microsoft.com/en-us/library/dd541483(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541483(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541081%28PROT.10%29.aspx#link
http://msdn.microsoft.com/en-us/library/dd541288%28PROT.10%29.aspx#entity_type

80

and Customer('ALFKI') instance, it has to dissociate the
Order(orderId=5000,customer_customerId='IBM') entity and entity from its currently
associated Customer instance.

If either of the entity instances specified in the UpdateLink request cannot be found, the
REST data service returns a 404 (Not Found) response.

If the URI of the UpdateLink request specifies a non-existent association, the REST data
service returns a 404 (Not Found) response to indicate the link cannot be found.

If the URI specified in the UpdateLink request payload does not resolve to the same entity
or the same key as specified in the URI, if exists, then the eXtreme Scale Rest Data
Service returns a 400 (Bad Request) response.

If the UpdateLink request payload contains multiple links, then the REST data service will
only parse the first link. The rest of the links are ignored.

For more details on the UpdateLink request, refer to:
http://msdn.microsoft.com/en-us/library/dd541580(PROT.10).aspx

Here is an UpdateLink request example. In this example, we update the customer relation
of Order(orderId=5000,customer_customerId='IBM') entity and from Customer('IBM') to
Customer('IBM').

Note: This example is for illustration only. Because all associations are typically key-
associations for a partitioned grid, the link cannot be changed.

AtomPub

Method:

PUT

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Order(101)/$links/customer

Request Header:

Content-Type: application/xml

Request Payload:

<?xml version="1.0" encoding="ISO-8859-1"?>

<uri>

 http://host:1000/wxsrestservice/restservice/NorthwindGrid/Customer('IB

M')

</uri>

Response payload:

None

Response Code:

http://msdn.microsoft.com/en-us/library/dd541580(PROT.10).aspx

81

204 No Content

JSON

Method:

PUT

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Order(orderId=5000,custom
er_customerId='IBM')/$links/customer

Request Header:

Content-Type: application/xml

Request Payload:

{"uri":

"http://host:1000/wxsrestservice/restservice/NorthwindGrid/Customer

('IBM')"}

Response Payload:

None

Response Code:

204 No Content

6.3.4 Delete Requests

6.3.4.1 Delete an entity

The DeleteEntity Request can delete an eXtreme Scale entity from the REST data service.

If any relation to the to-be-deleted entity has cascade-delete set, then the eXtreme Scale
Rest data service will delete the related entity or entities.

For more details on the DeleteEntity request, refer to http://msdn.microsoft.com/en-
us/library/dd541417(PROT.10).aspx

The following DeleteEntity request deletes the customer with key 'IBM'.

Method:

DELETE

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('IBM')

Request Payload:

http://msdn.microsoft.com/en-us/library/dd541417(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/dd541417(PROT.10).aspx

82

None

Response Payload:

None

Response Code:

204 No Content

6.3.4.2 Delete a Property Value

The DeleteValue Request sets an eXtreme Scale entity property to null.

Any property of an eXtreme Scale entity can be set to null with a DeleteValue request. To
set a property to null, ensure all of the following:

 For any primitive number type and its wrapper, BigInteger, or BigDecimal, the property
value is set to 0.

 For Boolean or boolean type, the property value is set to false.

 For char or Character type, the property value is set to character #X1 (NIL).

 For enum type, the property value is set to the enum value with ordinal 0.

 For all other types, the property value is set to null.

However, such a delete request could be rejected by the database backend if, for example,
the property is not nullable in the database. In this case, the REST data service returns a
500 (Internal Server Error) response.

For more details on the DeleteValue request, refer to:
http://msdn.microsoft.com/en-us/library/dd541270(PROT.10).aspx

Here is a DeleteValue request example. In this example, we set the contact name of
Customer('IBM') to null.

Method:

DELETE

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Customer('IBM')/contactNa
me

Request Payload:

None

Response Payload:

None

Response Code:

204 No Content

http://msdn.microsoft.com/en-us/library/dd541270(PROT.10).aspx

83

6.3.4.3 Delete a Link

The DeleteLink request can removes an association between two eXtreme Scale entity
instances. The association can be a to-one relation or a to-many relation.

However, such a delete request could be rejected by the database backend if, for example,
the foreign key constraint is set. In this case, the REST data service returns a 500 (Internal
Server Error) response.

For more details on the DeleteLink request, refer to:
http://msdn.microsoft.com/en-us/library/dd541543(PROT.10).aspx

The following DeleteLink request removes the association between Order(101) and its
associated Customer.

Method:

DELETE

Request URI:

http://localhost:8080/wxsrestservice/restservice/NorthwindGrid/Order(101)/$links/customer

Request Payload:

None

Response Payload:

None

Response Code:

204 No Content

http://msdn.microsoft.com/en-us/library/dd541543(PROT.10).aspx

 ®

© Copyright IBM Corporation 2009

IBM United States of America

Produced in the United States of America

All Rights Reserved

The e-business logo, the eServer logo, IBM, the IBM logo,
OS/390, zSeries, SecureWay, S/390, Tivoli, DB2, Lotus and
WebSphere are trademarks of International Business
Machines Corporation in the United States, other countries or
both.

Lotus, Lotus Discovery Server, Lotus QuickPlace, Lotus Notes,
Domino, and Sametime are trademarks of Lotus Development
Corporation and/or IBM Corporation.

Java and all Java-based trademarks and logos are trademarks
of Sun Microsystems, Inc. in the United States, other countries
or both.

Other company, product and service names may be
trademarks or service marks of others.

INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PAPER “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

Information in this paper as to the availability of products
(including portlets) was believed accurate as of the time of
publication. IBM cannot guarantee that identified products
(including portlets) will continue to be made available by their
suppliers.

This information could include technical inaccuracies or
typographical errors. Changes may be made periodically to
the information herein; these changes may be incorporated in
subsequent versions of the paper. IBM may make
improvements and/or changes in the product(s) and/or the
program(s) described in this paper at any time without notice.

Any references in this document to non-IBM Web sites are
provided for convenience only and do not in any manner serve
as an endorsement of those Web sites. The materials at those
Web sites are not part of the materials for this IBM product and
use of those Web sites is at your own risk.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of
this document does not give you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
4205 South Miami Boulevard
Research Triangle Park, NC 27709 U.S.A.

	Contents
	List of Figures
	List of Tables
	Revision History
	Introduction
	Available features
	Known problems and limitations

	Directory conventions
	Getting started
	Getting started sample overview
	Creating a scalable data model in eXtreme Scale
	Retrieving and updating data

	Starting the sample eXtreme Scale grid
	Starting the sample grid for a stand-alone deployment
	Starting the sample grid for a WebSphere Application Server integrated deployment

	Configuring and starting your web server
	Getting started with WebSphere Application Server version 7.0
	Getting started with WebSphere eXtreme Scale integrated with WebSphere Application Server version 7.0
	Getting started with WebSphere Application Server Community Edition
	Getting started with Tomcat

	Adding data with the sample Java client application
	Java client command syntax
	Running and building the sample grid and Java client with Eclipse

	Using a web browser to view sample data
	Configuring Internet Explorer Version 8
	Configuring Firefox Version 3
	Example URLs

	Using the sample Visual Studio 2008 WCF Data Services client application
	Software requirements
	Building and running the getting started client
	WCF Data Services C# client command syntax

	Installing the REST data service
	Software requirements
	Packaging overview
	Packaging and deploying the REST data service
	Deploying on WebSphere Application Server
	Deploying on WebSphere Application Server Community Edition
	Deploying on Apache Tomcat

	Configuring the REST data service
	Configuring the REST data service properties file
	Configuring WebSphere eXtreme Scale
	Creating an entity model
	Mapping between EDM data types and Java data types
	Mapping Java Types to EDM Types
	Mapping from EDM types to Java Types
	Mapping temporal types
	Converting between entity and EDM types
	java.sql.Date normalization
	java.sql.Time normalization

	Associations
	Association maintenance
	Association multiplicity
	Bi-directional and uni-directional associations
	Key associations
	Cascading operations

	Using the REST data service
	Service root URI
	Request types
	Insert request types
	Update request types
	Delete request types
	Retrieve request types
	System query options
	Partition routing

	Invoke request
	Batch request
	Tunneled requests

	Request Protocols and Examples
	Retrieve requests
	6.3.1.1 Retrieving an entity
	AtomPub
	JSON
	6.3.1.1.1 Queries
	AtomPub
	JSON

	6.3.1.1.2 System operator $expand
	AtomPub
	JSON

	6.3.1.2 Retrieving an entity collection
	AtomPub
	JSON

	6.3.1.3 Retrieve a Property
	AtomPub
	JSON

	6.3.1.4 Retrieve a Property Value
	6.3.1.5 Retrieve a Link
	AtomPub
	JSON

	6.3.1.6 Retrieve Service Metadata
	6.3.1.7 Retrieve Service Document

	Insert Request
	6.3.2.1 Insert Entity Request
	AtomPub
	JSON

	6.3.2.2 Insert Link Request
	AtomPub
	JSON

	Update Requests
	6.3.3.1 Update an entity
	AtomPub
	JSON

	6.3.3.2 Update an Entity Primitive Property
	AtomPub
	JSON

	6.3.3.3 Update an Entity Primitive Property value
	6.3.3.4 Update a Link
	AtomPub
	JSON

	Delete Requests
	6.3.4.1 Delete an entity
	6.3.4.2 Delete a Property Value
	6.3.4.3 Delete a Link

