
WebSphere® Application Server Network Deployment for IBM i, Version 7.0

Troubleshooting and support 

  

 

  

 

 

���



Note 

Before using this information, be sure to read the general information under “Notices” on page 149.

Compilation  date:  September  3, 2008  

© Copyright  International  Business  Machines  Corporation  2008.  

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract 

with IBM Corp.

 



Contents  

How  to  send  your  comments   . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 

Changes  to  serve  you  more  quickly  . . . . . . . . . . . . . . . . . . . . . . . . . vii 

Chapter  1.  Debugging  applications  . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

Debugging components in the IBM Rational Application Developer for WebSphere  . . . . . . . . . 2 

Chapter  2.  Adding  logging  and  tracing  to  your  application   . . . . . . . . . . . . . . . . 3 

Configuring Java logging using the administrative console  . . . . . . . . . . . . . . . . . . 4 

Java logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

Log level settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

Loggers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

Log handlers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

Log levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

Log filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

Log formatters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

Using loggers in an application  . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

HTTP error, FRCA, and NCSA access log settings  . . . . . . . . . . . . . . . . . . . 22 

Logger.properties file for configuring logger settings  . . . . . . . . . . . . . . . . . . . 23 

Example: Sample security policy for logging . . . . . . . . . . . . . . . . . . . . . . 24 

Configuring applications to use Jakarta Commons Logging  . . . . . . . . . . . . . . . . . 25 

Jakarta Commons Logging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

Configurations for the WebSphere Application Server logger . . . . . . . . . . . . . . . . 28 

Programming with the JRas framework  . . . . . . . . . . . . . . . . . . . . . . . . 31 

JRas logging toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

JRas Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

JRas messages and trace event types . . . . . . . . . . . . . . . . . . . . . . . . 42 

Instrumenting an application with JRas extensions  . . . . . . . . . . . . . . . . . . . 44 

Logging Common Base Events in WebSphere Application Server . . . . . . . . . . . . . . . 51 

The Common Base Event in WebSphere Application Server . . . . . . . . . . . . . . . . 51 

Logging with Common Base Event API and the Java logging API . . . . . . . . . . . . . . 64 

java.util.logging -- Java logging programming interface . . . . . . . . . . . . . . . . . . 73 

Logger.properties file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

Logging Common Base Events in WebSphere Application Server . . . . . . . . . . . . . . 75 

Chapter  3.  Diagnosing  problems  (using  diagnosis  tools)   . . . . . . . . . . . . . . . . 77 

Troubleshooting class loaders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 

Class loading exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 

Class loader viewer service settings  . . . . . . . . . . . . . . . . . . . . . . . . 84 

Enterprise application topology  . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

Class loader viewer settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

Search settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 

Diagnosing problems with message logs  . . . . . . . . . . . . . . . . . . . . . . . . 88 

Viewing JVM logs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

JVM log interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

Configuring the JVM logs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 

Process logs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 

Configuring the service log  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 

Viewing the service log  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 

CORBA minor codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 

Configuring the hang detection policy  . . . . . . . . . . . . . . . . . . . . . . . . . 96 

Hung threads in Java Platform, Enterprise Edition applications . . . . . . . . . . . . . . . 97 

Example: Adjusting the thread monitor to affect server hang detection  . . . . . . . . . . . . 98 

 

© Copyright IBM Corp. 2008 iii



Working with trace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 

Enabling trace on client and stand-alone applications  . . . . . . . . . . . . . . . . . . 99 

Tracing and logging configuration  . . . . . . . . . . . . . . . . . . . . . . . . . 100 

Enabling trace at server startup . . . . . . . . . . . . . . . . . . . . . . . . . . 103 

Enabling trace on a running server  . . . . . . . . . . . . . . . . . . . . . . . . 104 

Managing the application server trace service  . . . . . . . . . . . . . . . . . . . . 104 

Trace output  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 

Diagnostic trace service settings  . . . . . . . . . . . . . . . . . . . . . . . . . 106 

Select a server to configure logging and tracing . . . . . . . . . . . . . . . . . . . . 108 

Log and trace settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 

Working with troubleshooting tools . . . . . . . . . . . . . . . . . . . . . . . . . . 109 

Gathering information with the collector tool  . . . . . . . . . . . . . . . . . . . . . 110 

Configuring first failure data capture log file purges . . . . . . . . . . . . . . . . . . . 112 

Using IBM Support Assistant  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 

Diagnosing problems using IBM Support Assistant tooling  . . . . . . . . . . . . . . . . . 115 

Troubleshooting help from IBM  . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 

Diagnosing and fixing problems: Resources for learning  . . . . . . . . . . . . . . . . . . 116 

Debugging Service details  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 

Enable service at server startup . . . . . . . . . . . . . . . . . . . . . . . . . . 118 

JVM debug port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 

JVM debug arguments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 

Debug class filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 

Configuration problem settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 

Configuration document validation  . . . . . . . . . . . . . . . . . . . . . . . . . 118 

Enable Cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 

Configuration Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

Scope  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

Message  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

Explanation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

User action  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

Target Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

Severity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

Local URI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

Full URI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

Validator classname  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

Runtime events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

Message details  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 

Showlog commands for Common Base Events  . . . . . . . . . . . . . . . . . . . . . 121 

Working with Diagnostic Providers . . . . . . . . . . . . . . . . . . . . . . . . . . 121 

Diagnostic Providers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 

Creating a Diagnostic Provider  . . . . . . . . . . . . . . . . . . . . . . . . . . 127 

Associating a Diagnostic Provider ID with a logger . . . . . . . . . . . . . . . . . . . 136 

Using Diagnostic Providers from wsadmin scripts  . . . . . . . . . . . . . . . . . . . 137 

Viewing the run time configuration of a component using Diagnostic Providers  . . . . . . . . 139 

Viewing the run time state data or configuring the state data collection specifications for a 

Diagnostic Provider  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 

Running a self diagnostic on a Diagnostic Provider  . . . . . . . . . . . . . . . . . . 144 

Appendix.  Directory  conventions   . . . . . . . . . . . . . . . . . . . . . . . . . 147 

Notices   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 

Trademarks  and  service  marks   . . . . . . . . . . . . . . . . . . . . . . . . . . 151

 

iv Troubleshooting and support



How  to send  your  comments  

Your feedback is important in helping to provide the most accurate and highest quality information. 

v   To send comments on articles in the WebSphere Application Server Information Center 

1.   Display the article in your Web browser and scroll to the end of the article. 

2.   Click on the Feedback  link at the bottom of the article, and a separate window containing an e-mail 

form appears. 

3.   Fill out the e-mail form as instructed, and click on Submit  feedback  .

v    To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com  or fax 

them to 919-254-5250. 

Be sure to include the document name and number, the WebSphere Application Server version you are 

using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information 

in any way it believes appropriate without incurring any obligation to you. 

 

© Copyright IBM Corp. 2008 v



vi Troubleshooting and support



Changes  to  serve  you  more  quickly  

Print  sections  directly  from  the  information  center  navigation  

PDF books are provided as a convenience format for easy printing, reading, and offline use. The 

information center is the official delivery format for IBM WebSphere Application Server documentation. If 

you use the PDF books primarily for convenient printing, it is now easier to print various parts of the 

information center as needed, quickly and directly from the information center navigation tree. 

To print a section of the information center navigation: 

1.   Hover your cursor over an entry in the information center navigation until the Open  Quick  Menu  icon 

is displayed beside the entry. 

2.   Right-click the icon to display a menu for printing or searching your selected section of the navigation 

tree. 

3.   If you select Print  this  topic  and  subtopics  from the menu, the selected section is launched in a 

separate browser window as one HTML file. The HTML file includes each of the topics in the section, 

with a table of contents at the top. 

4.   Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your 

selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a 

preferable limit. The feedback link is available at the end of most information center pages. 

Under  construction!  

The Information Development Team for IBM WebSphere Application Server is changing its PDF book 

delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF 

format more frequently. During a temporary transition phase, you might experience broken links. During 

the transition phase, expect the following link behavior: 

v   Links to Web addresses beginning with http:// work 

v   Links that refer to specific page numbers within the same PDF book work 

v   The remaining links will not  work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates. 

 

© Copyright IBM Corp. 2008 vii



viii Troubleshooting and support



Chapter  1.  Debugging  applications  

To debug your application, you must use a development environment like the IBM® Rational® Application 

Developer for WebSphere® to create a Java™ project. You must then import the program that you want to 

debug into the project. 

About this task 

By following the steps below, you can import the WebSphere Application Server examples into a Java 

project. Two debugging styles are available: 

v   Step-by-step  debugging mode prompts you whenever the server calls a method on a Web object. A 

dialog lets you step into the method or skip it. In the dialog, you can turn off step-by-step mode when 

you are finished using it. 

v   Breakpoints  debugging mode lets you debug specific parts of programs. Add breakpoints to the part of 

the code that you must debug and run the program until one of the breakpoints is encountered.

Breakpoints actually work with both styles of debugging. Step-by-step mode just lets you see which Web 

objects are being called without having to set up breakpoints ahead of time. 

You do not need to import an entire program into your project. However, if you do not import all of your 

program into the project, some of the source might not compile. You can still debug the project. Most 

features of the debugger work, including breakpoints, stepping, and viewing and modifying variables. You 

must import any source that you want to set breakpoints in. 

The inspect and display features in the source view do not work if the source has build errors. These 

features let you select an expression in the source view and evaluate it. 

 1.   Create a Java Project by opening the New Project dialog. 

 2.   Select Java  from the left side of the dialog and Java  Project  in the right side of the dialog. 

 3.   Click Next  and specify a name for the project, for example, WASExamples. 

 4.   Click Finish  to create the project. 

 5.   Select the new project, choose File  > Import  >  File  System, then Next  to open the import file 

system dialog. 

 6.   Browse the directory for files. 

Go to the following directory: profile_root/installedApps/node_name/DefaultApplication.ear/
DefaultWebApplication.war. 

 7.   Select DefaultWebApplication.war in the left side of the Import dialog and then click Finish. This 

imports the JavaServer Pages files and Java source for the examples into your project. 

 8.   Add any JAR files needed to build to the Java Build Path. 

Select Properties  from the right-click menu. Choose the Java Build Path node and then select the 

Libraries tab. Click Add  External  JARs  to add the following JAR files: 

v   profile_root/installedApps/node_name/DefaultApplication.ear/Increment.jar. 

When you have added this JAR file, select it and use the Attach  Source  function to attach the 

Increment.jar file because it contains both the source and class files. 

v   app_server_root/lib/j2ee.jar 

v   app_server_root/plugins//com.ibm.ws.runtime.jar 

v   app_server_root/plugins/com.ibm.ws.webcontainer.jar

Click OK  when you have added all of the JARs. 

 9.   You can set some breakpoints in the source at this time if you like, however, it is not necessary as 

step-by-step mode will prompt you whenever the server calls a method on a Web object. 

Step-by-step mode is explained in more detail below. 

 

© IBM Corporation 2004, 2008 1



10.   To start debugging, you need to start the WebSphere Application Server in debug mode and make 

note of the JVM debug port. The default value of the JVM debug port is 7777. 

11.   When the server is started, switch to the debug perspective by selecting Window  > Open  

Perspective  >  Debug. You can also enable the debug launch in the Java Perspective by choosing 

Window  > Customize  Perspective  and selecting the Debug  and Launch  checkboxes in the Other  

category. 

12.   Select the workbench toolbar Debug  pushbutton and then select WebSphere  Application  Server  

Debug  from the list of launch configurations. Click the New  pushbutton to create a new configuration. 

13.   Give your configuration a name and select the project to debug (your new WASExamples project). 

Change the port number if you did not start the server on the default port (7777). 

14.   Click Debug  to start debugging. 

15.   Load one of the examples in your browser. For example: http://your.server.name:9080/hitcount

What to do next 

To learn more about debugging, launch the The IBM Rational Application Developer for WebSphere, select 

Help  > Help  Contents  and choose the Debugger  Guide  bookshelf  entry. To learn about known 

limitations and problems that are associated with the IBM Rational Application Developer for WebSphere, 

see the IBM Rational Application Developer for WebSphere release notes. For current information 

available from IBM Support on known problems and their resolution, see the IBM Support page. 

IBM Support has documents that can save you time gathering information needed to resolve this problem. 

Before opening a PMR, see the Must gather documents page for information to gather to send to IBM 

Support. 

Debugging components in the IBM Rational Application Developer for 

WebSphere  

The IBM Rational Application Developer for WebSphere, included with the WebSphere Application Server 

on a separately-installable CD, includes debugging functionality that is built on the Eclipse workbench. 

Documentation for the IBM Rational Application Developer for WebSphere is provided with that product. To 

learn more about the debug components, launch the IBM Rational Application Developer for WebSphere, 

select Help  > Help  Contents  and choose the Developing  > Debugging  applications  bookshelf entries. 

The IBM Rational Application Developer for WebSpheret includes the following: 

The  WebSphere  Application  Server  debug  adapter  

which allows you to debug Web objects that are running on WebSphere Application Server and 

that you have launched in a browser. These objects include enterprise beans, JavaServer Pages 

files, and servlets. 

The  JavaScript™ debug  adapter  

which enables server-side JavaScript debugging. 

The  Compiled  language  debugger  

which allows you to detect and diagnose errors in compiled-language applications. 

The  Java  development  tools  (JDT)  debugger  

which allows you to debug Java code.

All of the debug components in the IBM Rational Application Developer for WebSphere can be used for 

debugging locally and for remote debugging. To learn more about the debug components, launch the IBM 

Rational Application Developer for WebSphere, select Help  > Help  Contents  and choose the Developing  

>  Debugging  applications  bookshelf entries. 

 

2 Troubleshooting and support

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF
http://www-1.ibm.com/support/search.wss?rs=180&q=mustgather


Chapter  2.  Adding  logging  and  tracing  to  your  application  

You can add logging and tracing to applications to help analyze performance and diagnose problems in 

WebSphere Application Server. 

About this task 

Deprecation:  The JRas framework that is described in this information center is deprecated. However, you 

can achieve the same results using Java logging. 

Designers and developers of applications that run with or under WebSphere Application Server, such as 

servlets, JavaServer Pages (JSP) files, enterprise beans, client applications, and their supporting classes, 

might find it useful to use Java logging for generating their application logging. 

This approach has advantages over adding System.out.println  statements to your code: 

v   Your messages are displayed in the WebSphere Application Server standard log files, using a standard 

message format with additional data, such as a date and time stamp that are added automatically. 

v   You can more easily correlate problems and events in your own application to problems and events that 

are associated with WebSphere Application Server components. 

v   You can take advantage of the WebSphere Application Server log file management features.

Application

code

Application

code

com.xyz.abc.def

( Logger )

com.xyz.abc.ghi

( Logger )

com.xyz.abc

( Logger)

root

( Logger )

User Handler1

(Handler )

Output

device

User Handler2

(Handler )

Output

device

WebSphere

Application

Server handlers

Output

device

com.ibm.ws

( Logger)

com.ibm.ws.xyz

( Logger )

Service

broker

Applications

WebSphere Application Server

Applications

WebSphere

Application

code

JRAS API

(deprecated)

Anonymous

(Logger)

Application Server

  

 

1.   Enable and configure one of the supported types of logging. Use one of the following methods: 

v   “Configuring Java logging using the administrative console” on page 4 

v   “Configuring applications to use Jakarta Commons Logging” on page 25 

v   “Logging Common Base Events in WebSphere Application Server” on page 51.

2.   Customize the properties to meet your logging needs. For example, enable or disable a particular log, 

specify the number of logs to be kept, and specify a format for log output. 

3.   Restart the application server after making static configuration changes.

 

© IBM Corporation 2004, 2005 3



Configuring Java logging using the administrative console 

Java logging provides a standard logging API for your applications. Before applications can log diagnostic 

information, you need to specify how you want the server to handle log output and what level of logging 

you require. 

About this task 

Developing, deploying and maintaining applications are complex tasks. When an application encounters an 

unexpected condition, it might not be able to complete a requested operation. You might want the 

application to inform the administrator that the operation failed and tell the administrator why the operation 

failed. This information enables the administrator to take the proper corrective action. Application 

developers might need to gather detailed information that relates to the path of a running application to 

determine the root cause of a failure that is due to a code bug. The facilities that are used for these 

purposes are typically referred to as logging  and tracing. For more information read “Java logging.” 

Using the administrative console, you can: 

v   Enable or disable a particular log, specify where log files are stored and how many log files are kept. 

v   Specify the level of detail in a log, and specify a format for log output. 

v   Set a log level for each logger.

You can change the log configuration statically or dynamically. Static configuration changes affect 

applications when you start or restart the application server. Dynamic or run time configuration changes 

apply immediately. 

When a log is created, the level value for that log is set from the configuration data. If no configuration 

data is available for a particular log name, the level for that log is obtained from the parent of the log. If no 

configuration data exists for the parent log, the parent of that log is checked, and so on up the tree, until a 

log with a non-null level value is found. When you change the level of a log, the change is propagated to 

the children of the log, which recursively propagates the change to their children, as necessary. 

1.   Optional: See the Java documentation for the java.util.logging class for a full description of the syntax 

and the construction of logging methods. 

2.   Set the logging levels for your logs: 

a.   In the navigation pane, click Servers  > Application  Servers. 

b.   Click the name of the server that you want to work with. 

c.   Under Troubleshooting, click Logs  and  Trace. 

d.   Click Change  Log  Detail  levels. 

e.   To make a static change to the configuration, click the Configuration  tab. A list of well-known 

components, packages, and groups is displayed. To change the configuration dynamically, click the 

Runtime  tab. The list of components, packages, and groups displays all the components that are 

currently registered on the running server. 

f.   Select a component, package, or group to set a logging level. 

g.   Click Apply. 

h.   Click OK.

3.   To have static configuration changes take effect, stop then restart the application server.

Java logging 

Java logging is the logging toolkit that is provided by the java.util.logging package. Java logging provides a 

standard logging API for your applications. 

 

4 Troubleshooting and support



Message logging (messages) and diagnostic trace (trace) are conceptually similar, but do have important 

differences. These differences are important for application developers to understand to use these tools 

properly. The following operational definitions of messages and trace are provided. 

Message  

A message entry is an informational record that is intended for end users, systems administrators, 

and support personnel to view. The text of the message must be clear, concise, and interpretable 

by an end user. Messages are typically localized and displayed in the national language of the end 

user. Although the destination and lifetime of messages might be configurable, enable some level 

of message logging in normal system operation. Use message logging judiciously because of 

performance considerations and the size of the message repository. 

Trace  A trace entry is an information record that is intended for service engineers or developers to use. 

As such, a trace record might be considerably more complex, verbose, and detailed than a 

message entry. Localization support is typically not used for trace entries. Trace entries can be 

fairly inscrutable, understandable only by the appropriate developer or service personnel. It is 

assumed that trace entries are not written during normal runtime operation, but can be enabled as 

needed to gather diagnostic information.

The application server redirects the system streams at the server startup. There is no way to allow the 

application to output logging to the console because the system streams can not be obtained by the 

application. If you would like to use console to monitor the application without using the console handler, 

you can either monitor the SystemOut.log  file, or monitor a file created by another file handler. 

Note:   The application server uses Java logging internally and therefore certain restrictions apply for using 

system streams with this logging API by applications. During server startup, the standard output and 

error streams are replaced with special streams that write to the logging infrastructure, in order to 

include the output of the system streams in the log files. Because of this, applications can not use 

java.util.logging.ConsoleHandler, or any handler writing to System.err  or System.out  streams, 

attached to the root logger. If the user does attach the handler to the root logger, an infinite loop is 

created within the logging infrastructure, leading to stack overflow and server crash. 

If the use of a handler that writes to system streams is necessary, attach it to a non-root logger so 

that it does not publish log records to parent handlers. The data written to the system streams is 

then formatted and written to the corresponding system stream log file. To monitor what is being 

written system streams, the configured log files (SystemOut.log  and SystemErr.log  by default) can 

be monitored. 

Log level settings 

Use this topic to configure and manage log level settings. 

Using log levels you can control which events are processed by Java logging. When you change the level 

for a logger, the change is propagated to the children of the logger. 

Change  Log  Detail  Levels   

 Enter a log detail level that specifies the components, packages, or groups to trace. The log detail 

level string must conform to the specific grammar described in this topic. You can enter the log 

detail level string directly, or generate it using the graphical trace interface. 

If you select the Configuration tab, a static list of well-known components, packages, and groups is 

displayed. This list might not be exhaustive. 

If you select the Runtime tab, the list of components, packages, and group are displayed with all 

the components that are registered on the running application server and in the static list. 

The format of the log detail level specification is: 

<component>  = <level>  

 

Chapter 2. Adding logging and tracing to your application 5



where <component> is the component for which to set a log detail level, and <level> is one of the 

valid logger levels (off, fatal, severe, warning, audit, info, config, detail, fine, finer, finest, all). 

Separate multiple log detail level specifications with colons (:). 

Components correspond to Java packages and classes, or to collections of Java packages. Use 

an asterisk (*) as a wildcard to indicate components that include all the classes in all the packages 

that are contained by the specified component. For example: 

* Specifies all traceable code running in the application server, including the product system 

code and customer code. 

com.ibm.ws.*  

Specifies all classes with the package name beginning with com.ibm.ws. 

com.ibm.ws.classloader.JarClassLoader  

Specifies the JarClassLoader class only.

An error can occur when setting a log detail level specification from the administrative console if 

selections are made from both the Groups and Components lists. In some cases, the selection 

made from one list is lost when adding a selection from the other list. To work around this 

problem, enter the log detail level specification directly into the log detail level entry field.

Select a component or group to set a log detail level. The table following lists the valid levels for 

application servers at WebSphere Application Server Version 6 and later, and the valid logging and trace 

levels for earlier versions: 

 Version  6 logging  level  Logging  level  before  

Version  6 

Trace  level  before  Version  

6 

Content  / Significance  

Off Off All disabled* Logging is turned off. 

* In Version 6, a trace level 

of All disabled turns off 

trace, but does not turn off 

logging. Logging is enabled 

from the Info level. 

Fatal Fatal - Task cannot continue and 

component, application, and 

server cannot function. 

Severe Error - Task cannot continue but 

component, application, and 

server can still function. 

This level can also indicate 

an impending fatal error. 

Warning Warning - Potential error or impending 

error. This level can also 

indicate a progressive 

failure (for example, the 

potential leaking of 

resources). 

Audit Audit - Significant event affecting 

server state or resources 

Info Info - General information 

outlining overall task 

progress 

Config - - Configuration change or 

status 

Detail - - General information 

detailing subtask progress 

 

6 Troubleshooting and support



Fine - Event Trace information - General 

trace + method entry, exit, 

and return values 

Finer - Entry/Exit Trace information - Detailed 

trace 

Finest - Debug Trace information - A more 

detailed trace that includes 

all the detail that is needed 

to debug problems 

All All enabled All events are logged. If you 

create custom levels, All 

includes those levels, and 

can provide a more detailed 

trace than finest.
  

When you enable a logging level in Version 6.0 or above, you are also enabling all of the levels with 

higher severity. For example, if you set the logging level to warning on your Version 6.x application server, 

then warning, severe and fatal events are processed. 

Trace information, which are events at the Fine, Finer and Finest levels, can be written only to the trace 

log. Therefore, if you do not enable diagnostic trace, setting the log detail level to Fine, Finer, or Finest will 

not have an effect on the data that is logged. 

Loggers 

Loggers are used by applications and runtime components to capture message and trace events. 

When situations occur that are significant either due to a change in state, for example when a server 

completes startup or because a potential problem is detected, such as a timeout waiting for a resource, a 

message is written to the logs. Trace events are logged in debugging scenarios, where a developer needs 

a clear view of what is occurring in each component to understand what might be going wrong. Logged 

events are often the only events available when a problem is first detected, and are used during both 

problem recovery and problem resolution. 

Loggers are organized hierarchically. Each logger can have zero or more child loggers. 

Loggers can be associated with a resource bundle. If specified, the resource bundle is used by the logger 

to localize messages that are logged to the logger. If the resource bundle is not specified, a logger uses 

the same resource bundle as its parent. 

You can configure loggers with a level. If specified, the level is compared by the logger to incoming 

events. The events that are less severe than the level set for the logger are ignored by the logger. If the 

level is not specified, a logger takes on the level that is used by its parent. The default level for loggers is 

Level.INFO. 

Loggers can have zero or more attached handlers. If supplied, all events that are logged to the logger are 

passed to the attached handlers. Handlers write events to output destinations such as log files or network 

sockets. When a logger finishes passing a logged event to all of the handlers that are attached to that 

logger, the logger passes the event to the handlers that are attached to the parents of the logger. This 

process stops if a parent logger is configured not to use its parent handlers. Handlers in WebSphere 

Application Server are attached to the root logger. Set the useParentHandlers logger property to false  to 

prevent the logger from writing events to handlers that are higher in the hierarchy. 

Loggers can have a filter. If supplied, the filter is invoked for each incoming event to tell the logger whether 

or not to ignore it. 

 

Chapter 2. Adding logging and tracing to your application 7



Applications interact directly with loggers to log events. To obtain or create a logger, a call is made to the 

Logger.getLogger method with a name for the logger. Typically, the logger name is either the package 

qualified class name or the name of the package that the logger is used by. The hierarchical logger 

namespace is automatically created by using the dots in the logger name. For example, the 

com.ibm.websphere.ras logger has a com.ibm.websphere parent logger, which has a com.ibm parent. The 

parent at the top of the hierarchy is referred to as the root  logger. This root logger is created during 

initialization. The root logger is the parent of the com logger. 

Loggers are structured in a hierarchy. Every logger, except the root logger, has one parent. Each logger 

can also have 0 or more children. A logger inherits log handlers, resource bundle names, and event 

filtering settings from its parent in the hierarchy. The logger hierarchy is managed by the LogManager 

function. 

Loggers create log records. A log record is the container object for the data of an event. This object is 

used by filters, handlers, and formatters in the logging infrastructure. 

The logger provides several sets of methods for generating log messages. Some log methods take only a 

level and enough information to construct a message. Other, more complex logp (log precise) methods 

support the caller in passing class name and method name attributes, in addition to the level and message 

information. The logrb (log with resource bundle) methods add the capability of specifying a resource 

bundle as well as the level, message information, class name, and method name. Using methods such as 

severe, warning, fine, finer, and finest you can log a message at a particular level. For more information on 

logging and how to use it in your applications read “Using loggers in an application” on page 10. For a 

complete list of methods, see the java.util.logging documentation at http://java.sun.com/javase/. 

Log handlers 

Log handlers write log record objects to output devices like log files, sockets, and notification mechanisms. 

Loggers can have zero or more attached handlers. All objects that are logged to the logger are passed to 

the attached handlers, if handlers are supplied. 

You can configure handlers with a level. The handler compares the level that is specified in the logged 

object to the level that is specified for the handler. If the level of the logged object is less severe than the 

level set in the handler, the object is ignored by the handler. The default level for handlers is ALL. 

Handlers can have a filter. If a filter is supplied, the filter is invoked for each incoming object to tell the 

handler whether or not to ignore it. 

Handlers can have a formatter. If a formatter is supplied, the formatter controls how the logged objects are 

formatted. For example, the formatter can decide to first include the time stamp, followed by a string 

representation of the level, followed by the message that is included in the logged object. The handler 

writes this formatted representation to the output device. Read “Example: Creating custom formatters with 

java.util.logging” on page 20 for information on using a custom formatter in your applications. 

Both loggers and handlers can have levels and filters, and a logged object must pass all of these elements 

to be output. For example, you can set the logger level to FINE, but if the handler level is set at 

WARNING, only WARNING level messages are displayed in the output for that handler. Conversely, if your 

log handler is set to output all messages (level=All), but the logger level is set to WARNING, the logger 

never sends messages lower than WARNING to the log handler. 

Log levels 

Levels control which events are processed by Java logging. WebSphere Application Server controls the 

levels of all loggers in the system. 

 

8 Troubleshooting and support

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html


The level value is set from configuration data when the logger is created and can be changed at run time 

from the administrative console. If a level is not set in the configuration data, a level is obtained by 

proceeding up the hierarchy until a parent with a level value is found. You can also set a level for each 

handler to indicate which events are published to an output device. When you change the level for a 

logger in the administrative console, the change is propagated to the children of the logger. 

Levels are cumulative; a logger can process logged objects at the level that is set for the logger, and at all 

levels above the set level. Valid levels are: 

 Level  Content  / Significance  

Off No events are logged. 

Fatal Task cannot continue and component cannot function. 

Severe Task cannot continue, but component can still function 

Warning Potential error or impending error 

Audit Significant event affecting server state or resources 

Info General information outlining overall task progress 

Config Configuration change or status 

Detail General information detailing subtask progress 

Fine Trace information - General trace + method entry / exit / 

return values 

Finer Trace information - Detailed trace 

Finest Trace information - A more detailed trace - Includes all 

the detail that is needed to debug problems 

All All events are logged. If you create custom levels, All 

includes your custom levels, and can provide a more 

detailed trace than Finest.
  

For instructions on how to set logging levels, see “Configuring Java logging using the administrative 

console” on page 4

Note:   Trace information, which includes events at the Fine, Finer and Finest levels, can be written only to 

the trace log. Therefore, if you do not enable diagnostic trace, setting the log detail level to Fine, 

Finer, or Finest does not effect the logged data. 

Log filters 

Log filters help control more detailed logging settings that are not handled by usual log level settings. 

A filter provides an optional, secondary control over what is logged, beyond the control that is provided by 

setting the level. Applications can apply a filter mechanism to control logging output through the logging 

APIs. An example of filter usage is to suppress all the events with a particular message key. 

A filter is attached to a logger or log handler using the appropriate setFilter method. Read “Example: 

Creating custom filters with java.util.logging” on page 19 for information on implementing custom filters. 

For a complete list of filter methods, see the java.util.logging documentation at http://java.sun.com/javase/ 

Log formatters 

Log formatters format log messages so they can be used by various log handlers. 

Handlers can be configured with a log formatter that knows how to format log records. The event, which is 

represented by the log record object, is passed to the appropriate formatter by the handler. The formatter 

returns formatted output to the handler, which writes the output to the output device. 

 

Chapter 2. Adding logging and tracing to your application 9

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html


The formatter is responsible for rendering the event for output. This formatter uses the resource bundle 

that is specified in the event to look up the message in the appropriate language. 

Formatters are attached to handlers using the setFormatter method. 

You can find the java.util.logging documentation at http://java.sun.com/javase/. 

Using loggers in an application 

This topic describes how to use Java logging within an application. 

About this task 

To create an application using Java logging, perform the following steps: 

1.   Create the necessary handler, formatter, and filter classes if you need your own log files. 

2.   If localized messages are used by the application, create a resource bundle, as described in “Creating 

log resource bundles and message files” on page 14. 

3.   In the application code, get a reference to a logger instance, as described in “Using a logger.” 

4.   Insert the appropriate message and trace logging statements in the application, as described in “Using 

a logger.” 

Using a logger 

You can use Java logging to log messages and add tracing. 

About this task 

Use WsLevel.DETAIL level and above for messages, and lower levels for trace. The WebSphere 

Application Server Extension API (the com.ibm.websphere.logging package) contains the WsLevel class. 

For messages use: 

WsLevel.FATAL  

Level.SEVERE  

Level.WARNING  

WsLevel.AUDIT  

Level.INFO  

Level.CONFIG  

WsLevel.DETAIL  

For trace use: 

Level.FINE  

Level.FINER  

Level.FINEST  

1.   Use the logp method instead of the log or the logrb method. The logp method accepts parameters for 

class name and method name. The log and logrb methods will generally try to infer this information, 

but the performance penalty is prohibitive. In general, the logp method has less performance impact 

than the log or the logrb method. 

2.   Avoid using the logrb method. This method leads to inefficient caching of resource bundles and poor 

performance. 

3.   Use the isLoggable method to avoid creating data for a logging call that does not get logged. For 

example: 

if (logger.isLoggable(Level.FINEST)) { 

  String s = dumpComponentState(); // some expensive to compute method 

  logger.logp(Level.FINEST, className, methodName, "componentX state 

dump:\n{0}", s); 

 } 

 

10 Troubleshooting and support

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html


Example 

The following sample applies to localized messages: 

// note - generally avoid use of FINE, FINER, FINEST levels for messages to be consistent with 

// WebSphere Application Server 

  

String componentName = "com.ibm.websphere.componentX"; 

String resourceBundleName = "com.ibm.websphere.componentX.Messages"; 

Logger logger = Logger.getLogger(componentName, resourceBundleName); 

  

// "Convenience" methods - not generally recommended due to lack of class 

/ method names 

//   - cannot specify message substitution parameters 

//   - cannot  specify class and method names 

if (logger.isLoggable(Level.SEVERE)) 

 logger.severe("MSG_KEY_01"); 

  

if (logger.isLoggable(Level.WARNING)) 

 logger.warning("MSG_KEY_01"); 

  

if (logger.isLoggable(Level.INFO)) 

 logger.info("MSG_KEY_01"); 

  

if (logger.isLoggable(Level.CONFIG)) 

 logger.config("MSG_KEY_01"); 

  

  

// log methods are not generally used due to lack of class and method 

names 

//   - enable use of WebSphere Application Server-specific levels 

//   - enable use of message substitution parameters 

//   - cannot specify class and method names 

if (logger.isLoggable(WsLevel.FATAL)) 

 logger.log(WsLevel.FATAL, "MSG_KEY_01", "parameter 1"); 

  

if (logger.isLoggable(Level.SEVERE)) 

 logger.log(Level.SEVERE, "MSG_KEY_01", "parameter 1"); 

  

if (logger.isLoggable(Level.WARNING)) 

 logger.log(Level.WARNING, "MSG_KEY_01", "parameter 1"); 

  

if (logger.isLoggable(WsLevel.AUDIT)) 

 logger.log(WsLevel.AUDIT, "MSG_KEY_01", "parameter 1"); 

  

if (logger.isLoggable(Level.INFO)) 

 logger.log(Level.INFO, "MSG_KEY_01", "parameter 1"); 

  

if (logger.isLoggable(Level.CONFIG)) 

 logger.log(Level.CONFIG, "MSG_KEY_01", "parameter 1"); 

  

if (logger.isLoggable(WsLevel.DETAIL)) 

 logger.log(WsLevel.DETAIL, "MSG_KEY_01", "parameter 1"); 

  

  

// logp methods are the way to log 

//   - enable use of WebSphere Application Server-specific levels 

//   - enable use of message substitution parameters 

//   - enable use of class and method names 

if (logger.isLoggable(WsLevel.FATAL)) 

 logger.logp(WsLevel.FATAL, className, methodName, "MSG_KEY_01", 

"parameter 1"); 

  

if (logger.isLoggable(Level.SEVERE)) 

 logger.logp(Level.SEVERE, className, methodName, "MSG_KEY_01", 

"parameter 1"); 

  

if (logger.isLoggable(Level.WARNING)) 

 logger.logp(Level.WARNING, className, methodName, "MSG_KEY_01", 

"parameter 1"); 

  

if (logger.isLoggable(WsLevel.AUDIT)) 

 logger.logp(WsLevel.AUDIT, className, methodName, "MSG_KEY_01", 

"parameter 1"); 

  

if (logger.isLoggable(Level.INFO)) 

 logger.logp(Level.INFO, className, methodName, "MSG_KEY_01", 

"parameter 1"); 

  

if (logger.isLoggable(Level.CONFIG)) 

 logger.logp(Level.CONFIG, className, methodName, "MSG_KEY_01", 

"parameter 1"); 

  

if (logger.isLoggable(WsLevel.DETAIL)) 

 logger.logp(WsLevel.DETAIL, className, methodName, "MSG_KEY_01", 

"parameter 1"); 

  

  

// logrb methods are not generally used due to diminished performance

 

Chapter 2. Adding logging and tracing to your application 11



of switching resource bundles dynamically 

//   - enable use of WebSphere Application Server-specific levels 

//   - enable use of message substitution parameters 

//   - enable use of class and method names 

String resourceBundleNameSpecial = 

"com.ibm.websphere.componentX.MessagesSpecial"; 

  

if (logger.isLoggable(WsLevel.FATAL)) 

 logger.logrb(WsLevel.FATAL, className, methodName, resourceBundleNameSpecial, 

"MSG_KEY_01", "parameter 1"); 

  

if (logger.isLoggable(Level.SEVERE)) 

 logger.logrb(Level.SEVERE, className, methodName, resourceBundleNameSpecial, 

"MSG_KEY_01", "parameter 1"); 

  

if (logger.isLoggable(Level.WARNING)) 

 logger.logrb(Level.WARNING, className, methodName, resourceBundleNameSpecial, 

"MSG_KEY_01", "parameter 1"); 

  

if (logger.isLoggable(WsLevel.AUDIT)) 

 logger.logrb(WsLevel.AUDIT, className, methodName, resourceBundleNameSpecial, 

"MSG_KEY_01", "parameter 1"); 

  

if (logger.isLoggable(Level.INFO)) 

 logger.logrb(Level.INFO, className, methodName, resourceBundleNameSpecial, 

"MSG_KEY_01", "parameter 1"); 

  

if (logger.isLoggable(Level.CONFIG)) 

 logger.logrb(Level.CONFIG, className, methodName, resourceBundleNameSpecial, 

"MSG_KEY_01", "parameter 1"); 

  

if (logger.isLoggable(WsLevel.DETAIL)) 

 logger.logrb(WsLevel.DETAIL, className, methodName, resourceBundleNameSpecial, 

"MSG_KEY_01", "parameter 1"); 

For trace, or content that is not localized, the following sample applies: 

// note - generally avoid use of FATAL, SEVERE, WARNING, AUDIT, 

// INFO, CONFIG, DETAIL levels for trace 

// to be consistent with WebSphere Application Server 

  

String componentName = "com.ibm.websphere.componentX"; 

Logger logger = Logger.getLogger(componentName); 

  

// Entering / Exiting methods are used for non trivial methods 

if (logger.isLoggable(Level.FINER)) 

 logger.entering(className, methodName); 

  

if (logger.isLoggable(Level.FINER)) 

 logger.entering(className, methodName, "method param1"); 

  

if (logger.isLoggable(Level.FINER)) 

 logger.exiting(className, methodName); 

  

if (logger.isLoggable(Level.FINER)) 

 logger.exiting(className, methodName, "method result"); 

  

  

// Throwing method is not generally used due to lack of message - use 

logp with a throwable parameter instead 

if (logger.isLoggable(Level.FINER)) 

 logger.throwing(className, methodName, throwable); 

  

  

// Convenience methods are not generally used due to lack of class 

/ method names 

//   - cannot specify message substitution parameters 

//   - cannot specify class and method names 

if (logger.isLoggable(Level.FINE)) 

 logger.fine("This is my trace"); 

  

if (logger.isLoggable(Level.FINER)) 

 logger.finer("This is my trace"); 

  

if (logger.isLoggable(Level.FINEST)) 

 logger.finest("This is my trace"); 

  

  

// log methods are not generally used due to lack of class and 

method names 

//   - enable use of WebSphere Application Server-specific levels 

//   - enable use of message substitution parameters 

//   - cannot specify class and method names 

if (logger.isLoggable(Level.FINE)) 

 logger.log(Level.FINE, "This is my trace", "parameter 1"); 

  

if (logger.isLoggable(Level.FINER)) 

 logger.log(Level.FINER, "This is my trace", "parameter 1"); 

 

 

12 Troubleshooting and support



if (logger.isLoggable(Level.FINEST)) 

 logger.log(Level.FINEST, "This is my trace", "parameter 1"); 

  

  

// logp methods are the recommended way to log 

//   - enable use of WebSphere Application Server-specific levels 

//   - enable use of message substitution parameters 

//   - enable use of class and method names 

if (logger.isLoggable(Level.FINE)) 

 logger.logp(Level.FINE, className, methodName, "This is my trace", 

"parameter 1"); 

  

if (logger.isLoggable(Level.FINER)) 

 logger.logp(Level.FINER, className, methodName, "This is my trace", 

"parameter 1"); 

  

if (logger.isLoggable(Level.FINEST)) 

 logger.logp(Level.FINEST, className, methodName, "This is my trace", 

"parameter 1"); 

  

  

// logrb methods are not applicable for trace logging because no localization 

is involved 

Configuring the logger hierarchy 

WebSphere Application Server handlers are attached to the Java root logger, which is at the top of the 

logger hierarchy. As a result, any request from anywhere in the logger tree can be processed by 

WebSphere Application Server handlers. 

About this task 

You can configure your application server to handle logs in many different ways. Configure your log 

settings based upon your configuration and the logging structure that best suits your needs. 

v   Forward all application logging requests to the WebSphere Application Server handlers. This behavior is 

the default. 

v   Forward all application logging requests to your own custom handlers. Set the useParentHandlers  

option to false  on one of your custom loggers, and then attach your handlers to that logger. 

v   Forward all application logging requests to both WebSphere Application Server handlers, and your 

custom handlers, but do not forward WebSphere Application Server logging requests to your custom 

handlers. Set the useParentHandlers  option to true  on one of your non-root custom loggers, and then 

attach your handlers to that logger.True  is the default setting. 

v   Forward all WebSphere Application Server logging requests to both WebSphere Application Server 

handlers, and your custom handlers. Logging requests are always forwarded to WebSphere Application 

Server handlers. To forward WebSphere Application Server requests to your custom handlers, attach 

your custom handlers to the Java root logger, so that they are at the same level in the hierarchy as the 

WebSphere Application Server handlers.

 

Chapter 2. Adding logging and tracing to your application 13



Example 

The following example shows how these requirements can be met using the Java logging infrastructure: 

Application

code

Application

code

com.xyz.abc.def

( Logger )

com.xyz.abc.ghi

( Logger )

com.xyz.abc

( Logger)

root

( Logger )

User Handler1

(Handler )

Output

device

User Handler2

(Handler )

Output

device

WebSphere

Application

Server handlers

Output

device

com.ibm.ws

( Logger)

com.ibm.ws.xyz

( Logger )

Service

broker

Applications

WebSphere Application Server

Applications

WebSphere

Application

code

JRAS API

(deprecated)

Anonymous

(Logger)

Application Server

  

 

Creating log resource bundles and message files 

You can forward messages that are written to the internal WebSphere Application Server logs to other 

processes for display. Messages that are displayed on the administrative console, which can be running in 

a different location than the server process, can be localized using the late  binding  process. Late binding 

means that WebSphere Application Server does not localize messages when they are logged, but defers 

localization to the process that displays the message. 

About this task 

Every method that accepts messages localizes those messages. The mechanism for providing localized 

messages is the resource bundle support provided by the IBM Developer Kit, Java Technology Edition. If 

you are not familiar with resource bundles as implemented by the Developer Kit, you can get more 

information from various texts, or by reading the API documentation for the java.util.ResourceBundle, 

java.util.ListResourceBundle and java.util.PropertyResourceBundle classes, as well as the 

java.text.MessageFormat class. 

The PropertyResourceBundle class is the preferred mechanism to use. 

To properly localize the message, the displaying process must have access to the resource bundle where 

the message text is stored. You must package the resource bundle separately from the application, and 

install it in a location where the viewing process can access it. 

By default, the WebSphere Application Server runtime localizes all the messages when they are logged. 

This localization eliminates the need to pass a .jar  file to the application, unless you need to localize in a 

different location. However, you can use the early binding technique to localize messages as they log. An 

application that uses early binding must localize the message before logging it. The application looks up 

the localized text in the resource bundle and formats the message. Use the early binding technique to 

package the application resource bundles with the application. 

To create a resource bundle, perform the following steps. 

 

14 Troubleshooting and support



1.   Create a text properties file that lists message keys and the corresponding messages. The properties 

file must have the following characteristics: 

v   Each property in the file is terminated with a line-termination character. 

v   If a line contains white space only, or if the first non-white space character of the line is the pound 

sign symbol (#) or exclamation mark (!), the line is ignored. The # and ! characters can therefore be 

used to put comments into the file. 

v   Each line in the file, unless it is a comment or consists of white space only, denotes a single 

property. A backslash (\) is treated as the line-continuation character. 

v   The syntax for a property file consists of a key, a separator, and an element. Valid separators 

include the equal sign (=), colon (:), and white space ( ). 

v   The key consists of all characters on the line from the first non-white space character to the first 

separator. Separator characters can be included in the key by escaping them with a backslash (\), 

but doing this process is not recommended, because escaping characters is error prone and 

confusing. Instead, use a valid separator character that does not display in any keys in the 

properties file. 

v   White space after the key and separator is ignored until the first non-white space character is 

encountered. All characters remaining before the line-termination character define the element. 

See the Java documentation for the java.util.Properties class for a full description of the syntax and the 

construction of properties files. 

2.   Translate the file into localized versions of the file with language-specific file names. For example, a 

file named DefaultMessages.properties  can be translated into DefaultMessages_de.properties  for 

German and DefaultMessages_ja.properties  for Japanese. 

3.   When the translated resource bundles are available, put the bundle in a directory that is part of the 

application class path. 

4.    When a message logger is obtained from the log manager, configure it to use a particular resource 

bundle. Messages logged with the Logger API use this resource bundle when message localization is 

performed. At run time, the user locale setting determines the properties file from which to extract the 

message that is specified by a message key, ensuring that the message is delivered in the correct 

language. 

5.   If the message loggers msg method is called, a resource bundle name must be explicitly provided.

What to do next 

The application locates the resource bundle based on the file location relative to any directory in the class 

path. For instance, if the DefaultMessages.properties property resource bundle is located in the 

baseDir/subDir1/subDir2/resources  directory and baseDir  is in the class path, the name 

subdir1.subdir2.resources.DefaultMessage  is passed to the message logger to identify the resource 

bundle. 

Example:  Logging  resource  bundles  by  creating  a properties  file:   

You can create resource bundles in several ways. The best and easiest way is to create a properties file 

that supports a properties resource bundle. This sample shows how to create such a properties file. 

 Resource  bundle  sample  

For this sample, four localizable messages are provided. The properties file is created and the key-value 

pairs are inserted. All the normal properties file conventions and rules apply to this file. In addition, the 

creator must be aware of other restrictions that are imposed on the values by the Java MessageFormat 

class. For example, apostrophes must be escaped or they cause a problem. Avoid the use of non-portable 

characters. WebSphere Application Server does not support the use of extended formatting conventions 

that the MessageFormat class supports, such as {1, date} or {0,number, integer}. 

Assume that the base directory for the application that uses this resource bundle is baseDir  and that this 

directory is in the class path. Assume that the properties file is stored in the subdirectory baseDir  that is 

 

Chapter 2. Adding logging and tracing to your application 15



not in the class path (for example, baseDir/subDir1/subDir2/resources). To allow the messages file to 

resolve, the subDir1.subDir2.resources.DefaultMessage  name is used to identify the property resource 

bundle and is passed to the message logger. 

For this sample, the properties file is named DefaultMessages.properties. 

# Contents of the DefaultMessages.properties file 

MSG_KEY_00=A message with no substitution parameters. 

MSG_KEY_01=A message with one substitution parameter: parm1={0} 

MSG_KEY_02=A message with two substitution parameters: parm1={0}, parm2 = {1} 

MSG_KEY_03=A message with three parameter: parm1={0}, parm2 = {1}, parm3={2} 

When the DefaultMessages.properties  file is created, the file can be sent to a translation center where 

the localized versions are generated. 

Changing the message IDs used in log files 

You can change the default format for message IDs in server logs by setting the 

com.ibm.websphere.logging.messageId.version system property. 

Before you begin 

Note:   Beginning with WebSphere Application Server Version 6.0, logging files are formatted according to 

a standardized system. However, the default runtime behavior is still configured to use the older 

format. In new releases of WebSphere Application Server, the message IDs that are written to log 

files will be changed to ensure they do not conflict with other IBM products. The default runtime 

behavior is still configured to use the older message IDs, deprecated in Version 7.0. 

As a result of the default runtime behavior, you might see a mixture of messages that use 4–letter 

message prefixes and 5–letter message prefixes. The information in this topic explains how to 

change your configuration so that the messages consistently show with 5–letter message prefixes. 

The default behavior has not changed to minimize the impact on customers that depend on the 

existence of the 4–letter message prefixes. 

The following is a sample of an entry in a trace.log file using a default message ID. Note that the message 

ID is PMON0001A 

[1/26/05  10:17:12:529  EST]  0000000a  PMIImpl        A   PMON0001A:  PMI  is enabled  

A sample of the same entry using a new message ID follows. Note that the message ID is CWPMI0001A. 

All new WebSphere Application Server message IDs begin with ’CW’. 

[1/26/05  10:17:12:529  EST]  0000000a  PMIImpl        A   CWPMI0001A:  PMI  is enabled.  

About this task 

If you are using a logging tool that uses the standardized format, you might want to change the default 

configuration settings to format the logging output appropriately. You will need to change the configuration 

for each Java virtual machine (JVM) in the cell if you want the output formatting to be the same across 

application servers. 

v    To configure logging files so that they use the newer, 5–letter error message prefixes for each process, 

use the following commands with the wsadmin utility: 

–   Using Jacl: 

$AdminConfig list JavaVirtualMachine 

set cfgJvm [$AdminConfig list "JavaVirtualMachine"] 

$AdminConfig create Property $cfgJvm {{name com.ibm.websphere.logging.messageId.version} {value 6} {required false}} 

$AdminConfig save 

–   Using Jython: 

 

16 Troubleshooting and support



ls = java.lang.System.getProperty("line.separator") 

cfgJvmList = AdminConfig.list("JavaVirtualMachine").split(ls) 

print cfgJvmList 

cfgJvm = cfgJvmList[JavaVirtualMachine] 

AdminConfig.create(’Property’, cfgJvm, [[’name’, ’com.ibm.websphere.logging.messageId.version’], [’value’, ’6’], [’required’, ’false’]] 

AdminConfig.save() 

Where JavaVirtualMachine  is the number of the process that you want to use. 

When you specify the process, the first process listed is zero (0), the second process is one (1), and 

so on. Make the changes for each JVM in the cell for consistent output formatting.

Note:   Restart the application server for the changes to take effect.

v     To change the configuration so that the log files contain the newer, 5–letter message prefixes in the 

startServer.log or stopServer.log files, modify the startServer and stopServer scripts in the 

install_root/bin  directory. Within these files, add the following line of code: 

>> %TMPJAVAPROPFILE%  echo  com.ibm.websphere.logging.messageId.version=6  

Note:   Restart the application server for the changes to take effect.

Results 

Message IDs written to log files will now be compliant with the new standard. 

Converting  log  files  to  use  IBM  unique  Message  IDs:   

The convertlog command creates a new log file with either new or old message IDs substituted in place of 

the message IDs in the source file. 

 Before  you  begin  

Prior to Version 6.x, components were assigned message IDs that are not necessarily unique across IBM 

software products. In Version 6.0, a system property was provided to map the message IDs in output logs 

to a set of IBM unique message IDs (all WebSphere Application Server message IDs now start with CW) 

that do not conflict with other IBM software products. The default runtime behavior still uses the old 

message IDs. 

About  this  task  

To facilitate the migration of logging tools that are reliant on the old message IDs, the convertlog command 

is provided to convert the message IDs of log entries from the old standard to the new standard, or the 

new standard back to the old. By default, the software is configured to use the old message IDs when 

logging, but you can change the default output with the com.ibm.websphere.logging.messageId.version 

system property. Read “Changing the message IDs used in log files” on page 16 for more information. 

Use the convertlog command to convert the log output: 

convertlog <source file name> <destination file name> [options] 

        options: -newMessageFormat convert message IDs to CCCCCnnnnS format 

                  (cannot be used with -m5) 

                 -oldMessageFormat convert message IDs to CCCCnnnnS format 

                  (cannot be used with -m6) 

Results  

After using the convertlog command you have a new file with message IDs in the chosen format. 

convertlog  command:   

The convertlog command is used to convert the message IDs in log entries from the old standard to the 

new standard, or the new standard back to the old. 

 

Chapter 2. Adding logging and tracing to your application 17



Previous versions of WebSphere Application Server used message IDs that are deprecated in WebSphere 

Application Server Version 7.0. To facilitate the migration of tools based on the old message IDs, the 

convertlog command is implemented to translate log files from one message ID standard to the other. 

Use the convertlog command as follows: 

convertlog <source file name> <destination file name> [options] 

        options: -newMessageFormat convert message IDs to CCCCCnnnnS format 

                  (cannot be used with -m5) 

                 -oldMessageFormat convert message IDs to CCCCnnnnS format 

                  (cannot be used with -m6) 

MessageConverter  class:   

The com.ibm.websphere.logging.MessageConverter class provides a method to convert a message ID at 

the front of a String into either a new message ID or an old message ID. The direction of the conversion is 

controlled with the conversionType  argument. 

 Use the MessageConverter class with log analysis tools to convert message IDs from earlier versions of 

WebSphere Application Server into the corresponding message IDs that are used in later releases, or to 

revert message IDs to an earlier format. 

Method  

public  static  java.lang.String  convert(java.lang.String  in,  short  conversionType) 

Parameters  

Use the following parameters with the MessageConverter  class: 

 Parameter  Name  Description  

in The message to convert. The method assumes the 

message ID is the first part of the supplied message with 

no leading white space. 

conversionType  CONVERSION_TYPE_WASV5_TO_WASV6 

CONVERSION_TYPE_WASV6_TO_WASV5
  

Example: Creating custom log handlers with java.util.logging 

There may be occasions when you want to propagate log records to your own log handlers rather than 

participate in integrated logging. 

To use a stand-alone log handler, set the useParentHandlers flag to false  in your application. 

The mechanism for creating a customer handler is the Handler class support that is provided by the IBM 

Developer Kit, Java Technology Edition. If you are not familiar with handlers, as implemented by the 

Developer Kit, you can get more information from various texts, or by reading the API documentation for 

the java.util.logging API. 

The following sample shows a custom handler: 

import  java.io.FileOutputStream;  

import  java.io.PrintWriter;  

import  java.util.logging.Handler;  

import  java.util.logging.LogRecord;  

  

/**  

 * MyCustomHandler  outputs  contents  to a specified  file  

 */ 

public  class  MyCustomHandler  extends  Handler  {

 

18 Troubleshooting and support



FileOutputStream  fileOutputStream;  

 PrintWriter  printWriter;  

  

 public  MyCustomHandler(String  filename)  { 

  super();  

  

  // check  input  parameter  

  if (filename  == null  || filename  == "")  

   filename  = "mylogfile.txt";  

  

  try  { 

   // initialize  the  file  

   fileOutputStream  = new  FileOutputStream(filename);  

   printWriter  = new  PrintWriter(fileOutputStream);  

    setFormatter(new  SimpleFormatter());  

  } 

  catch  (Exception  e) { 

   // implement  exception  handling...  

  } 

 } 

  

 /* (non-API  documentation)  

  * @see  java.util.logging.Handler#publish(java.util.logging.LogRecord)  

  */ 

 public  void  publish(LogRecord  record)  { 

  // ensure  that  this  log  record  should  be logged  by this  Handler  

  if (!isLoggable(record))  

   return;  

  

  // Output  the  formatted  data  to the  file  

  printWriter.println(getFormatter().format(record));  

 } 

  

 /* (non-API  documentation)  

  * @see  java.util.logging.Handler#flush()  

  */ 

 public  void  flush()  { 

  printWriter.flush();  

 } 

  

 /* (non-API  documentation)  

  * @see  java.util.logging.Handler#close()  

  */ 

 public  void  close()  throws  SecurityException  { 

  printWriter.close();  

 } 

} 

Example: Creating custom filters with java.util.logging 

A custom filter provides optional, secondary control over what is logged, beyond the control that is 

provided by the level. 

The mechanism for creating a customer filter is the Filter interface support that is provided by the IBM 

Developer Kit, Java Technology Edition. If you are not familiar with filters, as implemented by the 

Developer Kit, you can get more information from various texts, or by reading the API documentation the 

for the java.util.logging API. 

The following example shows a custom filter: 

/** 

 * This class filters out all log messages starting with SECJ022E, SECJ0373E, or SECJ0350E. 

 */ 

import java.util.logging.Filter; 

import java.util.logging.Handler; 

import java.util.logging.Logger; 

import java.util.logging.LogRecord; 

 

 

Chapter 2. Adding logging and tracing to your application 19



public class MyFilter implements Filter { 

 public boolean isLoggable(LogRecord lr) { 

  String msg = lr.getMessage(); 

  if (msg.startsWith("SECJ0222E") || msg.startsWith("SECJ0373E") || msg.startsWith("SECJ0350E")) { 

   return false; 

  } 

  return true; 

 } 

} 

  

//This code will register the above log filter with the root Logger’s handlers (including the WAS system logs): 

... 

Logger rootLogger = Logger.getLogger(""); 

rootLogger.setFilter(new MyFilter()); 

Example: Creating custom formatters with java.util.logging 

A formatter formats events. Handlers are associated with one or more formatters. 

The mechanism for creating a customer formatter is the Formatter class support that is provided by the 

IBM Developer Kit, Java Technology Edition. If you are not familiar with formatters, as implemented by the 

Developer Kit, you can get more information from various texts, or by reading the API documentation for 

the java.util.logging API. 

The following example shows a custom formatter: 

import  java.util.Date;  

import  java.util.logging.Formatter;  

import  java.util.logging.LogRecord;  

  

/**  

 * MyCustomFormatter  formats  the  LogRecord  as follows:  

 * date    level    localized  message  with  parameters  

 */ 

public  class  MyCustomFormatter  extends  Formatter  { 

  

 public  MyCustomFormatter()  { 

  super();  

 } 

  

 public  String  format(LogRecord  record)  { 

  

  // Create  a StringBuffer  to  contain  the  formatted  record  

  // start  with  the  date.  

  StringBuffer  sb = new  StringBuffer();  

  

  // Get  the  date  from  the  LogRecord  and  add  it to the  buffer  

  Date  date  = new  Date(record.getMillis());  

  sb.append(date.toString());  

  sb.append("  ");  

  

  // Get  the  level  name  and  add  it to  the  buffer  

  sb.append(record.getLevel().getName());  

  sb.append("  ");  

  

  // Get  the  formatted  message  (includes  localization  

  // and  substitution  of paramters)  and  add  it to the  buffer  

  sb.append(formatMessage(record));  

  sb.append("\n");  

  

  return  sb.toString();  

 } 

} 

Example: Adding custom handlers, filters, and formatters 

In some cases you might want to have your own custom log files. Adding custom handlers, filters, and 

formatters enables you to customize your logging environment beyond what can be achieved by the 

configuration of the default WebSphere Application Server logging infrastructure. 

 

20 Troubleshooting and support



The following example demonstrates how to add a new handler to process requests to the 

com.myCompany subtree of loggers (see “Configuring the logger hierarchy” on page 13). The main 

method in this sample gives an example of how to use the newly configured logger. 

import  java.util.Vector;  

import  java.util.logging.Filter;  

import  java.util.logging.Formatter;  

import  java.util.logging.Handler;  

import  java.util.logging.Level;  

import  java.util.logging.Logger;  

  

public  class  MyCustomLogging  { 

  

 public  MyCustomLogging()  { 

  super();  

 } 

  

 public  static  void  initializeLogging()  { 

  

  // Get  the  logger  that  you  want  to attach  a custom  Handler  to 

  String  defaultResourceBundleName  = "com.myCompany.Messages";  

  Logger  logger  = Logger.getLogger("com.myCompany",  defaultResourceBundleName);  

  

  // Set  up a custom  Handler  (see  MyCustomHandler  example)  

  Handler  handler  = new  MyCustomHandler("MyOutputFile.log");  

  

  // Set  up a custom  Filter  (see  MyCustomFilter  example)  

  Vector  acceptableLevels  = new  Vector();  

  acceptableLevels.add(Level.INFO);  

  acceptableLevels.add(Level.SEVERE);  

  Filter  filter  = new  MyCustomFilter(acceptableLevels);  

  

  // Set  up a custom  Formatter  (see  MyCustomFormatter  example)  

  Formatter  formatter  = new  MyCustomFormatter();  

  

  // Connect  the  filter  and  formatter  to the handler  

  handler.setFilter(filter);  

  handler.setFormatter(formatter);  

  

  // Connect  the  handler  to the  logger  

  logger.addHandler(handler);  

  

  // avoid  sending  events  logged  to com.myCompany  showing  up in WebSphere  

  // Application  Server  logs  

  logger.setUseParentHandlers(false);  

  

 } 

  

 public  static  void  main(String[]  args)  { 

  initializeLogging();  

  

  Logger  logger  = Logger.getLogger("com.myCompany");  

  

  logger.info("This  is a test  INFO  message");  

  logger.warning("This  is a test  WARNING  message");  

  logger.logp(Level.SEVERE,  "MyCustomLogging",  "main",  "This  is a test  SEVERE  message");  

 } 

} 

When the above program is run, the output of the program is written to the MyOutputFile.log file. The 

content of the log is in the expected log file, as controlled by the custom handler, and is formatted as 

defined by the custom formatter. The warning message is filtered out, as specified by the configuration of 

the custom filter. The output is as follows: 

C:\>type  MyOutputFile.log  

Sat  Sep  04 11:21:19  EDT  2004  INFO  This  is a test  INFO  message  

Sat  Sep  04 11:21:19  EDT  2004  SEVERE  This  is a test  SEVERE  message  

 

Chapter 2. Adding logging and tracing to your application 21



HTTP error, FRCA, and NCSA access log settings 

Use this page to configure the global HTTP error log, and National Center for Supercomputing Applications 

(NCSA) access log settings for an HTTP inbound channel. If you are running the product on z/OS, you 

can also use this page to configure the global Fast Response Cache Accelerator (FRCA) log settings for 

an HTTP inbound channel. FRCA logs are a specialized form of NCSA logs and can only be created in a 

z/OS environment. 

To view this administrative console page, click Servers  > Server  Types  > WebSphere  application  

servers  > server_name  > HTTP  error,  NCSA  access  and  FRCA  logging. This console page has 

separate sections for each type of logging. The FRCA logging section only appears if you are running the 

product on z/OS. 

The HTTP error log contains a record of HTTP processing errors that occur. The level of error logging that 

occurs is dependent on the value that is selected for the Error log level field. 

The NCSA access log contains a record of all inbound client requests that the HTTP transport channel 

handles. All of the messages that are contained in these logs are in NCSA format. 

After you configure the HTTP error log, NCSA access logs, and FRCA logs, you must explicitly enable 

each type of logging on the settings page for the HTTP channels for which you want a specific types of 

logging to occur. To view the settings page for an HTTP channel, click Servers  > Server  Types  > 

Application  servers  >  server  >  Web  Container  Settings  > Web  container  transport  chains  > HTTP  

inbound  channel. 

Note:   The settings for any of these logs can also be modified on the settings page for a specific HTTP 

inbound channel. Any changes that you make on the HTTP inbound channel settings page only 

apply to that specific inbound channel. and override any global configuration settings that you 

specify on this page. 

Enable logging service at server start-up 

Select this option if you want any of the following logging to start when the server starts: 

v   NCSA access logging 

v   HTTP error logging

Note:   Even if you select this option, you must explicitly enable the type of logging that you want to occur 

on this page and on the settings page for the HTTP transport channel for which you want that type 

of logging to occur. 

Enable NCSA access logging 

When selected, a record of inbound client requests that the HTTP transport channel handles is kept in the 

NCSA access log. 

NCSA access log file path 

Specifies the directory path and name of the NCSA access log. Standard variable substitutions, such as 

$(SERVER_LOG_ROOT), can be used when specifying the directory path. 

NCSA access log maximum size 

Specifies the maximum size, in megabytes, of the NCSA access log. When this size is reached, the 

logfile_name.1 archive log is created. However, every time that the original log file overflows this archive 

file, the file is overwritten with the most current version of the original log file. 

Maximum number of historical files 

Specifies the maximum number of historical versions of the NCSA access log file that are kept for future 

reference. 

 

22 Troubleshooting and support



NCSA access log format 

Specifies which NCSA format is used when logging client access information. If you select Common, the 

log entries contain the requested resource and a few other pieces of information, but does not contain 

referral, user agent, and cookie information. If you select Combined, referral, user agent, and cookie 

information is included. 

Enable error logging 

When selected, HTTP errors that occur while the HTTP channel processes client requests are recorded in 

the HTTP error log. 

Error log file path 

Specifies the directory path and the name of the HTTP error log. Standard variable substitutions, such as 

$(SERVER_LOG_ROOT), can be used when specifying the directory path. 

Error log maximum size 

Specifies the maximum size, in megabytes, of the HTTP error log file. When this size is reached, the 

logfile_name.1 archive log is created. However, every time that the original log file overflows this archive 

file, this file is overwritten with the most current version of the original log file. 

Maximum number of historical files 

Specifies the maximum number of historical versions of the Error log file that are kept for future reference. 

Error log level 

Specifies the type of error messages that are included in the HTTP error log. 

You can select: 

Critical  

Only critical failures that stop the Application Server from functioning properly are logged. 

Error  The errors that occur in response to clients are logged. These errors require Application Server 

administrator intervention if they result from server configuration settings. 

Warning  

Information on general errors, such as socket exceptions that occur while handling client requests, 

are logged. These errors do not typically require Application Server administrator intervention. 

Information  

The status of the various tasks that are performed while handling client requests is logged. 

Debug  

More verbose task status information is logged. This level of logging is not intended to replace 

RAS logging for debugging problems, but does provide a steady status report on the progress of 

individual client requests. If this level of logging is selected, you must specify a large enough log 

file size in the Error log maximum size field to contain all of the information that is logged.

Logger.properties file for configuring logger settings 

Use the Logger.properties file to set logger attributes for specific loggers. 

The properties file is loaded the first time that the Logger.getLogger(logger_name) method is called within 

an application. 

Important:  The name of the Logger.properties file is case sensitive. Use a capital ″L″  in the file name. 

When an application calls the Logger.getLogger method for the first time, all the available logger properties 

files are loaded. Applications can provide Logger.properties files in: 

v   the META-INF directory of the Java archive (JAR) file for the application 

v   directories included in the class path of an application module 

 

Chapter 2. Adding logging and tracing to your application 23



v   directories included in the application class path

The properties file contains two categories of parameters, logger control and logger data: 

v   Logger control information 

–   Minimum localization level: The minimum LogRecord level for which localization is attempted 

–   Group: The logical group that this component belongs to 

–   Event factory: The Common Base Event template file to use with the event factory. The naming 

convention for this template is the fully qualified component name, with a file extension of 

.event.xml. For example, a template that applies to the com.ibm.compXYZ package is called 

com.ibm.compXYZ.event.xml.

v   Logger data information 

–   Product name 

–   Organization name 

–   Component name 

–   Extensions and additional properties

Syntax of the Logger.properties file 

Use the following syntax to set logger properties: 

<logger  base  name>.<property>=value  

where: 

logger  base  name  is the starting part of the logger name to which the property applies. All loggers with 

names starting with this string have the property applied. 

property  is one of the following properties: 

v   organization 

v   product 

v   component 

v   minimum_localization_level 

v   group 

v   eventfactory

Sample Logger.properties file 

In the following sample, the com.ibm.xyz.MyEventFactory event factory is used by any loggers in the 

com.ibm.websphere.abc package or any sub packages that do not override this value in their configuration 

file. 

com.ibm.websphere.abc.eventfactory=com.ibm.xyz.MyEventFactory  

Group Logger.properties file 

In the following example, the group is MyTraceGroup and the components are com.ibm.stuff and 

com.ibm.morestuff: 

com.ibm.stuff.group=MyTraceGroup  

com.ibm.morestuff.group=MyTraceGroup  

Example: Sample security policy for logging 

Set up a security policy to allow your applications to modify logging and handler properties. 

 

24 Troubleshooting and support



The sample security policy that follows grants access to the file system and runtime classes. Include this 

security policy, with the entry permission  java.util.logging.LoggingPermission  "control", in the 

META-INF directory of your application if you want your applications to programmatically alter controlled 

properties of loggers and handlers. The META-INF file is located in the following locations for the different 

module types: 

 EJB projects ejbModule/META-INF/MANIFEST.MF 

Application client projects appClientModule/META-INF/MANIFEST.MF 

Dynamic Web projects WebContent/META-INF/MANIFEST.MF 

Connector projects connectorModule/META-INF/MANIFEST.MF
  

Below is a sample security policy that grants permission to modify logging properties: 

//////////////////////////////////////////////////  

// 

// WebSphere  Application  Server  Security  Policy  

// 

//////////////////////////////////////////////////  

  

////////////////////////////////////////////////////////////////////////  

// Allow  all  access  to the  file  system  and  runtime  classes  

////////////////////////////////////////////////////////////////////////  

grant  codeBase  "file:${application}"  { 

   permission  java.util.logging.LoggingPermission  "control";  

}; 

Configuring applications to use Jakarta Commons Logging 

Jakarta Commons Logging provides a simple logging interface and thin wrappers for several logging 

systems. WebSphere Application Server supports Jakarta Commons Logging by providing a logger. The 

support does not change interfaces defined by Jakarta Commons Logging. 

Before you begin 

The WebSphere Application Server logger is a thin wrapper for the WebSphere Application Server logging 

facility. The logger name is com.ibm.websphere.commons.logging.WsJDK14Logger. The logger can handle 

logging objects defined by either of the following: 

v   Java Logging found in Java Specification Request 47: Logging API Specification 

v   Common Base Event

A logging  object  is an object that holds logging entry information. 

To better understand Jakarta Commons Logging, read Jakarta Commons and the specifications for Java 

Logging and for Common Base Event. To better understand use of the WebSphere Application Server 

logger, read “Jakarta Commons Logging” on page 26. 

About this task 

WebSphere Application Server provides the Jakarta Commons Logging binary distribution in its libraries  

directory. By default, the product uses the Jakarta Commons Logging LogFactory implementation and 

JDK14Logger. 

Note:   The default configuration of Jakarta Commons Logging is stored in the commons-logging.properties 

file. To specify the factory class to use with Jakarta Commons Logging in an application, provide a 

file named org.apache.commons.logging.LogFactory, located in META-INF/services directory, that 

 

Chapter 2. Adding logging and tracing to your application 25

http://jcp.org/en/jsr/detail?id=47
http://www-128.ibm.com/developerworks/webservices/library/ws-cbe/
http://jakarta.apache.org/commons/


contains the name of the factory class on the first line. This is the configuration mechanism for the 

JAR file service provider, as defined in JDK 1.3 and above. 

For an application to use the WebSphere Application Server logger, the application must provide its own 

configuration for the logger. To configure an application to use the WebSphere Application Server logger, 

complete the steps that follow. 

1.   Examine “Configurations for the WebSphere Application Server logger” on page 28 and determine 

which configuration best suits your application. 

2.   Change your application configuration as needed to enable use of the WebSphere Application Server 

logger.

Results 

After the application starts, Jakarta Commons Logging routes the application’s logging output to the 

WebSphere Application Server logger. 

Jakarta Commons Logging 

Jakarta Commons Logging provides a simple logging interface and thin wrappers for several logging 

systems. The logging interface enables application logging to be simple and independent of the logging 

system that the application uses. You can change the logging implementation for a deployed application 

without having to change the application logging code. However, the simplicity of the logging interface 

prevents the application from leveraging all the functionality of the logging systems. 

This topic provides the following information about Jakarta Commons Logging in WebSphere Application 

Server: 

v   “Support for Jakarta Commons Logging” 

v   “Benefits of support for Jakarta Commons Logging” 

v   “Overview of the process for using Jakarta Commons Logging” on page 27 

v   “Classes used to obtain a logger factory and logger” on page 27 

v   “Logger level configuration and mapping” on page 28 

Support for Jakarta Commons Logging 

The product supports Jakarta Commons Logging by providing a logger, a thin wrapper for the WebSphere 

Application Server logging facility. The logger can handle both Java Logging (JSR-47) and Common Base 

Event logging objects. A logging  object  is an object that holds logging entry information. 

The product support for Jakarta Commons Logging does not change interfaces defined by Jakarta 

Commons Logging. 

Benefits of support for Jakarta Commons Logging 

The WebSphere Application Server support for Jakarta Commons Logging provides the following benefits: 

v   WebSphere Application Server is pre-configured to use Jakarta Commons Logging. 

All of the functionality of Jakarta Commons Logging is provided for any application or WebSphere 

Application Server component. Logging calls are routed by default to the underlying WebSphere 

Application Server logging facility. 

v   A logger that uses the WebSphere Application Server logging facility. 

Applications and components can pass both Java Logging and Common Base Event logging objects to 

the WebSphere Application Server logger without conversion to strings, providing applications with 

enhanced logging. Further, Jakarta Commons Logging Logger levels are integrated into WebSphere 

Application Server administrative facilities.

 

26 Troubleshooting and support

http://jakarta.apache.org/commons/
http://jcp.org/en/jsr/detail?id=47
http://www.ibm.com/developerworks/library/specification/ws-cbe/
http://www.ibm.com/developerworks/library/specification/ws-cbe/


Overview of the process for using Jakarta Commons Logging 

Logging with Jakarta Commons Logging consists of the steps that follow. “Configurations for the 

WebSphere Application Server logger” on page 28 provides details on configuring your application to use 

the WebSphere Application Server logger. 

1.   Obtain an instance of a logger factory. 

To obtain a logger factory, use Jakarta Commons Logging code. You can configure the code to meet 

your needs. In WebSphere Application Server, Jakarta Commons Logging is configured by default to 

instantiate the Jakarta Commons Logging default logger factory. Applications or WebSphere Application 

Server components can provide their own configuration if they use a different logger factory 

implementation. Applications can use more than one factory. 

2.   Obtain an instance of a logger. 

To obtain a logger, use code implemented by a logger factory. Configuration of the code is 

implementation specific. 

The WebSphere Application Server logger implements the methods defined in the logging interface. 

The logging methods take at least one argument, which can be any Java object. The WebSphere 

Application Server logger, the WsJDK14Logger logger described in “Classes used to obtain a logger 

factory and logger,” handles the following objects passed into the following logging methods: 

CommonBaseEvent  

Wrapped into CommonBaseEventLogRecord 

CommonBaseEventLogRecord  

Passed without change 

LogRecord  

Passed without change 

Other  objects  

Converted to String

Applications or WebSphere Application Server components can provide their own configuration if they 

use an implementation of a logger that is not specific to WebSphere Application Server. An application 

must know what factory is being used in order to configure it. 

3.   Start your application. Jakarta Commons Logging routes the application’s logging output to the 

designated logger

Classes used to obtain a logger factory and logger 

 Class  name  Description  

LogFactory LogFactory  is a Jakarta Commons Logging class that implements initialization logic. LogFactory 

is an abstract class that every logger factory implementation has to extend. It provides static 

methods for obtaining: 

v   An instance of a factory class 

v   Instances of a logger, using an instance of the factory class

LogFactory provides methods for obtaining instances of loggers, although these methods 

delegate the logger instantiation and configuration to an instance of a logger factory class. 

Logger factories, once instantiated, are cached on a per context class loader basis. The 

instances in a cache can be released. This functionality is designed for platform container 

implementations rather than for applications. 

LogFactoryImpl LogFactoryImpl  is a Jakarta Commons Logging concrete class that implements the default 

logger factory using methods in LogFactory. To use Java Logging, there must always be at least 

one instance of a logger factory class, even if the application has not explicitly obtained one. If 

the configuration does not name a logger factory class, LogFactoryImpl is used as the default. 

 

Chapter 2. Adding logging and tracing to your application 27



Class  name  Description  

Log Log  is a Jakarta Commons Logging interface for loggers. Commons logging loggers have to 

implement the Log interface. Because the goal of Jakarta Commons Logging is to wrapper any 

logging system, the Log interface defines a small set of common logging methods. In 

WebSphere Application Server, WsJDK14Logger implements the Log interface. 

Logger instantiation and configuration is specific to every logger factory. Logging in WebSphere 

Application Server uses the default logger factory provided in Jakarta Commons Logging, which 

keeps instantiated loggers in cache, on a per class loader context basis. 

WsJDK14Logger WsJDK14Logger  is a WebSphere Application Server class that provides a Jakarta Commons 

Logging logger by implementing the Log interface. The WsJDK14Logger logger differs from the 

Java Logging logger in that the WsJDK14Logger logger enables Java Logging or Common Base 

Event objects to be passed over without converting them into String objects. This prevents any 

information loss the conversion to String might cause as well as allows the logging output to be 

more descriptive and precise. In contrast, the Java Logginglogger that is provided in Jakarta 

Commons Logging converts objects passed into the logging calls to String objects before 

passing them over to the underlying Java Logging.
  

Logger level configuration and mapping 

Because Jakarta Commons Logging loggers are thin wrappers for specific logging systems, the loggers do 

not have their own level, but use the level of the logger from the underlying logging system. Although the 

underlying system can provide methods for changing level, there are no methods for changing level 

defined on the Log interface, which all Jakarta Commons Logging logger must implement. 

WsJDK14Logger uses the level of its underlying Java Logging logger. 

Following table shows, on the left, the mapping of Jakarta Commons Logging levels within 

WsJDK14Logger to levels in the WebSphere Application Server implementation of Java Logging. On the 

right, it shows the levels defined in Java Logging and the level mapping in the Jakarta Commons Logging 

JDK14Logger to the Java Logging levels. 

 

WsJDK14Logger  

Java  Logging  in WebSphere  

Application  Server  Java  Logging  JDK14Logger  

Fatal Fatal 

Error Severe Severe Fatal, Error 

Warning Warning Warning Warning 

Audit 

Info Info Info Info 

Config Config 

Detail 

Debug Fine Fine Debug 

Finer Finer 

Trace Finest Finest Trace
  

The WsJDK14Logger level is synchronized with the underlying Java Logging logger level. WebSphere 

Application Server administration controls the WsJDK14Logger level. 

Configurations for the WebSphere  Application Server logger 

This topic describes several ways to configure an application to use the WebSphere Application Server 

logger. 

 

28 Troubleshooting and support



The type of configuration that best suits an application depends upon the following: 

v   Whether the class loader order setting for the application is Classes  loaded  with  parent  class  loader  

first  (Parent  First) or Classes  loaded  with  application  class  loader  first  (Parent  Last), you can 

set the class loader delegation mode on a console page. For more details about class load order and 

delegation, consult the class loading chapter in the Developing  and  deploying  applications  PDF book 

v   Whether Jakarta Commons Logging is bundled with the application configuration 

v   Whether Jakarta Commons Logging is provided within the application 

The following tables describe the conditions required to enable an application to use the WebSphere 

Application Server logger. 

Class  loader  mode  is  Parent  First  and Jakarta  Commons  Logging  is bundled  with  the  application  

 Jakarta  Commons  Logging  

configuration  

LogFactory  

instance  Log  instance  Comments  

The application provides the 

configuration by either of the 

following: 

v The properties file 

commons-logging.properties  in 

the application classpath is not  

read  by the LogFactory 

because the parent class 

loader finds the WebSphere 

properties file first. 

v The class name is read  from 

the file 

META-INF/services/  

org.apache.commons  

.logging.LogFactory  

The log factory 

used is the 

LogFactory 

implementation 

specified in the 

WebSphere 

Application Server 

default 

configuration, 

unless the 

configuration is 

provided in a 

META-INF file of 

the application or 

module. 

The log used is either 

of the following: 

v The Log 

implementation 

specified in the 

WebSphere 

Application Server 

default configuration 

v An application-
specific 

Log implementation if 

an application-specific 

LogFactory that 

instantiates a different 

Log implementation is 

used. 

The application  parent  class  loader  

is the first class loader to load the 

Jakarta Commons Logging code. The 

WebSphere  bundle  that supports 

Jakarta Commons Logging provides 

the LogFactory static code that looks 

up the LogFactory configuration 

attributes. 

For the static LogFactory code to 

instantiate the LogFactory instance 

specified in the application 

configuration, the LogFactory instance 

must be on the classpath of the parent  

class  loader. 

Not provided by the application The log factory 

used is the 

LogFactory 

implementation 

specified in the 

WebSphere default 

configuration. 

The log used is the 

Log implementation 

specified in the 

WebSphere default 

configuration. 

The Jakarta Commons Logging 

bundled with the application is not 

used.

  

Class  loader  mode  is  Parent  First  and Jakarta  Commons  Logging  is not  bundled  with  the  

application  

 

Chapter 2. Adding logging and tracing to your application 29



Jakarta  Commons  Logging  

configuration  

LogFactory  

instance  Log  instance  Comments  

The application provides the 

configuration by either of the 

following: 

v The properties file 

commons-logging.properties  in 

the application classpath is not  

read  by the LogFactory 

because the parent class 

loader finds the WebSphere 

Application Server properties 

file first. 

v The class name is read  from 

the file 

META-INF/services/  

org.apache.commons  

.logging.LogFactory  

The log factory 

used is the 

LogFactory 

implementation 

specified in the 

WebSphere 

Application Server 

default 

configuration, 

unless the 

configuration is 

provided in a 

META-INF file of 

the application or 

module. 

The log used is either 

of the following: 

v The Log 

implementation 

specified in the 

WebSphere 

Application Server 

default configuration 

v An 

application-specific 

Log implementation if 

an application-specific 

LogFactory that 

instantiates a different 

Log implementation is 

used. 

The application  parent  class  loader  

is the first class loader to load the 

Jakarta Commons Logging code. The 

WebSphere  bundle  that supports 

Jakarta Commons Logging provides 

the LogFactory static code that looks 

up the LogFactory configuration 

attributes. 

For the static LogFactory code to 

instantiate the LogFactory instance 

specified in the application 

configuration, the LogFactory instance 

must be on the classpath of the parent  

class  loader. 

Not provided by the application The log factory 

used is the 

LogFactory 

implementation 

specified in the 

WebSphere 

Application Server 

default 

configuration. 

The log used is the 

Log implementation 

specified in the 

WebSphere 

Application Server 

default configuration. 

Same as in the previous row

  

Class  loader  mode  is  Parent  Last  and Jakarta  Commons  Logging  is bundled  with  the  application  

 Jakarta  Commons  Logging  

configuration  

LogFactory  

instance  Log  instance  Comments  

The application provides the 

configuration by either of the 

following: 

v The properties file 

commons-logging.properties  in 

the application classpath is 

read  by the LogFactory 

because the class loader finds 

the application properties file 

first. 

v The class name is read  from 

the file 

META-INF/services/  

org.apache.commons  

.logging.LogFactory  

The log factory 

used is either of 

the following: 

v The default 

Jakarta Commons 

Logging 

LogFactory 

v The LogFactory 

specified in the 

application 

configuration 

The log used is the 

Log implementation 

specified in the 

application 

configuration. 

If the log factory used 

is the default Jakarta 

Commons Logging 

LogFactory, the Log 

implementation must 

be on the classpath 

of the application 

class loader. 

The application  class  loader  is the 

first class loader to load the Jakarta 

Commons Logging code. The 

application  bundle  that supports 

Jakarta Commons Logging provides 

the LogFactory static code that looks 

up the LogFactory configuration 

attributes. 

For the static LogFactory code to 

instantiate the LogFactory instance 

specified in the application 

configuration, the LogFactory instance 

must be on the classpath of the 

application  class  loader. 

 

30 Troubleshooting and support



Jakarta  Commons  Logging  

configuration  

LogFactory  

instance  Log  instance  Comments  

Not provided by the application The log factory 

used is the 

LogFactory 

implementation 

specified in the 

WebSphere 

Application Server 

default 

configuration. 

The log used is the 

Log implementation 

specified in the 

WebSphere 

Application Server 

default configuration. 

 

  

Class  loader  mode  is  Parent  Last  and Jakarta  Commons  Logging  is not  bundled  with  the  

application  

 Jakarta  Commons  Logging  

configuration  

LogFactory  

instance  Log  instance  Comments  

The application provides the 

configuration by either of the 

following: 

v The properties file 

commons-logging.properties  in 

the application classpath is 

read  by the LogFactory 

because the class loader finds 

the application properties file 

first. 

v The class name is read  from 

the file 

META-INF/services/  

org.apache.commons  

.logging.LogFactory  

The log factory 

used is either of 

the following: 

v The default 

Jakarta Commons 

Logging 

LogFactory 

v The LogFactory 

specified in the 

application 

configuration 

The log used is the 

Log implementation 

specified in the 

application 

configuration. 

If the log factory used 

is the default Jakarta 

Commons Logging 

LogFactory, the Log 

implementation must 

be on the classpath 

of the application 

class loader. 

There is no Jakarta Commons Logging 

code at the application class loader. 

Thus, the WebSphere  bundle  that 

supports Jakarta Commons Logging 

provides the LogFactory static code 

that looks up the LogFactory 

configuration attributes. 

For the static LogFactory code to 

instantiate the LogFactory instance 

specified in the application 

configuration, the LogFactory instance 

must be on the classpath of the parent  

class  loader. 

Not provided by the application The log factory 

used is the 

LogFactory 

implementation 

specified in the 

WebSphere 

Application Server 

default 

configuration. 

The log used is the 

Log implementation 

specified in the 

WebSphere 

Application Server 

default configuration. 

 

  

Programming with the JRas framework 

Use the JRas extensions to incorporate message logging and diagnostic trace into WebSphere Application 

Server applications. 

Before you begin 

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can 

achieve similar results using Java logging. 

 

Chapter 2. Adding logging and tracing to your application 31



About this task 

The JRas extensions allow message logging and diagnostic trace to work with WebSphere Application 

Server applications. They are based on the stand-alone JRas logging toolkit. 

1.   Retrieve a reference to the JRas manager. 

2.   Retrieve message and trace loggers by using methods on the returned manager. 

3.   Call the appropriate methods on the returned message and trace loggers to create message and trace 

entries, as appropriate.

JRas logging toolkit 

The JRas logging toolkit provides diagnostic information to help the administrator diagnose problems or 

tune application performance. 

Deprecated:  The JRas framework that is described in this task and its sub-tasks is deprecated. However, 

you can achieve similar results using Java logging. 

Developing, deploying, and maintaining applications are complex tasks. For example, when a running 

application encounters an unexpected condition, it might not be able to complete a requested operation. In 

such a case, you might want the application to inform the administrator that the operation failed and 

provide information. This action enables the administrator to take the proper corrective action. Those who 

develop or maintain applications might need to gather detailed information relating to the path of a running 

application to determine the root cause of a failure that is due to a code bug. The facilities that are used 

for these purposes are typically referred to as message  logging  and diagnostic  trace. 

Message logging (messages) and diagnostic trace (trace) are conceptually quite similar, but do have 

important differences. It is important for application developers to understand these differences to use 

these tools properly. To start with, the following operational definitions of messages and trace are provided. 

Message  

A message entry is an informational record that is intended for end users, systems administrators 

and support personnel to view. The text of the message must be clear, concise, and interpretable. 

Messages are typically localized, meaning that they display in the national language of the end 

user. Although the destination and lifetime of messages might be configurable, some level of 

message logging is always enabled in normal system operation. Message logging must be used 

judiciously due to both performance considerations and the size of the message repository. 

Trace  A trace entry is an information record that is intended for service engineers or developers to use. 

This trace record might be considerably more complex, verbose, and detailed than a message 

entry. Localization support is typically not used for trace entries. Trace entries can be fairly 

inscrutable, understandable only by the appropriate developer or service personnel. It is assumed 

that trace entries are not written during normal runtime operation, but might be enabled as needed 

to gather diagnostic information.

WebSphere Application Server provides a message logging and diagnostic trace API that applications can 

use. This API is based on the stand-alone JRas logging toolkit, which was developed by IBM. The 

stand-alone JRas logging toolkit is a collection of interfaces and classes that provide message logging and 

diagnostic trace primitives. These primitives are not tied to any particular product or platform. The 

stand-alone JRas logging toolkit provides a limited amount of support, which is typically referred to as 

systems  management  support, including log file configuration support based on property files. 

As designed, the stand-alone JRas logging toolkit does not contain the support that is required for 

integration into the WebSphere Application Server run time or for use in a Java 2 Platform, Enterprise 

Edition (J2EE) environment. To overcome these limitations, WebSphere Application Server provides a set 

of extension classes to address these shortcomings. This collection of extension classes is referred to as 

the JRas extensions. The JRas extensions do not modify the interfaces that are introduced by the 

 

32 Troubleshooting and support



stand-alone JRas logging toolkit, but provide the appropriate implementation classes. The conceptual 

structure that is introduced by the stand-alone JRas logging toolkit is described in the following section. It 

is equally applicable to the JRas extensions. 

JRas concepts 

The section contains a basic overview of important concepts and constructs that are introduced by the 

stand-alone JRas logging toolkit. This information is not an exhaustive overview of the capabilities of this 

logging toolkit, nor is it intended as a detailed discussion of usage or programming paradigms. More 

detailed information, including code examples, is available in JRas extensions and its subtopics, including 

in the API documentation for the various interfaces and classes that make up the logging toolkit. 

Event  types  

The stand-alone JRas logging toolkit defines a set of event types for messages and a set of event 

types for trace. Examples of message types include informational, warning, and error. Examples of 

trace types include entry, exit, and trace. 

Event  classes  

The stand-alone JRas logging toolkit defines both message and trace event classes. 

Loggers  

A logger is the primary object with which the user code interacts. Two types of loggers are defined: 

message loggers and trace loggers. The set of methods on message loggers and trace loggers 

are different because they provide different functionality. Message loggers create message records 

only and trace loggers create trace records only. Both types of loggers contain masks that indicate 

which categories of events the logger processes and which to ignore. Although every JRas logger 

is defined to contain both a message and trace mask, the message logger uses only the message 

mask and the trace logger uses the trace mask only. For example, by setting a message logger 

message mask to the appropriate state, it can be configured to process only error messages and 

ignore informational and warning messages. Changing the trace mask state of a message logger 

has no effect. 

 A logger contains one or more handlers to which it forwards events for further processing. When 

the user calls a method on the logger, the logger compares the event type that is specified by the 

caller to its current mask value. If the specified type passes the mask check, the logger creates an 

event object to capture the information relating to the event that passed to the logger method. This 

information can include information, such as the names of the class and method which logs the 

event, a message, and parameters to log, among others. When the logger creates the event 

object, it forwards the event to all handlers currently registered with the logger. 

Methods that are used within the logging infrastructure do not make calls to the logger method. 

When an application uses an object that extends a thread class, implements the hashCode 

method, and makes a call to the logging infrastructure from that method, the result is a recursive 

loop. 

Handlers  

A handler provides an abstraction over an output device or event consumer. An example is a file 

handler, which knows how to write an event to a file. The handler also contains a mask that is 

used to further restrict the categories of events the handler processes. For example, a message 

logger might be configured to pass both warning and error events, but a handler attached to the 

message logger might be configured to pass error events only. Handlers also include formatters, 

which the handler invokes to format the data in the passed event before it is written to the output 

device. 

Formatters  

Handlers are configured with formatters, which know how to format events of certain types. A 

handler can contain multiple formatters, each of which knows how to format a specific class of 

event. The event object is passed to the appropriate formatter by the handler. The formatter 

returns formatted output to the handler, which then writes it to the output device.

 

Chapter 2. Adding logging and tracing to your application 33



JRas Extensions 

JRas  extensions  are the collection of implementation classes that support JRas integration into the 

WebSphere Application Server environment. 

JRas extensions 

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve 

similar results using Java logging. 

The stand-alone JRas logging toolkit defines interfaces and provides a variety of concrete classes that 

implement these interfaces. Because the stand-alone JRas logging toolkit is developed as a general 

purpose toolkit, the implementation classes do not contain the configuration interfaces and methods that 

are necessary for use in the WebSphere Application Server product. In addition, many of the 

implementation classes are not written appropriately for use in a Java 2 Platform, Enterprise Edition 

(J2EE) environment. To overcome these shortcomings, WebSphere Application Server provides the 

appropriate implementation classes that support integration into the WebSphere Application Server 

environment. The collection of these implementation classes is referred to as the JRas  extensions. 

Usage model 

You can use the JRas extensions in three distinct operational modes: 

Integrated  

In this mode, message and trace records are written only to logs that are defined and maintained 

by the WebSphere Application Server run time. This mode is the default mode of operation and is 

equivalent to the WebSphere Application Server V4.0 mode of operation. 

stand-alone  

In this mode, message and trace records are written solely to stand-alone logs that are defined 

and maintained by the user. You control which categories of events are written to which logs, and 

the format in which entries are written. You are responsible for configuration and maintenance of 

the logs. Message and trace entries are not written to WebSphere Application Server runtime logs. 

Combined  

In this mode, message and trace records are written to both WebSphere Application Server 

runtime logs and to stand-alone logs that you must define, control, and maintain. You can use 

filtering controls to determine which categories of messages and trace are written to which logs.

The JRas extensions are specifically targeted to an integrated mode of operation. The integrated mode of 

operation can be appropriate for some usage scenarios, but many scenarios are not adequately addressed 

by these extensions. Many usage scenarios require a stand-alone or combined mode of operation instead. 

A set of user extension points are defined that support JRas extensions in either a stand-alone or 

combined mode of operations. 

JRas extension classes 

WebSphere Application Server provides a base set of implementation classes that are collectively referred 

to as the JRas  extensions. Many of these classes provide the appropriate implementations of loggers, 

handlers, and formatters for use in a WebSphere Application Server environment. 

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve 

similar results using Java logging. 

The collection of JRas classes is targeted at an integrated mode of operation. If you choose to use the 

JRas extensions in either stand-alone or combined mode, you can reuse the logger and manager class 

that are provided by the extensions, but you must provide your own implementations of handlers and 

formatters. 

 

34 Troubleshooting and support



WebSphere Application Server message and trace loggers 

The message and trace loggers that are provided by the stand-alone JRas logging toolkit cannot be 

directly used in the WebSphere Application Server environment. The JRas extensions provide the 

appropriate logger implementation classes. Instances of these message and trace logger classes are 

obtained directly and exclusively from the WebSphere Application Server Manager class. You cannot 

directly instantiate message and trace loggers. Obtaining loggers in any manner other than directly from 

the Manager class is not allowed and directly violates the programming model. 

The message and trace logger instances that are obtained from the WebSphere Application Server 

Manager class are subclasses of the RASMessageLogger and RASTraceLogger classes that are provided 

by the stand-alone JRas logging toolkit. The RASMessageLogger and RASTraceLogger classes define the 

set of methods that are directly available. Public methods that are introduced by the JRas extensions 

logger subclasses cannot be called directly by user code because it is a violation of the programming 

model. 

Loggers are named objects and are identified by name. When the Manager class is called to obtain a 

logger, the caller is required to specify a name for the logger. The Manager class maintains a 

name-to-logger instance mapping. Only one instance of a named logger is ever created within the lifetime 

of a process. The first call to the Manager class with a particular name results in the logger, which is 

configured by the Manager class. The Manager class caches a reference to the instance, then returns it to 

the caller. Subsequent calls to the Manager class that specify the same name result in a returned 

reference to the cached logger. Separate namespaces are maintained for message and trace loggers. You 

can use a single name obtain both a message logger and a trace logger from the Manager, without 

ambiguity, and without causing a namespace collision. 

In general, loggers have no predefined granularity or scope. A single logger can be used to instrument an 

entire application. You might determine that having a logger per class is more effective, or the appropriate 

granularity might be somewhere in between. Partitioning an application into logging domains is determined 

by the application writer. 

The WebSphere Application Server logger classes that are obtained from the Manager class are 

thread-safe. Although the loggers provided as part of the stand-alone JRas logging toolkit implement the 

serializable interface, loggers are not serializable. Loggers are stateful objects, tied to a Java virtual 

machine instance and are not serializable. Attempting to serialize a logger is a violation of the 

programming model. 

Personal or individual logger subclasses are not supported in a WebSphere Application Server 

environment. 

WebSphere Application Server handlers 

WebSphere Application Server provides the appropriate handler class that is used to write message and 

trace events to the WebSphere Application Server run time logs. You cannot configure the WebSphere 

Application Server handler to write to any other destination. The creation of a WebSphere Application 

Server handler is a restricted operation and is not available to user code. Every logger that is obtained 

from the Manager comes preconfigured with an instance of this handler already installed. You can remove 

the WebSphere Application Server handler from a logger when you want to run in stand-alone mode. 

When you remove it, you cannot add the WebSphere Application Server handler again to the logger from 

which it is removed or any other logger. Also, you cannot directly call any method on the WebSphere 

Application Server handler. Attempting to create an instance of the WebSphere Application Server handler, 

to call methods on the WebSphere Application Server handler or to add a WebSphere Application Server 

handler to a logger by user code is a violation of the programming model. 

 

Chapter 2. Adding logging and tracing to your application 35



WebSphere Application Server formatters 

The WebSphere Application Server handler comes preconfigured with the appropriate formatter for data 

that is written to WebSphere Application Server logs. The creation of a WebSphere Application Server 

formatter is a restricted operation and not available to user code. No mechanism exists that allows the 

user to obtain a reference to a formatter installed in a WebSphere Application Server handler, or to change 

the formatter a WebSphere Application Server handler is configured to use. 

WebSphere Application Server manager 

WebSphere Application Server provides a Manager class in the com.ibm.websphere.ras package. All 

message and trace loggers must be obtained from this Manager class. A reference to the Manager class is 

obtained by calling the static Manager.getManager method. Message loggers are obtained by calling the 

createRASMessageLogger method on the Manager class. Trace loggers are obtained by calling the 

createRASTraceLogger method on the Manager class. 

The manager also supports a group  abstraction that is useful when dealing with trace loggers. The group 

abstraction supports multiple, unrelated trace loggers to register as part of a named entity called a group. 

WebSphere Application Server provides the appropriate systems management facilities to manipulate the 

trace setting of a group, similar to the way the trace settings of an individual trace logger work. 

For example, suppose component A consists of 10 classes. Suppose each class is configured to use a 

separate trace logger. All 10 trace loggers in the component are registered as members of the same 

group, for example, Component_A_Group. You can turn on trace for a single class, or you can turn on 

trace for all 10 classes in a single operation using the group name, if you want a component trace. Group 

names are maintained within the namespace for trace loggers. 

JRas framework (deprecated) 

Because the JRas extensions classes do not provide the flexibility and behavior that are required for many 

scenarios, a variety of extension points are defined. You can write your own implementation classes to 

obtain the required behavior. 

Deprecated:  The JRas framework described in this topic is deprecated. However, you can achieve similar 

results using Java logging. 

In general, the JRas extensions require you to call the Manager class to obtain a message logger or trace 

logger. No provision is made for you to provide your own message or trace logger subclasses. In general, 

user-provided extensions cannot be used to affect the integrated mode of operation. The behavior of the 

integrated mode of operation is solely determined by the WebSphere Application Server run time and the 

JRas extensions classes. 

Handlers 

The stand-alone JRas logging toolkit defines the RASIHandler interface. All handlers must implement this 

interface. You can write your own handler classes that implement the RASIHandler interface. Directly 

create instances of user-defined handlers and add them to the loggers that are obtained from the Manager 

class. 

The stand-alone JRas logging toolkit provides several handler implementation classes. These handler 

classes are inappropriate for use in the Java 2 Platform, Enterprise Edition (J2EE) environment. You 

cannot directly use or subclass any of the Handler classes that are provided by the stand-alone JRas 

logging toolkit. Doing so is a violation of the programming model. 

 

36 Troubleshooting and support



Formatters 

The stand-alone JRas logging toolkit defines the RASIFormatter interface. All formatters must implement 

this interface. You can write your own formatter classes that implement the RASIFormatter interface. You 

can add these classes to a user-defined handler only. WebSphere Application Server handlers cannot be 

configured to use user-defined formatters. Instead, directly create instances of your formatters and add 

them to the your handlers appropriately. 

As with handlers, the stand-alone JRas logging toolkit provides several formatter implementation classes. 

Direct use of these formatter classes is not supported. 

Message event types 

The stand-alone JRas toolkit defines message event types in the RASIMessageEvent interface. In 

addition, the WebSphere Application Server reserves a range of message event types for future use. The 

RASIMessageEvent interface defines three types, with values of 0x01, 0x02, and 0x04. The values 0x08  

through 0x8000  are reserved for future use. You can provide your own message event types by extending 

this interface appropriately. User-defined message types must have a value of 0x1000  or greater. 

Message loggers that are retrieved from the Manager class have their message masks set to pass  or 

process all message event types defined in the RASIMessageEvent interface. To process user-defined 

message types, you must manually set the message logger mask to the appropriate state by user code 

after the message logger is obtained from the Manager class. WebSphere Application Server does not 

provide any built-in systems management support for managing message types. 

Message event objects 

The stand-alone JRas toolkit provides a RASMessageEvent implementation class. When a message 

logging method is called on the message logger, and the message type is currently enabled, the logger 

creates and distributes an event of this class to all handlers that are currently registered with that logger. 

You can provide your own message event classes, but they must implement the RASIEvent interface. You 

must directly create instances of such user-defined message event classes. When it is created, pass your 

message event to the message logger by calling the message logger’s fireRASEvent method directly. 

WebSphere Application Server message loggers cannot directly create instances of user-defined types in 

response to calling a logging method (msg.message) on the logger. In addition, instances of user-defined 

message types are never processed by the WebSphere Application Server handler. You cannot create 

instances of the RASMessageEvent class directly. 

Trace event types 

The stand-alone JRas toolkit defines trace event types in the RASITraceEvent interface. You can provide 

your own trace event types by extending this interface appropriately. In such a case, you must ensure that 

the values for the user-defined trace event types do not collide with the values of the types that are 

defined in the RASITraceEvent interface. 

Trace loggers that are retrieved from the Manager class typically have their trace masks set to reject all 

types. A different starting state can be specified by using WebSphere Application Server systems 

management facilities. In addition, you can change the state of the trace mask for a logger at run-time, 

using WebSphere Application Server systems management facilities. 

To process user-defined trace types, the trace logger mask must be manually set to the appropriate state 

by user code. WebSphere Application Server systems management facilities cannot be used to manage 

user-defined trace types, either at start time or run time. 

 

Chapter 2. Adding logging and tracing to your application 37



Trace event objects 

The stand-alone JRas toolkit provides a RASTraceEvent implementation class. When a trace logging 

method is called on the WebSphere Application Server trace logger and the type is currently enabled, the 

logger creates and distributes an event of this class to all the handlers that are currently registered with 

that logger. 

You can provide your own trace event classes. Such trace event classes must implement the RASIEvent 

interface. You must create instances of such user-defined event classes directly. When it is created, pass 

the trace event to the trace logger by calling the trace logger’s fireRASEvent method directly. WebSphere 

Application Server trace loggers cannot directly create instances of user-defined types in response to 

calling a trace method (entry, exit, trace) on the trace logger. In addition, instances of user-defined trace 

types are never processed by the WebSphere Application Server handler. You cannot create instances of 

the RASTraceEvent class directly. 

User defined types, user defined events and WebSphere Application Server 

By definition, the WebSphere Application Server handler processed user-defined message or trace types, 

or user-defined message or trace event classes. Message and trace entries of either a user-defined type 

or user-defined event class cannot be written to the WebSphere Application Server run-time logs. 

JRas  programming  interfaces  for  logging  (deprecated):   

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve 

similar results using Java logging. 

 General  considerations  

You can configure the WebSphere Application Server to use Java 2 security to restrict access to protected 

resources such as the file system and sockets. Because user-written extensions typically access such 

protected resources, user-written extensions must contain the appropriate security checking calls, using 

AccessController doPrivileged calls. In addition, the user-written extensions must contain the appropriate 

policy file. In general, locating user-written extensions in a separate package is a good practice. It is your 

responsibility to restrict access to the user-written extensions appropriately. 

Writing  a handler  

User-written handlers must implement the RASIHandler interface. The RASIHandler interface extends the 

RASIMaskChangeGenerator interface, which extends the RASIObject interface. A short discussion of the 

methods that are introduced by each of these interfaces follows, along with implementation pointers. For 

more in-depth information on any of the particular interfaces or methods, see the corresponding product 

API documentation. 

RASIObject  interface  

The RASIObject interface is the base interface for stand-alone JRas logging toolkit classes that are 

stateful or configurable, such as loggers, handlers, and formatters. 

v   The stand-alone JRas logging tookit supports rudimentary properties-file based configuration. To 

implement this configuration support, the configuration state is stored as a set of key-value pairs in a 

properties file. The public Hashtable getConfig and public void setConfig(Hashtable ht) methods are 

used to get and set the configuration state. The JRas extensions do not support properties-based 

configuration. Implement these methods as no-operations. You can implement your own 

properties-based configuration using these methods. 

v   Loggers, handlers, and formatters can be named objects. For example, the JRas extensions require the 

user to provide a name for the loggers that are retrieved from the manager. You can name your 

handlers. The public String getName and public void setName(String name) methods are provided to 

 

38 Troubleshooting and support



get or set the name field. The JRas extensions currently do not call these methods on user handlers. 

You can implement these methods as you want, including as no operations. 

v   Loggers, handlers, and formatters can also contain a description field. The public String getDescription 

and public void setDescription(String desc) methods can be used to get or set the description field. The 

JRas extensions currently do not use the description field. You can implement these methods as you 

want, including as no operations. 

v   The public String getGroup method is provided for use by the RASManager interface. Since the JRas 

extensions provide their own Manager class, this method is never called. Implement this as a 

no-operation.

RASIMaskChangeGenerator  interface  

The RASIMaskChangeGenerator interface is the interface that defines the implementation methods for 

filtering of events based on a mask state. It is currently implemented by both loggers and handlers. By 

definition, an object that implements this interface contains both a message mask and a trace mask, 

although both need not be used. For example, message loggers contain a trace mask, but the trace mask 

is never used because the message logger never generates trace events. Handlers, however, can actively 

use both mask values. For example, a single handler can handle both message and trace events. 

v   The public long getMessageMask and public void setMessageMask(long mask) methods are used to 

get or set the value of the message mask. The public long getTraceMask and public void 

setTraceMask(long mask) methods are used to get or set the value of the trace mask.

In addition, this interface introduces the concept of calling  back  to interested parties when a mask changes 

state. The callback object must implement the RASIMaskChangeListener interface. 

v   The public void addMaskChangeListener(RASIMaskChangeListener listener) and public void 

removeMaskChangeListener(RASIMaskChangeListener listener) methods are used to add or remove 

listeners to the handler. The public Enumeration getMaskChangeListeners method returns an 

enumeration over the list of currently registered listeners. The public void 

fireMaskChangedEvent(RASMaskChangeEvent mc) method is used to call back all the registered 

listeners to inform them of a mask change event.

For efficiency reasons, the JRas extensions message and trace loggers implement the 

RASIMaskChangeListener interface. The logger implementations maintain a composite mask in addition to 

the logger mask. The logger composite mask is formed by logically or’ing  the appropriate masks of all 

handlers that are registered to that logger, then and’ing  the result with the logger mask. For example, the 

message logger composite mask is formed by or’ing the message masks of all handlers that are registered 

with that logger, then and’ing the result with the logger message mask. 

All handlers are required to properly implement these methods. In addition, when a user handler is 

instantiated, the logger that is added must be registered with the handler; use the addMaskChangeListener 

method. When either the message mask or trace mask of the handler is changed, the logger must be 

called back to inform it of the mask change. With this process, the logger can dynamically maintain the 

composite mask. 

The RASMaskChangedEvent class is defined by the stand-alone JRas logging toolkit. Direct use of that 

class by user code is supported in this context. 

In addition, the RASIMaskChangeGenerator interface introduces the concept of caching the names of all 

message and trace event classes that the implementing object process. The intent of these methods is to 

support a management program such as a graphical user interface to retrieve the list of names, introspect 

the classes to determine the event types that they might possibly process and display the results. The 

JRas extensions do not ever call these methods, so they can be implemented as no operations. 

v   The public void addMessageEventClass(String name) and public void 

removeMessageEventClass(String name) methodscan be called to add or remove a message event 

class name from the list. The method public Enumeration getMessageEventClasses returns an 

enumeration over the list of message event class names. Similarly, the public void 

 

Chapter 2. Adding logging and tracing to your application 39



addTraceEventClass(String name) and public void removeTraceEventClass(String name) methods can 

be called to add or remove a trace event class name from the list. The public Enumeration 

getTraceEventClasses method returns an enumeration over the list of trace event class names.

RASIHandler  interface  

The RASIHandler interface introduces the methods that are specific to the behavior of a handler. 

The RASIHandler interface, as provided by the stand-alone JRas logging toolkit, supports handlers that 

run in either a synchronous or asynchronous mode. In asynchronous mode, events are typically queued by 

the calling thread and then written by a worker thread. Because spawning of threads is not supported in 

the WebSphere Application Server environment, it is expected that handlers do not queue or batch events, 

although this activity is not expressly prohibited. 

v   The public int getMaximumQueueSize() and public void setMaximumQueueSize(int size) methods 

create IllegalStateException  exceptions to manage the maximum queue size. The public int 

getQueueSize method is provided to query the actual queue size. 

v   The public int getRetryInterval and public void setRetryInterval(int interval) methods support the notion 

of error retry, which implies some type of queueing. 

v   The public void addFormatter(RASIFormatter formatter), public void removeFormatter(RASIFormatter 

formatter) and public Enumeration getFormatters methods are provided to manage the list of formatters 

that the handler can be configured with. Different formatters can be provided for different event classes, 

if appropriate. 

v   The public void openDevice, public void closeDevice and public void stop methods are provided to 

manage the underlying device that the handler abstracts. 

v   The public void logEvent(RASIEvent event) and public void writeEvent(RASIEvent event) methods are 

provided to pass events to the handler for processing.

Writing  a formatter  

User-written formatters must implement the RASIFormatter interface. The RASIFormatter interface extends 

the RASIObject interface. The implementation of the RASIObject interface is the same for both handlers 

and formatters. A short discussion of the methods that are introduced by the RASIFormatter interface 

follows. For more in-depth information on the methods introduced by this interface, see the corresponding 

product API documentation. 

RASIFormatter  interface  

v   The public void setDefault(boolean flag) and public boolean isDefault methods are used by the concrete 

RASHandler classes that are provided by the stand-alone JRas logging toolkit to determine if a 

particular formatter is the default formatter. Because these RASHandler classes must never be used in 

a WebSphere Application Server environment, the semantic significance of these methods can be 

determined by the user. 

v   The public void addEventClass(String name), public void removeEventClass(String name) and public 

Enumeration getEventClasses methods are provided to determine which event classes a formatter can 

use to format. You can provide the appropriate implementations. 

v   The public String format(RASIEvent event) method is called by handler objects and returns a formatted 

String representation of the event.

Programming model summary 

The programming model that is described in this section builds upon and summarizes some of the 

concepts already introduced. This section also formalizes usage requirements and restrictions. Use of the 

WebSphere Application Server JRas extensions in a manner that does not conform to the following 

programming guidelines is prohibited. 

Deprecated:  The JRas framework described in this task and its sub-tasks is deprecated. However, you 

can achieve similar results using Java logging. 

 

40 Troubleshooting and support



You can use the WebSphere Application Server JRas extensions in three distinct operational modes. The 

programming models concepts and restrictions apply equally across all modes of operation. 

v   You must not use implementation classes that are provided by the stand-alone JRas logging toolkit 

directly, unless specifically noted otherwise. Direct usage of those classes is not supported. IBM 

Support provides no diagnostic aid or bug fixes relating to the direct use of classes that are provided by 

the stand-alone JRas logging toolkit. 

v   You must obtain message and trace loggers directly from the Manager class. You cannot directly 

instantiate loggers. 

v   You cannot replace the WebSphere Application Server message and trace logger classes. 

v   You must guarantee that the logger names that are passed to the Manager class are unique, and follow 

the documented naming constraints. When a logger is obtained from the Manager class, you must not 

attempt to change the name of the logger by calling the setName method. 

v    Named loggers can be used more than once. For any given name, the first call to the Manager class 

results in the Manager class creating a logger that is associated with that name. Subsequent calls to the 

Manager class that specify the same name result in a returned reference to the existing logger. 

v    The Manager class maintains a hierarchical namespace for loggers. Use a dot-separated, fully qualified 

class name to identify any logger. Other than dots or periods, logger names cannot contain any 

punctuation characters, such as an asterisk (*), a comma (.), an equals sign (=), a colon (:), or quotes. 

v    Group names must comply with the same naming restrictions as logger names. 

v    The loggers returned from the Manager class are subclasses of the RASMessageLogger and the 

RASTraceLogger classes that are provided by the stand-alone JRas logging toolkit. You can call any 

public method that is defined by the RASMessageLogger and RASTraceLogger classes. You cannot call 

any public method that is introduced by the provided subclasses. 

v    If you want to operate in either stand-alone or combined mode, you must provide your own Handler 

and Formatter subclasses. You cannot use the Handler and Formatter classes that are provided by the 

stand-alone JRas logging toolkit. User written handlers and formatters must conform to the documented 

guidelines. 

v    Loggers that are obtained from the Manager class come with a WebSphere Application Server handler 

installed. This handler writes message and trace records to logs that are defined by the WebSphere 

Application Server run time. Manage these logs using the provided systems management interfaces. 

v    You can programmatically add and remove user-defined handlers from a logger at any time. Multiple 

additions and removals of user defined handlers are supported. You are responsible for creating an 

instance of the handler to add, configuring the handler by setting the handler mask value and formatter 

appropriately, then adding the handler to the logger using the addHandler method. You are responsible 

for programmatically updating the masks of user-defined handlers, as appropriate. 

v    You might get a reference to the handler that is installed within a logger by calling the getHandlers 

method on the logger and processing the results. You must not call any methods on the handler that are 

obtained in this way. You can remove the WebSphere Application Server handler from the logger by 

calling the logger removeHandler method, passing in the reference to the WebSphere Application 

Server handler. When removed, the WebSphere Application Server handler cannot be added again to 

the logger. 

v    You can define your own message type. The behavior of user-defined message types and restrictions 

on their definitions is discussed in Extending the JRas framework. 

v    You can define your own message event classes.  The use of user-defined message event classes is 

discussed in Extending the JRas framework. 

v    You can define your own trace types. The behavior of user-defined trace types and restrictions on your 

definitions is discussed in Extending the JRas framework. 

v    You can define your own trace event classes. The use of user-defined trace event classes is discussed 

in Extending the JRas framework. 

v    You must programmatically maintain the bits in the message and trace logger masks that correspond to 

any user-defined types. If WebSphere Application Server facilities are used to manage the predefined 

types, these updates must not modify the state of any of the bits that correspond to those types. If you 

are assuming ownership responsibility for the predefined types, then you can change all bits of the 

masks.

 

Chapter 2. Adding logging and tracing to your application 41



JRas messages and trace event types 

The basic JRas message and event types are not the same as those natively recognized by WebSphere 

Application Server, so the JRas types are mapped onto the types that are native to the runtime 

environment. You can control the way JRas message and trace events are processed using custom filters 

and message controls. 

Event types 

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve 

similar results using Java logging. 

The base message and trace event types that are defined by the stand-alone JRas logging toolkit are not 

the same as the native types that are recognized by the WebSphere Application Server run-time. Instead, 

the basic JRas types are mapped onto the native types. This mapping can vary by platform or edition. The 

mapping is discussed in the following section. 

Platform message event types 

The message event types that are recognized and processed by the WebSphere Application Server 

runtime are defined in the RASIMessageEvent interface that is provided by the stand-alone JRas logging 

toolkit. These message types are mapped onto the native message types, as follows. 

 WebSphere  Application  Server  native  type  JRas  RASIMessageEvent  type  

Audit TYPE_INFO, TYPE_INFORMATION 

Warning TYPE_WARN, TYPE_WARNING 

Error TYPE_ERR, TYPE_ERROR
  

Platform trace event types 

The trace event types that are recognized and processed by the WebSphere Application Server run time 

are defined in the RASITraceEvent interface that is provided by the stand-alone JRas logging toolkit. The 

RASITraceEvent interface provides a rich and complex set of types. This interface defines both a simple 

set of levels, as well as a set of enumerated types. 

v   For a user who prefers a simple set of levels, the RASITraceEvent interface provides TYPE_LEVEL1, 

TYPE_LEVEL2, and TYPE_LEVEL3. The implementations provide support for this set of levels. The levels 

are hierarchical, enabling level 2 also enables level 1, enabling level 3 also enables levels 1 and 2. 

v   For users who prefer a more complex set of values that can be OR’d  together, the RASITraceEvent 

interface provides TYPE_API, TYPE_CALLBACK, TYPE_ENTRY_EXIT, TYPE_ERROR_EXC, TYPE_MISC_DATA, 

TYPE_OBJ_CREATE, TYPE_OBJ_DELETE, TYPE_PRIVATE, TYPE_PUBLIC, TYPE_STATIC, and TYPE_SVC.

The trace event types are mapped onto the native trace types as follows: 

Mapping WebSphere Application Server trace types to the JRas RASITraceEvent level types. 

 WebSphere  Application  Server  native  type  JRas  RASITraceEvent  level  type  

Event TYPE_LEVEL1 

EntryExit TYPE_LEVEL2 

Debug TYPE_LEVEL3
  

Mapping WebSphere Application Server trace types to the JRas RASITraceEvent enumerated types. 

 WebSphere  Application  Server  native  type  JRas  RASITraceEvent  enumerated  types  

 

42 Troubleshooting and support



Event TYPE_ERROR_EXC, TYPE_SVC, TYPE_OBJ_CREATE, 

TYPE_OBJ_DELETE 

EntryExit TYPE_ENTRY_EXIT, TYPE_API, TYPE_CALLBACK, 

TYPE_PRIVATE, TYPE_PUBLIC, TYPE_STATIC 

Debug TYPE_MISC_DATA
  

For simplicity, it is recommended that one or the other of the tracing type methodologies is used 

consistently throughout the application. If you decide to use the non-level types, choose one type from 

each category and use those types consistently throughout the application, to avoid confusion. 

Message and trace parameters 

The various message logging and trace method signatures accept the Object, Object[]  and Throwable  

parameter types. WebSphere Application Server processes and formats the various parameter types as 

follows: 

Primitives  

Primitives, such as int and long are not recognized as subclasses of Object type and cannot be 

directly passed to one of these methods. A primitive value must be transformed to a proper Object 

type (Integer, Long) before passing as a parameter. 

Object  

The toString method is called on the object and the resulting String is displayed. Implement the 

toString method appropriately for any object that is passed to a message logging or trace method. 

It is the responsibility of the caller to guarantee that the toString method does not display 

confidential data such as passwords in clear text, and does not cause infinite recursion. 

Object[]  

The Object[] type is provided for the case when more than one parameter is passed to a message 

logging or trace method. The toString method is called on each Object in the array. Nested arrays 

are not handled, that is none of the elements in the Object array belong in an array. 

Throwable  

The stack trace of the Throwable type is retrieved and displayed. 

Array  of  primitives  

An array of primitive, for example, byte[], int[], is recognized as an Object, but is treated 

somewhat as a second cousin of Object by Java code. In general, avoid arrays of primitives, if 

possible. If arrays of primitives are passed, the results are indeterminate and can change, 

depending on the type of array passed, the API used to pass the array, and the release of the 

product. For consistent results, user code needs to preprocess and format the primitive array into 

some type of String form before passing it to the method. If such preprocessing is not performed, 

the following problems can result: 

v   [B@924586a0b - This message is deciphered as a byte array at location X. This message is 

typically returned when an array is passed as a member of an Object[] type and results from 

calling the toString method on the byte[] type. 

v   Illegal trace argument : array of long. This response is typically returned when an array of 

primitives is passed to a method taking an Object. 

v   01040703: The hex representation of an array of bytes. Typically this problem can occur when a 

byte array is passed to a method taking a single Object. This behavior is subject to change and 

cannot be relied on. 

v   ″1″  ″2″: The String representation of the members of an int[] type formed by converting each 

element to an integer and calling the toString method on the integers. This behavior is subject 

to change and cannot be relied on. 

v   [Ljava.lang.Object;@9136fa0b : An array of objects. Typically this response is seen when an 

array containing nested arrays is passed.

 

Chapter 2. Adding logging and tracing to your application 43



Controlling message logging 

Writing a message to a WebSphere Application Server log requires that the message type passes three 

levels of filtering or screening: 

1.   The message event type must be one of the message event types that is defined in the 

RASIMessageEvent interface. 

2.   Logging of that message event type must be enabled by the state of the message logger mask. 

3.   The message event type must pass any filtering criteria that is established by the WebSphere 

Application Server run-time.

When a WebSphere Application Server logger is obtained from the Manager class, the initial setting of the 

mask forwards all native message event types to the WebSphere Application Server handler. It is possible 

to control what messages get logged by programmatically setting the state of the message logger mask. 

Some editions of the product support user specified message filter levels for a server process. When such 

a filter level is set, only messages at the specified severity levels are written to WebSphere Application 

Server. Message types that pass the mask check of the message logger can be filtered out by WebSphere 

Application Server. 

Control tracing 

Each edition of the product provides a mechanism for enabling or disabling trace. The various editions can 

support static trace enablement (trace settings are specified before the server is started), dynamic trace 

enablement (trace settings for a running server process can be dynamically modified), or both. 

Writing a trace record to a WebSphere Application Server requires that the trace type passes three levels 

of filtering or screening: 

1.   The trace event type must be one of the trace event types that is defined in the RASITraceEvent 

interface. 

2.   Logging of that trace event type must be enabled by the state of the trace logger mask. 

3.   The trace event type must pass any filtering criteria that is established by the WebSphere Application 

Server run-time.

When a logger is obtained from the Manager class, the initial setting of the mask is to suppress all trace 

types. The exception to this rule is the case where the WebSphere Application Server run time supports 

static trace enablement and a non-default startup trace state for that trace logger is specified. Unlike 

message loggers, the WebSphere Application Server can dynamically modify the trace mask state of a 

trace logger. WebSphere Application Server only modifies the portion of the trace logger mask that 

corresponds to the values that are defined in the RASITraceEvent interface. WebSphere Application 

Server does not modify undefined bits of the mask that might be in use for user-defined types. 

When the dynamic trace enablement feature that is available on some platforms is used, the trace state 

change is reflected both in the application server run time and the trace mask of the trace logger. If user 

code programmatically changes the bits in the trace mask corresponding to the values that are defined by 

in the RASITraceEvent interface, the mask state of the trace logger and the run time state become 

unsynchronized and unexpected results occur. Therefore, programmatically changing the bits of the mask 

corresponding to the values that are defined in the RASITraceEvent interface is not supported. 

Related  tasks  

“Programming with the JRas framework” on page 31
Use the JRas extensions to incorporate message logging and diagnostic trace into WebSphere Application 

Server applications.

Instrumenting an application with JRas extensions 

You can create an application using JRas extensions. 

 

44 Troubleshooting and support



Before you begin 

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can 

achieve similar results using Java logging. 

About this task 

To create an application using the WebSphere Application Server JRas extensions, perform the following 

steps: 

1.   Determine the mode for the extensions: integrated, stand-alone, or combined. 

2.   If the extensions are used in either stand-alone or combined mode, create the necessary handler and 

formatter classes. 

3.   If localized messages are used by the application, create a resource bundle. 

4.   In the application code, get a reference to the Manager class and create the manager and logger 

instances. 

5.   Insert the appropriate message and trace logging statements in the application.

Creating JRas resource bundles and message files 

The WebSphere Application Server message logger provides the message and msg methods so the user 

can log localized messages. In addition, the message logger provides the textMessage method to log 

messages that are not localized. Applications can use either or both, as appropriate. 

Before you begin 

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can 

achieve similar results using Java logging. 

About this task 

The mechanism for providing localized messages is the resource bundle support that is provided by the 

IBM Developer Kit, Java Technology Edition. If you are not familiar with resource bundles as implemented 

by the Developer Kit, you can get more information from various texts, or by reading the API 

documentation for the java.util.ResourceBundle, java.util.ListResourceBundle and 

java.util.PropertyResourceBundle classes, as well as the java.text.MessageFormat class. 

The PropertyResourceBundle class is the preferred mechanism to use. In addition, note that the JRas 

extensions do not support the extended formatting options such as {1, date} or {0, number, integer} that 

are provided by the MessageFormat class. 

You can forward messages that are written to the internal WebSphere Application Server logs to other 

processes for display. For example, messages that are displayed on the administrative console, which can 

be running in a different location than the server process, can be localized using the late  binding  process. 

Late binding means that WebSphere Application Server does not localize messages when they are logged, 

but defers localization to the process that displays the message. 

To properly localize the message, the displaying process must have access to the resource bundle where 

the message text is stored. You must package the resource bundle separately from the application, and 

install it in a location where the viewing process can access it. If you do not want to take these steps, you 

can use the early binding technique to localize messages as they are logged. 

The two techniques are described as follows: 

Early  binding  

The application must localize the message before logging it. The application looks up the localized 

 

Chapter 2. Adding logging and tracing to your application 45



text in the resource bundle and formats the message. When formatting is complete, the application 

logs the message using the textMessage method. Use this technique to package the application 

resource bundles with the application. 

Late  binding  

The application can choose to have the WebSphere Application Server run time localize the 

message in the process where it displays. Using this technique, the resource bundles are 

packaged in a stand-alone .jar  file, separately from the application. You must then install the 

resource bundle .jar  file on every machine in the installation from which an administrative console 

or log viewing program might be run. You must install the .jar  file in a directory that is part of the 

extensions class path. In addition, if you forward logs to IBM service, you must also forward the 

.jar  file that contains the resource bundles.

To create a resource bundle, perform the following steps. 

1.   Create a text properties file that lists message keys and the corresponding messages. The properties 

file must have the following characteristics: 

v   Each property in the file is terminated with a line-termination character. 

v   If a line contains only white space, or if the first non-white space character of the line is the number 

sign symbol (#) or exclamation mark (!), the line is ignored. The # and ! characters can therefore be 

used to put comments into the file. 

v   Each line in the file, unless it is a comment or consists only of white space, denotes a single 

property. A backslash (\) is treated as the line-continuation character. 

v   The syntax for a property file consists of a key, a separator, and an element. Valid separators 

include the equal sign (=), colon (:), and white space ( ). 

v   The key consists of all characters on the line from the first non-white space character to the first 

separator. Separator characters can be included in the key by escaping them with a backslash (\), 

but using this approach is not recommended because escaping characters is error prone and 

confusing. Instead, use a valid separator character that does not display in any keys in the 

properties file. 

v   White space after the key and separator is ignored until the first non-white space character is 

encountered. All characters that remain before the line-termination character define the element. 

See the Java documentation for the java.util.Properties class for a full description of the syntax and 

construction of properties files. 

2.   Translate the file into localized versions of the file with language-specific file names for example, the 

DefaultMessages.properties file can be translated into DefaultMessages_de.properties  for German 

and DefaultMessages_ja.properties  for Japanese. 

3.   When the translated resource bundles are available, write them to a system-managed persistent 

storage medium. Resource bundles are used to convert the messages into the requested national 

language and locale. 

4.    When a message logger is obtained from the JRas manager, configure the logger to use a particular 

resource bundle. Messages logged through the message  API use this resource bundle when message 

localization is performed. At run time, the user’s locale setting is used to determine the properties file 

from which to extract the message that is specified by a message key, ensuring that the message is 

delivered in the correct language. 

5.   If the message loggers msg method is called, explicitly identify a resource bundle name.

What to do next 

The application locates the resource bundle based on the file location relative to any directory in the class 

path. For instance, if the DefaultMessages.properties property resource bundle is in the 

baseDir/subDir1/subDir2/resources  directory and baseDir  is in the class path, the name 

subdir1.subdir2.resources.DefaultMessage is passed to the message logger to identify the resource 

bundle. 

JRas  resource  bundles:   

 

46 Troubleshooting and support



You can create resource bundles in several ways. The best and easiest way is to create a properties file 

that supports a PropertiesResourceBundle resource bundle. This sample shows how to create such a 

properties file. 

 Resource  bundle  sample  

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve 

similar results using Java logging. 

For this sample, four localizable messages are provided. The properties file is created and the key-value 

pairs are inserted into it. All the normal properties files conventions and rules apply to this file. In addition, 

the creator must be aware of other restrictions that are imposed on the values by the Java 

MessageFormat class. For example, apostrophes must be escaped or they cause a problem. Avoid the 

use of non-portable characters. WebSphere Application Server does not support the use of extended 

formatting conventions that the MessageFormat class supports, such as {1, date} or {0, number, integer}. 

Assume that the base directory for the application that uses this resource bundle is baseDir  and that this 

directory is in the class path. Assume that the properties file is stored in the subdirectory baseDir  that is 

not in the class path (baseDir/subDir1/subDir2/resources). To allow the messages file to resolve, the 

subDir1.subDir2.resources.DefaultMessage name is used to identify the PropertyResourceBundle resource 

bundle and is passed to the message logger. 

For this sample, the properties file is named DefaultMessages.properties: 

# Contents  of  the  DefaultMessages.properties  file  

MSG_KEY_00=A  message  with  no substitution  parameters.  

MSG_KEY_01=A  message  with  one  substitution  parameter:  parm1={0}  

MSG_KEY_02=A  message  with  two  substitution  parameters:  parm1={0},  parm2  = {1}  

MSG_KEY_03=A  message  with  three  substitution  parameters:  parm1={0},  parm2  = {1},  parm3={2}  

When the DefaultMessages.properties  file is created, the file can be sent to a translation center where 

the localized versions are generated. 

JRas manager and logger instances 

You can use the JRas extensions in integrated, stand-alone, or combined mode. Configuration of the 

application varies depending on the mode of operation, but use of the loggers to log message or trace 

entries is identical in all modes of operation. 

Deprecated:  The JRas framework described in this task and its sub-tasks is deprecated. However, you 

can achieve similar results using Java logging. 

Integrated mode is the default mode of operation. In this mode, message and trace events are sent to the 

WebSphere Application Server logs. 

In the combined mode, message and trace events are logged to both WebSphere Application Server and 

user-defined logs. 

In the stand-alone mode, message and trace events are logged only to user-defined logs. 

Using the message and trace loggers 

Regardless of the mode of operation, the use of message and trace loggers is the same. 

Using a message logger 

The message logger is configured to use the DefaultMessages resource bundle. Message keys must be 

passed to the message loggers if the loggers are using the message API. 

 

Chapter 2. Adding logging and tracing to your application 47



msgLogger.message(RASIMessageEvent.TYPE_WARNING,  this,  

     methodName,  "MSG_KEY_00");  

...  msgLogger.message(RASIMessageEvent.TYPE_WARN,  this,  

     methodName,  "MSG_KEY_01",  "some  string");  

If message loggers use the msg API, you can specify a new resource bundle name. 

msgLogger.msg(RASIMessageEvent.TYPE_ERR,  this,  methodName,  

                  "ALT_MSG_KEY_00",  "alternateMessageFile");  

You can also log a text message. If you are using the textMessage API, no message formatting is done. 

msgLogger.textMessage(RASIMessageEvent.TYPE_INFO,  this,  methodName,"String  and  Integer",  

"A String",  new  Integer(5));  

Using a trace logger 

Because trace is normally disabled, guard trace methods for performance reasons. 

private  void  methodX(int  x, String  y, Foo  z) 

{ 

   // trace  an entry  point.  Use  the  guard  to make  sure  tracing  is enabled.  

Do this  checking  before  you  gather  parameters  to  trace.  

   if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT)  { 

        // I want  to trace  three  parameters,  package  them  up in an  Object[]  

        Object[]  parms  = {new  Integer(x),  y,  z};  

        trcLogger.entry(RASITraceEvent.TYPE_ENTRY_EXIT,  this,  "methodX",  parms);  

  } 

...  logic  

  // a debug  or verbose  trace  point  

  if (trcLogger.isLoggable(RASITraceEvent.TYPE_MISC_DATA)  { 

        trcLogger.trace(RASITraceEvent.TYPE_MISC_DATA,  this,  "methodX"  "reached  here");  

  } 

  ...  

  // Another  classification  of trace  event.  An important  state  change  is 

 detected,  so a different  trace  type  is used.  

  if (trcLogger.isLoggable(RASITraceEvent.TYPE_SVC)  { 

     trcLogger.trace(RASITraceEvent.TYPE_SVC,  this,  "methodX",  "an  important  event");  

  } 

 ...  

  // ready  to exit  method,  trace.  No return  value  to trace  

    if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT))  { 

        trcLogger.exit(RASITraceEvent.TYPE_ENTRY_EXIT,  this,  "methodX");  

   } 

} 

Setting up for integrated JRas operation 

Use JRas operations in integrated mode to send trace events and logging messages to only WebSphere 

Application Server logs. 

Before you begin 

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve 

similar results using Java logging. 

About this task 

In the integrated mode of operation, message and trace events are sent to WebSphere Application Server 

logs. This approach is the default mode of operation. 

1.   Import the requisite JRas extensions classes: 

import  com.ibm.ras.*;  

import  com.ibm.websphere.ras.*;  

2.   Declare logger references: 

 

48 Troubleshooting and support



private  RASMessageLogger  msgLogger  = null;  

private  RASTraceLogger  trcLogger  = null;  

3.   Obtain a reference to the Manager class and create the loggers. Because loggers are named 

singletons, you can do this activity in a variety of places. One logical candidate for enterprise beans is 

the ejbCreate method. For example, for the myTestBean enterprise bean, place the following code in 

the ejbCreate method: 

com.ibm.websphere.ras.Manager  mgr  = com.ibm.websphere.ras.Manager.getManager();  

msgLogger  = mgr.createRASMessageLogger("Acme",  "WidgetCounter",  "RasTest",  

         myTestBean.class.getName());  

  

  

  

// Configure  the  message  logger  to use  the  message  file  that  is created  

// for  this  application.  

msgLogger.setMessageFile("acme.widgets.DefaultMessages");  

trcLogger  = mgr.createRASTraceLogger("Acme",  "Widgets",  "RasTest",  

         myTestBean.class.getName());  

mgr.addLoggerToGroup(trcLogger,  groupName);  

Setting up for combined JRas operation 

Use JRas operation in combined mode to output trace data and logging messages to both WebSphere 

Application Server and user-defined logs. 

Before you begin 

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve 

similar results using Java logging. 

About this task 

In combined mode, messages and trace are logged to both WebSphere Application Server logs and 

user-defined logs. The following sample assumes that: 

v   You wrote a user-defined handler named SimpleFileHandler and a user-defined formatter named 

SimpleFormatter. 

v   You are not using user-defined types or events.

1.   Import the requisite JRas extensions classes: 

import  com.ibm.ras.*;  

import  com.ibm.websphere.ras.*;  

2.   Import the user handler and formatter: 

import  com.ibm.ws.ras.test.user.*;  

3.   Declare the logger references: 

private  RASMessageLogger  msgLogger  = null;  

  private  RASTraceLogger  trcLogger  = null;  

4.   Obtain a reference to the Manager class, create the loggers, and add the user handlers. Because 

loggers are named singletons, you can obtain a reference to the loggers in a number of places. One 

logical candidate for enterprise beans is the ejbCreate method. Make sure that multiple instances of 

the same user handler are not accidentally inserted into the same logger. Your initialization code must 

support this approach. The following sample is a message logger sample. The procedure for a trace 

logger is similar. 

com.ibm.websphere.ras.Manager  mgr  = com.ibm.websphere.ras.Manager.getManager();  

    msgLogger  = mgr.createRASMessageLogger("Acme",  "WidgetCounter",  "RasTest",  

           myTestBean.class.getName());  

    // Configure  the  message  logger  to use the  message  file  defined  

    // in the  ResourceBundle  sample.  

    msgLogger.setMessageFile("acme.widgets.DefaultMessages");  

  

   // Create  the  user  handler  and  formatter.  Configure  the  formatter,

 

Chapter 2. Adding logging and tracing to your application 49



//  then  add  it to the  handler.  

   RASIHandler  handler  = new  SimpleFileHandler("myHandler",  "FileName");  

   RASIFormatter  formatter  = new  SimpleFormatter("simple  formatter");  

    formatter.addEventClass("com.ibm.ras.RASMessageEvent");  

    handler.addFormatter(formatter);  

  

   //  Add  the  Handler  to the  logger.  Add  the  logger  to the list  of the  

   //handlers  listeners,  then  set  the  handlers  

   //  mask,  which  updates  the  loggers  composite  mask  appropriately.  

   //  WARNING  - there  is an order  dependency  here  that  must  be followed.  

   msgLogger.addHandler(handler);  

   handler.addMaskChangeListener(msgLogger);  

   handler.setMessageMask(RASIMessageEvent.DEFAULT_MESSAGE_MASK);  

Setting up for stand-alone JRas operation 

You can configure JRas operations to output trace data and logging messages to only user-defined 

locations. 

Before you begin 

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve 

similar results using Java logging. 

About this task 

In stand-alone mode, messages and traces are logged only to user-defined logs. The following sample 

assumes that: 

v   You have a user-defined handler named SimpleFileHandler and a user-defined formatter named 

SimpleFormatter. 

v   You are not using user-defined types of events.

1.   Import the requisite JRas extensions classes: 

import  com.ibm.ras.*;  

import  com.ibm.websphere.ras.*;  

2.   Import the user handler and formatter: 

import  com.ibm.ws.ras.test.user.*;  

3.   Declare the logger references: 

private  RASMessageLogger  msgLogger  = null;  

  private  RASTraceLogger  trcLogger  = null;  

4.   Obtain a reference to the Manager class, create the loggers, and add the user handlers. Because 

loggers are named singletons, you can obtain a reference to the loggers in a number of places. One 

logical candidate for enterprise beans is the ejbCreate method. Make sure that multiple instances of 

the same user handler are not accidentally inserted into the same logger. Your initialization code must 

support this approach. The following sample is a message logger sample. The procedure for a trace 

logger is similar. 

com.ibm.websphere.ras.Manager  mgr  = com.ibm.websphere.ras.Manager.getManager();  

    msgLogger  = mgr.createRASMessageLogger("Acme",  "WidgetCounter",  "RasTest",  

             myTestBean.class.getName());  

    // Configure  the  message  logger  to use  the  message  file  that  is defined  in 

    //the  ResourceBundle  sample.  

    msgLogger.setMessageFile("acme.widgets.DefaultMessages");  

  

    // Get  a reference  to the  Handler  and  remove  it from  the  logger.  

    RASIHandler  aHandler  = null;  

    Enumeration  enum  = msgLogger.getHandlers();  

    while  (enum.hasMoreElements())  { 

         aHandler  = (RASIHandler)enum.nextElement();  

         if (aHandler  instanceof  WsHandler)  

              msgLogger.removeHandler(wsHandler);  

    }

 

50 Troubleshooting and support



// Create  the  user  handler  and  formatter.  Configure  the  formatter,  

    // then  add  it to the  handler.  

    RASIHandler  handler  = new  SimpleFileHandler("myHandler",  "FileName");  

    RASIFormatter  formatter  = new  SimpleFormatter("simple  formatter");  

    formatter.addEventClass("com.ibm.ras.RASMessageEvent");  

    handler.addFormatter(formatter);  

  

   // Add  the  Handler  to the  logger.  Add  the  logger  to the  list  of the  

   // handlers  listeners,  then  set  the  handlers  

   // mask,  which  will  update  the  loggers  composite  mask  appropriately.  

   // WARNING  - there  is an order  dependency  here  that  must  be followed.  

   msgLogger.addHandler(handler);  

   handler.addMaskChangeListener(msgLogger);  

   handler.setMessageMask(RASIMessageEvent.DEFAULT_MESSAGE_MASK);  

Logging Common Base Events in WebSphere  Application Server 

WebSphere Application Server uses Common Base Events within its logging framework. Common Base 

Events can be created explicitly and then logged through the Java logging API, or can be created implicitly 

by using the Java logging API directly. 

About this task 

An event  is a notification from an application or the application server that reports information that is 

related to a specific problem or situation. Common Base Events provide you with a standard structure for 

these event notifications, which allow you to correlate events that are received from different applications. 

Log Common Base Events to capture events from different sources to help you fix a problem within an 

application environment or to tune system performance. 

For Common Base Event creation, the application server environment provides a Common Base Event 

factory with a content handler that provides both runtime data and template data for Common Base 

Events. 

1.   Optional: Read about the Common Base Event types and how they are implemented within an 

application server. Refer to “The Common Base Event in WebSphere Application Server.” 

2.   Read “Logging Common Base Events in WebSphere Application Server” on page 75. 

3.   Configure the Common Base Event framework for your application server using one of the following 

methods: 

v   “Logging with Common Base Event API and the Java logging API” on page 64 

v   “Generate Common Base Event content with the default event factory” on page 65.

Results 

Common Base Events will now be logged according to your configuration. Use these event logs to 

determine the source of application problems. 

The Common Base Event in WebSphere  Application Server 

The Common Base Event is an XML document that defines a common representation of events that is 

intended for use by enterprise management and business applications. The Common Base Event defines 

common fields, the values they can take, and the exact meanings of these values. 

An application creates an event object whenever something happens that either needs to be recorded for 

later analysis or which might require the trigger of additional work. An event  is a structured notification that 

reports information that is related to a situation. An event reports three kinds of information: 

v   The situation: What happened 

v   The identity of the affected component: For example, the server that shut down 

 

Chapter 2. Adding logging and tracing to your application 51



v   The identity of the component that is reporting the situation, which might be the same as the affected 

component

The application that creates the event object is called the event  source. Event sources can use a common 

structure for the event. The accepted standard for such a structure is called the Common  Base  Event. The 

Common Base Event is an XML document that is defined as part of the autonomic computing initiative. 

The Common Base Event model is a standard that defines a common representation of events that is 

intended for use by enterprise management and business applications. This standard, which is developed 

by the IBM Autonomic Computing Architecture Board, supports encoding of logging, tracing, management, 

and business events using a common XML-based format. This format makes it possible to correlate 

different types of events that originate from different applications. For more information about the Common 

Base Event model, see the Common Base Event specification (Canonical  Situation  Data  Format:  The  

Common  Base  Event  V1.0.1). The common event infrastructure currently supports Version 1.0.1 of the 

specification. 

The basic concept behind the Common Base Event model is the situation. A situation can be anything that 

happens anywhere in the computing infrastructure, such as a server shutdown, a disk-drive failure, or a 

failed user login. The Common Base Event model defines a set of standard situation types that 

accommodate most of the situations that might arise (for example, StartSituation and CreateSituation). 

The Common Base Event contains all of the information that is needed by the consumers to understand 

the event. This information includes data about the runtime environment, the business environment, and 

the instance of the application object that created the event. 

For complete details on the Common Base Event format, see the XML schema that is included in the 

Common Base Event specification document, at http://www.ibm.com/developerworks/autonomic/books/
fpy0mst.htm#HDRCBEDESC . 

Types of problem determination events 

Problem determination involves multiple types of data, including at least two different classes of event 

data, log events, and diagnostic events. 

Log events, which are also referred to as message  events, are typically emitted by components of a 

business application during normal deployment and operations. Log events might identify problems, but 

these events are also normally available and emitted while an application and its components are in 

production mode. The target audience for log and message events is users and administrators of the 

application and the components that make up the application. Log events are normally the only events 

available when a problem is first detected, and are typically used during both problem recovery and 

problem resolution. 

Diagnostic events, which are commonly referred to as trace  events, are used to capture internal diagnostic 

information about a component, and are usually not emitted or available during normal deployment and 

operation. The target audience for diagnostic events is the developers of the components that make up the 

business application. Diagnostic events are typically used when trying to resolve problems within a 

component, such as a software failure, but are sometimes used to diagnose other problems, especially 

when the information provided by the log events is not sufficient to resolve the problem. Diagnostic events 

are typically used when trying to resolve a problem. 

A Common  Base  Event  is a common structure for an event. It defines common fields, the values that 

these fields can take, and the exact meanings of these values for an event. Common Base Events are 

primarily used to represent log events. 

Common Base Event structure 

A Common  Base  Event  is a common structure for an event. It defines common fields, the values that 

these fields can take, and the exact meanings of these values for an event. 

 

52 Troubleshooting and support

http://www.ibm.com/developerworks/autonomic/books/fpy0mst.htm#HDRCBEDESC
http://www.ibm.com/developerworks/autonomic/books/fpy0mst.htm#HDRCBEDESC


The Common Base Event contains several structural elements. These elements include: 

v   Common header information 

v   Component identification, both source and reporter 

v   Situation information 

v   Message data 

v   Extended data 

v   Context data 

v   Associated events and association engine

Each of these structural elements has its own embedded elements and attributes. 

The following table presents a summary of all the fields in the Common Base Event and their usage 

requirements for problem determination events. This table shows whether a particular element or attribute 

is required, recommended, optional, prohibited, or discouraged for log events, and the base specification. 

 Field name Log events Base specification 

Version Required Required 

creationTime Required Required 

severity Required Optional 

Msg Required Optional 

sourceComponentId* Required Required 

sourceComponentId.location Required Required 

sourceComponentId.locationType Required Required 

sourceComponentId.component Required Required 

sourceComponentId.subComponent Required Required 

sourceComponentId.componentIdType Required Required 

sourceComponentId.componentType Required Required 

sourceComponentId.application Recommended Optional 

sourceComponentId.instanceId Recommended Optional 

sourceComponentId.processId Recommended Optional 

sourceComponentId.threadId Recommended Optional 

sourceComponentId.executionEnvironment Optional Optional 

situation* Required Required 

situation.categoryName Required Required 

situation.situationType* Required Required 

situation.situationType.reasoningScope Required Required 

situation.situationType.(specific Situation Type elements) Required Required 

msgDataElement* Recommended Optional 

msgDataElement .msgId Recommended Optional 

msgDataElement .msgIdType Recommended Optional 

msgDataElement .msgCatalogId Recommended Optional 

msgDataElement .msgCatalogTokens Recommended Optional 

msgDataElement .msgCatalog Recommended Optional 

msgDataElement .msgCatalogType Recommended Optional 

msgDataElement .msgLocale Recommended Optional 

 

Chapter 2. Adding logging and tracing to your application 53



extensionName Recommended Optional 

localInstanceId Optional Optional 

globalInstanceId Optional Optional 

priority Discouraged Optional 

repeatCount Optional Optional 

elapsedTime Optional Optional 

sequenceNumber Optional Optional 

reporterComponentId* Optional Optional 

reporterComponentId.location Required (2) Required (2) 

reporterComponentId.locationType Required (2) Required (2) 

reporterComponentId.component Required (2) Required (2) 

reporterComponentId.subComponent Required (2) Required (2) 

reporterComponentId.componentIdType Required (2) Required (2) 

reporterComponentId.componentType Required (2) Required (2) 

reporterComponentId.instanceId Optional Optional 

reporterComponentId.processId Optional Optional 

reporterComponentId.threadId Optional Optional 

reporterComponentId.application Optional Optional 

reporterComponentId.executionEnvironment Optional Optional 

extendedDataElements* Note 3 Optional 

contextDataElements* Note 4 Optional 

associatedEvents* Note 5 Optional
  

Notes:  

v   Items followed by an asterisk (*) are elements that consist of sub elements and attributes. The fields in 

those elements are listed in the table directly following the parent element name. 

v   Some of the elements are optional, but when included, they include sub elements and attributes that are 

required. For example, the reporterComponentId element has a ComponentIdentification type. The 

component attribute in ComponentIdentification is required. Therefore, the 

reporterComponentId.component attribute is required, but only when the reporterComponentId parent 

element is included. 

v   The extendedDataElements element can be included multiple times to supply extended data 

information. See the Extended data section for more information on required and recommended 

extended data element values. 

v   The contextDataElements element can be included multiple times to supply context data information. 

v   The associatedEvents element can be included multiple times to supply correlation data. No 

recommended uses of this element exist for the producers of problem determination data, and the use 

of this element is discouraged.

Common  header  information:   

This topic provides additional information about how to format and use these fields for problem 

determination events, which can be used to clarify and extend the information provided in the other 

documents. 

 The Common Base Event specification [CBE101] provides information on the required format of these 

fields and the Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines. 

 

54 Troubleshooting and support



The common header information in the Common Base Event includes the following information about an 

event: 

v   Version: The version of this Common Base Event 

v   creationTime: The date and time when the event generated 

v   Severity and priority: The severity of the condition (situation) that is identified by the event 

v   extensionName: The type of event that was captured 

v   localInstanceId and globalInstanceId: Identifiers that can be used to quickly identify a specific event 

within a set of events 

v   repeatCount and elapsedTime: Information that supports a system to efficiently report multiple events of 

the same type, by consolidating those events into a single event 

v   sequenceNumber: Sequence information that supports a system to order a set of events in other ways 

than time of capture

severity  

All problem determination events must provide an indication as to the relative severity of the condition 

(situation) being reported by providing appropriate values for the severity field in the Common Base 

Event. The severity field is required for problem determination events. This field is more restrictive than 

the base specification for the Common Base Event, which lists this field as optional because effective 

and efficient problem determination requires the ability to quickly identify the information that is needed 

to resolve a problem as well as prioritize the problems that need addressing. Typically, the following 

values are used for problem determination events: 

 10 Information Log information events, normal 

conditions, and events that are 

supplied to clarify operations, for 

example, state transitions, operational 

changes. These events typically do 

not require administrator action or 

intervention. 

20 Harmless Similar to information events, but are 

used to capture audit items, such as 

state transitions or operational 

changes. These events typically do 

not require administrator action or 

intervention. 

30 Warning Warnings typically represent 

recoverable errors, for example a 

failure that the system can correct. 

These events can require 

administrator action or intervention. 

40 Minor Minor errors describe events that 

represent an unrecoverable error 

within a component. The failure 

affects the component ability to 

service some requests. The business 

application can continue to perform its 

normal functions, but its overall 

operation might be degraded. These 

events require administrator action or 

intervention to address the condition. 

 

Chapter 2. Adding logging and tracing to your application 55



50 Critical Critical errors describe events that 

represent an unrecoverable error 

within a component. The failure 

significantly affects the component 

ability to service most requests. The 

business application can continue 

most, but not all of its normal 

functions and its overall operation 

might be degraded. These events 

require administrator action or 

intervention to address the condition. 

60 Fatal Fatal errors describe events that 

represent an unrecoverable error 

within a component. The failure 

usually results in the complete failure 

of the component. The business 

application can continue some normal 

functions, but its overall operation 

might be degraded. These events 

require administrator action or 

intervention to address the condition.
  

msg  

Refer to “Message data” on page 60 for information on this attribute. 

priority  

The use of the priority field is discouraged for problem determination events. The severity field is 

typically used to communicate and evaluate the importance of problem determination events. Use the 

priority field to enhance the information that is provided in the severity field, that is. prioritize events of 

the same severity. 

extensionName  

The extensionName field is used to communicate the type of event that is reported, for example, what 

general class of events is being reported. In many cases this field provides an indication of what 

additional data you can expect with the event, for example, optional data values. 

repeatCount  

The repeatCount field is valid for problem determination events, but is not typically used or supplied by 

the event producers. This field is used for data reduction and consolidation by event management and 

analysis systems. 

elapsedTime  

The elapsedTime field is valid for problem determination events, but is not typically used or supplied 

by the event producers. This field is used for data reduction and consolidation by event management 

and analysis systems. 

sequenceNumber  

The sequenceNumber field is valid for problem determination events. It is typically used only by event 

producers when the granularity of the event time stamp (the creationTime field) is not sufficient in 

ordering events. The sequenceNumber field is typically used to sequence events that have the same 

time stamp value. 

 Event management and analysis systems can use the sequenceNumber field for a number of reasons, 

including providing alternative sequencing, not necessarily based on a time stamp. The 

recommendations here are provided primarily for event producers.

Component  identification  for  source  and  reporter:   

 

56 Troubleshooting and support



The component identification fields in the Common Base Event are used to indicate which component in 

the system is experiencing the condition that is described by the event (the sourceComponentID) and 

which component emitted the event (the reporterComponentID). 

 Typically, these components are the same, in which case only the sourceComponentID is supplied. Some 

notes and scenarios on when to use these two elements in the Common Base Event: 

v   The sourceComponentID is always used to identify the component experiencing the condition that is 

described by the event. 

v   The reporterComponentID is used to identify the component that actually produced and emitted the 

event. This element is typically used only within events that are emitted by a component that is 

monitoring another component and providing operational information regarding that component. The 

monitoring component (for example, a Tivoli® agent or hardware device driver) is identified by the 

reporterComponentID and the component being monitored (for example, a monitored server or 

hardware device) is identified by the sourceComponentID. 

A potential misuse of the reporterComponentID is to identify a component that provides event 

conversion or management services for a component, for example, identifying an adapter that 

transforms the events that are captured by a component into Common Base Event format. The event 

conversion function is considered an extension of the component and not identified separately.

The information that is used to identify a component in the system is the same, regardless of whether it is 

the source component or reporter component: 

 location locationType Component location Identifies the location of the 

component. 

component componentIdType Component name Identifies the asset name of the 

component, as well as the type of 

component. 

subcomponent Subcomponent name Identifies a specific part or 

subcomponent of a component, for 

example a software module or 

hardware part. 

application Business application name Identifies the business application or 

process the component is a part of 

and provides services for. 

instanceId Operational instance Identifies the operational instance of a 

component, that is the actual running 

instance of the component. 

processId threadId Operational instance Identifies the operational instance of a 

component within the context of a 

software operating system, that is he 

operating system process and thread 

running when the event was 

produced. 

executionEnvironment Operational instance Component 

location 

Provides additional information about 

the operational instance of a 

component or its location by 

identifying the name of the 

environment hosting the operational 

instance of the component, for 

example the operating system name 

for a software application, the 

application server name for a Java 2 

Platform, Enterprise Edition (J2EE) 

application, or the hardware server 

type for a hardware part.
 

 

Chapter 2. Adding logging and tracing to your application 57



The Common Base Event specification [CBE101] provides information on the required format of these 

fields and the Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines. 

This section provides additional information about how to format and use some of these fields for problem 

determination events, which can be used to clarify and extend the information that is provided in the other 

documents. 

Component  

The Component field in a problem determination event is used to identify the manageable asset that is 

associated with the event. A manageable asset is open for interpretation, but a good working definition 

is a manageable asset represents a hardware or software component that can be separately obtained 

or developed, deployed, managed, and serviced. Examples of typical component names are: 

v   IBM eServer™ xSeries® model x330 

v   IBM WebSphere Application Server version 5.1 (5.1 is the version number) 

v   Microsoft® Windows® 2000 

v   The name of an internally developed software application for a component

subComponent  

The Subcomponent field in a problem determination event identifies the specific part of a component 

that is associated with the event. The subcomponent name is typically not a manageable asset, but 

provides internal diagnostic information when diagnosing an internal defect within a component, that is 

What part failed? Examples of typical subcomponents and their names are: 

v   Intel® Pentium® processor within a server system (Intel Pentium IV Processor) 

v   the enterprise bean container within a Web application server (enterprise bean container) 

v   the task manager within an operating system (Linux® Kernel Task Manager) 

v   the name of a Java class and method (myclass.mycompany.com or 

myclass.mycompany.com.methodname).

The format of a subcomponent name is determined by the component, but use the convention shown 

previously for naming a Java class or the combination of a Java class and method is followed. The 

subcomponent field is required in the Common Base Event. 

componentIdType  

The componentIdType field is required by the Common Base Event specification, but provides minimal 

value for problem determination events. For most problem determination events, it is encouraged to 

use the value provided in the application field instead of the componentIdType. The componentIdType 

field identifies the type of component; the application is identified by the application field. 

application  

The application field is listed as an optional value within the Common Base Event specification, but 

provide it within problem determination events whenever it this value is available. The only reason this 

field is not required for problem determination events is that instances exist where the issuing 

component might not be aware of the overall business application. 

instanceId  

The instanceId field is listed as an optional value within the Common Base Event specification, but 

provide this value within problem determination events whenever it is available. 

 Always provide the instanceID when a software component is identified and identify the operational 

instance of the component (for example, which operation instance of an installed software image is 

actually associated with the event). Provide this value for hardware components when these 

components support the concept of operational instances. 

The format of the supplied value is defined by the component, but must be a value that an analysis 

system can use (either human or programmatic) to identify the specific running instance of the 

identified component. Examples include: 

v   cell,  node,  server  name for the IBM WebSphere Application Server 

v   deployed  EAR  file  name  for a Java enterprise bean 

 

58 Troubleshooting and support



v   serial  number  for a hardware processor

processId  

The processId field is listed as an optional value within the Common Base Event specification, but 

provide this value for problem determination events whenever it is available and applicable. Always 

provide this value for software-generated events, and identify the operating system process that is 

associated with the component that is identified in the event. Match the format of the thread ID with 

the format of the operating system (or other running environment, such as a Java virtual machine). 

This field is typically not applicable or used for events that are emitted by hardware (for example, 

firmware). 

threadId  

The threadId field is listed as an optional value within the Common Base Event specification, but 

provide this value for problem determination events whenever it is available and applicable. Always 

provide for software-generated events, and identify the active operating system thread when the event 

was detected or issued. A notable exception to this recommendation is some operating systems or 

running environments do not support threads. Match the format of the thread ID with the format of the 

operating system (or other running environment, such as a Java virtual machine). This field is typically 

not applicable or used for events that are emitted by hardware (for example, firmware). 

executionEnvironment  

The executionEnvironment field, when used, identifies the immediate running environment that is used by 

the component being identified. Some examples are: 

v   the operating system name when the component is a native software application. 

v   the operating system/Java virtual machine name when the component is a Java 2 Platform, Standard 

Edition (J2SE) application. 

v   the Web server name when the component is a servlet. 

v   the portal server name when the component is a portlet. 

v   the application server name when the component is an enterprise bean.

The Common Base Event specification [CBE101] provides information on the required format of these 

fields and the Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines. 

Situation  information:   

The situation information is used to classify the condition that is reported by an event into a common set of 

situations. 

 The Common Base Event specification [CBE101] provides information on the set of situations defined for 

the Common Base Event, with the values and formats that are used to describe these situations. The 

Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines. 

Consider the following points regarding situation information for problem determination events: 

v   Whenever possible, use the situation categorizations and qualifiers that are described in the base 

Common Base Event specification. Avoid using your own situation definitions as much as possible. 

v   Not all messages and logs can be classified using the situation definitions that are supplied in the base 

Common Base Event specification. You can use the OtherSituation categorization to provide your own 

situation information, but the recommended course of action for problem determination events is to use 

the ReportSituation categorization, with reportCategory=Log. 

v   Warning events can be confusing. A warning event (that is an event with severity=warning) typically 

indicates a recoverable failure, but the situation settings can be interpreted as unrecoverable failures 

(for example ConnectSituation, successDisposition=UNSUCCESSFUL). Use the appropriate situation 

categorization so the severity setting indicates the severity of the situation, that is whether the 

component recovered from the failure. 

v   The recommended setting for the reasoningScope value is EXTERNAL for all message events.

 

Chapter 2. Adding logging and tracing to your application 59



Message  data:   

All problem determination Common Base Events must provide human readable text that describes the 

specific reported event within the msg field of the Common Base Event. 

 The text that is associated with events representing actual messages or log entries is expected to be 

translated and localized. Include the msgDataElement element in the Common Base Event whenever 

internationalized text is provided in the event. This element provides information about how the message 

text is created and how to interpret it. This information is particularly invaluable when trying to interpret the 

event programmatically or when trying to interpret the message independent of the locale or language that 

is used to format the message text. 

Prerequisite:  Understand the concepts that are associated with creating internationalized messages. A 

good source of education on these concepts is provided by the documentation that is associated with 

internationalization of Java information and the usage of resource bundles within the Java language. 

The msgDataElement element in the Common Base Event includes the following information about the 

value of the msg field that is provided with an event: 

v   The locale of the supplied message text, which identifies how the locale-independent fields within the 

message are formatted, as well as the language of the message (msgLocale). 

v   A locale-independent identifier that is associated with the message that can be used to interpret the 

message independent of the message language, message locale, and message format (msgId and 

msgIdType). 

v   Information on how a translated message is created, including: 

–   The identifier that is used to retrieve the message template (msgCatalogId). 

–   The name and type of message catalog that are used to retrieve the message template (msgCatalog 

and msgCatalogType). 

–   Any locale-independent information that is inserted into the message template to create the final 

message (msgCatalogTokens).

The Common Base Event specification [CBE101] provides information on the required format of these 

fields and the Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines. 

This section provides additional information about how to format and use these fields for problem 

determination events. 

msg  

All message, log, and trace events must provide a human-readable message in the msg field of the 

Common Base Event. The msg field is required for problem determination events, both log events and 

diagnostic events. This field is more restrictive than the base specification for the Common Base 

Event, which lists this field as optional; effective and efficient problem determination requires the ability 

to quickly identify the reported condition. The format and usage of this message is component-specific, 

but use the following general guidelines: 

v   Expect the message text that is supplied with messages and log events to be internationalized. 

v   Provide the locale of the supplied message text with the msgLocale field in the msgDataElement 

element of the Common Base Event. 

v   Provide additional information regarding the format and construction of internationalized messages 

whenever possible, using the msgDataElement element of the Common Base Event.

msgLocale  

Provide the message locale whenever message text is provided within the Common Base Event, as is 

the case with all problem determination events. The msgLocale field is listed as an optional value 

within the Common Base Event specification, but provide this information within problem determination 

events whenever possible. The reason this field is not required for problem determination events is 

that instances exist where the locale information is not provided or available when formatting the 

Common Base Event. 

 

60 Troubleshooting and support



msgId  and  msgIdType  

Several companies include a locale-independent identifier within internationalized message text that 

you can use to interpret the described condition by the message text, independent of the message. 

For example, most messages issued by IBM software look like IEE890I  WTO  Buffers  in  console  

backup  storage  = 1024, where a unique, locale-independent identifier IEE890I  precedes the translated 

message text. This identifier provides a way to uniquely detect and identify a message independent of 

location and language. This detection is invaluable for locale-independent and programmatic analysis. 

 The msgId field is listed as an optional value within the Common Base Event specification, but it must 

be provided within problem determination events whenever this identifier is included in the message 

text. Likewise, the msgIdType field is listed as an optional value within the Common Base Event 

specification, but it must be provided within problem determination events whenever a value is 

supplied for msgId. Do not supply these fields when the message text is not translated or localized, for 

example, for trace events. 

msgCatalogId  

The msgCatalogId field is listed as an optional value within the Common Base Event specification, but 

provide this value whenever the Common Base Event includes localized or translated message text, 

for example when providing problem determination events that represent issued messages or log 

events. This field is not required for problem determination events because not all problem 

determination events include translated message text Some cases exist where the value is not 

provided or available when formatting the Common Base Event. Do not supply this field when the 

message text is not translated or localized, for example, for trace events. 

msgCatalogTokens  

The msgCatalogTokens field is listed as an optional value within the Common Base Event 

specification, but provide this value whenever the Common Base Event includes localized or translated 

message text, for example when providing problem determination events that represent issued 

messages or log events. This field is not required for problem determination events because not all 

problem determination events include translated message text, and cases exist where the value is not 

provided or available when formatting the Common Base Event. This value contains the list of 

locale-independent values or message tokens that are inserted into the localized message text when 

creating a translated message. 

 These values are difficult to extract from a translated message without knowing the translated 

message template that is used to create the message. Do not supply this field when the message text 

is not translated or localized 

The Common Base Event provides several mechanisms for providing additional data about an event, 

including this field, extended data elements, and extensions to the schema. Always use the 

msgCatalogTokens field to supply the list of message tokens that is included in the message text 

associated with an event. These values can also be supplied in other parts of the Common Base 

Event, but they must be included in this field. 

msgCatalog  and  msgCatalogType  

The msgCatalog and msgCatalogType fields are listed as optional values within the Common Base 

Event specification, but provide this value whenever the Common Base Event includes localized or 

translated message text, for example when providing problem determination events that represent 

issued messages or log events. These fields are not required for problem determination events 

because not all problem determination events include translated message text, and cases exist where 

the values are not provided or available when formatting the Common Base Event. Do not complete 

these fields when the message text has is not translated or localized, for example, for trace events.

Extended  data:   

The Common Base Event provides several methods for including this additional data, including extending 

the Common Base Event schema or supplying one or more ExtendedDataElement elements within the 

Common Base Event, which is the preferred approach. 

 

Chapter 2. Adding logging and tracing to your application 61



The base information that is included in a Common Base Event might not be sufficient to represent all of 

the information captured by a component when creating a problem determination event. 

Use an ExtendedDataElement element to represent a single data item. A Common Base Event can 

contain more than one of these elements, essentially one for each additional data item. A hint to the 

number and type of ExtendedDataElement elements is supplied by the extensionName value, but this 

information is only a hint. The usage of the attributes in the ExtendedDataElement element for problem 

determination events is the same as those for any other Common Base Event. 

Sample Common Base Event instance 

This XML document is an example of a Common Base Event instance that is generated by a WebSphere 

Application Server application. 

Use the following example for reference: 

<CommonBaseEvent   creationTime="2004-09-18T04:03:28.484Z"  

   globalInstanceId="myhost:1095479647062:1899"  

   msg="WSVR0024I:  Server  server1  stopped"  

   severity="10"  

   version="1.0.1">  

  

 ...  several  extendedDataElements  for  WebSphere  Application  Server  internal  use  only  ...  

  

<sourceComponentId   component="com.ibm.ws.runtime.component.ServerCollaborator"  

    componentIdType="Unknown"  

    executionEnvironment="Windows  2000[x86]#5.0"  

    instanceId="myhost\myhost\server1"  

    location="myhost"  

    locationType="Hostname"  

    processId="1095479647062"  

    subComponent="Unknown"  

    threadId="Alarm  : 0" 

    componentType="http://www.ibm.com/namespaces/autonomic/WebSphereApplicationServer"/>  

  

 <msgDataElement  msgLocale="en_US">  

  <msgCatalogTokens  value="server1"/>  

  <msgId>WSVR0024I<  /msgId>  

  <msgCatalogId>WSVR0024I<  /msgCatalogId>  

  <msgCatalog>com.ibm.ws.runtime.runtime<  /msgCatalog>  

 </msgDataElement>  

  

 <situation  categoryName="ReportSituation">  

  <situationType  xsi:type="ReportSituation"  reasoningScope="EXTERNAL"  reportCategory="LOG"/>  

 </situation>  

  

</CommonBaseEvent>  

A number of extendedDataElement elements in the XML are used by WebSphere Application Server, but 

are not for application use because these elements might change. 

The CommonBaseEvent element defines the Common Base Event instance. This element has a set of 

attributes that are common for all Common Base Events. This set includes the extensionName attribute, 

which defines the type or class of the Common Base Event instance, the creation time, severity, and 

priority. 

Nested within the CommonBaseEvent element are elements giving more detail about the situation. The 

first of these elements is the situation element. This classification is standardized. 

The CommonBaseEvent element also includes the sourceComponentId and the (optional) 

reporterComponentId elements. The sourceComponentId element describes where the situation occurred; 

the reporterComponentId describes where the situation is detected. If the sourceComponentId and the 

reporterComponentId elements are the same, the reporterComponentId element is omitted. 

 

62 Troubleshooting and support



The attributes of both the sourceComponentId and the reporterComponentId elements are the same. They 

identify the component type, name, operating system, and network location. The content of these attributes 

provides vertical correlation of the stack of IT resources that are active when the Common Base Event is 

created. 

Also included in the CommonBaseEvent element are contextDataElements elements that describe the 

context in which the situation occurred. This context correlates Common Base Event instances that are 

part of the same work. This correlation is called horizontal  correlation  because an instance of a particular 

context type correlates events at the same level of abstraction, for example at the business level, the 

application level, or at the middleware level. 

FExtended data elements contain additional data that is used to describe a situation. In this example, an 

extended data element is added by WebSphere Application Server to describe the Java 2 Platform, 

Enterprise Edition (J2EE) component that generated the Common Base Event instance and some 

application data. 

Sample Common Base Event template 

The content handler uses template information to fill in blanks in the Common Base Event when the 

Common Base Event complete method is called. 

Components that use the WebSphere Application Server event factory home can include a Common Base 

Event template XML file to provide data to populate Common Base Events. Information that is already 

supplied in the event is not overridden if the same field is supplied in the template. 

The following example illustrates a Common Base Event template: 

<?xml  version="1.0"  encoding="UTF-8"?>  

  

<TemplateEvent  

  version="1.0.1"  

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  

  xsi:noNamespaceSchemaLocation="templateEvent.xsd">  

  

 <CommonBaseEvent  

  <sourceComponentId  application="My  Application"  component="com.ibm.componentX"/>  

  <extendedDataElements  name="Sample  ExtendedDataElement  name"  type="string">  

   <values>Sample  ExtendedDataElement  value</values>  

  </extendedDataElements>  

 </CommonBaseEvent>  

  

</TemplateEvent>  

Component identification for problem determination 

This topic describes types of problem determination events. 

A business application is made up of multiple components. A component can be made up of several 

internal subcomponents. Consistent application of these concepts is critical for effective problem 

determination of a business application; all of the parts of the application must use the same concepts and 

assumptions when creating and formatting events. Use the following definitions and examples when 

creating Common Base Events for problem determination. 

Business  application  

A business application is the business logic and business data that is used to address a set of specific 

business requirements. A business application consists of several components of multiple types, 

combined in a unique manner by an enterprise, to provide the functions and resources that are 

needed to address those requirements. The primary creator and manager of a business application is 

the enterprise, and each enterprise or company creates unique business applications. Examples of 

business applications are the Payroll Application for the ACME Corporation and the Inventory 

Application for Spacely Sprockets. 

 

Chapter 2. Adding logging and tracing to your application 63



Components  

A business application is created and managed by the enterprise as a set of components. 

Components are deployable assets, which are developed either by the enterprise or a vendor, and 

managed by the enterprise. A component might be created by the enterprise, typically for use within a 

specific business application. For example, the ACME Corporation might create a set of enterprise 

beans to represent the business logic that is required by their Payroll Application. A component might 

also be an asset that is produced by a vendor and acquired by an enterprise. Examples of these 

components are hardware products, such as IBM eServers or Sun Solaris systems, or software 

products, such as IBM WebSphere Application Server, Oracle Database Servers. 

Subcomponents  

A specific component, depending on its complexity, might consist of several subcomponents. For 

example, the IBM WebSphere Application Server consists of many subcomponents, such as the 

enterprise bean container and the servlet engine. Subcomponent information is typically used only by 

the creator of the component to service the component, and as such are not separately deployable or 

manageable resources in the enterprise. The enterprise might deploy a change or update to a 

subcomponent, but only upon guidance from the component vendor and as part of the vendor’s 

component. For example, a software fix for the enterprise bean container of the IBM WebSphere 

Application Server is packaged and deployed as a software update to the IBM WebSphere Application 

Server. Replacement of the processor in an IBM eServer is deployed as a physical part, but only as a 

part of the original deployed component, the IBM eServer.

Logging with Common Base Event API and the Java logging API 

In cases where the events that are generated by the Java logging API are insufficient to describe the 

event that needs capturing, you can create Common Base Events with the Common Base Event factory 

APIs. 

Before you begin 

When you create a Common Base Event, you can add data to the Common Base Event before it is 

logged. The following diagram illustrates how application code can create and log Common Base Events: 

Application
code EventFactory

ContentHandler

Runtime data

CBE
XML

template

Logger

Handler

Output
device

CommonBaseEventLogRecord

CommonBaseEvent

  

 

About this task 

WebSphere Application Server is configured to use an event factory that automatically populates 

WebSphere Application Server-specific information into the Common Base Events that it generates. In 

general, it is good practice to create events using the WebSphere Application Server default Common 

 

64 Troubleshooting and support



Base Event factory because this approach ensures consistency of Common Base Event content across 

events. However, you can create and use other Common Base Event factories. 

Common Base Events are initiated and logged in the following sequence: 

1.   Application code invokes the createCommonBaseEvent method on the EventFactory class to create a 

CommonBaseEvent. 

2.   Application code wraps CommonBaseEvent event in a CommonBaseEventLogRecord record, and 

adds event-specific data. 

3.   Application code calls the CommonBaseEvent event complete method. 

4.   The CommonBaseEvent event invokes the ContentHandler completeEvent method. 

5.   The ContentHandler handler adds XML template data to the CommonBaseEvent event. Not all 

ContentHandler handlers support templates. 

6.   The ContentHandler handler adds runtime data to the CommonBaseEvent event. 

7.   Application code passes the CommonBaseEventLogRecord record to the logger using the Logger.log 

method. 

8.   Logger passes CommonBaseEventLogRecord record to Handlers. 

9.   Handlers format data and write to the output device.

v    You can use the default Common Base Event factory to generate content. Read “Generate Common 

Base Event content with the default event factory” for more information. 

v   If you do not wish to use the default event factory, you can create custom content handlers and event 

factories. 

1.   Create a custom factory home. Read “Creating custom Common Base Event factory homes” on 

page 70. 

2.   Create a custom content handler. Read “Creating custom Common Base Event content handlers” on 

page 68.

Results 

After completing all the above steps you will have a Common Base event based on your configuration 

settings. 

Generate Common Base Event content with the default event factory 

A default Common Base Event content handler populates Common Base Events with WebSphere 

Application Server runtime information. This content handler can also use a Common Base Event template 

to populate Common Base Events. 

The default content handler is used when the server creates CommonBaseEventLogRecords as would be 

the case in the following example: 

// Get  a named  logger  

Logger  logger  = Logger.getLogger("com.ibm.someLogger");  

// Log  to the  logger  -- implicitly  the  default  content  handler  

// will  be associated  with  the  CommonBaseEvent  contained  in the  

// CommonBaseEventLogRecord.  

logger.warning("MSG_KEY_001");  

To specify a Common Base Event template in the above case, a Logger.properties file would need to be 

provided with an eventfactory entry for com.ibm.someLogger. If a valid template is found on the classpath, 

then the Logger’s event factory will use the specified template’s content in addition to the WebSphere 

Application Server runtime information when populating Common Base Events. If the template is not found 

on the classpath, or is invalid, then the Logger’s event factory will only use the WebSphere Application 

Server runtime information when populating Common Base Events. 

 

Chapter 2. Adding logging and tracing to your application 65



The default content handler is also associated with the event factory home supplied in the global event 

factory context. This is convenient for creating Common Base Events that need to be populated with 

content similar to that generated from the WebSphere Application Server: 

// Request  the  event  factory  from  the  global  event  factory  home  

EventFactory  eventFactory  = EventFactoryContext.getInstance().getEventFactoryHome().getEventFactory(templateName);  

  

// Create  a Common  Base  Event  

CommonBaseEvent  commonBaseEvent  = eventFactory.createCommonBaseEvent();  

  

// Complete  the  Common  Base  Event  using  content  from  the template  (if  specified  above)  

// and  the  server  runtime  information.  

eventFactory.getContentHandler().completeEvent(commonBaseEvent);  

In the above example, if the template referenced by templateName  is found on the classpath, and the 

template is valid, then the event factory home will return an event factory which uses a content handler 

that combines the template’s content with the WebSphere Application Server runtime information when 

populating Common Base Events. If the template is not found on the classpath, or is invalid, then the 

event factory home will return an event factory which uses a content handler that uses only the 

WebSphere Application Server runtime information when populating Common Base Events. 

The default content handler populates Common Base Events in the server environment with the following 

runtime information: 

CommonBaseEvent.globalInstanceId  

Value:  The unique_record_id  

 Set this value only if the CommonBaseEvent.globalInstanceId value is null before the 

completeEvent method is called. 

CommonBaseEvent.msg  

Value:  A localized message that is based on the MsgDataElement element. 

 Set this value only if the CommonBaseEvent.msg message is null before the completeEvent 

method is called. 

CommonBaseEvent.severity  

Value:  Set based on the value of level set on the CommonBaseEventLogRecord record, if level >= 

Level.SEVERE, set to 50; if level >= Level.WARNING, set to 30; the default is set to 10. 

 Set this value only if the CommonBaseEvent.severity value is null before the completeEvent 

method is called. 

CommonBaseEvent.ComponentIdentification.component  

Value:Set based on the LoggerName value that is set on the CommonBaseEventLogRecord 

record. 

 Set this value only if the CommonBaseEvent.ComponentIdentification.component is null before the 

completeEvent method is called. 

CommonBaseEvent.ComponentIdentification.componentIdType  

Value:  ″Unknown″ 

 Set this value only if the CommonBaseEvent.ComponentIdentification.componentIdType value is 

null before the completeEvent method is called. 

CommonBaseEvent.ComponentIdentification.executionEnvironment  

Value:  OSname[OSarch]#OSversion  

 Set this value only if the CommonBaseEvent.ComponentIdentification.executionEnvironment value 

is null before the completeEvent method is called. 

CommonBaseEvent.ComponentIdentification.instanceId  

Value:  cellName\nodeName\serverName  

 

66 Troubleshooting and support



Set this value only if the CommonBaseEvent.ComponentIdentification.instanceId value is null 

before the completeEvent method is called. Set only in a server environment because this value is 

ignored in a client application. 

CommonBaseEvent.ComponentIdentification.location  

Value:The host name 

 Set this value only if both the CommonBaseEvent.ComponentIdentification.location and the 

CommonBaseEvent.ComponentIdentification.locationType values are null before the 

completeEvent method is called. 

CommonBaseEvent.ComponentIdentification.locationType  

Value:  The host name 

 Set this value only if both the CommonBaseEvent.ComponentIdentification.location and the 

CommonBaseEvent.ComponentIdentification.locationType values are null before the 

completeEvent method is called. 

CommonBaseEvent.ComponentIdentification.processId  

Value:  An internally generated representation of the process number. 

 Set this value only if the CommonBaseEvent.ComponentIdentification.processId value is null 

before the completeEvent method is called 

CommonBaseEvent.ComponentIdentification.subComponent  

Value:  Set based on values of the sourceClassName and the sourceMethodName names that are 

set on the sourceClassName.sourceMethodName name of the CommonBaseEventLogRecord 

record. 

 Set this value only if the CommonBaseEvent.ComponentIdentification.subComponent values is null 

before the completeEvent method is called and both the sourceClassName and the 

sourceMethodName names are set. 

CommonBaseEvent.ComponentIdentification.threadId  

Value:  Set to the value of the Java Virtual Machine (JVM) thread name. 

 Set this value only if the CommonBaseEvent.ComponentIdentification.threadId values is null before 

the completeEvent value is called. 

CommonBaseEvent.ComponentIdentification.componentType  

Value:  http://www.ibm.com/namespaces/autonomic/WebSphereApplicationServer 

 Set this value only if the CommonBaseEvent.ComponentIdentification.componentType values is 

null before the completeEvent method is called. 

CommonBaseEvent.MsgDataElement.msgLocale  

Value:  Set based on the default locale of the JVM. 

 Set this value only if the CommonBaseEvent.msg value is null before the completeEvent method 

is called. 

CommonBaseEvent.Situation.categoryName  

Value:  ReportSituation  

 Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent 

method is called. 

CommonBaseEvent.Situation.situationType.type  

Value:  ReportSituation  

 Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent 

method is called. 

CommonBaseEvent.Situation.situationType.reasoningScope  

Value:  EXTERNAL 

 

Chapter 2. Adding logging and tracing to your application 67



Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent 

method is called. 

CommonBaseEvent.Situation.situationType.reportCategory  

Value:  LOG 

 Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent 

method is called.

The sourceComponentIdentification value is populated if no reporterComponentIdentification ID exists 

when the completeEvent method is invoked on the content handler. Otherwise, the 

reporterComponentIdentification ID is populated instead. 

Common Base Event content handler 

Content handlers populate data into Common Base Events when the Common Base Event complete 

method is invoked. You can associate content handlers with Common Base Event templates, which 

provide default information to transfer into each Common Base Event. 

Content handlers might also provide any other information that is relevant to completing the population of 

the Common Base Event, such as appropriate runtime defaults. The use of content handlers ensures 

consistency of field use in the Common Base Event within a component or within a set of components that 

share the same runtime. For example, some content handlers support the specification of a template. If 

used consistently across a component, this template ensures that all events for that component have the 

same template information filled in. Similarly, some content handlers can also supply runtime information to 

their associated Common Base Events. If consistently used throughout the entire runtime, runtime 

information ensures that all events use runtime data in a similar way. 

The event factory home that is used in the WebSphere Application Server runtime is associated with a 

content handler that both reads from a template, and supplies runtime data. Have components use Event 

Factories that are obtained from this event factory home with their own templates, to produce consistency 

between application events and server events. 

More details can be found in“Creating custom Common Base Event content handlers” or the API 

documentation for org.eclipse.hyades.logging.events.cbe.ContentHandler at www.eclipse.org/hyades. 

Creating custom Common Base Event content handlers 

Create a custom Common Base Event content handler or template to automate configuration or values for 

specific events. 

Before you begin 

A content  handler  is an object that automatically sets the property values of each event based on any 

arbitrary policies that you want to use. 

The following content handler classes were added to WebSphere Application Server to facilitate the use of 

the Common Base Event infrastructure: 

 Class  Name  Description  

WsContentHandlerImpl This provides an implementation of 

org.eclipse.hyades.logging.events.cbe.ContentHandler specifically for use in 

the WebSphere Application Server environment. This content handler 

completes Common Base Events using information from the WebSphere 

Application Server runtime, and it uses the same content handler as is used 

internally by the WebSphere Application Server when completing Common 

Base Events for logging. 

 

68 Troubleshooting and support

http://www.eclipse.org/hyades


WsTemplateContentHandlerImpl This provides the same function as WsContentHandlerImpl, but it extends 

the org.eclipse.hyades.logging.events.cbe.impl.TemplateContentHandlerImpl 

class to enable the use of a Common Base Event template. Template 

content takes precedence in cases where the template data specifies values 

for the same Common Base Event fields as does the 

WsContentHandlerImpl.
  

About this task 

In some situations, you might want some event property data set automatically for every event that you 

create. This automation is a way to fill in certain standard values that do not change, such as the 

application name, or to set some properties based on information that is available from the runtime 

environment, like creation time or thread information. You can set property data automatically by creating a 

content handler. 

v   Use the following code sample to implement the CustomContentHandler class: 

public  class  CustomContentHandler  extends  WsContentHandlerImpl  { 

  

 public  CustomContentHandler()  { 

  super();  

  // TODO  Custom  initialization  code  goes  here  

 } 

  

 public  void  completeEvent(CommonBaseEvent  cbe)  throws  CompletionException  { 

  // following  code  will  add  WAS  content  to the Content  Base  Event  

  super.completeEvent(cbe);  

  // TODO  Custom  content  can  be added  to the  Content  Base  Event  here  

 } 

} 

v   The following shows how to implement the CustomTemplateContentHandler class: 

public  class  CustomTemplateContentHandler  extends  WsTemplateContentHandlerImpl  { 

  

 public  CustomTemplateContentHandler()  { 

  super();  

  // TODO  Custom  initialization  code  goes  here  

 } 

  

 public  void  completeEvent(CommonBaseEvent  cbe)  throws  CompletionException  { 

  // following  code  will  add  WAS  content  to the Content  Base  Event  

  super.completeEvent(cbe);  

  // TODO  Custom  content  can  be added  to the  Content  Base  Event  here  

 } 

} 

Results 

You now have a content handler or a custom content handler template based on the settings that you 

specified. 

Common Base Event factory home 

Event Factory homes provide Event Factory instantiation that is based on a unique factory name. 

Event factory home implementations are tightly coupled with content handlers that are used to populate 

Common Base Events with template or default data. Event factory instances are maintained by the 

associated event factory home, based on their unique name. For example, when application code requests 

a named event factory, the newly created Event Factory instance is returned and persisted for future 

requests for that named event factory. An abstract event factory home class provides the implementation 

 

Chapter 2. Adding logging and tracing to your application 69



for the APIs in the event factory home interface. Implementers extend the abstract event factory home 

class and implement the createContentHandler API to create a typed content handler that is based on the 

type of event factory home implementation. 

In WebSphere Application Server, the default event factory home that is obtained with a call to 

EventFactoryContext.getInstance.getEventFactoryHome method is associated with a ContentHandler 

handler capable of supplying both event template information, as well as WebSphere Application Server 

runtime default information. 

More details can be found in the API documentation for 

org.eclipse.hyades.logging.events.cbe.EventFactoryHome at www.eclipse.org/hyades. 

Creating custom Common Base Event factory homes 

Use custom Common Base Event factory homes to control configuration and implementation of unique 

event factories. 

Before you begin 

Event factory homes create and provide homes for Event Factory instances. Each event factory home has 

a content handler. This content handler is assigned to every event factory the event factory home creates. 

In turn, when a Common Base Event is created, the content handler from the event factory is assigned to 

it. Event factory instances are maintained by the associated event factory home, based on their unique 

name. For example, when application code requests a named event factory, the newly created event 

factory instance is returned and persisted for future requests for that named event factory. 

The following classes were added to facilitate the use of event eactory homes for logging Common Base 

Events: 

 Class  Name  Description  

WsEventFactoryHomeImpl This class extends the 

org.eclipse.hyades.logging.events.cbe.impl.AbstractEventFactoryHome class. 

This event factory home returns event factory instances associated with the 

WsContentHandlerImpl content handler. The WsContentHandlerImpl is the 

content handler used by the WebSphere Application Server by default when no 

event factory template is in use. 

WsTemplateEventFactory 

HomeImpl 

This class extends the 

org.eclipse.hyades.logging.events.cbe.impl.EventXMLFileEventFactoryHomeImpl 

class. This event factory home returns event factory instances associated with 

the WsTemplateContentHandlerImpl Content Handler. The 

WsTemplateContentHandlerImpl is the content handler used by the WebSphere 

Application Server when an Event Factory template is required.
  

About this task 

Custom event factory homes support the use of Common Base Event for logging in WebSphere 

Application Server and make logging easy and consistent between the WebSphere Application Server 

runtime and the exploiters of this API. The CustomEventFactoryHome and 

CustomTemplateEventFactoryHome classes will be used to obtain an event factory. These classes are 

there to make sure the correct content handler is being used with a particular event factory. The 

CustomEventFactoryHelper class is an example of how the infrastructure provider can hide the factory 

selection details from infrastructure users, using their own set of parameters to decide which the 

appropriate event factory is. 

v   The following code samples provide examples of how to implement and use the 

CustomEventFactoryHome class. 

1.   Implementation of the CustomEventFactoryHome class is as follows: 

 

70 Troubleshooting and support



public  class  CustomEventFactoryHome  extends  AbstractEventFactoryHome  { 

  

 public  CustomEventFactoryHome()  { 

  super();  

  // TODO  Custom  intialization  code  goes  here  

 } 

  

 public  ContentHandler  createContentHandler(String  arg0)  { 

  // Always  use  custom  content  handler  

  return  resolveContentHandler();  

 } 

  

 public  ContentHandler  resolveContentHandler()  { 

  // Always  use  custom  content  handler  

  return  new  CustomContentHandler();  

 } 

} 

2.   The following is an example of how to use the CustomEventFactoryHome class: 

// get  the  event  factory  

  EventFactory  eventFactory=(new  CustomEventFactoryHome()).getEventFactory("XYZ");  

  // create  an event  - call  appropriate  method  

  eventFactory.createCommonBaseEvent();  

  // log  event  ...  

v   For the CustomTemplateEventFactoryHome class you can use the following code for implementation 

and use: 

1.   Implement the CustomTemplateEventFactoryHome class by using this code: 

public  class  CustomTemplateEventFactoryHome  extends  

  EventXMLFileEventFactoryHomeImpl  { 

  

 public  CustomTemplateEventFactoryHome()  { 

  super();  

  // TODO  Custom  intialization  code  goes  here  

 } 

  

 public  ContentHandler  createContentHandler(String  arg0)  { 

  // Always  use  custom  content  handler  

  return  resolveContentHandler();  

 } 

  

 public  ContentHandler  resolveContentHandler()  { 

  // Always  use  custom  content  handler  

  return  new  CustomTemplateContentHandler();  

 } 

} 

2.   Use the CustomTemplateEventFactoryHome class by following this sample code: 

// get  the  event  factory  

  EventFactory  eventFactory=(new  

    CustomTemplateEventFactoryHome()).getEventFactory("XYZ");  

  // create  an event  - call  appropriate  method  

  eventFactory.createCommonBaseEvent();  

  // log  event  ...  

v   The CustomEventFactoryHelper class can be implemented and used by following the code below: 

1.   Implement the custom CustomEventFactoryHelper class using this code: 

public  class  CustomTemplateEventFactoryHome  extends  

  EventXMLFileEventFactoryHomeImpl  { 

  

 public  CustomTemplateEventFactoryHome()  { 

  super();  

  // TODO  Custom  intialization  code  goes  here  

 } 

  

 public  ContentHandler  createContentHandler(String  arg0)  {

 

Chapter 2. Adding logging and tracing to your application 71



// Always  use  custom  content  handler  

  return  resolveContentHandler();  

 } 

  

 public  ContentHandler  resolveContentHandler()  { 

  // Always  use  custom  content  handler  

  return  new  CustomTemplateContentHandler();  

 } 

} 

Figure  4    CustomTemplateEventFactoryHome  class  

public  class  CustomEventFactoryHelper  { 

 // name  of the  event  factory  to use  

 public  static  final  String  FACTORY_NAME="XYZ";  

  

 public  static  EventFactory  getEventFactory(String  param1,  String  param2)  { 

  EventFactory  factory=null;  

  switch  (resolveFactory(param1,param2))  { 

  case  1: 

   factory=(new  CustomEventFactoryHome()).getEventFactory(FACTORY_NAME);  

   break;  

  case  2: 

   factory=(new  

    CustomTemplateEventFactoryHome()).getEventFactory(FACTORY_NAME);  

   break;  

  

  default:  

   // Add  default  for  event  factory  

   break;  

  } 

  return  factory;  

 } 

  

 private  static  int  resolveFactory(String  param1,  String  param2)  { 

  int  factory=0;  

  // Add  code  here  to resolve  which  factory  to use  

  return  factory;  

 } 

} 

2.   To use the CustomEventFactoryHelper class, use the following code: 

// get  the  event  factory  

  EventFactory  eventFactory=  

   CustomEventFactoryHelper.getEventFactory("param1","param2","param3");  

  // create  an  event  - call  appropriate  method  

  eventFactory.createCommonBaseEvent();  

  // log  event  ...  

Results 

Use the information provided here to implement a custom content factory home and the associated 

classes based on the settings that you specify. 

Common Base Event factory context 

The event factory context provides a service to look up event factory homes. Retrieve the event factory 

context using a call to the EventFactoryContext.getInstance method. 

Using this class, you can look up the event factory homes by name, and avoid the need to include the 

typed home in code. The EventFactoryHome name must be located on the class path to be found. The 

EventFactoryContext context also stores an EventFactoryHome name as a default, which can be obtained 

with a call to the EventFactoryContext.getInstance.getEventFactoryHome method. 

In WebSphere Application Server, the EventFactoryContext context is configured with a default 

EventFactoryHome name which is associated to a ContentHandler handler that is capable of supplying 

both event template information, as well as WebSphere Application Server runtime default information. 

 

72 Troubleshooting and support



More details can be found in the API documentation for 

org.eclipse.hyades.logging.events.cbe.EventFactory at www.eclipse.org/hyades. 

Common Base Event factory 

Use event factories to create Common Base Events and complete event properties with associated 

content handlers. 

Content handlers populate data into Common Base Events when the Common Base Event invokes the 

complete method. All event properties set by the application code have priority over all properties that are 

specified by the content handler. Event factory implementations are tightly coupled with the content 

handler instance, which is associated with the event factory when the event factory is instantiated. Factory 

instances can be retrieved only from their associated event factory home. Event factory instances are 

retrieved and maintained based on unique names. Event factory names are hierarchical; they are 

represented using the standard Java dot-delimited, name-space naming conventions. 

More details can be found in the API documentation for 

org.eclipse.hyades.logging.events.cbe.EventFactory at www.eclipse.org/hyades. 

java.util.logging -- Java logging programming interface 

The java.util.logging.Logger class provides a variety of methods with which data can be logged. 

In the WebSphere Application Server, the Java logging API (java.util.logging) automatically creates 

Common Base Events for events that are logged at the WsLevel.DETAIL level or above (including 

WsLevel.DETAIL, Level.CONFIG, Level.INFO, WsLevel.AUDIT, Level.WARNING, Level.SEVERE, and 

WsLevel.FATAL). These Common Base Events are created using the event factory that is associated with 

the logger to which the message is logged. If no event factory is specified, WebSphere Application Server 

uses a default event factory which automatically fills in WebSphere Application Server-specific information. 

The WebSphere Application Server uses a special implementation of the java.util.logging.Logger class that 

automatically creates Common Base Events for the following methods: 

v   config 

v   info 

v   warning 

v   severe 

v   log: All variants except log(LogRecord) when used with the WsLevel.DETAIL level or more severe levels 

v   logp: When used with the WsLevel.DETAIL level or more severe levels 

v   logrb: When used with the WsLevel.DETAIL level or more severe levels

The WebSphere Application Server logger implementation is used only for named loggers for example, 

loggers that are instantiated with calls, such as Logger.getLogger(″com.xyz.SomeLoggerName″). Loggers 

instantiated with calls to the Logger.getAnonymousLogger and Logger.getLogger, or Logger.global 

methods do not use the WebSphere Application Server implementation, and do not automatically create 

Common Base Events for logging requests made to them. Log records that are logged directly with the 

Logger.log(LogRecord) method are not automatically converted by WebSphere Application Server loggers 

into Common Base Events. 

The following diagram illustrates how application code can log Common Base Events: 

 

Chapter 2. Adding logging and tracing to your application 73



Application
code

EventFactory
ContentHandler

Runtime Data

CBE
XML

template

Logger

Handler

Output
device

CommonBaseEventLogRecord

CommonBaseEvent

The Java logging API processing of named loggers and message-level events proceeds as follows: 

 1.   Application code invokes the named logger (WsLevel.DETAIL or above) with event-specific data. 

 2.   The logger creates a Common Base Event using the createCommonBaseEvent method on the event 

factory that is associated with the logger. 

 3.   The logger creates a Common Base Event using the event factory associated to the logger. 

 4.   The logger wraps the common base event in a CommonBaseEventLogRecord record, and adds 

event-specific data. 

 5.   The logger calls the Common Base Event complete method. 

 6.   The Common Base Event invokes the ContentHandler completeEvent method. 

 7.   The content handler adds XML template data to the Common Base Event (including for example, the 

component name). Not all content handlers support templates. 

 8.   The content handler adds runtime data to the Common Base Event (including for example, the 

current thread name). 

 9.   The logger passes the CommonBaseEventLogRecord record to the handlers. 

10.   The handlers format data and write to the output device.

Logger.properties  file 

Use the Logger.properties file to set logger attributes for your component. 

The properties file is loaded the first time the Logger.getLogger(loggername) method is called within an 

application. The Logger.properties file must be either on the WebSphere Application Server class path, or 

the context class path. 

The logging subsystem uses Common Base Events to represent all the messages in the WebSphere 

Application Server activity.log file. You can specify your own event factory template to be used with your 

loggers. Use the eventfactory property in your Logger.properties file. See “Sample Common Base Event 

template” on page 63 for details on the Common Base Event template. 

By convention, the name of the event factory template file should be the fully qualified package name of 

the package using the template. The name of the file must end with the .event.xml  extension. For 

example, a valid event factory template file name for the com.abc.somepackage package is: 

com.abc.somepackage.event.xml  

 

74 Troubleshooting and support



When you specify the property value for the eventfactory property in the Logger.properties file, include the 

full path name with no leading slash relative to the root of your class path entry. Do not include the 

.event.xml  extension. 

For example, if the template files from the example above are located in the com/abc/templates  directory, 

the valid value for the eventfactory property is: 

com/abc/templates/com.abc.somepackage  

Finally, if this event factory template file is used by the com.abc.somepackage.SomeClass logger, then the 

following entry will appear in the Logger.properties file: 

com.abc.somepackage.SomeClass.eventfactory=com/abc/templates/com.abc.somepackage  

Logging Common Base Events in WebSphere  Application Server 

The following practices ensure consistent use of Common Base Events within your components, and 

between your components and WebSphere Application Server components. 

Follow these guidelines: 

v   Use a different logger for each component. Sharing loggers across components gets in the way of 

associating loggers with component-specific information. 

v   Associate loggers with event templates that specify source component identification. This association 

ensures that the source of all events created with the logger is properly identified. 

v   Use the same template for directly created Common Base Events (events created using the Common 

Base Event factories) and indirectly created Common Base Events (events created using the Java 

logging API) within the same component. 

v   Avoid calling the complete method on Common Base Events until you are finished adding data to the 

Common Base Event and are ready to log it. This approach ensures that any decisions made by the 

content handler based on data already in the event are made using the final data.

The following sample Logger.properties  file entry demonstrates how to associate the 

com.ibm.componentX logger with the com.ibm.componentX event factory: 

com.ibm.componentX.eventfactory=com.ibm.componentX  

The following sample code demonstrates the use of the same event factory setting for direct (Part 1) and 

indirect (Part 2) Common Base Event logging: 

<?xml  version="1.0"  encoding="UTF-8"?>  

  

<TemplateEvent>  

  version="1.0.1"  

  xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance  

  xsi:noNamespaceSchemaLocation="templateEvent.xsd">  

  

 <CommonBaseEvent>  

   <sourceComponentId  application="My  application"  component="com.ibm.componentX"/>  

   <extendedDataElements  CommonBaseEventname="Sample  ExtendedDataElement  name"  type="string">  

   <values>Sample  ExtendedDataElement  value</values>  

  </extendedDataElements>  

 < /CommonBaseEvent>  

  

< /TemplateEvent>  

 

Chapter 2. Adding logging and tracing to your application 75



76 Troubleshooting and support



Chapter  3.  Diagnosing  problems  (using  diagnosis  tools)  

Various diagnosis tools are provided to help you determine the source and impact of problems occurring in 

your application serving environment. 

About this task 

The purpose of this section is to aid you in understanding why your enterprise application, application 

server, or WebSphere Application Server is not working and to help you resolve the problem. Unlike 

performance tuning, which focuses on solving problems associated with slow processes and non-optimized 

performance, problem determination focuses on finding solutions to functional problems. 

 1.   If deploying or running an application results in exceptions such as ClassNotFoundException, use the 

Class Loader Viewer to diagnose problems with class loaders. 

 2.   If you already have an error message and want to quickly look up its explanation and recommended 

response, look up the message by expanding the Messages section of the Information Center under 

Reference  > Messages. 

 3.   For help in knowing where to find error and warning messages, interpreting messages, and 

configuring log files, see Working with message logs. 

 4.   Difficult problems can require the use of tracing, which exposes the low-level flow of control and 

interactions between components. For help in understanding and using traces, see Working with 

trace. 

 5.   For help in adding log and trace capability to your own application, see “Configuring Java logging 

using the administrative console” on page 4. 

 6.   For help in using settings or tools to help you diagnose the problem, see Working with 

troubleshooting tools. Some of these tools are bundled with the product, and others are freely 

downloadable. 

 7.   To learn how to work with Diagnostic Providers, see Working with Diagnostic Providers.. 

 8.   To find out how to look up documented problems, common mistakes, WebSphere Application Server 

prerequisites, and other problem-determination information on the WebSphere Application Server 

public Web site, or to obtain technical support from IBM, see Obtaining help from IBM. 

 9.   The Troubleshoot IBM Developer Kit for Java describes debugging techniques and the diagnostic 

tools that are available to help you solve problems with Java. It also gives guidance on how to submit 

problems to IBM. 

10.   For current information available from IBM Support on known problems and their resolution, see the 

WebSphere Application Server Product support page. For last minute updates, limitations, and known 

problems, refer to the Release notes section. 

11.   IBM Support has documents that can save you time gathering information needed to resolve this 

problem. Before opening a PMR, see the Must gather documents page for information to gather to 

send to IBM Support.

Troubleshooting class loaders 

Class loaders find and load class files. For a deployed application to run properly, the class loaders that 

affect the application and its modules must be configured so that the application can find the files and 

resources that it needs. Diagnosing problems with class loaders can be complicated and time-consuming. 

To diagnose and fix the problems more quickly, use the administrative console class loader viewer to 

examine class loaders and the classes loaded by each class loader. 

 

© Copyright IBM Corp. 2008 77

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/rzaha/whatitis.htm
http://www.ibm.com/software/webservers/appserv/was/support/
http://www.ibm.com/support/search.wss?rs=180&q=mustgather


Before you begin 

This topic assumes that you have installed an application on a server supported by the product and you 

want to examine class loaders used by the application or its modules. The modules can be Web modules 

(.war files) or enterprise bean (EJB) modules (.jar files). The class loader viewer enables you to examine 

class loaders in a runtime environment. 

This topic also assumes that you have enabled the class loader viewer service. Click Servers  → Server  

Types  → WebSphere  application  servers  → server_name  → Class  loader  viewer  service, enable the 

service and restart the server. 

About this task 

The runtime environment of WebSphere Application Server uses the following class loaders to find and 

load new classes for an application in the following order: 

1.   The bootstrap, extensions, and CLASSPATH class loaders created by the Java virtual machine 

2.   A WebSphere extensions class loader 

3.   One or more application module class loaders that load elements of enterprise applications running in 

the server 

4.   Zero or more Web module class loaders

Java class loaders

WebSphere extensions
class loader

Application module class loader Application module class loader

Web module class loader Web module class loader

   

Each class loader is a child of the previous class loader. That is, the application module class loaders are 

children of the WebSphere extensions class loader, which is a child of the CLASSPATH Java class loader. 

Whenever a class needs to be loaded, the class loader usually delegates the request to its parent class 

loader. If none of the parent class loaders can find the class, the original class loader attempts to load the 

class. Requests can only go to a parent class loader; they cannot go to a child class loader. After a class 

is loaded by a class loader, any new classes that it tries to load reuse the same class loader or go up the 

precedence list until the class is found. 

If the class loaders that load the artifacts of an application are not configured properly, the Java virtual 

machine (JVM) might throw a class loading exception when starting or running that application. “Class 

loading exceptions” on page 80 describes the types of exceptions caused by improperly configured class 

loaders and suggests ways to use the class loader viewer to correct configurations of class loaders. The 

types of exceptions include: 

v   ClassCastException 

v   ClassNotFoundException 

v   NoClassDefFoundException 

v   UnsatisfiedLinkError

Use the class loader viewer to examine class loaders and correct problems with application or class loader 

configurations. 

 

78 Troubleshooting and support



v   Examine a tree view that lists all installed applications and their modules. The modules can be Web 

modules (.war files) or EJB modules (.jar files). 

Click Troubleshooting  → Class  loader  viewer  to access the Enterprise applications topology page. 

v   Examine the class loader delegation hierarchy. 

On the Enterprise applications topology page, select a module to access the Class loader viewer page. 

The page lists the class loaders visible to Web and EJB modules in an installed enterprise application. 

This page helps you to determine which class loaders loaded files of a module and to diagnose 

problems with class loaders. 

The delegation hierarchy is determined by the class loader delegation mode, or class  loader  order, 

specified for an application or Web module. The value can be either Classes  loaded  with  parent  class  

loader  first  or Classes  loaded  with  local  class  loader  first  (parent  last). Refer to the 

Configure class loaders step for more information. 

v   Export information on class loaders. 

1.   On the Class loader viewer page, click Export. 

2.   Select to open a browser or editor on the class loader information or to save the information to disk 

in XML format. 

3.   Click OK, and specify any additional information requested by the system.

v    Display information about class loaders visible to the module in an HTML table format. 

On the Class loader viewer page, click Table  View. The Table View page displays the following 

information: 

 Class  loader  attribute  Description  

Delegation  Indicates whether the class loader delegates the loading of the module to its parent class 

loader. A value of true  implies that the class loader of the parent application is being used 

(Classes  loaded  with  parent  class  loader  first). A value of false  implies that the 

module class loader is being used (Classes  loaded  with  local  class  loader  first  

(parent  last)). Refer to the Configure class loaders step for more information. 

Classpath  Lists the paths over which the class loader searches for classes and resources. 

Classes  Lists the names of classes loaded in the JVM by this class loader.
  

The Table  View  option does not return a value when out-of-memory errors are generated. The 

out-of-memory errors might be related to a memory leak. To examine information about class loaders in 

a table, resolve the out-of-memory problem, and then click Table  View  again. 

v   Search class loaders. 

On the Class loader viewer page, click Search  to access the Search page, on which you can search 

class loaders for the following: 

–   Specific strings 

–   Specific .jar files 

–   The names of files in a specific directory 

–   The names of files loaded by a specific class loader

The search is case-sensitive. “Class loading exceptions” on page 80 describes several uses of the 

Search page. 

v   Configure class loaders. You can configure class loaders for the following: 

–   All applications installed on a specific server. 

–   A specific application 

–   A specific Web module

Note:   For detailed information about server, application, and Web class loaders, see the chapter on 

class loading in the Developing  and  deploying  applications  PDF book.

 

Chapter 3. Diagnosing problems (using diagnosis tools) 79



Class loader configuration determines which class loader loads the classes and resource files for an 

application or Web module. Application and WAR module class loader configuration settings include 

Class  loader  order  and WAR  class  loader  policy. 

A Class  loader  order  value can be either Classes  loaded  with  parent  class  loader  first  or Classes  

loaded  with  local  class  loader  first  (parent  last). The default is Classes  loaded  with  parent  

class  loader  first. A class loader with the Classes  loaded  with  parent  class  loader  first  mode 

delegates loading a class or resource to its immediate parent class loader before searching its 

classpath. 

When troubleshooting class loading problems, you might need to override classes visible to a parent 

class loader. To override such classes with those specific to an application, set the Class  loader  order  

to Classes  loaded  with  local  class  loader  first  (parent  last)  on the class loader that contains the 

application classes on its classpath. An application can override classes visible to a parent class loader, 

but doing so can result in a ClassCastException or UnsatisfiedLinkError if there is a mixed use of 

overridden classes and non-overridden classes. 

For example, under default class loader policies, a Web module has its own Web module (WAR) class 

loader to load its artifacts, which are typically in the WEB-INF/classes  and WEB-INF/lib  directories. An 

application module class loader is the immediate parent of this WAR class loader. To ensure that the 

Web module class loader searches these paths for a particular class or resource first, before delegating 

the load operation to the application module class loader, set the Class  loader  order  of the Web 

module to Classes  loaded  with  local  class  loader  first  (parent  last). 

Class loader policies determine the structure of the application and WAR module class loaders. Under 

the default policies, every running application EAR has its own application module class loader, and 

every Web module has its own WAR module class loader. The default policies ensure Java EE 

compliance regarding visibility and isolation among application artifacts. Changing the default policies is 

not suggested when troubleshooting class loading problems.

What to do next 

If you continue to have class loader problems, refer to “Class loading exceptions” and to the class loading 

chapter of the Developing  and  deploying  applications  PDF book. 

Class loading exceptions 

What kind of class-loading error do you see when you develop an application or start an installed 

application? 

v   “ClassCastException” 

v   “ClassNotFoundException” on page 81 

v   “NoClassDefFoundException” on page 83 

v   “UnsatisfiedLinkError” on page 83 

ClassCastException 

A class cast exception results when the following conditions exist and can be corrected by the following 

actions: 

v   The type of the source object is not an instance of the target class (type). 

v   The class loader that loaded the source object (class) is different from the class loader that loaded the 

target class. 

v   The application fails to perform or improperly performs a narrow operation.

The  type  of  the  source  object  is  not  an  instance  of  the  target  class  (type).  

This is the typical class cast exception. You can diagnose whether the source object of a cast 

statement is not an instance of the target class (type) by examining the class signature of the 

source object class, then verifying that it does not contain the target class in its ancestry and the 

source object class is different than the target class. You can obtain class information by inserting 

a simple print statement in your code. For example: 

System.out.println(  source.getClass().getName()  + “:”  + target.getClass().getName()  ); 

 

80 Troubleshooting and support



Or use a javap command. For example: 

javap  java.util.HashMap  

Compiled  from  "HashMap.java"  

public  class  java.util.HashMap  extends  java.util.AbstractMap  

             implements  java.util.Map,java.lang.Cloneable,java.io.Serializable  { 

The  class  loader  that  loaded  the  source  object  (class)  is  different  from  the  class  loader  that  loaded  

the  target  class.  

Assuming that the type of the source object is an instance of the target class, a class cast 

exception occurs when the class loader that loaded the source object’s class is different that the 

class loader that loaded the target class. This condition might occur when the target class is 

visible on the classpaths of more than one class loader in the WebSphere Application Server 

runtime environment. To correct this problem, use the Search and Search by class name console 

pages used to diagnose problems with class loaders: 

1.   Click Troubleshooting  → Class  loader  viewer  → module_name  → Search  to access the 

Search page. 

2.   For Search  type, select Class/Package. 

3.   For Search  terms, type the name of the class that is loaded by two class loaders. 

4.   Click OK. The Search by class name page is displayed, listing all class loaders that load the 

class. 

If there is more than one class loader listed, then the target class was loaded by more than 

one class loader. Because the source object is an instance of the target class, the class loader 

that loaded the source object class is different from the class loader that loaded the target 

class. 

5.   Return to the Class loader viewer page and examine the classpath to determine why two 

different class loaders load the class. 

6.   Correct your code so that the class is visible only to the appropriate class loader.

The  application  fails  to  perform  or  improperly  performs  a narrow  operation.  

A class cast exception can occur because, when the application is resolving a remote enterprise 

bean (EJB) object, the application code does not perform a narrow operation as required. The 

application must perform a narrow operation after looking up a remote object. Examine the 

application and determine whether it looks up a remote object and, if so, the result of the lookup is 

submitted to a narrow method. 

 The narrow method must be invoked according to the EJB 2.0 programming model. In particular, 

the target class submitted to the narrow method must be the exact, most derived interface of the 

EJB. This also causes a class cast exception in the WebSphere Application Server runtime 

environment. Examine the application and determine whether the target class submitted to the 

narrow method is a super-interface of the EJB that is specified, not the exact EJB type; if so, 

modify the application to invoke narrow with the exact EJB interface. 

Lastly, if a class cast exception occurs during a narrow operation, verify that the narrow method is 

being applied to the result of a remote EJB lookup, not to a local enterprise bean. A narrow is not 

used for local lookups. Examine the application or module deployment descriptor to ensure that 

the object being narrowed is not a local object.

ClassNotFoundException 

A class not found exception results when the following conditions exist and can be corrected by the 

following actions: 

v   The class is not visible on the logical classpath of the context class loader. 

v   The application incorrectly uses a class loader API. 

v   A dependent class is not visible.

The  class  is  not  visible  on  the  logical  classpath  of  the  context  class  loader.  

The class not found is not in the logical class path of the class loader associated with the current 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 81



thread. The logical classpath is the accumulation of all classpaths searched when a load operation 

is invoked on a class loader. To correct this problem, use the Search page to search by class 

name and by Java archive (JAR) name: 

1.   Click Troubleshooting  → Class  loader  viewer  → module_name  → Search  to access the 

Search page. 

2.   For Search  type, select Class/Package. 

3.   For Search  terms, type the name of the class that is not found. 

4.   Click OK. The Search by class name page is displayed, listing all class loaders that load the 

class. 

5.   Examine the page to see if the class exists in the list. 

6.   If the class is not in the list, return to the Search page. For Search  terms, type the name of 

the .jar file for the class; for Search  type, select JAR/Directory. 

7.   Click OK. The Search by Path page is displayed, listing all directories that hold the JAR file.

If the JAR file is not in the list, the class likely is not in the logical class path, not readable or an 

alternate class is already loaded. Move the class to a location that enables it to be loaded. 

The  application  incorrectly  uses  a class  loader  API.  

An application can obtain an instance of a class loader and call either the loadClass method on 

that class loader, or it can call Class.forName(class_name, initialize, class_loader) with that class 

loader. The application may be incorrectly using the class loader application programming interface 

(API). For example, the class name is incorrect, the class is not visible on the logical classpath of 

that class loader, or the wrong class loader was engaged. 

 To correct this problem, determine whether the class exists and whether the application is properly 

using the class loader API. Follow the steps in The class is not visible on the logical classpath of 

the context class loader to determine whether the class is loaded. If the class has not been 

loaded, attempt to correct the application and see if the class loads. If the class is in the class 

path with proper permission and is not being overridden by another factory class, examine the API 

used to load the class. 

1.   Click Troubleshooting  → Class  loader  viewer  → module_name  → Search  to access the class 

loader Search page. 

2.   For Search  type, select Class/Package. 

3.   For Search  terms, type the name of the class. 

4.   Click OK. The Search by class name page is displayed, listing all class loaders that load the 

class. 

5.   Examine the page to see if the class exists in the list. 

6.   If the class is in the list and a ClassNotFound exception was thrown, then the .jar file or class 

is not in the correct context or a wrong API call in the current context was used. 

If the class is not in the list, return to the Search page and do the following: 

a.   Search for the class that generated the exception; that is, the class calling Class.forName. 

b.   See which class loader loads the class. 

c.   Determine whether the class loader has access or can load the class not found by 

evaluating the class path of the class loader.

A  dependent  class  is  not  visible.  

When a class loader clsldr  loads a class cls, the Java virtual machine (JVM) invokes clsldr  to load 

the classes on which cls  depends. Dependent classes must be visible on the logical classpath of 

clsldr, otherwise an exception occurs. This condition typically occurs when users make 

WebSphere Application Server classes visible to the JVM, or make application classes visible to 

the JVM or to the WebSphere extensions class loader. For example: 

v   Class A depends on Class B. 

v   Class A is visible to the WebSphere extensions class loader. 

 

82 Troubleshooting and support



v   Class B is visible on the local classpath of a WAR module class loader, not the WebSphere 

extensions class loader classpath.

When the JVM loads class A using the WebSphere extensions class loader, it then attempts to 

load Class B using the same class loader and ultimately creates a class not found exception. 

To correct this problem: 

1.   Make the application-specific classes visible to the appropriate application class loader. 

2.   Search for the class not found (Class B). 

3.   If Class B is in the proper location, search for the class that loads the dependent class (Class 

A) in the Class loader viewer. 

4.   If the class is loaded and a ClassNotFound exception was thrown, then the .jar  file or class is 

not in proper context or the wrong API call in the current context was used. 

If no class was found, do the following: 

a.   Search for the class that generated the exception; that is, the class calling Class.forName. 

b.   See which class loader loads the class. 

c.   Determine whether the class loader has access or can load the class not found by 

evaluating the class path of the class loader.
5.   Ensure that the caller class (Class B) is visible to the JVM or WebSphere extensions class 

loader.

NoClassDefFoundException 

A no class definition found exception results when the following conditions exist and can be corrected by 

the following actions: 

The  class  is  not  in  the  logical  class  path.  

Refer to “ClassNotFoundException” on page 81 for information.

The  class  cannot  load.  

There are various reasons for a class not loading. The reasons include: failure to load the 

dependent class, the dependent class has a bad format, or the version number of a class.

UnsatisfiedLinkError 

A linkage error results when the following conditions exist and can be corrected by the following actions: 

v   A user action caused the error. 

v   System.mapLibraryName returns the wrong library file. 

v   The native library is already loaded. 

v   A dependent native library was used.

A  user  action  caused  the  error.  

 Several user actions can result in a linkage error: 

A  library  extension  name  is  incorrect  for  the  platform.  

System.loadLibrary  is  passed  an  incorrect  parameter.  

The  library  is  not  visible.  

As a best practice, use the JVM class loader to find or load native libraries. WebSphere 

Application Server prints the Java library path (java.library.path) when starting up. If the 

JVM class loader is intended to load the library, verify that the path containing the native 

library file is in the Java library path. If not, append the path to the platform-specific native 

library environment variable or to the java.library.path system property of the server 

process definition. 

 In general, the Java virtual machine invokes findLibrary() on the class loader xxx  that 

loads the class that calls System.loadLibrary(). If xxx.findLibrary() fails, the Java virtual 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 83



machine attempts to find the library using the JVM class loader, which searches the JVM 

library path. If the library cannot be found, the Java virtual machine creates an 

UnsatisfiedLinkError exception. 

Thus, if a WebSphere class loader is intended to find a native library myNativeLib, the 

library must be visible on the nativelibpath  of the class loader that loads the class that 

calls System.loadLibrary(myNativeLib). This practice is necessary or desirable in the 

following situation: 

v   Shared libraries have a Native  library  path  in their configuration. Because shared 

libraries enable the versioning of application-specific libraries, consider specifying the 

paths to any native libraries used by the shared library code in the shared library 

configuration.

Ensure that the correct WebSphere class loader loads the class that calls 

System.loadLibrary() and that the native library is visible on the Native  library  path  

setting.

The  native  library  is  already  loaded.  

This condition can result from either of the following errors: 

User  error  

Check for multiple calls to System.loadLibrary and remove any extraneous calls. 

Error  when  an  application  restarts  

The JVM has a restriction that only one class loader can load a native library at a time. An 

error results when an application restarts before the garbage collector cleans up the class 

loader from the stopped application. When the class that loads the native library moves, all 

of the classes that depend on that native library and their dependencies also must move. 

 To correct this condition, move the loading of the native library to a class loader that does 

not reload: 

1.   Locate all application classes that load native libraries or have native methods. 

2.   Identify any dependent classes for the classes in step 1, such as logging packages. 

3.   Create a server-associated shared library or an isolated shared library. 

4.   Move the JAR files loaded for classes in steps 1 and 2 from the application to the 

shared library created in step 3. 

5.   Save your changes. 

6.   Redeploy the application and rerun the scenario.

For more information about invoking, creating, and managing shared libraries, read 

“Managing shared libraries” in the Administering  applications  and  their  environment  PDF 

book. 

Classes within server-scoped libraries are loaded once for each server lifecycle, ensuring 

that the native library required by the application is loaded once for each Java virtual 

machine, regardless of the application’s life cycle.

A  dependent  native  library  was  used.  

Dependent native libraries must be found or loaded by the JVM class loader. That is, if a native 

library NL  is dependent on another native library, DNL, the JVM class loader must find DNL on the 

Java library path. This is because the JVM runs native code when loading NL; when it encounters 

the dependency on DNL, the JVM native code can call only to the JVM class loader to resolve the 

dependency. A WebSphere class loader cannot load a dependent native library. 

 Modify the platform-specific environment variable defining the Java library path (LIBPATH) to 

include the path containing the unresolved native library.

Class loader viewer service settings 

Use this page to configure the server to start the class loader viewer service when the server starts. The 

Class Loader Viewer helps you diagnose problems with class loaders. 

 

84 Troubleshooting and support



To view this administrative console page, click Servers  → Server  Types  → WebSphere  application  

servers  → server_name  → Class  loader  viewer  service. 

Class loaders find and load class files. For a deployed application to run properly, the class loaders that 

affect the application and its modules must be configured so that the application can find the files and 

resources that it needs. Diagnosing problems with class loaders can be complicated and time-consuming. 

To diagnose and fix the problems more quickly, enable the class loader viewer service on this page and 

then use the console Class loader viewer to examine class loaders and the classes loaded by each class 

loader. Click Troubleshooting  → Class  loader  viewer  to access the Class loader viewer in the console. 

Enable service at server startup 

Specifies whether or not the server attempts to start the class loader viewer service when the server 

starts. 

The default is not to start the class loader viewer service. 

Enterprise application topology 

Use this page to see where modules reside in a topology of enterprise applications. Knowing where a 

module resides helps you to determine which class loader loaded a module and to diagnose problems with 

class loaders. 

To view this administrative console page, click Troubleshooting  → Class  loader  viewer. This page lists all 

installed applications and their modules in a tree view. The modules can be Web modules (.war files) or 

enterprise bean (EJB) modules (.jar files). 

When deploying an application to a server or starting an application, you might encounter problems related 

to class loaders. Use the console pages accessed from this page to troubleshoot errors such as the 

following: 

v   ClassCastException 

v   ClassNotFoundException 

v   NoClassDefFoundException 

v   UnsatisfiedLinkError 

You can use the Class loader viewer console pages without having to restart or manipulate the application. 

Enterprise applications topology 

Displays a tree hierarchy of applications installed on a server and lists the module files in the class paths 

of the applications. 

Expand the hierarchy for an application to see what Web modules (.war files) and EJB modules (.jar files) 

are in the application class path. 

Click on a module name to examine the class loaders of the module. 

Class loader viewer settings 

Use this page to examine the class loaders visible to a Web module (.war file) or enterprise bean (.ejb file) 

in an installed enterprise application. This page helps you to determine which class loaders loaded files of 

a module and to diagnose problems with class loaders. 

To view this administrative console page, click Troubleshooting  → Class  loader  viewer  → module_name. 

The module is currently running on all nodes and servers listed. 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 85



To learn more about classes used by the module and their class loaders, click a button: 

 Button  Resulting  action  

Export  Opens a dialog that enables you to view or save the class loader information on this page in an 

XML file. 

Table View  Displays the Table view page, which provides information about class loaders visible to the 

module in an HTML table format for each class loader. Such information includes: 

Delegation  

Whether the class loader delegates a load operation to its immediate parent before 

searching its local classpath for a class or resource 

Classpath  

The local classpath, which includes the paths over which the class loader searches for 

classes and resources, excluding the classpaths of any parent class loaders. 

Classes  

The names of classes loaded by the class loader 

Search  Displays the Search page, on which you can search class loaders for the following: 

v   Specific strings 

v   Specific .jar files 

v   The names of files in a specific directory 

v   The names of files loaded by a specific class loader
  

Class Loader 

Displays a hierarchy of class loaders that affect the loading of classes used by the Web or EJB module. 

The Hierarchy  tab displays the class loaders in a tree hierarchy. The Search  Order  tabs lists the class 

loaders in the order in which the runtime environment uses them to find and load classes. 

Expand a hierarchy of class loaders to view the following: 

v   Class loader names 

v   Arrows that point upwards beside class loader names, indicating that requests can go to a parent class 

loader only and not go to a child class loader 

v   The names of classes that are loaded by a class loader 

v   The paths of property files and .jar files used by the classes 

The following class loaders might be in a hierarchy: 

 Class  loader  name  Description  

JDK  Extension  Loader  The JDK extensions class loader is a composite class loader that is 

comprised of the Java virtual machine (JVM) bootstrap class loader, the 

JVM extensions class loader and the JVM system class loader, which load 

the core SDK classes and resources as well as classes and resources 

visible on the JVM classpath. 

WAS Extension  Class  Loader  The WAS Extension Class Loader loads the WebSphere Application Server 

classes, standalone resource classes, custom service classes, and custom 

registry classes. At bootstrap, this class loader uses the ws.ext.dirs  

system property to determine the path that is used to load classes. Each 

directory in the ws.ext.dirs  class path and every .jar file or .zip file in 

these directories is added to the class path used by this class loader. 

WAS Compound  Class  Loader  The WAS Compound Class Loaders load classes and resources of 

enterprise archive (EAR) modules, Web (WAR) modules, and 

server-associated shared libraries. Under default class loader policies, an 

instance of a WAS Compound Class Loader exists for each running EAR 

and WAR module and for each class loader defined in the server 

configuration.
 

 

86 Troubleshooting and support



Click on Classes  to view a list of classes loaded by a class loader. 

The class loader viewer service must be enabled to view the list of classes. 

Search settings 

Use this page to search for information about class loaders visible to a Web module (.war file) or 

enterprise bean (.ejb file) in an installed enterprise application. This page helps you diagnose problems 

with class loaders. 

To view this administrative console page, click Troubleshooting  → Class  loader  viewer  → module_name  

→ Search. 

On the Search page, you can search class loaders for the following: 

v   Specific strings 

v   Specific .jar files 

v   The names of files in a specific directory 

v   The names of files loaded by a specific class loader

Search type 

Specifies the type of items in which to search for the string. 

 Search  type  Instructions  and  resulting  action  

Class/Package  In the Search  terms  field, type a class name or package name. After you select this search 

type and click Go, the program searches class loaders for a class or package name. The 

program displays a list of classes and packages that have the string in their name. 

JAR/Directory  In the Search  terms  field, type a .jar  file name or directory name. After you select this 

search type and click Go, the program searches class loaders for a .jar file or directory name. 

The program displays a list of .jar files that have the string in their name and of all files in 

directories that have the string in their name.
  

Search terms 

Specifies the string to be found in the items searched. 

The search is case-sensitive. If the search string is classname, the string ClassName  is not found. 

The search matches the entire string. If the search type is JAR/Directory  and the search string is 

C:/WebSphere/AppServerd0603.185/java/jre/lib/ext/CmpCrmf.jar, the entire path of the JAR file is 

matched. If the search type is JAR/Directory  and the search string is Cmp, the string Cmp  is not found. 

The search supports limited regular expressions. It supports the wildcard characters asterisk (*), question 

mark (?), and percent sign (%). The wildcard characters * and % match zero or more characters; ? matches 

exactly one character. 

 Search  string  Resulting  matches  

*Cmp*  Items that have Cmp  in their name 

*Cmp*.jar  Items that have Cmp  in their name and that end in .jar  

%Cmp%  Items that have Cmp  in their name 

%Cmp%.jar  Items that have Cmp  in their name and that end in .jar  

*Cmp?rmf.jar  Items that have a name with any characters before Cmp, then any one character, 

and then rmf.jar
 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 87



The search supports full regular expressions if the value for the search string starts and ends with a 

forward slash (/). 

 Search  string  Resulting  matches  

/.*Cmp.*/  Items that contain any character before and after Cmp in their name 

/.*Cmp.*\.jar/  Items that have Cmp  in their name and that end in .jar  

/.*Cmp?rmf\.jar/  Items that have a name with any characters before Cmp, then any one character, 

and then rmf.jar  

/.*\d\.jar/  Items with a name that ends in a number followed by .jar
  

Diagnosing problems with message logs 

WebSphere Application Server can write system messages to several general purpose logs, including 

JVM, process, and IBM service logs, which can be examined for problem determination. 

Before you begin 

The JVM logs are created by redirecting the System.out  and System.err  streams of the JVM to 

independent log files. WebSphere Application Server writes formatted messages to the System.out  stream. 

In addition, applications and other code can write to these streams using the print()  and println()  

methods defined by the streams. Some Developer Kit built-ins such as the printStackTrace()  method on 

the Throwable  class can also write to these streams. Typically, the System.out  log is used to monitor the 

health of the running application server. The System.out  log can be used for problem determination, but it 

is recommended to use the IBM Service log and the advanced capabilities of the Log Analyzer instead. 

The System.err  log contains exception stack trace information that is useful when performing problem 

analysis. 

Because each application server represents a JVM, there is one set of JVM logs for each application 

server and all of its applications located by default in the following directory: 

v   profile_root/logs/server_name

In the case of a WebSphere Application Server Network Deployment configuration, JVM logs are also 

created for the deployment manager and each administrative agent because they also represent JVMs. 

The process logs are created by redirecting the STDOUT  and STDERR  streams of the process to independent 

log files. Native code, including the Java virtual machine (JVM) itself, writes to these files. As a general 

rule, WebSphere Application Server does not write to these files. However, these logs can contain 

information relating to problems in native code or diagnostic information written by the JVM. 

As with JVM logs, there is a set of process logs for each application server, since each JVM is an 

operating system process. For WebSphere Application Server Network Deployment configuration, a set of 

process logs is created for the deployment manager and each administrative agent. 

The IBM service log contains both the WebSphere Application Server messages that are written to the 

System.out  stream and some special messages that contain extended service information that is normally 

not of interest, but can be important when analyzing problems. There is one service log for all WebSphere 

Application Server JVMs on a node, including all application servers. The IBM Service log is maintained in 

a binary format and requires a special tool to view. This viewer, the Log and Trace Analyzer, provides 

additional diagnostic capabilities. In addition, the binary format provides capabilities that are utilized by IBM 

support organizations. 

In addition to these general purpose logs, WebSphere Application Server contains other specialized logs 

that are specific to a particular component or activity. For example, the HTTP server plug-in maintains a 

special log. Normally, these logs are not of interest, but you might be instructed to examine one or more of 

 

88 Troubleshooting and support



these logs while performing specific problem determination procedures. For details on how and when to 

view the plug-in log, see the Accessing a Web resource through the application server and bypassing the 

HTTP server subsection of the A Web resource does not display topic. 

About this task 

Sometimes server and application problems can be diagnosed by examining log output from the 

WebSphere Application Server. 

Determine which type of logs you would like to implement: 

v   JVM logs 

v   Process logs 

v   IBM service logs

Viewing  JVM logs 

The Java virtual machine (JVM) logs are written as plain text files. 

About this task 

Use either of two techniques to view the JVM logs for an application server: 

v   Use the administrative console, which also supports viewing the JVM logs from a remote machine. 

v   Use a text editor on the machine where the logs are stored.

1.   View the JVM logs from the administrative console. 

a.   Start the administrative console. 

b.   Click Troubleshooting  >  Logs  and  Trace  in the console navigation tree. To view the logs for a 

particular server, click on the server name to select it, then click JVM  Logs. 

c.   Select the runtime tab. 

d.   Click View  corresponding to the log you want to view.

2.   View the JVM logs from the machine where they are stored. 

a.   Go to the machine where the logs are stored. 

b.   Navigate to the profile_root/logs/server_name  directory and select SystemOut.log or SystemErr.log. 

c.   Open the file in a text editor or drag and drop the file into an editing and viewing program.

JVM log interpretation 

View the JVM log files to determine problems within application environments. 

The JVM logs contain print data written by applications. The application can write this data directly in the 

form of System.out.print(), System.err.print(), or other method calls. The application can also write 

data indirectly by calling a JVM function, such as an Exception.printStackTrace(). In addition, the 

System.out  JVM log contains system messages written by the WebSphere Application Server. 

You can format application data to look like WebSphere Application Server system messages by using the 

Installed Application Output field of the JVM Logs properties panel, or as plain text with no additional 

formatting. WebSphere Application Server system messages are always formatted. Depending on how the 

JVM log is configured, formatted messages can be written to the JVM logs in either basic or advanced 

format. 

Message formats 

Formatted messages are written to the JVM logs in one of two formats: 

Basic  Format  

The format used in earlier versions of WebSphere Application Server. 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 89



Advanced  Format  

Extends the basic format by adding information about an event, when possible.

Basic and advanced format fields 

Basic and Advanced Formats use many of the same fields and formatting techniques. The various fields 

that may be found in these formats follow: 

TimeStamp  

The timestamp is formatted using the locale of the process where it is formatted. It includes a fully 

qualified date (for example YYMMDD), 24 hour time with millisecond precision and a time zone. 

ThreadId  

An 8 character hexadecimal value generated from the hash code of the thread that issued the 

message. 

ThreadName  

The name of the Java thread that issued the message or trace event. 

ShortName  

The abbreviated name of the logging component that issued the message or trace event. This is 

typically the class name for WebSphere Application Server internal components, but can be some 

other identifier for user applications. 

LongName  

The full name of the logging component that issued the message or trace event. This is typically 

the fully qualified class name for WebSphere Application Server internal components, but can be 

some other identifier for user applications. 

EventType  

A one character field that indicates the type of the message or trace event. Message types are in 

upper case. Possible values include: 

F  A Fatal message. 

E  An Error message. 

W  A Warning message. 

A  An Audit message. 

I An Informational message. 

C  An Configuration message. 

D  A Detail message. 

O  A message that was written directly to System.out  by the user application or internal 

components. 

R  A message that was written directly to System.err  by the user application or internal 

components. 

Z  A placeholder to indicate the type was not recognized.
ClassName  

The class that issued the message or trace event. 

MethodName  

The method that issued the message or trace event. 

Organization  

The organization that owns the application that issued the message or trace event. 

Product  

The product that issued the message or trace event. 

Component  

The component within the product that issued the message or trace event.

Basic format 

Message events displayed in basic format use the following format. The notation <name> indicates 

mandatory fields that will always appear in the basic format message. The notation [name] indicates 

optional or conditional fields that will be included if they can be determined. 

<timestamp><threadId><shortName><eventType>[className][methodName]<message>  

 

90 Troubleshooting and support



Advanced format 

Message events displayed in advanced format use the following format. The notation <name> is used to 

indicate mandatory fields that will always appear in the advanced format for message entries. The notation 

[name] is used to indicate optional or conditional fields that will be included if they can be determined. 

<timestamp><threadId><eventType><UOW><source=longName>[className]  

[methodName]<Organization><Product><Component>  

[thread=threadName]<message>  

Configuring the JVM logs 

Use the administrative console to configure the JVM logs for an application server. 

About this task 

To log events or information from a running JVM, you can use the administrative console to configure the 

settings you need for each server. Configuration changes for the JVM logs that are made to a running 

application server are not applied until the application server is restarted. 

1.   Start the administrative console 

2.   Click Troubleshooting  >  Logs  and  Trace, then click server  > JVM  Logs. 

3.   Select the Configuration tab. 

4.   Scroll through the panel to display the attributes for the stream to configure. 

5.   Change the appropriate configuration attributes and click Apply. 

6.   Save your configuration changes.

Java virtual machine (JVM) log settings 

Use this page to view and modify the settings for the Java virtual machine (JVM) System.out  and 

System.err  logs. 

To view this administrative console page, click Troubleshooting  >  Logs  and  Trace  >server  name  > JVM  

Logs. 

View and modify the settings for the Java Virtual Machine (JVM) System.out and System.err logs for this 

managed process. The JVM logs are created by redirecting the System.out and System.err streams of the 

JVM to independent log files. The System.out log is used to monitor the health of the running application 

server. The System.err log contains exception stack trace information that is useful when performing 

problem analysis. There is one set of JVM logs for each application server and all of its applications. JVM 

logs are also created for the deployment manager and each node manager. Changes on the Configuration 

panel will apply when the server is restarted. Changes on the Runtime panel will apply immediately. 

File  Name:   

Specifies the name of one of the log file described on this page. 

 The first file name field specifies the name of the System.out  log. The second file name field specifies the 

name of the System.err  file. 

Press the View  button on the Runtime tab to view the contents of a selected log file. 

The file name specified for the System.out  log or the System.err  log must have one of the following 

values: 

filename  

The name of a file in the file system. It is recommended that you use a fully qualified file name. If 

the file name is not fully qualified, it is considered to be relative to the current working directory for 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 91



the server. Each stream must be configured with a dedicated file. For example, you cannot redirect 

both System.out  and System.err  to the same physical file. 

 If the directory containing the file already exists, the user ID under which the server is running 

requires read/write access to the directory. If the directory does not exist, it will be created with the 

proper permissions. The user id under which the server is running must have authority to create 

the directory. 

console  

This is a special file name used to redirect the stream to the corresponding process stream. If this 

value is specified for System.out, the file is redirected to stdout. If this value is specified for 

System.err, the file is redirected to stderr. 

none  Discards all data written to the stream. Specifying none  is equivalent to redirecting the stream to 

dev/null on an operating system such as AIX® of Linux.

The default path for filename  is the value of the variable SERVER_LOG_ROOT. To see the value of the 

SERVER_LOG_ROOT variable: 

1.   On the administrative console, select Environment  >  WebSphere  Variables  

2.   Click on the Server  radio button, and then click Apply. The value of the SERVER_LOG_ROOT  

variable appears in the resulting list.

To change the value of SERVER_LOG_ROOT: 

1.   Select SERVER_LOG_ROOT 

2.   Enter a new path in the Value field 

3.   Click Apply 

4.   Save the configuration. You will have to restart the server for the change to take effect.

You can also change the location and name of the ${SERVER_LOG_ROOT}/SystemOut.log and 

${SERVER_LOG_ROOT}/SystemErr.log files to any other absolute path and filename (for example, 

/tmp/myLogfile.log). 

File  formatting:   

Specifies the format to use in saving the System.out  file. 

Log  file  rotation:    Use this set of configuration attributes to configure the System.out  or System.err  log 

file to be self-managing. 

A self-managing log file writes messages to a file until reaching either the time or size criterion. At the 

specified time or when the file reaches the specified size, logging temporarily suspends while the log file 

rolls over, which involves closing and renaming the saved file. The new saved file name is based on the 

original name of the file plus a timestamp qualifier that indicates when the renaming occurs. Once the 

renaming completes, a new, empty log file with the original name reopens and logging resumes. All 

messages remain after the log file rollover, although a single message can split across the saved and the 

current file. 

You can only configure a log to be self-managing if the corresponding stream is redirected to a file. 

File  Size  

Click this attribute for the log file to manage itself based on its file size. Automatic roll over occurs 

when the file reaches the specified size you specify in the maximum size field. 

Maximum  Size  

Specify the maximum size of the file in megabytes. When the file reaches this size, it rolls over. 

 This attribute is only valid if you click File size. 

Time  Click this attribute for the log file to manage itself based on the time of day. At the time specified in 

the start time field, the file rolls over. 

 

92 Troubleshooting and support



Start  Time  

Specify the hour of the day, from 1 to 24, when the periodic rollover algorithm starts for the first 

time after an Application Server restart. The algorithm loads at Application Server startup. Once 

started at the (start time field) hour, the rollover algorithm rolls the file every (repeat time field) 

hours. This rollover pattern continues without adjustment until the Application Server stops. 

Note:   The rollover always occurs at the beginning of the specified hour of the day. The first hour 

of the day, which starts at 00:00:00 (midnight), is hour 1 and the last hour of the day, which 

starts at 23:00:00, is hour 24. Therefore, if you want log files to roll over at midnight, set the 

start time to 1.
Repeat  time  

Specifies the number of hours after which the log file rolls over. Valid values range from 1 to 24.

Configure a log file to roll over by time, by size, or by time and size. Click File  Size  and Time  to roll the 

file at the first matching criterion. For example, if the repeat time field is 5 hours and the maximum file size 

is 2 MB, the file rolls every 5 hours, unless it reaches 2 MB before the interval elapses. After the size 

rollover, the file continues to roll at each interval. 

Maximum  Number  of  Historical  Log  Files:    Specifies the number of historical (rolled) files to keep. The 

stream writes to the current file until it rolls. At rollover, the current file closes and is saved as a new name 

consisting of the current name plus the rollover timestamp. The stream then reopens a new file with the 

original name to continue writing. The number of historical files grows from zero to the value of the 

maximum number of historical files field. The next rollover deletes the oldest historical file. 

Installed  Application  Output:    Specifies whether System.out  or System.err  print statements issued from 

application code are logged and formatted. 

Show  application  print  statements  

Click this field to show messages that applications write to the stream using print  and println  

stream methods. WebSphere Application Server system messages always appear. 

Format  print  statements  

Click this field to format application print statement like WebSphere Application Server system 

messages.

Process logs 

WebSphere Application Server processes contain two output streams that are accessible to native code 

running in the process. These streams are the stdout and stderr streams. Native code, including Java 

virtual machines (JVM), might write data to these process streams. In addition, JVM provided System.out 

and System.err streams can be configured to write their data to these streams also. 

By default, the stdout and stderr streams are redirected to log files at application server startup, which 

contain text written to the stdout and stderr streams by native modules (*SRVPGMs, .dlls, .exes, UNIX® 

libraries, and other modules). By default, these files are stored as profile_root/logs/server_name/
native_stderr.log and profile_root/logs/native_stdout.log. 

Configuring the service log 

The settings for service logs are typically shared for all servers, but you can configure a separate service 

log for each server process by overriding the configuration values at the server level. 

About this task 

The configuration values for the service log are inherited by each server process from the node 

configuration, but under certain circumstances you might wish to configure the service logs differently for 

individual servers. You can use the administrative console to change the service log settings from the 

server level configuration panels. 

1.   Start the administrative console. 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 93



2.   Click Troubleshooting  >  Logs  and  Trace  > server_name  > IBM  Service  Logs. 

3.   Select the Enable  box to enable the service log, clear the check box to disable the log. 

4.   Set the name for the service log. 

The default name is profile_root/logs/activity.log. If the name is changed, the run time requires write 

access to the new file, and the file must use the .log extension. 

5.   Set the maximum file size. Specifies the number of megabytes to which the file can grow. When the 

file reaches this size, it wraps, replacing the oldest data with the newest data. 

6.   Save the configuration. 

7.   Restart the server to apply the configuration changes.

IBM service log settings 

To view this administrative console page, click Troubleshooting  > Logs  and  Trace  > server  name  > IBM  

Service  Logs. 

Use this panel to configure the IBM service log, also known as the activity log. The IBM service log 

contains both the WebSphere Application Server messages that are written to the System.out stream and 

some special messages that contain extended service information that can be important when analyzing 

problems. There is one service log for all WebSphere Application Server Java virtual machines (JVMs) on 

a node, including all application servers and their node agent (if present). A separate activity log is created 

for a deployment manager in its own logs directory. The IBM Service log is maintained in a binary format. 

Use the Log and Trace Analyzer or Showlog tool to view the IBM service log. 

Enable  service  log:   

Specifies creation of a log file by the IBM Service log. 

File  Name:   

Specifies the name of the file used by the IBM Service log. 

Maximum  File  Size:   

Specifies the maximum size in megabytes of the service log file. The default value is 2 megabytes. 

 When this size is reached, the service log wraps in place. Note that the service log does not roll over to a 

new log file like the JVM logs. 

Enable  Correlation  ID:   

Specifies the generation of a correlation ID that is logged with each message. 

 You can use the correlation ID to correlate activity to a particular client request. 

You can also use it to correlate activities on multiple application servers, if applicable. 

Viewing  the service log 

Service logs are logs written in a binary format. You cannot view a service log directly using a text editor. 

You should never directly edit the service log, as doing so will corrupt the log. 

Before you begin 

To move a service log from one machine to another, you must use a mechanism like FTP, which supports 

binary file transfer. You can view a service log in two ways: 

 

94 Troubleshooting and support



v   It is recommended that you use the Log and Trace Analyzer tool to view the service log. This tool 

provides interactive viewing and analysis capability that is helpful in identifying problems. 

v   If you are unable to use the Log and Trace Analyzer tool, use the Showlog tool to convert the contents 

of the service log to a text format that you can then write to a file or dump to the command shell 

window.

About this task 

Run the showlog script to view the contents of the service log as described in the following procedure. 

1.   Open a shell window on the machine where the service log resides. 

2.   Change the directory to app_server_root/bin where app_server_root  is the fully qualified path where 

the WebSphere Application Server product is installed. 

3.   Run the showlog script. 

showlog  

4.   Run the following showlog script with no parameters to display usage instructions. 

showlog  

5.   Format and write the service log contents to a file. 

 showlog  service_log_filename  output_filename  

If the service log is not in the default location, you must fully qualify the service_log_filename

CORBA minor codes 

Applications that use CORBA services generate minor codes to indicate the underlying cause of a failure. 

These codes are written to the exception stack. Look for ″minor code″ in the exception stack to locate 

these exceptions. 

Overview 

Common Object Request Broker Architecture (CORBA) is an industry-wide standard for object-oriented 

communication between processes, which is supported in several programming languages. Several 

subcomponents of the product use CORBA to communicate across processes. 

When a CORBA process fails, that is a request from one process to another cannot be sent, completed, or 

returned, a high-level exception is created, such as TransactionRolledBackException: CORBA 

TRANSACTION_ROLLEDBACK. 

Minor codes that are used by product components 

 Range  Related  subcomponent  Where  to find  details  

0x49424300-0x494243FF Security Security components troubleshooting tips 

0x49421050-0x4942105F, 

0x49421070-0x4942107F 

ORB services Object request broker troubleshooting tips 

0x4f4d and above Standard CORBA 

exceptions 

http://www.omg.org 

0x49421080-0x4942108F Naming services 

0x49421080-0x4942108F Workload Management 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 95

http://www.omg.org


Configuring the hang detection policy 

The hang detection option for WebSphere Application Server is turned on by default. You can configure a 

hang detection policy to accommodate your applications and environment so that potential hangs can be 

reported, providing earlier detection of failing servers. When a hung thread is detected, WebSphere 

Application Server notifies you so that you can troubleshoot the problem. 

Before you begin 

A common error in Java Platform, Enterprise Edition (Java EE) applications is a hung thread. A hung 

thread can result from a simple software defect (such as an infinite loop) or a more complex cause (for 

example, a resource deadlock). System resources, such as CPU time, might be consumed by this hung 

transaction when threads run unbounded code paths, such as when the code is running in an infinite loop. 

Alternately, a system can become unresponsive even though all resources are idle, as in a deadlock 

scenario. Unless an end user or a monitoring tool reports the problem, the system may remain in this 

degraded state indefinitely. 

Using the hang detection policy, you can specify a time that is too long for a unit of work to complete. The 

thread monitor checks all managed threads in the system (for example, Web container threads and object 

request broker (ORB) threads) . Unmanaged threads, which are threads created by applications, are not 

monitored. For more information read “Hung threads in Java Platform, Enterprise Edition applications” on 

page 97. 

About this task 

The thread hang detection option is enabled by default. To adjust the hang detection policy values, or to 

disable hang detection completely: 

1.   From the administrative console, click Servers  > Application  Servers  > server_name  

2.   Under Server Infrastructure, click Administration  > Custom  Properties  

3.   Click New. 

4.   Add the following properties: 

Name:  com.ibm.websphere.threadmonitor.interval  

Value:   The  frequency  (in  seconds)  at  which  managed  threads  in  the selected  

        application  server  will  be interrogated.  

Default:  180  seconds  (three  minutes).  

  

Name:  com.ibm.websphere.threadmonitor.threshold  

Value:    The  length  of time  (in  seconds)  in which  a thread  can  be active  

         before  it is considered  hung.   Any  thread  that  is detected  as 

         active  for  longer  than  this  length  of  time  is reported  as hung.  

Default:  The  default  value  is 600  seconds  (ten  minutes).  

  

Name:com.ibm.websphere.threadmonitor.false.alarm.threshold  

Value:  The  number  of times  (T)  that  false  alarms  can  occur  

       before  automatically  increasing  the  threshold.  It  is possible  that  a 

       thread  that  is reported  as hung  eventually  completes  its  work,  

       resulting  in a false  alarm.   A large  number  of these  events  indicates  

       that  the  threshhold  value  is too  small.  The  hang  detection  facility  can  

       automatically  respond  to this  situation:  For  every  T false  alarms,  the 

       threshold  T is  increased  by a factor  of 1.5.  Set  the value  to 

       zero  (or  less)  to disable  the  automatic  adjustment.  

Default:  100  

  

Name:  com.ibm.websphere.threadmonitor.dump.java  

Value:  Set  to true  to cause  a javacore  to  be created  when  a hung  thread

 

96 Troubleshooting and support



is  detected  and  a WSVR0605W  message  is printed.   The threads  

           section  of the  javacore  can  be  analyzed  to  determine  what  

           the  reported  thread  and  other  related  threads  are  doing.  

Default:  False  

To disable the hang detection option, set the com.ibm.websphere.threadmonitor.interval  property to 

less than or equal to zero. 

5.   Click Apply. 

6.   Click OK. 

7.   Save the changes. Make sure a file synchronization is performed before restarting the servers. 

8.   Restart the Application Server for the changes to take effect.

Hung threads in Java Platform, Enterprise Edition applications 

WebSphere Application Server monitors thread activity and performs diagnostic actions if one has become 

inactive. 

When WebSphere detects that a thread has been active longer than the time defined by the thread 

monitor threshold, the application server takes the following actions: 

v   Logs a warning in the WebSphere Application Server log that indicates the name of the thread that is 

hung and how long it has already been active. The following message is written to the log: 

WSVR0605W:  Thread  threadname  has  been  active  for 

hangtime  and  may  be hung.   There  are  totalthreads  

threads  in total  in the  server  that  may  be hung.  

where: threadname  is the name that appears in a JVM thread dump, hangtime  gives an approximation 

of how long the thread has been active and totalthreads  gives an overall assessment of the system 

threads. 

v   Issues a Java Management Extensions (JMX) notification. This notification enables third-party tools to 

catch the event and take appropriate action, such as triggering a JVM thread dump of the server, or 

issuing an electronic page or e-mail. The following JMX notification events are defined in the 

com.ibm.websphere.management.NotificationConstants class: 

–   TYPE_THREAD_MONITOR_THREAD_HUNG This event is triggered by the detection of a 

(potentially) hung thread. 

–   TYPE_THREAD_MONITOR_THREAD_CLEAR This event is triggered if a thread that was previously 

reported as hung completes its work. Consult the section on false alarms for more information.

v    Triggers changes in the performance monitoring infrastructure (PMI) data counters. These PMI data 

counters are used by various tools, such as the Tivoli Performance Viewer, to provide a performance 

analysis. 

v   Triggers changes in the performance monitoring infrastructure (PMI) data counters. These PMI data 

counters are used by various tools, such as the Tivoli Performance Viewer (TPV), to provide a 

performance analysis.

For additional information about performance monitoring and Tivoli Performance Viewer, see the chapter 

Monitoring performance with Tivoli Performance Viewer (TPV) in the Tuning  guide  PDF book 

False Alarms 

If the work actually completes, a second set of messages, notifications and PMI events is produced to 

identify the false alarm. The following message is written to the log: 

WSVR0606W:  Thread  threadname  was  previously  reported  to be 

hung  but  has  completed.  It was  active  for  approximately  hangtime. 

There  are  totalthreads  threads  in total  in the  server  that  still  

may  be hung.  

 

Chapter 3. Diagnosing problems (using diagnosis tools) 97



where threadname  is the name that appears in a JVM thread dump, hangtime  gives an approximation of 

how long the thread has been active and totalthreads  gives an overall assessment of the system threads. 

Automatic adjustment of the hang time threshold 

If the thread monitor determines that too many false alarms are issued (determined by the number of pairs 

of hang and clear messages), it can automatically adjust the threshold. When this adjustment occurs, the 

following message is written to the log: 

WSVR0607W:  Too  many  thread  hangs  have  been  falsely  reported.   The  hang  

threshold  is now  being  set  to thresholdtime. 

where: thresholdtime  is the time (in seconds) in which a thread can be active before it is considered hung. 

You can prevent WebSphere Application Server from automatically adjusting the hang time threshold. See 

“Configuring the hang detection policy” on page 96 

Example: Adjusting the thread monitor to affect server hang detection 

The hang detection policy affects how the application server responds to a thread that is not being 

processed correctly. 

You can adjust the thread monitor settings by using the wsadmin scripting interface. These changes take 

effect immediately, but do not persist to the server configuration, and are lost when the server is restarted. 

The following script provides an example of how to adjust the properties for the thread monitor using the 

wsadmin tool: 

# Read  in the  interval,  threshold,  false  alarm  from  the command  line  

set  interval  [lindex  $argv  0] 

set  threshold  [lindex  $argv  1] 

set  adjustment  [lindex  $argv  2] 

  

# Get  the  object  name  of the  server  you  want  to change  the  values  on 

set  server  [$AdminControl  completeObjectName  "type=Server,*"]  

  

# Read  in the  interval  and  print  to the  console  

set  i [$AdminControl  getAttribute  $server  threadMonitorInterval]  

  

# Read  in the  threshold  and  print  to the  console  

set  t [$AdminControl  getAttribute  $server  threadMonitorThreshold]  

  

# Read  in the  false  alarm  adjustment  threshold  and print  to  the  console  

set  a [$AdminControl  getAttribute  $server  threadMonitorAdjustmentThreshold]  

  

# Set  the  new  values  using  the  command  line  parameters  

$AdminControl  setAttribute  $server  threadMonitorInterval   ${interval}  

  

$AdminControl  setAttribute  $server  threadMonitorThreshold  ${threshold}  

  

$AdminControl  setAttribute  $server  threadMonitorAdjustmentThreshold  ${adjustment}  

Working  with trace 

Use trace to obtain detailed information about running the WebSphere Application Server components, 

including application servers, clients, and other processes in the environment. 

About this task 

Trace files show the time and sequence of methods called by WebSphere Application Server base 

classes, and you can use these files to pinpoint the failure. Collecting a trace is often requested by IBM 

technical support personnel. If you are not familiar with the internal structure of WebSphere Application 

Server, the trace output might not be meaningful to you. 

 

98 Troubleshooting and support



1.   Configure an output destination to which trace data is sent. 

2.   Enable trace for the appropriate WebSphere Application Server or application components. 

3.   Run the application or operation to generate the trace data. 

4.   Analyze the trace data or forward it to the appropriate organization for analysis.

Results 

For current information available from IBM Support on known problems and their resolution, see the IBM 

Support page. 

IBM Support has documents that can save you time gathering information needed to resolve this problem. 

Before opening a PMR, see the IBM Support page. 

Enabling trace on client and stand-alone applications 

When stand-alone client applications (such as Java applications which access enterprise beans hosted in 

WebSphere Application Server) have problems interacting with WebSphere Application Server, it might be 

useful to enable tracing for the application. Enabling trace for client programs will cause the WebSphere 

Application Server classes used by those applications, such as naming-service client classes, to generate 

trace information. 

About this task 

A common troubleshooting technique is to enable tracing on both the application server and client 

applications, and match records according to timestamp to try to understand where a problem is occurring. 

1.   To enable trace for the WebSphere Application Server classes in a client application, add the system 

properties shown in the following example to the startup script or command of the client application. 

The location of the output and the classes and detail included in the trace follow the same rules as for 

adding trace to WebSphere Application Servers. For example, trace the stand-alone client application 

program named com.ibm.sample.MyClientProgram, enter the following command: 

java  -DtraceSettingsFile=MyTraceSettings.properties  

-Djava.util.logging.manager=com.ibm.ws.bootstrap.WsLogManager  

-Djava.util.logging.configureByServer=true  com.ibm.samples.MyClientProgram  

The file identified by file  name  must be a properties file placed in the class path of the application 

client or stand-alone process. You must create a trace properties file by copying the 

app_server_root/properties/TraceSettings.properties file to the same directory as your client application 

Java archive (JAR) file 

You cannot use the -DtraceSettingsFile=TraceSettings.properties  property to enable tracing of the 

ORB component for thin clients. ORB tracing output for thin clients can be directed by setting 

com.ibm.CORBA.Debug.Output  = debugOutputFilename  parameter in the command line. 

The java.util.logging.manager and java.util.logging.configureByServer system properties configure Java 

logging to use a WebSphere Application Server-specific LogManager class and to use the 

configuration from the file specified by the traceSettingsFile property. The default Java Logging 

properties file, located in the Java SE Runtime Environment 6 (JRE6), will not be applied. 

2.   You can configure the MyTraceSettings.properties file to send trace output to a file using the 

traceFileName property. Specify one of two options: 

v   The fully qualified name of an output file. For example, traceFileName=c:\\MyTraceFile.log. You must 

specify this property to generate visible output. 

v   stdout. When specified, output is written to System.out.

3.   You can also specify a trace string for writing messages with the Trace String property, Specify a 

startup trace specification similar to that available on the server. For your convenience, you can enter 

multiple individual trace strings into the trace settings file, one trace string per line.

 

Chapter 3. Diagnosing problems (using diagnosis tools) 99

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCN
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCN
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPEP


Results 

Here are the results of using each optional property setting: 

v    Specify a valid setting for the traceFileName property without a trace string to write messages to the 

specified file or System.out only. 

v    Specify a trace string without a traceFileName property value to generate no output. 

v    Specify both a valid traceFileName property and a trace string to write both message and trace entries 

to the location specified in the traceFileName property.

Tracing and logging configuration 

Configure tracing and logging settings to help diagnose problems or evaluate system performance. 

You can configure the application server to start in a trace-enabled state by setting the appropriate 

configuration properties. You can only enable trace for an application client or standalone process at 

process startup. 

In WebSphere Application Server, V6 and later, a logging infrastructure, extending Java Logging, is used. 

This results in the following changes to the configuration of the logging infrastructure in WebSphere 

Application Server: 

v   Loggers defined in Java logging are equivalent to, and configured in the same way as, trace 

components introduced in previous versions of WebSphere Application Server. Both are referred to as 

″components.″ 

v   Both Java logging levels and WebSphere Application Server levels can be used. The following is a 

complete list of valid levels, ordered in ascending order of severity: 

 Trace  option  Output  file  

all trace.log 

finest or debug trace.log 

finer or entryExit trace.log 

fine or event trace.log 

detail SystemOut.log 

config trace.log and SystemOut.log (If tracing is not enabled, the 

output file is SystemOut.log) 

info trace.log and SystemOut.log (If tracing is not enabled, the 

output file is SystemOut.log) 

audit trace.log and SystemOut.log (If tracing is not enabled, the 

output file is SystemOut.log) 

warning trace.log and SystemOut.log (If tracing is not enabled, the 

output file is SystemOut.log) 

severe or error trace.log and SystemOut.log (If tracing is not enabled, the 

output file is SystemOut.log) 

fatal trace.log and SystemOut.log (If tracing is not enabled, the 

output file is SystemOut.log) 

off trace.log and SystemOut.log (If tracing is not enabled, the 

output file is SystemOut.log)
  

v   Setting the logging and tracing level for a component to all will enable all the logging for that 

component. Setting the logging and tracing level for a component to off will disable all the logging for 

that component. 

v   You can only configure a component to one level. However, configuring a component to a certain level 

enables it to perform logging on the configured level and any higher severity level. 

 

100 Troubleshooting and support



v   Several levels have equivalent names: finest is equivalent to debug; finer is equivalent to entryExit; fine 

is equivalent to event; severe is equivalent to error.

Java Logging does not distinguish between tracing and message logging. However, previous versions of 

WebSphere Application Server have made a clear distinction between those kind of messages. In 

WebSphere Application Server, V6 and later, the differences between tracing and message logging are as 

follows: 

v   Tracing messages are messages with lower severity (for example, tracing messages are logged on 

levels fine, finer, finest, debug, entryExit, or event). 

v   Tracing messages are generally not localized. 

v   When tracing is enabled, a much higher volume of messages will be produced, and the trace output will 

be in the trace file, not the SystemOut/Err log files. The trace file will only appear if tracing is enabled. 

v   Tracing messages provide information for problem determination.

Trace and logging strings 

In WebSphere Application Server, V5.1.1 and earlier, trace strings were used for configuring tracing only. 

Starting in WebSphere Application Server, Version 6 and later, the ″trace string″ becomes a ″logging 

string″; it is used to configure both tracing and message logging. 

In WebSphere Application Server, V5.1.1 and earlier, the trace service for all WebSphere Application 

Server components is disabled by default. To request a change to the current state of the trace service, a 

trace string is passed to the trace service. This trace string encodes the information detailing which level of 

trace to enable or disable and for which components. 

In all versions of WebSphere Application Server, the tracing for all components is disabled by default. To 

change to the current state of the tracing and message logging, a logging string must be constructed and 

passed to the server. This logging string specifies what level of trace or logging to enable or disable for 

specific components. 

You can type in trace strings (or logging strings), or construct them using the administrative console. Trace 

and logging strings must conform to a specific grammar. 

For WebSphere Application Server, V5.1.1 and earlier, the specification of this grammar is as follows: 

TRACESTRING=COMPONENT_TRACE_STRING[:COMPONENT_TRACE_STRING]*  

  

 COMPONENT_TRACE_STRING=COMPONENT_NAME=LEVEL=STATE[,LEVEL=STATE]*  

  

LEVEL  = all  | entryExit  | debug  | event  

  

STATE  = enabled  | disabled  

  

COMPONENT_NAME  = COMPONENT  | GROUP  

For WebSphere Application Server, V6 and later, the previous grammar is supported. However a new 

grammar has been added to better represent the underlying infrastructure: 

LOGGINGSTRING=COMPONENT_LOGGING_STRING[:COMPONENT_LOGGING_STRING]*  

  

 COMPONENT_TRACE_STRING=COMPONENT_NAME=LEVEL  

  

LEVEL  = all  | (finest  | debug)  | (finer  | entryExit)  | (fine  | event  ) 

| detail  | config  | info  | audit  | warning  | (severe  | error)  | fatal  | off 

  

COMPONENT_NAME  = COMPONENT  | GROUP  

The COMPONENT_NAME is the name of a component or group registered with the trace service logging 

infrastructure. Typically, WebSphere Application Server components register using a fully qualified Java 

class name, for example com.ibm.servlet.engine.ServletEngine. In addition, you can use a wildcard 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 101



character of asterisk (*) to terminate a component name and indicate multiple classes or packages. For 

example, use a component name of com.ibm.servlet.* to specify all components whose names begin with 

com.ibm.servlet. Use a wildcard character of asterisk (*) at the end of the component or group name to 

make the logging string applicable to all components or groups whose names start with specified string. 

For example, a logging string specifying ″com.ibm.servlet.*″ as a component name will be applied to all 

components whose names begin with com.ibm.servlet. When an asterisk (*) is used by itself in place of 

the component name, the level the string specifies, will be applied to all components. 

The following are examples of using an asterisk (*) in logging strings. Note that the asterisk (*) in the 

logging string does not need to have a period (.) in front of it. The period (.) can be used anywhere in the 

logging string. 

v   com.ibm.ejs.ras.*=all  - enables tracing for all loggers with names starting with ″com.ibm.ejs.ras.″. If 

there is a logger named ″com.ibm.ejs.ras″ it will not have trace enabled. 

v   com.ibm.ejs.ras*=all  - enables tracing for all loggers with names starting with ″com.ibm.ejs.ras″, such 

as com.ibm.ejs.ras, com.ibm.ejs.raslogger, com.ibm.ejs.ras.ManagerAdmin

Note:   

v   In WebSphere Application Server, V5.1.1 and earlier, you could set the level to ″all=disabled″ to 

disable tracing. This syntax, beginning with Version 6.0, will result in LEVEL=info; tracing will be 

disabled, but logging will be enabled. 

v   In WebSphere Application Server, V6 and later, ″info″ is the default level. If the specified 

component is not present (*=xxx is not found), *=info is always implied. Any component that is 

not matched by the trace string will have its level set to info. 

v   If the logging string does not start with a component logging string specifying a level for all 

components, using the ″*″  in place of component name, one will be added, setting the default 

level for all components. 

v   STATE = enabled | disabled is not needed in Version 6 and later. However, if used, it has the 

following effect: 

–   ″enabled″  sets the logging for the component specified to the level specified 

–   ″disabled″  sets the logging for the component specified to one level above the level specified. 

The following examples illustrate the effect that disabling has on the logging level: 

 Logging  string  Resulting  logging  level  Notes® 

com.ibm.ejs.ras=debug=disabled com.ibm.ejs.ras=finer debug (version 5) = finest (version 6) 

com.ibm.ejs.ras=all=disabled com.ibm.ejs.ras=info ″all=disabled″  will disable tracing; 

logging is still enabled. 

com.ibm.ejs.ras=fatal=disabled com.ibm.ejs.ras=off 

com.ibm.ejs.ras=off=disabled com.ibm.ejs.ras=off off is the highest severity
  

Proceed from broad to specific trace specifications in the trace string 

Note:   Start the trace string from the most broad component groups and then select more specific traces. 

The advantage to this approach is that the trace settings for classes or packages that are contained 

in a larger group are specified correctly by including them later in the trace string. 

The logging string is processed from left to right. During the processing, part of the logging string might be 

modified or removed if the levels they configure are overridden by another part of the logging string. 

Groups that contain packages that disable traces disable any packages that are enabled previously on the 

same line. For example: 

*=off  : MyGroup1=info  : MyGroup2=finest  : com.mycompany.mypackage.*=info   : com.mycompany.mypackage.MyClass=finest  

 

102 Troubleshooting and support



This trace string indicates that the only tracing should come from the MyGroup1 group, the MyGroup2 

group, and the com.mycompany.mypackage.* package with more specific tracing for MyClass class. If you 

reverse this string, all tracing is disabled. 

Examples 

Examples of legal trace strings include: 

 Version  5 syntax  Version  6 syntax  

com.ibm.ejs.ras.ManagerAdmin=debug=enabled  com.ibm.ejs.ras.ManagerAdmin=finest  

com.ibm.ejs.ras.ManagerAdmin=all=enabled,event=disabled  com.ibm.ejs.ras.ManagerAdmin=detail  

com.ibm.ejs.ras.*=all=enabled  com.ibm.ejs.ras.*=all  

com.ibm.ejs.ras.*=all=enabled:com.ibm.ws.ras=debug=  

enabled,entryexit=enabled  

com.ibm.ejs.ras.*=all:com.ibm.ws.ras=finer  

  

Enabling trace at server startup 

Use the administrative console to enable tracing at a server’s startup. You can use trace to assist you in 

monitoring system performance and diagnosing problems. 

About this task 

The diagnostic trace configuration settings for a server process determines the initial trace state for a 

server process. The configuration settings are read at server startup and used to configure the trace 

service. You can also change many of the trace service properties or settings while the server process is 

running. 

 1.   Start the administrative console. 

 2.   Click Troubleshooting  > Logs  and  trace  in the console navigation tree, then click Server  >  

Diagnostic  Trace. 

 3.   Click Configuration. 

 4.   Do not select the None  check box. If this option is selected, the trace data is not logged or recorded 

anywhere. All other handlers (including handlers registered by applications) still have an opportunity 

to process these traces. 

 5.   Select whether to direct trace output to either a file or an in-memory circular buffer. 

Note:   Different components can produce different amounts of trace output per entry. Naming and 

security tracing, for example, produces a much higher trace output than Web container tracing. 

Consider the type of data being collected when you configure your memory allocation and 

output settings. 

 6.   If the in-memory circular buffer is selected for the trace output set the size of the buffer, specified in 

thousands of entries. This is the maximum number of entries that will be retained in the buffer at any 

given time. 

 7.   If a file is selected for trace output, set the maximum size in megabytes to which the file should be 

allowed to grow. When the file reaches this size, the existing file will be closed, renamed, and a new 

file with the original name reopened. The new name of the file will be based upon the original name 

with a timestamp qualifier added to the name. In addition, specify the number of history files to keep. 

 8.   Select the desired format for the generated trace. 

 9.   Save the changed configuration. 

10.   To enter a trace string to set the trace specification to the desired state: 

a.   Click Troubleshooting  > Logs  and  trace  in the console navigation tree. 

b.   Select a server name. 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 103



c.   Click Change  Log  Level  Details. 

d.   If All  Components  has been enabled, you might want to turn it off, and then enable specific 

components. 

e.   Click a component or group name. For more information see “Log level settings” on page 5 If the 

selected server is not running, you will not be able to see individual component in graphic mode. 

f.   Enter a trace string in the trace string box. 

g.   Select Apply, then OK.

11.   Allow enough time for the nodes to synchronize, and then start the server.

Enabling trace on a running server 

Use the administrative console to enable tracing on a running server. You can use trace to assist you in 

monitoring system performance and diagnosing problems. 

About this task 

You can modify the trace service state that determines which components are being actively traced for a 

running server by using the following procedure. 

1.   Start the administrative console. 

2.   Click Troubleshooting  >  Logs  and  Trace  in the console navigation tree, then click server  > 

Diagnostic  Trace. 

3.   Select the Runtime  tab. 

4.   Select the Save  runtime  changes  to  configuration  as  well  check box if you want to write your 

changes back to the server configuration. 

5.   Change the existing trace state by changing the trace specification to the desired state. 

6.   Configure the trace output if a change from the existing one is desired. 

7.   Click Apply.

Managing the application server trace service 

You can manage the trace service for a server process while the server is stopped and while it is running. 

You can specify which components to trace, where to send trace output, the characteristics of the trace 

output device, and which format to generate trace output in. 

About this task 

Modify the trace settings to help with diagnosing problems or tuning performance within certain 

applications. To manage the trace service for a server process: 

 1.   Start the administrative console. 

 2.   Click Troubleshooting  >  Logs  and  Trace  > server_name. 

 3.   Click the Diagnostic  Trace  link. 

 4.   On the Configuration tab, do not select the None  option. If this option is selected, the trace data is 

not logged or recorded anywhere. All other handlers (including handlers registered by applications) 

still have an opportunity to process these traces. 

 5.   On the Runtime tab, select either the Memory  Buffer  or File  Trace  Output  option. 

 6.   Specify the appropriate values for your configuration for either the Memory Buffer or File Trace Output 

option. 

 7.   Click Apply. 

 8.   Click Troubleshooting  >  Logs  and  Trace  > server_name. 

 9.   Click the Change  Log  Detail  Levels  link. 

10.   Under Additional properties, click Change  Log  Detail  Levels. 

 

104 Troubleshooting and support



11.   On the Runtime tab, change the existing trace state by changing the trace specification to the desired 

state. 

12.   Click Apply.

Trace output 

Trace output allows administrators to examine processes in the application server and diagnose various 

issues. 

On an application server, trace output can be directed either to a file or to an in-memory circular buffer. If 

trace output is directed to the in-memory circular buffer, it must be dumped to a file before it can be 

viewed. 

On an application client or stand-alone process, trace output can be directed either to a file or to the 

process console window. 

In all cases, trace output is generated as plain text in either basic, advanced or log analyzer format as 

specified by the user. The basic and advanced formats for trace output are similar to the basic and 

advanced formats that are available for the JVM message logs. 

Basic and advanced format fields 

Basic and Advanced Formats use many of the same fields and formatting techniques. The fields that can 

be used in these formats include: 

TimeStamp  

The timestamp is formatted using the locale of the process where it is formatted. It includes a fully 

qualified date (YYMMDD), 24 hour time with millisecond precision and the time zone. 

ThreadId  

An 8 character hexadecimal value generated from the hash code of the thread that issued the 

trace event. 

ThreadName  

The name of the Java thread that issued the message or trace event. 

ShortName  

The abbreviated name of the logging component that issued the trace event. This is typically the 

class name for WebSphere Application Server internal components, but may be some other 

identifier for user applications. 

LongName  

The full name of the logging component that issued the trace event. This is typically the fully 

qualified class name for WebSphere Application Server internal components, but may be some 

other identifier for user applications. 

EventType  

A one character field that indicates the type of the trace event. Trace types are in lower case. 

Possible values include: 

>  a trace entry of type method entry. 

<  a trace entry of type method exit. 

1 a trace entry of type fine or event. 

2 a trace entry of type finer. 

3 a trace entry of type finest, debug or dump. 

Z  a placeholder to indicate that the trace type was not recognized.
ClassName  

The class that issued the message or trace event. 

MethodName  

The method that issued the message or trace event. 

Organization  

The organization that owns the application that issued the message or trace event. 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 105



Product  

The product that issued the message or trace event. 

Component  

The component within the product that issued the message or trace event.

Basic format 

Trace events displayed in basic format use the following format: 

<timestamp><threadId><shortName><eventType>[className][methodName]<textmessage>  

               [parameter  1] 

               [parameter  2] 

Advanced formats 

Trace events displayed in advanced format use the following format: 

<timestamp><threadId><eventType><UOW><source=longName>[className][methodName]  

<Organization><Product><Component>[thread=threadName]  

<textMessage>[parameter  1=parameterValue][parameter  2=parameterValue]  

Log analyzer trace format 

Preserves trace information in the same format as produced by Showlog tool. 

Diagnostic trace service settings 

To view this page, click the following path: 

v   Troubleshooting  >  Logs  and  Trace  >  server  > Diagnostic  trace

Trace Output 

Specifies where trace output should be written. The trace output can be written directly to an output file, or 

stored in memory and written to a file on demand using the Dump button found on the run-time page. 

Different components can produce different amounts of trace output per entry. Naming and security 

tracing, for example, produces a much higher trace output than Web container tracing. Consider the type 

of data being collected when you configure your memory allocation and output settings. 

None  

If this option is selected, the trace data is not logged or recorded anywhere. All other handlers (including 

handlers registered by applications) still have an opportunity to process these traces. 

Memory  Buffer  Specifies that the trace output should be written to an in-memory circular buffer. If you 

select this option you must specify the following parameters: 

v   Maximum  Buffer  Size  

–   Specifies the number of entries, in thousands, that can be cached in the buffer. When this number is 

exceeded, older entries are overwritten by new entries.

File  

Specifies to write the trace output to a self-managing log file. The self-managing log file writes messages 

to the file until the specified maximum file size is reached. When the file reaches the specified size, 

logging is temporarily suspended and the log file is closed and renamed. The new name is based on the 

original name of the file, plus a timestamp qualifier that indicates when the renaming occurred. Once the 

renaming is complete, a new, empty log file with the original name is reopened, and logging resumes. No 

messages are lost as a result of the rollover, although a single message may be split across the two files. 

If you select this option you must specify the following parameters: 

 

106 Troubleshooting and support



v   Maximum  File  Size  

–   Specifies the maximum size, in megabytes, to which the output file is allowed to grow. This attribute 

is only valid if the File Size attribute is selected. When the file reaches this size, it is rolled over as 

described above.

v    Maximum  Number  of  Historical  Files  

–   Specifies the maximum number of rolled over files to keep.

v    File  Name  

–   Specifies the name of the file to which the trace output is written.

Trace Output Format 

Specifies the format of the trace output. 

You can specify one of three levels for trace output: 

v   Basic  (Compatible)  

–   Preserves only basic trace information. Select this option to minimize the amount of space taken up 

by the trace output.

v    Advanced  

–   Preserves more specific trace information. Select this option to see detailed trace information for use 

in troubleshooting and problem determination.

v    Log  analyzer  trace  format  

–   Preserves trace information in the same format as produced by Showlog tool.

Runtime tab 

Save  runtime  changes  to  configuration  

Save runtime changes made on the runtime tab to the trace configuration as well. Select this box to copy 

run-time trace changes to the trace configuration settings as well. Saving these changes to the trace 

configuration will cause the changes to persist even if the application is restarted. 

Trace Output 

Specifies where trace output should be written. The trace output can be written directly to an output file, or 

stored in memory and written to a file on demand using the Dump button found on the run-time page. 

None  

If this option is selected, the trace data is not logged or recorded anywhere. All other handlers (including 

handlers registered by applications) still have an opportunity to process these traces. 

Memory  Buffer  

Specifies that the trace output should be written to an in-memory circular buffer. If you select this option 

you must specify the following parameters: 

v   Maximum  Buffer  Size  

–   Specifies the number of entries, in thousands, that can be cached in the buffer. When this number is 

exceeded, older entries are overwritten by new entries.

v    Dump  File  Name  

–   The name of the file to which the memory buffer will be written when it is dumped. This option is only 

available from the Runtime tab.

File  

 

Chapter 3. Diagnosing problems (using diagnosis tools) 107



Specifies to write the trace output to a self-managing log file. The self-managing log file writes messages 

to the file until the specified maximum file size is reached. When the file reaches the specified size, 

logging is temporarily suspended and the log file is closed and renamed. The new name is based on the 

original name of the file, plus a timestamp qualifier that indicates when the renaming occurred. Once the 

renaming is complete, a new, empty log file with the original name is reopened, and logging resumes. No 

messages are lost as a result of the rollover, although a single message may be split across the two files. 

If you select this option you must specify the following parameters: 

v   Maximum  File  Size  

–   Specifies the maximum size, in megabytes, to which the output file is allowed to grow. This attribute 

is only valid if the File Size attribute is selected. When the file reaches this size, it is rolled over as 

described above.

v    Maximum  Number  of  Historical  Files  

–   Specifies the maximum number of rolled over files to keep.

v    File  Name  

–   View the file that is specified by the File  Name  parameter. This does not apply your configuration.

Select a server to configure logging and tracing 

Use this page to select the server for which you want to configure logging and trace settings. 

Application  Servers  

This page lists application servers in the cell and the nodes holding the application servers. The status 

indicates whether a server is running, stopped, or encountering problems. If you are using the Network 

Deployment product, this panel also shows the status of the application servers. 

When you select an application server, a panel is displayed that will allow you to choose which log or trace 

task to configure for that application server. 

To view this administrative console page, click Troubleshooting  > Logs  and  Trace  

Server 

Specifies the logical name of the server. 

Node 

Specifies the name of the node for the application server. 

Host name 

Specifies the name of the host for the application server. 

Version 

Specifies the version for the application server. 

Type 

Specifies the type of application server. 

Status 

Indicates whether the application server is started or stopped. (Network Deployment only) 

Note that if the status is Unavailable, the node agent is not running in that node, and you must restart the 

node agent before you can start the server. 

 

108 Troubleshooting and support



Log and trace settings 

Use this page to view and configure logging and trace settings for the server. 

To view this administrative console page, click: 

v   Troubleshooting  >  Logs  and  Trace  > server_name  

Diagnostic Trace 

The diagnostic trace configuration settings for a server process determine the initial trace state for a server 

process. The configuration settings are read at server startup and used to configure the trace service. You 

can also change many of the trace service properties or settings while the server process is running. 

Java virtual machine (JVM) Logs 

The JVM logs are created by redirecting the System.out and System.err streams of the JVM to 

independent log files. WebSphere Application Server writes formatted messages to the System.out stream. 

In addition, applications and other code can write to these streams using the print() and println() methods 

defined by the streams. 

Process Logs 

WebSphere Application Server processes contain two output streams that are accessible to native code 

running in the process. These streams are the stdout and stderr streams. Native code, including Java 

virtual machines (JVM), might write data to these process streams. In addition, JVM provided System.out 

and System.err streams can be configured to write their data to these streams also. 

IBM Service Logs 

The IBM service log contains both the WebSphere Application Server messages that are written to the 

System.out stream and some special messages that contain extended service information that is normally 

not of interest, but can be important when analyzing problems. There is one service log for all WebSphere 

Application Server JVMs on a node, including all application servers. The IBM Service log is maintained in 

a binary format and requires a special tool to view. This viewer, the Log and Trace Analyzer, provides 

additional diagnostic capabilities. In addition, the binary format provides capabilities that are utilized by IBM 

support organizations. 

Change Log Level Details 

Enter a log detail level that specifies the components, packages, or groups to trace. The log detail level 

string must conform to the specific grammar described in this topic. You can enter the log detail level string 

directly, or generate it using the graphical trace interface. 

Working  with troubleshooting tools 

WebSphere Application Server includes a number of troubleshooting tools that are designed to help you 

isolate the source of problems. Many of these tools are designed to generate information to be used by 

IBM Support, and their output might not be understandable by the customer. 

About this task 

This section only discusses tools that are bundled with the WebSphere Application Server product. A wide 

range of tools which address a variety of problems is available from the WebSphere Application Server 

Technical Support Web site. 

1.   Select the appropriate tool for the task. For more information on the capacities of the supplied 

troubleshooting tools, see the relevant articles in this section. 

2.   Run the tool as described in the relevant article. 

3.   Contact IBM Support for assistance in deciphering the output of the tool. For current information 

available from IBM Support on known problems and their resolution, see the IBM Support page. IBM 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 109

http://www-306.ibm.com/software/webservers/appserv/was/support/


Support has documents that can save you time gathering information needed to resolve this problem. 

For the last minute updates, limitations, and known problems, see the Release notes. Before opening 

a PMR, see the Must gather page. 

4.   Use the IBM Support Assistant to help find and use various IBM Support resources, such as updated 

documentation and problem determination tools.

Gathering information with the collector tool 

The collector tool gathers information about your WebSphere Application Server installation and packages 

it in a Java archive (JAR) file that you can send to IBM Customer Support to assist in determining and 

analyzing your problem. Information in the JAR file includes logs, property files, configuration files, 

operating system and Java data, and the presence and level of each software prerequisite. 

Before you begin 

The sort of information that you gather is not something that most people use. In fact, the collector tool 

packages its output into a JAR file. IBM includes the collector tool in the product code, along with other 

tools that help capture the information that you must provide when reporting a problem. The collector tool 

is part of a strategy of making problem reporting as easy and complete as possible. 

There are two phases of using the collector tool. The first phase runs the collector tool on your 

WebSphere Application Server product and produces a Java archive (JAR) file. The IBM Support team 

performs the second phase, which is analyzing the Java archive (JAR) file that the collector program 

produces. The collector program runs to completion as it creates the JAR file, despite any errors that it 

might find like missing files or invalid commands. The collector tool collects as much data in the JAR file 

as possible. 

The collector tool is a Java application that requires a Java SE Runtime Environment 6 (JRE6) to run. 

About this task 

The tool is within the installation root directory for WebSphere Application Server Network Deployment. But 

you run the tool from a working directory that you create outside of the installation root directory. This 

procedure describes both of those steps and all of the other steps for using the tool and reporting the 

results from running the tool. 

There are two ways to run the collector tool. Run the collector tool to collect summary data or to traverse 

the system to gather relevant files and command results. The collector tool produces a Java archive (JAR) 

file of information needed to determine and solve a problem. The collector summary option produces a 

lightweight collection of version and other information that is useful when first reporting the problem to IBM 

Support. Run the collector tool from the root user or from the administrator user to access system files that 

contain information about kernel settings, installed packages, and other vital data. 

The tool collects information about the default profile if you do not use the optional parameter to identify 

another profile. 

Run the collector tool. 

1.   Log on to the system with a user profile that has all object (*ALLOBJ) special authority. 

2.   Make a working directory where you can start the collector program. 

3.   Run the STRQSH  command from the CL command line to prepare to run the collector program. 

4.   Make the working directory the current directory. 

5.   Run the following command from Qshell: 

cd workingDirectory  

The collector program writes its output JAR file to the current directory. The program also creates and 

deletes a number of temporary files in the current directory. Creating a work directory to run the 

 

110 Troubleshooting and support

http://www-1.ibm.com/support/search.wss?rs=180&q=mustgather


collector program avoids naming collisions and makes cleanup easier. You cannot run the collector tool 

in a directory under the installation root directory for WebSphere Application Server Network 

Deployment. 

6.   Run the collector program by entering the fully qualified command from the command line of the 

working directory. 

v   Run the following command from Qshell:
app_server_root/bin/collector  

v   Use the following command to gather data from a specific profile that might not be the default 

profile. 

v   Run the following command from Qshell:
app_server_root/bin/collector  -profileName  profile_name  

7.   Optional: You can also run the collector tool from the profile’s root directory instead of the 

app_server_root/bin/  directory. 

Run the following command from Qshell: 

profile_root/bin/collector  

You should get the same output if you run the collector tool from the bin directory of profile_root  as 

you would running it from app_server_root. 

Issuing the command from the profile also runs the setupCmdLine file in the profile’s bin directory. This 

file sets an environment parameter that the collector uses to determine which profile’s data to collect. 

To run this command for the deployment manager, for example, issue the following at a prompt: 

app_server_root/profiles/dmgr/bin/collector  

where dmgr  is the profile name for the deployment manager.

Results 

The collector program creates the Collector.log log file and an output JAR file in the current directory. 

The name of the JAR file is composed of the host name, cell name, node name, and profile name: 

host_name-cell_name-node_name-profile_name.JAR  

The Collector.log log file is one of the files collected in the host_name-cell_name-node_name-
profile_name.JAR file. 

What to do next 

Send the host_name-cell_name-node_name-profile_name.JAR file to IBM Support for analysis. 

Collector tool output 

Use the collector tool to gather and analyze output from WebSphere Application Server. 

The first step in using the collector tool on your WebSphere Application Server product is to run the tool to 

produce a Java archive (JAR) file as output. The second step in using the collector tool is to analyze its 

output. The preferred method of performing this analysis is to send the JAR file to IBM Support for 

analysis. However, you can use this topic to understand the content of the JAR file if you perform your 

own analysis. 

You can view the files contained in the JAR file without extracting the files from the JAR file. However, it is 

easier to extract all files and view the contents of each file individually. To extract the files, use one of the 

following commands: 

v   jar  -xvf  WASenv.jar  

v   unzip  WASenv.jar

 

Chapter 3. Diagnosing problems (using diagnosis tools) 111



Wasenv.jar  stands for the name of the JAR file that the collector tool creates. 

The JAR file contains: 

v   A collector tool log file, collector.log  

v   Copies of stored WebSphere Application Server files and their full paths that are located under directory 

root in the JAR file 

v   Java information in a directory named Java  

v   A JAR file manifest

Tips and suggestions 

v   Unzip the JAR file to an empty directory for easy access to the gathered files and for simplified cleanup. 

v   Check the collector.log  file for errors: 

–   Some errors might be normal or expected. For example, when the collector attempts to gather files 

or directories that do not exist for your specific installation, it logs an error about the missing files. 

–   A non-zero return code means that a command that the collector tool attempted to run does not 

exist. This might be expected in some cases. If this type of error occurs repeatedly, there might 

actually be a problem.

collector command - summary option 

WebSphere Application Server products include an enhancement to the collector tool beginning with 

Version 5.0.2, known as the collector  summary  option. 

The collector summary option helps you communicate with WebSphere Application Server technical staff 

at IBM Support. Run the collector tool with the -Summary option to produce a lightweight text file and 

console version of some of the information in the Java archive (JAR) file that the tool produces without the 

-Summary parameter. You can use the collector summary option to retrieve basic configuration and 

prerequisite software level information when starting a conversation with IBM Support. 

The collector summary option produces version information for the WebSphere Application Server product 

and the operating system as well as other information. It stores the information in the 

Collector_Summary.txt file and writes it to the console. You can use the information to answer initial 

questions from IBM Support or you can send the Collector_Summary.txt file directly to IBM Support. 

When running the collector tool on WebSphere Application Server for i5/OS®, an additional file named 

WAS_Collection_timestamp.html is created in the logs directory of the profile where the collector tool runs. 

If you do not specify the -profileName option, the profile is the default profile. The HTML file is sent to IBM 

Support when you initiate a PMR. 

Run the collector  command to create the JAR file if IBM Support needs more information to solve your 

problem. 

To run the collector summary option, start from a temporary directory outside of the WebSphere 

Application Server product installation root directory and enter one of the following commands: 

v   app_server_root/bin/collector  -Summary  [-profileName  profileName]  

The -profileName option specifies the profile to summarize.

Configuring first failure data capture log file purges 

The first failure data capture (FFDC) log file saves information that is generated from a processing failure. 

These files are deleted after a maximum number of days has passed. The captured data is saved in a log 

file for analyzing the problem. 

Before you begin 

The first failure data capture (FFDC) feature preserves the information that is generated from a processing 

failure and returns control to the affected engines. The captured data is saved in a log file for analyzing 

 

112 Troubleshooting and support



the problem. FFDC is intended primarily for use by IBM Support. FFDC instantly collects events and errors 

that occur during the product runtime. The information is captured as it occurs and is written to a log file 

that can be analyzed by IBM Support personnel. The data is uniquely identified for the servant region that 

produced the exception. 

The FFDC configuration properties files are located in the properties directory under the Application Server 

product installation. You must set the ExceptionFileMaximumAge property to the same value in all three 

files: ffdcRun.properties, ffdcStart.properties, and ffdcStop.properties. You can set the 

ExceptionFileMaximumAge property to configure the amount of days between purging the FFDC log files. 

The value of the ExceptionFileMaximumAge property must be a positive number. The FFDC feature does 

not affect the performance of the Application Server product. 

About this task 

Perform the following steps to configure the number of days between the FFDC log file purges. The value 

is in days. 

1.   Open the ffdcRun.properties file. 

The file is located in the profile_root/properties directory. 

2.   Change the value for the ExceptionFileMaximumAge  property to the number of days between the 

FFDC log file purges. The value of the ExceptionFileMaximumAge  property must be a positive number. 

The default is seven days. For example, ExceptionFileMaximumAge = 3 sets the default time to three 

days. The FFDC log file is purged after three days. 

3.   Save the ffdcRun.properties file and exit. 

4.   Repeat the previous steps to modify the ffdcStart.properties and ffdcStop.properties files. 

Results 

The FFDC file management function removes the FFDC log files that have reached the maximum age and 

generates a message in the SystemOut.log file. 

Using IBM Support Assistant 

IBM Support Assistant is a free troubleshooting application that helps you research, analyze, and resolve 

problems using various support features and tools. IBM Support Assistant enables you to find solutions 

yourself using the same troubleshooting techniques used by the IBM Support team, and it allows you to 

organize and transfer your troubleshooting efforts between members of your team or to IBM for further 

support. 

About this task

Note:   IBM Support Assistant V4.0 is released with a host of new features and enhancements, making this 

version the most comprehensive and flexible yet. Our one-stop-shop solution to research, analyze 

and resolve software issues is now better than ever before, and you can still download it at no 

charge. 

IBM Support Assistant version 4.0 enhancements include: 

v   Remote  System  Troubleshooting:  Explore file systems, run automated data collectors and 

troubleshooting tools, and view the system inventory on remote systems. 

v   Activity-based  Workflow:  Choose from support-related activities, or use the Guided 

Troubleshooter for step-by-step help with analysis and resolution. 

v   Case  Management:  Organize your troubleshooting data in ″cases″; then export and share these 

cases with other problem analysts or with IBM Support. 

v   Improved  Flexibility:  Add your own search locations, control updates by hosting your own 

update site, get the latest product news and updates.

 

Chapter 3. Diagnosing problems (using diagnosis tools) 113



The IBM Support Assistant V4.0 consists of the following three distinct entities: 

IBM  Support  Assistant  Workbench  

The IBM Support Assistant Workbench, or simply the Workbench, is the client-facing application 

that you can download and install on your workstation. It enables you to use all the 

troubleshooting features of the Support Assistant such as Search, Product Information, Data 

Collection, Managing Service Requests, and Guided Troubleshooting. However, the Workbench 

can only perform these functions locally, for example, on the system where it is installed (with the 

exception of the Portable Collector). 

 If you need to use the IBM Support Assistant features on remote systems, additionally install the 

Agent Manager and Agent. However, if your problem determination needs are purely on the local 

system, the Agent and Agent Manager are not required. 

The Workbench has a separate download and this is all that is required to get started with the 

Support Assistant. 

IBM  Support  Assistant  Agent  

The IBM Support Assistant Agent, or simply the Agent, is the piece of software that needs to be 

installed on EVERY system that you need to troubleshoot remotely. Once an Agent is installed on 

a system, it registers with the Agent Manager and you can use the Workbench to communicate 

with the Agent and use features such as remote system file transfer, data collections and inventory 

report generation on the remote machine. 

IBM  Support  Assistant  Agent  Manager  

The IBM Support Assistant Agent Manager, or simply the Agent Manager, needs to be installed 

only ONCE in your network. The Agent Manager provides a central location where information on 

all available Agents is stored and acts as the certificate authority. For the remote troubleshooting 

to work, all Agent and Workbench instances register with this Agent Manager. Any time a Support 

Assistant Workbench needs to perform remote functions, it authenticates with the Agent Manager 

and gets a list of the available Agents. After this, the Workbench can communicate directly with the 

Agents.

The Agent and Agent Manager can be downloaded in a combined installer, separate from the Workbench. 

IBM Support Assistant Version 4 has the following functions: 

Search  interface  and  access  to  the  latest  product  information   

IBM Support Assistant allows you to search multiple knowledge repositories with one click and 

gives you quick access to the latest product information so that you spend less time looking for the 

solution and more time building skills and solving problems. 

Troubleshooting  tools   

Whether you are new to an IBM product or an advanced user, IBM Support Assistant can help. 

You can choose to be guided through your problem symptoms or view a complete listing of 

advanced tooling for analyzing everything from logs to memory dumps. 

Access  to  local  and  remote  systems   

Using the IBM Support Assistant Workbench installed on a local workstation running the Windows 

or Linux Intel operating system, you can connect to the IBM Support Assistant Agent installed on a 

remote system running on the AIX, Linux, Windows, or Solaris operating system through the IBM 

Support Assistant Agent Manager on the Workbench. This function enables you to explore, 

transfer data, and run diagnostic tooling not only on your system but on any other system where 

the IBM Support Assistant Agent is installed. 

Automated  data  gathering  and  efficient  support   

Instead of manually gathering information, you can use IBM Support Assistant to run automated, 

symptom-specific data collectors. This data can then be attached to an IBM Service Request so 

that you can get support from the experts at IBM Support.

 

114 Troubleshooting and support



v   Follow the installation instructions on IBM Support Assistant (ISA) Web site at: IBM Support Assistant 

(ISA). 

v   Read the “First Steps″ section of the documentation for IBM Support Assistant to run the customization 

wizard, or migrate from a previous version of IBM Support Assistant. Read the ″Tutorials″  section to 

learn more about the capabilities of ISA. 

Related  information  

  

IBM Software support: IBM Support Assistant (ISA)

Diagnosing problems using IBM Support Assistant tooling 

The IBM Support Assistant (ISA) is a free local software serviceability workbench that helps you resolve 

questions and problems with IBM software products. 

About this task 

Tools for IBM Support Assistant perform numerous functions from memory-heap dump analysis and Java 

core-dump analysis to enabling remote assistance from IBM Support. All of these tools come with help and 

usage documentation that allow you to learn about the tools and start using them to analyze and resolve 

your problems. 

The following are samples of the tools available in IBM Support Assistant: 

Memory  Dump  Diagnostic  for  Java  (MDD4J)  

The Memory Dump Diagnostic for Java tool analyzes common formats of memory dumps (heap 

dumps) from the Java virtual machine (JVM) that is running the WebSphere Application Server or 

any other standalone Java applications. The analysis of memory dumps is targeted towards 

identifying data structures within the Java heap that might be root causes of memory leaks. The 

analysis also identifies major contributors to the Java heap footprint of the application and their 

ownership relationship. The tool is capable of analyzing very large memory dumps obtained from 

production-environment application servers encountering OutOfMemoryError issues. 

IBM  Thread  and  Monitor  Dump  Analyzer  (TMDA)  

IBM Thread and Monitor Dump Analyzer (TMDA) provides analysis for Java thread dumps or 

javacores such as those from WebSphere Application Server. You can analyze thread usage at 

several different levels, starting with a high-level graphical view and drilling down to a detailed tally 

of individual threads. If any deadlocks exist in the thread dump, TMDA detects and reports them. 

Log  Analyzer  

Log Analyzer is a graphical user interface that provides a single point of contact for browsing, 

analyzing, and correlating logs produced by multiple products. In addition to importing log files 

from multiple products, Log Analyzer enables you to import and select symptom catalogs against 

which log files can be analyzed and correlated. 

IBM  Visual  Configuration  Explorer  

The IBM Visual Configuration Explorer provides a way for you to visualize, explore, and analyze 

configuration information from diverse sources. 

IBM  Pattern  Modeling  and  Analysis  Tool for  Java  Garbage  Collector  (PMAT)  

The IBM Pattern Modeling and Analysis Tool for Java Garbage Collector (PMAT) parses IBM 

verbose garbage-collection (GC) trace, analyzes Java heap usage, and recommends key 

configurations based on pattern modeling of Java heap usage. Only verbose GC traces that are 

generated from IBM Java Development Kits (JDKs) are supported. 

IBM  Assist  On-site  

IBM Assist On-site provides remote desktop capabilities. You run this tool when you are instructed 

to do so by IBM Support personnel. With this live remote-assistance tool, a member of the IBM 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 115

http://www.ibm.com/software/support/isa/
http://www.ibm.com/software/support/isa/
http://www.ibm.com/software/support/isa/


Support team can view your desktop and share control of your mouse and keyboard to help you 

find a solution. The tool can speed up problem determination, data collection, and ultimately your 

problem solution.

To install tools for the IBM Support Assistant Workbench on a Windows or Linux Intel operating system, go 

to the Update  menu and select Tool Add-ons. A list of all available tools appears, and you can select the 

tools that you would like to install. 

You can install, update, or remove tools from the IBM Support Assistant Workbench at any time. 

Troubleshooting help from IBM 

If you are not able to resolve a WebSphere Application Server problem by following the steps described in 

the Troubleshooting guide, by looking up error messages in the message reference, or looking for related 

documentation on the online help, contact IBM Technical Support. 

Purchase of WebSphere Application Server entitles you to one year of telephone support under the 

Passport Advantage® program. For details on the Passport Advantage program, visit http://www.lotus.com/
services/passport.nsf/WebDocs/Passport_Advantage_Home. 

The number for Passport Advantage members to call for WebSphere Application Server support is 

1-800-237-5511. Please have the following information available when you call: 

v   Your Contract or Passport Advantage number. 

v   Your WebSphere Application Server version and revision level, plus any installed fixes. 

v   Your operating system name and version. 

v   Your database type and version. 

v   Basic topology data: how many machines are running how many application servers, and so on. 

v   Any error or warning messages related to your problem.

IBM Support has documents that can save you time gathering information needed to resolve this problem. 

Before opening a PMR, see the IBM Support page. 

IBM Support Assistant 

IBM Support Assistant allows you to search multiple knowledge repositories and gives you access to the 

latest product information. You can choose to be guided through your problem symptoms or view a 

complete listing of advanced tooling for analyzing everything from logs to memory dumps. Using the IBM 

Support Assistant Workbench installed on a local workstation running the Windows or Linux Intel operating 

system, you can connect to the IBM Support Assistant Agent installed on a remote system running on the 

AIX, Linux, Windows, or Solaris operating system. You can use IBM Support Assistant to run automated, 

symptom-specific data collectors. This data can then be attached to an IBM Service Request so that you 

can get help from IBM Support. 

The Collector Tool 

Consulting 

For complex issues such as integration with legacy systems, education, and help in getting started quickly 

with the WebSphere product family, consider using IBM consulting services. To learn about these services, 

browse the Web site http://www.ibm.com/services/fullservice.html. 

Diagnosing and fixing problems: Resources for learning 

In addition to the information center, there are several Web-based resources for researching and resolving 

problems related to the WebSphere Application Server. 

 

116 Troubleshooting and support

http://www.lotus.com/services/passport.nsf/WebDocs/Passport_Advantage_Home
http://www.lotus.com/services/passport.nsf/WebDocs/Passport_Advantage_Home
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg21145599
http://www.ibm.com/services/fullservice.html


The WebSphere Application Server support page 

The official site for providing tools and sharing knowledge about WebSphere Application Server problems 

is the WebSphere Application Server support page: http://www.ibm.com/software/webservers/appserv/
support.html. Among the features it provides are: 

v   A search field for searching the entire support site for documentation and fixes related to a specific 

exception, error message, or other problem. Use this search function before contacting IBM Support 

directly. 

v   Solve  a problem  links take you to specific problems and resolutions documented by WebSphere 

Application Server technical support personnel. 

v   The Download  links provide free WebSphere Application Server maintenance upgrades and problem 

determination tools. 

The fix packs and refresh packs for the WebSphere Application Server for i5/OS products are also 

provided in the group PTF for the WebSphere Application Server product. The WebSphere Application 

Server group PTF also includes other i5/OS group PTFs which are necessary for running your 

application servers. For more information see the PTFs page. 

–   fixes  are software patches which address specific WebSphere Application Server defects. Selecting a 

specific defect from the list in the Fixes  by  version  page takes you to a description of what problem 

the fix addresses. 

–   Fix packs are bundles of multiple fixes, tested together and released as a maintenance upgrade to 

WebSphere Application Server. Refresh packs are fix packs that also contain new function. If you 

select a fix pack from this page, you are taken to a page describing the target platform, WebSphere 

Application Server prerequisite level, and other related information. Selecting the fix  list  link on that 

page displays a list of the fixes which the fix pack includes. If you intend to install a fix which is part 

of a fix pack, it is usually better to upgrade to the complete fix pack rather than to just install the 

individual fix.

Accessing WebSphere Application Server support page resources 

Some resources on the WebSphere Application Server support page are marked with a key icon. To 

access these resources, you must supply a user ID and password, or register if do not already have an ID. 

When registering, you are asked for your contract number, which is supplied as part of a WebSphere 

Application Server purchase. 

WebSphere Developer Domain 

The Developer Domains are IBM-supported sites for enabling developers to learn about IBM software 

products and how to use them. They contain resources such as articles, tutorials, and links to newsgroups 

and user groups. You can reach the WebSphere Developer Domain at http://www7b.software.ibm.com/
wsdd/. 

The IBM Support page 

IBM Support has documents that can save you time gathering information needed to resolve this problem. 

Before opening a PMR, see the Must gather documents for information to gather to send to IBM Support. 

Debugging Service details 

Use this page to view and modify the settings used by the Debugging Service. 

To view this administrative console page, click Servers  > Application  Servers  > server  name  > 

Debugging  Service. 

The steps below describe how to enable a debug session on WebSphere Application Server. Debugging 

can prove useful when your program behaves differently on the application server than on your local 

system. 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 117

http://www.ibm.com/software/webservers/appserv/support.html
http://www.ibm.com/software/webservers/appserv/support.html
http://www-1.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/services/service.htm
http://www7b.software.ibm.com/wsdd/
http://www7b.software.ibm.com/wsdd/
http://www-1.ibm.com/support/search.wss?rs=180&q=mustgather


Enable service at server startup 

Specifies whether the server will attempt to start the Debug service when the server starts. 

JVM debug port 

Specifies the port that the Java virtual machine will listen on for debug connections. 

JVM debug arguments 

Specifies the debugging argument string used to start the JVM in debug mode. 

Debug class filters 

Specifies an array of classes to ignore during debugging. When running in step-by-step mode, the 

debugger will not stop in classes that match a filter entry. 

Configuration problem settings 

Use this page to identify and view problems that exist in the current configuration. 

To view this administrative console page, click Troubleshooting  > Configuration  Problems  in the 

console navigation tree. 

To view a configuration problem, click Configuration  Validation  in the console navigation tree, then select 

the type of configuration you want to view. 

Configuration document validation 

Use these fields to specify the level of validation to perform on configuration documents. 

Maximum  

Selecting Maximum:  Validate  all  documents  turns on validation for all documents, regardless of 

whether or not they are extracted, and regardless of the relationships between the documents. 

High  Selecting High:  Validate  extracted,  parent,  and  sibling  documents  turns on validation for 

extracted documents and their parent documents, and turns on validation for the sibling 

documents of the documents which have been extracted. For example, if High  validation is 

selected, and if the server.xml  document is extracted, when performing validation, validation is 

performed on the three documents: server.xml, node.xml, and cell.xml. and on the two sibling 

documents variables.xml  and resources.xml  within the server1 directory. 

Medium  

Selecting Medium:  Validate  extracted  and  parent  documents  turns on validation for the 

documents which have been extracted by the user interface, and also turns on validation of the 

parent documents of the documents which have been extracted. For example, using the partial 

directory structure from above, if Medium  validation is selected, and if the server.xml  document is 

extracted, when performing validation, validation is performed on all three of the documents 

server.xml, node.xml, and cell.xml. 

Low  Selecting Low:  Validate  extracted  documents  turns on validation for just those documents which 

have been extracted by the user interface. 

None  Selecting None  disables validation. No configuration documents are validated.

Enable Cross validation 

Enables cross validation of configuration documents. Enabling cross validation enables comparison of 

configuration documents for conflicting settings. 

 

118 Troubleshooting and support



Configuration Problems 

Displays current configuration problem error messages. Click a message for detailed information about the 

problem. 

Scope 

Sorts the configuration problem list by the configuration file where each error occurs. Click a message for 

detailed information about the problem. 

Message 

Displays the message returned from the validator. 

Explanation 

A brief explanation of the problem. 

User action 

Specifies the recommended action to correct the problem. 

Target  Object 

Identifies the configuration object where the validation error occurred. 

Severity 

Indicates the severity of the configuration error. There are three possible values for severity. 

Error  This means that there is a problem with the configuration that might cause partial or complete 

failure of server function. This is the most severe warning. 

Warning  

This means that there is a problem with the configuration that might cause a failure of server 

function, or that might cause the server to function in an unexpected manner. 

Information  

A setting of the configuration that is unexpected and noteworthy, which requires customer 

notification. Information is used when the configuration has a value which is probably okay, but 

should be double checked by the administrator. This is the least crucial level of severity.

Local URI 

Specifies the local URI of the configuration file where the error occurred. 

Full URI 

Specifies the full URI of the configuration file where the error occurred. 

Validator classname 

The classname of the validator reporting the problem. 

Runtime events 

Use the Runtime event pages of the administrative console to view the events published by application 

server classes. 

To view these administrative console pages, click Troubleshooting. Expand Runtime  Messages  and click 

either Runtime  Error, Runtime  Warning, or Runtime  Information. 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 119



Separate pages show error events, warning events, and informational events. Each page displays events 

in the same format. 

You can adjust the number of messages that appear on the page in the Preferences  settings. 

Click a message to view event details. 

Timestamp 

When the event occurred. 

Message originator 

Internal application server class that published the event. 

Message 

Identifier and short description of the event. 

Message details 

Use the Message Details panel of the administrative console to view detailed information about errors, 

warnings, and informational messages. 

To view these administrative console pages, click Troubleshooting. Expand Runtime  Messages  and click 

either Runtime  Error, Runtime  Warning, or Runtime  Information. Click a message to display this panel. 

Each message has the following general property fields. 

Message 

The message ID and text. 

Message type 

Error, Warning, or Information. 

Explanation 

A description of the message. 

User action 

What you should do about the message. 

Message originator 

The name of the product class that originated the message. 

Source object type 

The name of the component that originated the message. 

Timestamp 

The date and time that the message originated. 

Thread ID 

The thread identifier. 

Node name 

The name of the node of the application server that originated the message. 

Server name 

The name of the application server process that originated the message. 

 

120 Troubleshooting and support



Diagnostic Provider ID 

The Diagnostic Provider ID of the component that originated the message. Click on Configuration Data, 

State Data, or Tests to run the corresponding diagnostic action against the originating component. A 

Diagnostic Provider ID will not be supplied with all messages. 

Showlog commands for Common Base Events 

The showlog command converts the service log from binary format into plain text. 

Purpose 

These showlog commands to produce output in Common Base Event XML format. 

v   showlog  -format  CBE-XML-1.0.1  filename

where: 

filename  

Is the service log file name.

For examples of showlog scripts, see Showlog Script. 

Working  with Diagnostic Providers 

Diagnostic Providers enable you to query the startup configuration, current configuration, and current state 

of a diagnostic domain. In addition, Diagnostic Providers can also provide access to any self diagnostic 

tests that are available from a diagnostic domain. 

About this task 

The Diagnostic Provider Utility is a simple front end in the administration console that presents the 

available set of Diagnostic Providers and enables you to work with them. 

Learn about Diagnostic Providers 

Diagnostic Providers 

Diagnostic Providers are a quick method for viewing configuration and the current state of individual 

components within an application server environment. 

WebSphere Application Server components can be considered as being divisible into diagnostic  domains. 

A diagnostic domain refers to a set of classes within the component that share a set of diagnostics. Some 

larger components might have multiple diagnostic domains. For example, the Connection Manager 

logically consists of multiple data sources and connection factories that each have separate diagnostic 

domains. 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 121



wsadmin
Utility

Diagnostic
Provider

Utility

WebSphere Admin Console

WebSphere Managed Server

WebSphere Managed Server

JMX MBean Server

WAS Component

Diagnostic
Domain

WAS Component

Diagnostic
Domain

Diagnostic
Domain

Diagnostic
Domain

Diagnostic
Provider
MBean

Diagnostic
Provider
MBean

Diagnostic
Provider
MBean

Diagnostic
Provider
MBean

Diagnostic
Service
MBean

This image shows the relationships between the parts that make up the Diagnostic Provider (DP) utility. 

Diagnostic  Provider  MBeans  

A single diagnostic domain receives its diagnostic services from a Diagnostic Provider MBean. The 

Diagnostic Provider MBean enables you to query the startup configuration, current configuration, and 

current state of the diagnostic domain. In addition, Diagnostic Provider MBeans can also provide access to 

any self diagnostic tests that are available from the diagnostic domain. Some characteristics of Diagnostic 

Provider MBeans include: 

v   Diagnostic Provider MBeans are Java Management Extensions (JMX) MBeans 

v   Diagnostic Provider MBeans all implement a DiagnosticProvider interface which includes methods for 

configuration dumps, state dumps, and self diagnostic tests 

v   Diagnostic Provider MBeans provide a way to expose information about running components so 

administrators can more easily debug problems related to those components. As with other MBeans 

running in WebSphere Application Server, they can be accessed from JMX client code, or through the 

wsadmin  tool.

Diagnostic  Provider  Infrastructure  

Diagnostic Provider MBeans are efficient at delivering Java object representations of configuration, state, 

and self test information. This is good for when programs interact. For human users to access the 

information, WebSphere Application Server provides a set of facilities to extend the value of Diagnostic 

Provider MBeans. 

The  Diagnostic  Service  MBean  

provides methods to convert Diagnostic Provider MBean output into human readable formats. The 

Diagnostic Service MBean also provides some methods to facilitate looking up the Diagnostic 

Provider MBeans on the same server as the Diagnostic Service MBean. For administrators that 

want to access diagnostic data from a command line, the wsadmin tool can be used directly with 

the Diagnostic Service MBean to get formatted results 

 

122 Troubleshooting and support



The  Diagnostic  Provider  utility  

a set of panels included in the WebSphere Application Server administration console through 

which administrators can interact with Diagnostic Provider MBeans. The Diagnostic Provider utility 

is a simple front end in the administration console that presents the available set of Diagnostic 

Provider MBeans present on each managed server, and provides a means to execute and view 

the results of configuration dumps, state dumps, and diagnostic self tests.

. 

The purpose of Diagnostic Providers 

Diagnostic Providers give you more information for quickly discovering and diagnosing system problems. 

The following scenario contrasts the experience of an administrator working with a component that does 

not have a Diagnostic Provider to one that does. 

When the administrator works with a component that is without a Diagnostic Provider, the events are as 

follows: 

1.   A log entry indicates that a particular component is experiencing a problem. 

2.   The system administrator sees the log entry through the runtime messages panel. 

3.   The system administrator cannot tell what is wrong, so calls IBM support for assistance, with a 

potentially ill-defined problem.

When the administrator works with a component with a Diagnostic Provider, and the Diagnostic Provider 

ID is registered with the component’s logger, the situation changes as follows: 

1.   A log entry that contains a Diagnostic Provider ID (DPID) indicates that something has gone wrong in a 

specific component. 

2.   The system administrator sees the log entry through the runtime messages panel. 

3.   The administrator clicks a button on the runtime message panel to execute a state dump or a 

configuration dump, or to be taken to the list of component self tests. 

4.   From the self test, the administrator is warned that the component is configured in a way that could 

lead to poor performance or failures.

Furthermore, when the administrator works with a component with a Diagnostic Provider, and the 

Diagnostic Provider ID is not  registered with the component’s logger, the situation might unfold like this: 

1.   A log entry which doesn’t contain a DPID indicates that something has gone wrong in a component. 

2.   The system administrator sees the log entry through the runtime messages panel. 

3.   The system administrator uses the administrative console to navigate through the available set of 

Diagnostic Providers and selects one that sounds appropriate. 

4.   He runs a configuration dump, a state dump, or a self diagnostic test against the Diagnostic Provider 

to collect information about the component. 

5.   From the state dump, the administrator is able to notice that the component state is not what would be 

expected for its workload. 

6.   The administrator works with the test team to determine which of the flows is causing the state of the 

component to diverge from what is expected (as evidenced by repeated execution of the state dump).

Diagnostic Provider IDs 

A Diagnostic Provider ID (DPID) is the unique address of a Diagnostic Provider MBean. Components that 

have associated Diagnostic Provider MBeans can include the DPID in their log entries. 

Diagnostic Provider IDs are implemented in WebSphere Application Server as Java Management 

Extensions (JMX) MBean  ObjectNames, and can be used at JMX MBean servers to look up Diagnostic 

Provider MBeans. 

By including the String representation of the DPID in each logged message, the message can be tracked 

back to the Diagnostic Provider related to the component. A method is provided to associate Diagnostic 

Provider IDs with Loggers (from the java.util.logging  logging API). 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 123



Runtime
Messages

Utility

Diagnostic
Provider

Utility

WebSphere Admin Console

WebSphere Managed Server WebSphere Managed Server

JMX MBean Server
WAS Component

Diagnostic
Domain

Diagnostic
Provider
MBean
(DPID)

3DPID

2
DPID

4

DPID

5

1

DPID

RasLoggingService
MBean

Log Files

WAS
Logging

Subsystem

The diagram above shows how the use of DPIDs in log entries enables callbacks to the component that 

originally created the log entry. 

1.   Shows the component logging with a DPID included in the log entry. 

2.   The administrator examines the log entry through the Runtime Messages Utility and notices that the 

entry has a link to a Diagnostic Provider. 

3.   The administrator uses the link to gain access to the relevant MBean in the Diagnostic Provider Utility . 

4.   The Diagnostic Provider Utility contacts the Diagnostic Provider MBean to ask for more information. 

5.   The request for more information is sent back to the source of the original log entry. 

6.   The response from the Diagnostic Provider is provided in the administration console.

Diagnostic Provider configuration dumps, state dumps, and self tests 

The Diagnostic Provider (DP) infrastructure allows for a software component or stack product in the 

WebSphere Application Server space to expose key information about its configuration, current state, and 

current ability to perform operations. 

The methods that expose this information might be driven as a result of a message put out by the 

component (by a logger which automatically includes the Diagnostic Provider ID in each message), or 

might be driven as a result of an overall system health-check when an administrator or automated tool is 

monitoring the system. 

Configuration dumps 

A Configuration  dump  is an operation you can perform on a Diagnostic Provider to list the startup or 

current values of the configuration attributes for the DP. The name for each data item in this dump should 

reflect its disposition. That is, each item should be called startup-xxx  or current-xxx  to show whether this is 

a startup or current value. The collection of attributes returned from this operation can be thought of as the 

payload  of the configuration dump. More information about payloads can be found in “Diagnostic Provider 

method implementation” on page 131. 

You can find several ways to filter the output of a configuration dump in “Diagnostic Provider registered 

attributes and registered tests” on page 125. 

State dumps 

A State  dump  is similar to a configuration dump, but it differs in two key areas. First, a state dump displays 

current information about the operation of a component. An example is a connection pool. A configuration 

dump can show DataSource  name, the minConnections  (configured or current), the maxConnections, the 

DataBase  name, and so on. A state dump is more likely to show the current connections in use, the high 

 

124 Troubleshooting and support



concurrent use count, the number of times the pool has been expanded, the average time between 

requesting a connection and returning it, and so forth. 

State dumps can be impacted by the values in the State Collection Specification. This is a dynamic 

specification that controls additional data collection that the component can do at runtime. If additional data 

is being collected, then a State dump might display more information. The same filters and payload 

information that apply to Configuration dumps (see “Diagnostic Provider registered attributes and 

registered tests”) apply to State dumps. 

Self Diagnostic tests 

Self diagnostic tests are non-invasive operations that a Diagnostic Provider exposes. Non-invasive  means 

that if they modify anything for the test, the conclusion of the test reverses the modification. These tests 

give an administrator the option to test simple functions of a component to see if it is able to perform them. 

The filters for a self diagnostic test apply to the test itself, not to the output of the test. A typical use of Self 

Diagnostic tests could be for a pool manager of some sort to pull an object out of the pool and return it to 

the pool to verify that this operation can still be performed, and with acceptable performance. 

Diagnostic Provider registered attributes and registered tests 

Each Diagnostic Provider (DP) provides a list of state dump attributes, configuration dump attributes, self 

tests, and self test attributes. The tests are operations that the DP can perform. The attributes are pieces 

of information that are available for collection from a Configuration dump, a State dump, or a specific Self 

Diagnostic test. 

Each attribute can be seen as a piece of information with a label on it. Each attribute is also considered to 

be either registered  or not  registered. A registered attribute is one that should be available from one 

release of WebSphere Application Server to the next. A nonregistered attribute might not be available in its 

current form in future releases of the product (no commitment has been made). 

When performing a Configuration dump, a State dump, or a Self Diagnostic test, an administrator or 

automatic tooling can request only  registered  values, or all  values, depending on the needs of the 

administrator or tool. Note that the option of filtering results is only available through the Diagnostic 

Provider’s Java Management Extension (JMX) MBean interface, which you can access programmatically 

or through the wsadmin tool. 

The DiagnosticProviderRegistration XML file 

The DiagnosticProviderRegistration Extensible Markup Language (XML) file is used in conjunction with the 

method signatures to filter the results of calling the various methods. This XML file defines the 

configuration information, state information, and self diagnostic tests exposed by the component. In the 

configuration and state information, the key working unit is referred to as the attribute. Specification of an 

attribute is as follows: 

<attribute>  

        <id><Regular  Expression  representing  the  attribute  name></id>  

        <descriptionKey><MsgKey  into  a ResourceBundle  for  localization  of  the  label></descriptionKey>  

        <registered>true</registered>  

   </attribute>  

The parts are as follows: 

ID:  The attribute’s name. This name can be expressed with wildcard characters conforming to regular 

expression syntax. The registered attribute ID is used in the following places: 

v    Within Diagnostic Provider configuration dump and state dump methods to determine which 

attributes to return. 

v   In the administration console to match description keys to attributes returned from a request to 

a Diagnostic Provider for a configuration dump, state dump, or self diagnostic operation.

 

Chapter 3. Diagnosing problems (using diagnosis tools) 125



As an example, if a configuration dump returns an attribute with ID cachedServlet-MyServlet-
servletPath  to the administration console, the administration console could use the descriptionKey  

corresponding to the attribute registered as <id>cachedServlet-.*-servletPath</id>  when 

selecting what description text to put next to this attribute’s name and return values. 

descriptionKey:  

This is a key into a resourceBundle  for localization. 

registered:  

This is a boolean qualifying whether this attribute will be available from one release of the software 

to the next. If registered is true, then this attribute should be available in the next release. If 

registered is false, then there is no guarantee that this attribute will continue to exist. Automation 

should use some caution when handling non-registered attributes.

Specification of a selfDiagnosticTest is as follows: 

<test>  

       <id><Regular  Expression  for  the  name  of the  test></id>  

       <descriptionKey><MsgKey  into  a ResourceBundle  for localization  of the  label></descriptionKey>  

       <attribute><One  or more  attributes  which  will  be output  from  this  test></attribute>  

</test>  

The parts are as follows: 

ID:   Similar to the ID for the attribute, but in this case, describing the test to be performed instead of 

the attribute to be returned. 

descriptionKey:  

This is a key into a resourceBundle for localization.

Method interfaces 

public  DiagnosticEvent  [] configDump(String  aAttributeId,  boolean  aRegisteredOnly);  

public  DiagnosticEvent  [] stateDump(String  aAttributeId,  boolean  aRegisteredOnly);  

These methods invoke the configuration or state dump on the component, and specify a regular 

expression filter for the attributes to return as well as filtering the output to include all matching attributes, 

or only those attributes which are registered. This enables the administrator or automated software driving 

the method to specify a subset of the overall fields (especially important if many attributes are exposed or 

if the State Collection Specification increases the amount of data available). The following helper methods 

are available to assist with filtering the output. 

To take a list of Attributes that are available to return, and filter them: 

    public  static  AttributeInfo  []  queryMatchingDPInfoAttributes(String  aAttributeId,  

        AttributeInfo  [] inAttrs,  String  []  namesToCheck,  boolean  aRegisteredOnly)  { 

To take a single Attribute that is available to return, and filter it: 

    public  static  AttributeInfo  queryMatchingDPInfoAttributes(String  aAttributeId,  

        AttributeInfo  [] inAttrs,  String  nameToCheck,  boolean  aRegisteredOnly)  { 

To go through a populated set of Attribute Information and remove unneeded parts: 

    public  static  void  filterEventPayload(String  aAttributeId,  HashMap  payLoad)  { 

For details on these messages, please review the API documentation for the DiagnosticProviderHelper  

class. The basic concept is that, once the component knows what attributes are able to be returned, the 

helper method will determine which of them should be returned based on the regular expression logic and 

registration boolean. 

The selfDiagnostic Method interface here is similar to that of Configdump and Statedump: 

public  DiagnosticEvent[]  selfDiagnostic(String  aTestId,  boolean  aRegisteredOnly)  

 

126 Troubleshooting and support



The difference is that the first parameter is a regular expression filter for which test to run. 

Diagnostic Provider names 

In addition to the Diagnostic Provider ID (DPID), each component that implements the Diagnostic Provider 

interface must have a Diagnostic Provider Name. While the DPID must be unique within the entire 

WebSphere Application Server domain, the Diagnostic Provider Name need only be unique within the Java 

Virtual Machine (JVM). 

Unlike the Diagnostic Provider ID, which tends to be long and not human-friendly, the Diagnostic Provider 

Name should be shorter and easier to read. In addition, by convention it should end in DP. The Diagnostic 

Service MBean (see “The simpler interfaces provided by the Diagnostic Service MBean”) can drive 

methods on a Diagnostic Provider using its name. 

The simpler interfaces provided by the Diagnostic Service MBean 

All services for a Diagnostic Provider (DP) are also available through a Java Management Extensions 

(JMX) interface known as the Diagnostic  Service  interface. The Diagnostic Service interface enables 

administrators to drive methods against DPs using the Diagnostic Provider Name or Diagnostic Provider 

ID. 

When formatted output is requested of the Diagnostic Service, it is localized to the client Locale. This 

makes the Diagnostic Service MBean ideal for clients using an interface where consuming complex Java 

objects, such as those returned from the Diagnostic Provider MBeans, is not feasible. An example of such 

an interface is the wsadmin tool. 

The Diagnostic Service interface provides four signatures for each of the key methods available on the 

Diagnostic Providers (configDump, stateDump, and selfDiagnostic) objects. Because these method 

signatures look so similar, this example shows it all through the configDump methods. The four Diagnostic 

Service methods that map to configDump on a Diagnostic Provider are: 

public  DiagnosticEvent  [] configDump(String  aDPName,  String  aAttributeIdSpec,  boolean  aRegisteredOnly)  

public  DiagnosticEvent  [] configDumpById(String  aDPid,  String  aAttributeIdSpec,  boolean  aRegisteredOnly)  

public  String  [] configDumpFormatted(String  aDPName,  String  aAttributeIdSpec,  

       boolean  aRegisteredOnly,  Locale  aLocale)  

public  String  [] configDumpFormattedById(String  aDPid,  String  aAttributeIdSpec,  

       boolean  aRegisteredOnly,  Locale  aLocale)  { 

The first two return exactly what the Diagnostic Provider does. The second two methods act as a 

pass-through to the actual Diagnostic Provider, but they take the array of Diagnostic Events that the 

Diagnostic Provider returns, and convert it into a more easily consumable String  array. In addition, these 

methods handle localizing the output to the appropriate locale. It is important to note that the same method 

can be driven using the Diagnostic Provider ID or the Diagnostic Provider Name. 

Related  tasks  

“Working with Diagnostic Providers” on page 121
Diagnostic Providers enable you to query the startup configuration, current configuration, and current state 

of a diagnostic domain. In addition, Diagnostic Providers can also provide access to any self diagnostic 

tests that are available from a diagnostic domain.

Creating a Diagnostic Provider 

Use Diagnostic Providers to query the startup configuration, current configuration, and current state of a 

diagnostic domain. Diagnostic Providers also provide access to any self diagnostic tests that are available 

from a diagnostic domain. 

Before you begin 

To complete this task you must have programming knowledge of your system and the proper authorities to 

perform the following steps. 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 127



About this task 

The steps that follow outline a general process for creating Diagnostic Providers (DP). 

1.   Determine your diagnostic domain. Look for configuration  MBeans that control a similar domain in the 

same component. Extending an existing configuration MBean with a DP interface avoids proliferation of 

new MBeans and has the benefit that mapping from a diagnostic MBean to a configuration MBean 

requires no additional information. 

2.   Determine what configuration attributes you want to expose. Include information that is used to 

configure your component from the configuration MBeans. 

3.   Determine what state attributes you want to expose. Anything you might want to know about the state 

of your component for troubleshooting can go here. 

4.   Determine what self diagnostic tests you will expose. 

5.   Determine what test attributes you will return for each self diagnostic. 

6.   Create your DP registration Extensible Markup Language (XML) file. 

7.   Create your DP implementation. 

a.   To see an example, refer to “Implementing a Diagnostic Provider” on page 130 and keep in mind 

that most things that a Diagnostic Provider should do are already done for you in the 

DiagnosticProviderHelper  class. 

b.   To ensure that you do not collect unwanted data, add hooks in your component code where you 

need to collect state data using the DiagnosticConfig  object. 

c.   Add hooks in your component code where you need to store or be able to access configuration 

data.

8.   Add code to register your DP implementation. Typically, the best place to do this is where your 

component is initialized. 

9.   Add Diagnostic Provider IDs (DPID) to your logged messages. Registering a DPID with a logger 

makes that information available in any messages logged with this logger. This enables fast paths in 

the DP utility to function on this particular Diagnostic Provider. 

a.   Register your DPID with your loggers (for any of your loggers that you only want to associate a 

single DPID with). 

b.   When you use multiple DPIDs with the same Logger, you can (instead of registering a single DPID 

with a Logger) add DPIDs to individual logging calls in the parm[0]  position. Do not put {0}  in the 

corresponding localized messages. It is bad practice to print the DPID in your messages as this 

would be inconsistent with messages from loggers with statically assigned DPIDs.

Diagnostic Provider Extensible Markup Language 

Some conventions to follow for Diagnostic Provider (DP) Extensible Markup Language (XML) declarations. 

These guidelines are to help keep your use of Diagnostic Providers (DP) consistent. 

v   Include the Document type definition (DTD) for your Diagnostic Provider at the top of every DP 

declaration Extensible Markup Language (XML) file. 

v   Start all names and name segments with lower case. Use camel  case  for attribute names. That is, 

capitalize every initial letter in the name, except the first. For example, traceCollectionSpec. 

v   Indicate hierarchy with dashes. Dashes work better than dots because attribute names are regular 

expressions. For example, traceService-traceCollectionSpec. 

v   Indicate string dynamic parts to attribute names using an asterisk (*). For example, 

vhosts-.*-webgroups-.*-webapps-.*-listeners-filterInvocationListeners  

which would match vhosts-someHost-webgroups-someGroup-webapps-someApp-listeners-
filterInvocationListeners 

v   Indicate numeric dynamic parts to attribute names using [0-9]*. For example, 

vhosts-index-[0-9]*  

 

128 Troubleshooting and support



which would match webcontainer-vhosts-index-123 

v   If you have a general purpose self diagnostic test that can be run without significant performance cost, 

name it general.

Some tips for configDump implementation 

v    configDump should contain information used to define the component’s environment. Some examples 

are: 

–   configuration data set by Java Management Extensions (JMX) 

–   configuration from system properties, xml files, and property files 

–   configuration information hard-wired and unchanging in code (such as, if a resource adapter 

implements interface X, or has some static final field Y, then those could indicate aspects of 

configuration and be included in the configDump).

v     configDump should not contain dynamically registered attributes, such as: 

–   a list of registered loggers (this belongs in stateDump) 

–   a list of servlets in an application (this belongs in stateDump).

v    configDump should be separated into 2 sections -- startup  and current. 

–   All configDump attributes must start with either startup-  or current-. 

–   The startup  section details the component’s environment at startup time. Startup configDump 

attributes start with startup-  . 

–   The current  section details the component’s environment at the moment the configDump is 

requested. Current configDump attributes start with current-.

Best practices for configDump 

v   Group related attributes using an attribute hierarchy (such as, for two attributes about the traceLog: 

startup-traceLog-rolloverSize=20, startup-traceLog-maxNumberOfBackupFiles=1) 

v   For information in the current attribute list that refers to the same thing as a startup attribute, the names 

of both current and startup attributes should match. 

v    If an attribute has no use after startup, only show it in the startup section (for example, a configuration 

attribute that contains a file name from which startup data is read).

Related  tasks  

“Creating a Diagnostic Provider” on page 127
Use Diagnostic Providers to query the startup configuration, current configuration, and current state of a 

diagnostic domain. Diagnostic Providers also provide access to any self diagnostic tests that are available 

from a diagnostic domain. 

“Working with Diagnostic Providers” on page 121
Diagnostic Providers enable you to query the startup configuration, current configuration, and current state 

of a diagnostic domain. In addition, Diagnostic Providers can also provide access to any self diagnostic 

tests that are available from a diagnostic domain.

Choosing a Diagnostic Provider name 

To ensure consistency when choosing Diagnostic Provider names to use with your components, you 

should consider the guidelines that follow. 

Diagnostic Provider name guidelines: 

v   Names must be unique within a Java Virtual Machine (JVM). One Diagnostic Provider name goes 

uniquely with one Diagnostic Provider ID within a server. 

v   If necessary, names can contain a dynamic element to help with uniqueness. Of course, the dynamic 

element should have meaning to the administrator. 

v   Although not a hard limit, the static part of names should be 16 characters or less. 

v   The static part of names must follow the class name convention. Start with a capital letter, no spaces, 

and capitalize each word in the name. 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 129



v   The static part of names must end with DP. 

v   Valid names contain a static part only, or a static part followed by a dash (-), followed by a dynamic 

part. Some valid examples: 

–   ConnMgrDP-instance_specific_stuff 

–   WebContainerDP 

–   AdvisorDP 

–   NodeAgentDP

Related  tasks  

“Creating a Diagnostic Provider” on page 127
Use Diagnostic Providers to query the startup configuration, current configuration, and current state of a 

diagnostic domain. Diagnostic Providers also provide access to any self diagnostic tests that are available 

from a diagnostic domain. 

“Working with Diagnostic Providers” on page 121
Diagnostic Providers enable you to query the startup configuration, current configuration, and current state 

of a diagnostic domain. In addition, Diagnostic Providers can also provide access to any self diagnostic 

tests that are available from a diagnostic domain.

Implementing a Diagnostic Provider 

To use a Diagnostic Provider you must configure an MBean with the methods and attributes required to 

handle the data from the application server and client applications. 

Before you begin 

This task presumes that you have a programming knowledge of the creation of MBeans. For more 

information about the interaction of MBeans with WebSphere Application Server, refer to topic, Creating 

and registering standard, dynamic, and open custom MBeans in the Administering  applications  and  their  

environment  PDF book. 

About this task 

The steps that follow outline a general process for implementing a Diagnostic Provider (DP). 

1.   Modify the MBean descriptor Extensible Markup Language (XML). To implement a Diagnostic Provider, 

you must have an MBean, and the MBean should include this statement in its descriptor XML as a 

direct child of the MBean element: 

<parentType  type="DiagnosticProvider"/>  

This defines the operations, attributes, and aggregators necessary for an MBean to be a Diagnostic 

Provider. If you do not need to have this DP exist in z/OS® Controllers, then this XML inclusion handles 

all z/OS specifics for your MBean. 

2.   Modify the MBean Implementation. Your MBean should already have a class which instantiates it and 

registers it with the Java Management Extensions (JMX) server. 

The first difference here is that you must define a property in the Properties  class that is passed to the 

registration (and becomes part of the ObjectName). The property is diagnosticProvider=true  and it 

can be added with a line of code such as: 

 MyProps.setProperty(DiagnosticProvider.DIAGNOSTIC_PROVIDER_KEY,  DiagnosticProvider.DIAGNOSTIC_PROVIDER_VALUE)  ; 

The second difference is that this class should register this Diagnostic Provider with the Diagnostic 

Service. A helper method is available to do this: 

 DiagnosticProviderHelper.registerMBeanWithDiagnosticService(DiagnosticProviderPName,  DiagnosticProviderId)  ; 

Obviously this must be done after the registration when the ObjectName  can be retrieved into the 

DiagnosticProviderId  string. 

3.   Implement the Diagnostic Provider methods.

 

130 Troubleshooting and support



Diagnostic  Provider  method  implementation:   

To create a Diagnostic Provider (DP) you must have an MBean that includes the required methods in its 

deployment Extensible Markup Language (XML) file. These methods define the operations, attributes, and 

aggregators necessary for an MBean to be a Diagnostic Provider. 

 Adding these methods can be accomplished by adding the parentType  directive to your existing XML file 

(see “Implementing a Diagnostic Provider” on page 130), or by including the operations directly into your 

deployment XML file. The definitions needed are included in “Diagnostic Provider registered attributes and 

registered tests” on page 125. The next step is for the MBean to actually implement these methods. The 

methods to implement include: 

v   “getRegisteredDiagnostics” 

v   “getDiagnosticProviderName” 

v   “getDiagnosticProviderID” 

v   “configDump” on page 132 

v   “stateDump” on page 132 

v   “selfDiagnostic” on page 132 

v   “localize” on page 133

getRegisteredDiagnostics  

This method exposes the registration information for this Diagnostic Provider. It is commonly used by the 

DP Utility in the administration console to gather information about Diagnostic Providers that are to be 

displayed in the console. This method returns a DiagnosticProviderInfo  object that is usually attained by 

passing the appropriate XML to a DiagnosticProviderHelper  helper class. Here is an example: 

public  DiagnosticProviderInfo  getRegisteredDiagnostics()  { 

  InputStream  regIS=  Thread.currentThread().getContextClassLoader().getResourceAsStream(  

   "com/ibm/ws/xxx/SampleDP2DiagnosticProvider.xml");  

  dpInfo  = DiagnosticProviderHelper.loadRegistry(regIS,  sDPName)  ; 

  

         if (dpInfo  == null)  { 

            sSampleDP2MBeanLogger.logp(Level.WARNING,  sThisClass,  "getRegisteredDiagnostics",  

             "RasDiag.DPInfo.NoGotz")  ; 

  } 

    return  dpInfo  ; 

 } 

Notice that the XML is packaged and available in the classpath  of the current classloader. The 

“Registration XML” on page 134 contains crucial information that the Diagnostic Provider uses to “Populate 

the payload” on page 133 and “localize” on page 133 results. 

getDiagnosticProviderName  

This is usually a pretty simple return of a constant as the following example shows 

public  String  getDiagnosticProviderName()  { 

  return  sDPName;  

 } 

getDiagnosticProviderID  

This is usually a pretty simple return of a Java Management Extensions (JMX) object ID that MBeans can 

pull out of the base class method. For example: 

public  String  getDiagnosticProviderId()  { 

  return  getObjectName().toString()  ; 

 } 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 131



configDump  

The configDump  method enables the Diagnostic Provider to expose the configuration data that was in 

place when this Diagnostic Provider started (or the current values of them). The DiagnosticEvent  objects 

that this method returns include a “Payload” on page 133 that contains the core data. The following is an 

excerpt from a configDump method: 

public  DiagnosticEvent  [] configDump(String  aAttributeIdSpec,  boolean  aRegisteredOnly)  { 

    HashMap  cdHash  = new  HashMap(64)  ; 

  

  // “Populate  the  payload”  on page  133  

  

    DiagnosticEvent  []  diagnosticEvent  = new  DiagnosticEvent[1]  ; 

    diagnosticEvent[0]  = DiagnosticEventFactory.createConfigDump(getObjectName().toString(),  

     "ThisClassName",  "configDump",  cdHash)  ; 

  

    return  diagnosticEvent  ; 

 } 

This returns an array of DiagnosticEvent  objects. Normally, configDump  and stateDump  return only one 

object. However, the method accepts an array because on z/OS systems a server can have multiple 

servants, and aggregation of the output from the servants is stored in the array. 

stateDump  

The stateDump  method enables the Diagnostic Provider to expose the current state data, or data about 

the current operating conditions of the Diagnostic Provider. The data made available can be anything likely 

to assist a customer, an IBM support person, or automated tooling in analyzing the health of the 

component and problem determination if there is an issue. The amount of data available is impacted by 

the State Collection Specification in effect at the time. If the current State Collection Specification involves 

the collection of additional data by the Diagnostic Provider, then this additional data can be exposed in the 

stateDump. The DiagnosticEvent  objects that this method returns include a “Payload” on page 133 that 

contains the core data. The following is an excerpt from a stateDump method: 

public  DiagnosticEvent  [] stateDump(String  aAttributeIdSpec,  boolean  aRegisteredOnly)  { 

    HashMap  sdHash  = new  HashMap(64)  ; 

  

  // “Populate  the  payload”  on page  133  

  

    DiagnosticEvent  []  diagnosticEvent  = new  DiagnosticEvent[1]  ; 

    diagnosticEvent[0]  = DiagnosticEventFactory.createStateDump(getObjectName().toString(),  

     "ThisClassName",  "stateDump",  sdHash)  ; 

  

    return  diagnosticEvent  ; 

 } 

This returns an array of DiagnosticEvent  objects. Normally, configDump  and stateDump  return only one 

object. 

selfDiagnostic  

The selfDiagnostic  method enables the Diagnostic Provider to perform certain predefined activities to test 

key functionalities of your system. These tests should not have a lasting effect on the system. For 

example, if the test is to create a TCP/IP connection to a remote host, the test should also break that 

connection before returning its results so that the state of the component is unchanged by the test. The 

information returned by the test is determined by the attributes included in the test section of the XML file. 

The following is an excerpt from a selfDiagnostic method: 

public  DiagnosticEvent  [] selfDiagnostic(String  aAttributeIdSpec,  boolean  aRegisteredOnly)  { 

  TestInfo  [] testInfo  = dpInfo.selfDiagnosticInfo.testInfo  ; // Retrieve  the test  registry  information  

  Pattern  testChecker  = Pattern.compile(aAttributeIdSpec)  ; // Compile  test  regexp  parm  for  faster  checking  

  ArrayList  deList  = new  ArrayList(8)  ;    // Allocate  expandable  list  of DiagnosticEvents

 

132 Troubleshooting and support



for  (int  i = 0; i < testInfo.length;  i++)  { 

   if (testChecker.matcher(testInfo[i].id).matches())  { 

      HashMap  deHash  = new  HashMap(32)  ; 

  

    // “Populate  the  payload”  

  

      deList.add(DiagnosticEventFactory.createDiagnosticEvent(getObjectName().toString(),  

       DiagnosticEvent.EVENT_TYPE_SELF_DIAGNOSTIC,  DiagnosticEvent.LEVEL_INFO,  

       "ThisClassName",  "selfDiagnostic",  dpInfo.resourceBundleName,  

     "RasDiag.SDP2.createDE3",    // MsgKey  for  localization  

           //  Parms  to incorporate  in msg  

     new  Object  [] { "OneParm",  "TwoParm",  "RedParm",  "BlueParm"},  deHash))  ; 

   } 

  } 

  

    DiagnosticEvent  [] diagnosticEvent  = new  DiagnosticEvent[deList.size()]  ; 

  diagnosticEvent  = (DiagnosticEvent  [])deList.toArray(diagnosticEvent)  ; 

  

    return  diagnosticEvent  ; 

 } 

This returns an array of DiagnosticEvent  objects. In this example, one DiagnosticEvent  was created 

from each test that matched the parameter regular expression. The Diagnostic Provider is not required to 

produce only one per test. The generation of “Payload” is similar to that of configDump  and stateDump. 

localize  

The DiagnosticEvents  that methods return contain payload HashMaps  that contain MessageKeys  and 

ResourceBundles. The final consumer of these events is often not on the server, and thus may not have 

the appropriate classpath  to resolve this. For this purpose, a callback to the Diagnostic Provider to localize 

the variables is done. A helper method, however, makes it a simple method to write, as this example 

demonstrates: 

public  String  [] localize(String  [] aKeys,  Locale  aLocale)  { 

  return  DiagnosticProviderHelper.localize(dpInfo.resourceBundleName,  aKeys,  aLocale)  ; 

 } 

Note that the dpInfo  (DiagnosticProviderInfo) object is needed as this object includes a reference to the 

ResourceBundle. 

Payload  

A recurring theme in these methods is the ability to include a payload in return objects. This is a set of 

name=value  pairs that include the information being exposed by the method. Diagnostic Events returned 

from a configDump, stateDump, or selfDiagnostic test are relatively complex Java objects. The majority of 

the information that is returned is contained in the DiagnosticData  portion of the DiagnosticEvent  object. 

Each attribute returned by the Diagnostic Provider is stored in an entry in a HashMap. There can be 

cascading HashMaps within a single DiagnosticEvent object (if breaking the data down into subGroups 

makes sense). Each HashMap entry contains either a reference to a child HashMap, or a 

DiagnosticTypedValue  (which contains the value, the type of data, and a MsgKey  for localization of the 

label or /name). The values to be returned should be filtered with: 

v   The type of method (that is, configDump, stateDump, or selfDiagnostic) 

v   The AttributeIdSpec  sent in to filter the values 

v   The current State Collection Specification (which can impact the amount of data available).

Populate  the  payload  

The API documentation for DiagnosticProviderHelper.queryMatchingDPInfoAttributes  explains how to do 

the filtering before retrieving the data. In some cases, it is easier and helps performance for a Diagnostic 

Provider to retrieve all data into the Payload and then filter the HashMap after the fact. The 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 133



post-population filtering can be done with the method DiagnosticProviderHelper.filterEventPayload. For 

information on use of the JavaBean type approach, see the API documentation for the 

AttributeBeanInfo.populateMap  method. 

Registration  XML  

Registration XML enables much of the information needed by the Diagnostic Provider to be externalized. It 

also provides a means of commonizing localization and consumption of the tests (thus aiding automation). 

An excerpt of this XML from a sample Diagnostic Provider follows: 

<!DOCTYPE  diagnosticProvider  PUBLIC  "RasDiag"  "/DiagnosticProvider.dtd">  

  

<diagnosticProvider>  

    <resourceBundleName>  com.ibm.ws.rasdiag.resources.RasDiagSample</resourceBundleName>  

    <state>  

 <attribute>  

  <id>Leg-Foot</id>  

  <descriptionKey>SampleDiagnostic.LegFoot.descriptionKey</descriptionKey>  

  <registered>true</registered>  

 </attribute>  

 <attribute>  

  <id>Leg-Ankle</id>  

  <descriptionKey>SampleDiagnostic.LegAnkle.descriptionKey</descriptionKey>  

  <registered>true</registered>  

        </attribute>  

    </state>  

    <config>  

        <attribute>  

  <id>Arm-Hand-Size</id>  

  <descriptionKey>SampleDiagnostic.HandSize.descriptionKey</descriptionKey>  

  <registered>true</registered>  

        </attribute>  

        <attribute>  

  <id>Leg-Foot-Size</id>  

  <descriptionKey>SampleDiagnostic.FootSize.descriptionKey</descriptionKey>  

  <registered>true</registered>  

        </attribute>  

    </config>  

    <selfDiagnostic>  

        <test>  

  <id>Kick</id>  

  <descriptionKey>SampleDiagnostic.Kick.descriptionKey</descriptionKey>  

  <attribute>  

   <id>Kick-Pain</id>  

   <descriptionKey>SampleDiagnostic.KickPain.descriptionKey</descriptionKey>  

  </attribute>  

  <attribute>  

   <id>Kick-Length</id>  

   <descriptionKey>SampleDiagnostic.KickLength.descriptionKey</descriptionKey>  

  </attribute>  

        </test>  

 <test>  

  <id>Throw</id>  

  <descriptionKey>SampleDiagnostic.Throw.descriptionKey</descriptionKey>  

         <attribute>  

   <id>Throw-Pain</id>  

   <descriptionKey>SampleDiagnostic.ThrowPain.descriptionKey</descriptionKey>  

   <registered>true</registered>  

  </attribute>  

  <attribute>  

   <id>Throw-Length</id>  

   <descriptionKey>SampleDiagnostic.ThrowLength.descriptionKey</descriptionKey>  

   <registered>true</registered>

 

134 Troubleshooting and support



</attribute>  

        </test>  

    </selfDiagnostic>  

</diagnosticProvider>  

For understanding the storage of this information into a DiagnosticProviderInfo  object, see the API 

documentation for DiagnosticProviderInfo. For conceptual information about the purpose of the registration 

XML, see “Diagnostic Provider registered attributes and registered tests” on page 125. 

Diagnostic  Provider  XML  example:   

Here is an example of the Diagnostic Provider Extensible Markup Language (XML). 

version="6.0"  

platform="common"  

aggregationHandlerClass="com.ibm.ws.management.component.DiagnosticProviderAggregator"  

description="DiagnosticProvider  portion  of Mbean  for inclusion  into  MBeans  implementing  this  interface">  

  <attribute  

    description="DiagnosticProviderName  (not  dependent  on runtime,  but subset  of ObjectName"  

    getMethod="getDiagnosticProviderName"  name="diagnosticProviderName"  

    type="java.lang.String"  proxyInvokeType="unicall"  proxySetterInvokeType="multicall"/>  

  <operation  

    description="Get  the  DiagnosticProvider  ID"  

    impact="INFO"  name="getDiagnosticProviderId"  role="operation"  

    targetObjectType="objectReference"  type="java.lang.String"  proxyInvokeType="unicall">  

    <signature/>  

  </operation>  

  <operation  

    description="Return  the  registry  information  based  on type  (config/state/selfDiag)."  

    impact="INFO"  name="getRegisteredDiagnostics"  role="operation"  

    targetObjectType="objectReference"  

    type="com.ibm.wsspi.rasdiag.diagnosticProviderRegistration.DiagnosticProviderInfo"  

    proxyInvokeType="unicall">  

    <signature/>  

  </operation>  

  <operation  

    description="Dump  the  configuration  information  associated  with  managed  resource."  

    impact="INFO"  name="configDump"  role="operation"  

    targetObjectType="objectReference"  type="[Lcom.ibm.wsspi.rasdiag.DiagnosticEvent;"  

    proxyInvokeType="multicall">  

    <signature>  

      <parameter  description="Attribute  ID to  use"  

        name="attributeId"  type="java.lang.String"/>  

      <parameter  description="Report  on just  registered  info,  or all info"  

        name="registeredOnly"  type="boolean"/>  

    </signature>  

  </operation>  

  <operation  

    description="Dump  state  information  for  the managed  resource."  

    impact="INFO"  name="stateDump"  role="operation"  

    targetObjectType="objectReference"  type="[Lcom.ibm.wsspi.rasdiag.DiagnosticEvent;"  

        proxyInvokeType="multicall">  

    <signature>  

      <parameter  description="Attribute  ID to  use"  

        name="attributeId"  type="java.lang.String"/>  

      <parameter  description="Report  on just  registered  info,  or all info"  

        name="registeredOnly"  type="boolean"/>  

    </signature>  

  </operation>  

  <operation  

    description="Perform  diagnostics  on the  managed  resource  driven  by current  diagnostic  mode  setting."  

    impact="ACTION"  name="selfDiagnostic"  role="operation"  

    targetObjectType="objectReference"  type="[Lcom.ibm.wsspi.rasdiag.DiagnosticEvent;"  

        proxyInvokeType="multicall">  

    <signature>  

      <parameter  description="Test  ID to use"

 

Chapter 3. Diagnosing problems (using diagnosis tools) 135



name="testId"  type="java.lang.String"/>  

      <parameter  description="Report  on just  registered  info,  or all  info"  

        name="registeredOnly"  type="boolean"/>  

    </signature>  

  </operation>  

  <operation  

    description="localize  messages  for  console  display"  

    impact="INFO"  name="localize"  role="operation"  

    targetObjectType="objectReference"  type="[Ljava.lang.String;"  

        proxyInvokeType="unicall">  

    <signature>  

      <parameter  description="Message  Keys"  name="msgKeys"  type="[Ljava.lang.String;"/>  

      <parameter  description="Locale  to use  for  output"  name="locale"  type="java.util.Locale"/>  

    </signature>  

  </operation>  

Related  tasks  

“Working with Diagnostic Providers” on page 121
Diagnostic Providers enable you to query the startup configuration, current configuration, and current state 

of a diagnostic domain. In addition, Diagnostic Providers can also provide access to any self diagnostic 

tests that are available from a diagnostic domain.

Creating a Diagnostic Provider registration XML file 

The Diagnostic Provider registration XML is used to provide information about the exposed configuration, 

state, and self diagnostic attributes and tests to the Diagnostic Provider utility. It is also used to populate 

objects needed later in the process, to assist in filtering, and to assist in localization. 

Before you begin 

Programming knowledge of your system and the proper authorities to perform the following steps. 

About this task 

The steps that follow outline a general process for creating a Diagnostic Provider (DP) registration 

Extensible Markup Language (XML) file. 

1.   Start with the DP document type definition (DTD). If you are using the helper methods (see the step 

called Create  your  DP  implementation  in “Creating a Diagnostic Provider” on page 127), you can use 

this DOCTYPE line to pick up the common DTD: 

<!DOCTYPE  diagnosticProvider  PUBLIC  "RasDiag"  "/DiagnosticProvider.dtd">  

If you are extending an existing MBean with an existing XML configuration, you might need either to 

add the DP XML to an existing DTD, or omit the DP XML entirely. If you omit the DP XML, you will not 

be able to validate that your XML file is well formed. 

2.   Follow the conventions described in “Diagnostic Provider Extensible Markup Language” on page 128 to 

help keep your XML consistent with other components. You can find an example of a small DP 

registration XML file in “Diagnostic Provider method implementation” on page 131.

Associating a Diagnostic Provider ID with a logger 

If you are using a Diagnostic Provider to manage alerts and messages, you need to associate the 

Diagnostic Provider ID with a logger. This can be done dynamically or through a static assignment. 

About this task 

Components whose diagnostics are managed through a Diagnostic Provider MBean should include the 

Diagnostic Provider ID (DPID) in all logged messages. In some cases a single logger always logs with the 

same DPID. In those cases, it is appropriate to statically associate the DPID with the logger. In other 

cases, a logger might log on behalf of various diagnostic domains. For example, although every data 

source has a separate Diagnostic Provider MBean, they all share the same logger. In those cases, the 

 

136 Troubleshooting and support



DPID can be dynamically supplied on each logging call. 

Static Assignment 

About this task 

The method below statically assigns a DPID to a logger. 

Associate a DPID with a logger: 

Logger  logger  = Logger.getLogger("com.ibm.ws.MyClass");  

DiagnosticProviderHelper.addDiagnosticProviderIDtoLogger(logger,  dpid);  

Dynamic Assignment 

About this task 

DPIDs can be associated with a single log request by including them as the first message parameter, 

prefixed with DPID:.  To associate a DPID with a single log request using a logger: 

Object[]  parms  = new  Object[]  { "DPID:"  + dpid  }; 

logger.logp(classname,  methodname,  "MSG0001",  parms);  

Note that in the dynamic case, the DPID does not need to actually show up in the formatted message. 

The two examples below illustrate: 

(in  resource  bundle)  

// by not  including  {0}  first  parm  is not  printed  in the message.  

MSG0001=This  message  does  not  include  the  DPID.  

  

// note  - it is not  recommended  to print  the  DPID  in your  message.  

MSG0002=This  message  includes  the  DPID...it’s  value  is {0}.  

It is recommended that messages not include the DPID in the formatted message. As shown above, this is 

done by not including {0} in the message value in the resource bundle. 

Using Diagnostic Providers from wsadmin scripts 

In addition to enabling Diagnostic Providers (DP) from the administration console, you can also use them 

through scripts from the Wsadmin tool. 

About this task 

You might want to enable, disable, or configure Diagnostic Providers from the administrative console, but 

in some cases it might be more efficient or useful to do so with scripts using the wsadmin tool. 

For more detailed information about the Wsadmin tool see the scripting tool chapter in the Administering  

applications  and  their  environment  PDF book 

1.   List the MBeans that implement the Diagnostic Provider (DP) interface. Enter 

$AdminControl  queryNames  diagnosticProvider=true,*  

And you will see an output that displays all of the Diagnostic Providers in a format like this: 

"WebSphere:name=Default  Datasource,process=server1,platform=dynamicproxy,node=  

  camelhair,JDBCProvider=Derby  JDBC  Provider,  

diagnosticProvider=true,j2eeType=JDBCDataSource,J2EEServer=server1,Server=server1,  

  version=6.1.0.0,type=DataSource,  

mbeanIdentifier=cells/camelhairCell/nodes/camelhair/servers/server1/resources.xml#  

  DataSource_1131113688564,  

JDBCResource=Derby  JDBC  Provider,cell=camelhairCell"  

"WebSphere:name=DefaultEJBTimerDataSource,process=server1,platform=dynamicproxy,  

  node=camelhair,  

JDBCProvider=Derby  JDBC  Provider  (XA),diagnosticProvider=true,j2eeType=  

  JDBCDataSource,J2EEServer=server1,Server=server1,version=6.1.0.0,type=DataSource,  

  mbeanIdentifier=cells/camelhairCell/nodes/camelhair/servers/server1/

 

Chapter 3. Diagnosing problems (using diagnosis tools) 137



resources.xml#DataSource_1000001,  

JDBCResource=Derby  JDBC  Provider  (XA),cell=camelhairCell"  

WebSphere:name=WebcontainerDiagnosticProvider,process=server1,platform=  

  dynamicproxy,node=camelhair,diagnosticProvider=true,  

version=6.1.0.0,type=WebcontainerEventProvider,mbeanIdentifier=null,  

  cell=camelhairCell  

2.   Capture the ObjectName of your Diagnostic Provider in a variable. This enables you to reference your 

Diagnostic Provider more easily, especially in a script. For example, instead of typing all of those lines, 

if you want to work with the WebContainer Diagnostic Provider, for example, you can do the following: 

v   set DP [lindex [$AdminControl queryNames 

name=WebcontainerDiagnosticProvider,diagnosticProvider=true,*] 0] 

This ObjectName stored in the DP variable can be used on the methods, or you can use the 

Diagnostic Provider name as text or a variable. 

v   Now that you have the ObjectName in a variable, you can get the Diagnostic Provider name in a 

variable with the command: 

set  DPNm  [$AdminControl  invoke  $DS  getDiagnosticProviderNameById  $DP]  

This provides the result: 

WebContainerDP  

Now the DiagnosticProvider (WebContainer) is addressable by its objectname in variable DP, or by 

its DiagnosticProvider name in variable DPNm. If you would prefer, you can hard-code the DPName 

WebContainerDP  as it is short enough.

3.   Save the ObjectName of the DiagnosticService MBean to a variable. For wsadmin, WebSphere 

Application Server provides this MBean so that the output of the Diagnostic Provider is more easily 

consumable. Enter 

set  DS [lindex  [$AdminControl  queryNames  name=DiagnosticService,*]  0] 

4.   Run a configDump. You can run a configDump and capture all attributes with the command: 

$AdminControl  invoke  $DS  configDumpFormattedById  [list  $DP .* true  null]  

This lists the values that the Diagnostic Provider used at start up (and possible current values). An 

excerpt of the configDump output follows. 

 Item  Concatenated  Name  Value  

customProperties = Null 

defaultVirtualHostName = default_host 

jvmProps = Null 

localeProps = Null 

servletCachingEnabled = false 

aliases = *:9080;*:80;*:9443;
  

5.   Filter the output of your configDump. You can use configDumpFormatted (leaving off the ById) and 

switch $DP  for $DPNm  or the string WebContainerDP. This example uses $DPNm  on this slightly 

modified version whereby it only picks up attributes dealing with automation: 

$AdminControl  invoke  $DS  configDumpFormatted  [list  $DPNm  .*auto.*  true  null]  

This results in just those attributes that contain auto  in them. Full (but strict) regular expression syntax 

is allowed: 

 Item  Concatenated  Name  Value  

autoLoadFiltersEnabled = false 

autoRequestEncoding = false 

autoResponseEncoding = false 

autoLoadFiltersEnabled = false 

 

138 Troubleshooting and support



Item  Concatenated  Name  Value  

autoRequestEncoding = false 

autoResponseEncoding = false
  

The syntax is the same for stateDumps and selfDiagnostics

Viewing  the run time configuration of a component using Diagnostic 

Providers 

You can use the administrative console to navigate to configuration data that can be used to check the 

health of a server runtime component. 

Before you begin 

You must have sufficient authority to run the action. 

About this task 

Runtime components that have associated diagnostic providers can include their Diagnostic Provider ID 

(DPID) in their log entries. If you know the DPID, you can enter it directly in the quick link text box. 

Otherwise, navigate to the desired process by using the tree view displayed at the bottom of the panel, as 

shown in the steps below. 

1.   Start the administration console. 

2.   From the task bar on the left side of the console, select Troubleshooting. 

3.   From the task bar on the left side of the console, select Diagnostic  Provider. 

4.   From the task bar on the left side of the console, select Configuration  Data. 

5.   Either directly enter a Diagnostic Provider ID in the Quick  link  using  diagnostic  provider  ID  text box, 

or select a process (cluster / node / server) from the available processes displayed at the bottom of the 

panel under the section title Server  selection  topology. 

6.   From the list of available diagnostic providers for the selected process, choose the desired diagnostic 

provider name. The configuration data for that diagnostic provider appears.

Configuration data quick link or server selection 

Use this panel to select a Diagnostic Provider server for viewing run time configuration data. 

To view this administrative console page, click Troubleshooting  > Diagnostic  Provider  > Configuration  

Data  

Quick  link  using  Diagnostic  Provider  ID:    From the Configuration data panel, enter a Diagnostic 

Provider ID to go directly to the page for the configuration data for the Diagnostic Provider for the specific 

server. 

Server  selection  topology:   

Use these folders to select server or cluster for viewing the configuration data for a Diagnostic Provider. 

 If you choose a cluster, whatever action you choose is performed on each  server in the cluster. 

The enterprise applications section shows you the servers that a particular application is running on. If you 

select a server from this list, the action is performed on that server, not specifically that application. 

Diagnostic Providers (selection) 

Use this panel to select a Diagnostic Provider from the selected server or cluster. 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 139



The list will contain only Diagnostic Providers registered on the selected server or cluster. Not all 

Diagnostic Providers register with every server in the cell. 

You can follow several navigation paths to view this administrative console page. For example, click 

Troubleshooting  > Diagnostic  Provider  > Tests  > select a server or cluster name. 

Name:   

Choose a diagnostic provider from this list. 

 The path you chose to get to this panel determines which panel displays next. 

v   If you chose Troubleshooting > Diagnostic Provider > Tests, you see a panel that lists all of the 

available tests to run on the Diagnostic Provider. 

v   If you chose Troubleshooting > Diagnostic Provider > State Data, you see a panel that shows the 

collected state data for the Diagnostic Provider. 

v   If you chose Troubleshooting > Diagnostic Provider > Configuration Data, you see a panel that shows 

the configuration data for the Diagnostic Provider.

Configuration data 

Use this panel to view the current configuration data for a Diagnostic Provider on a selected server or 

cluster. Not necessarily every piece of configuration data appears, but data that can be helpful in problem 

determination is shown. 

You can follow several navigation paths to view this administrative console page. For example, click 

Troubleshooting  > Diagnostic  Provider  > Configuration  data  > select a server or cluster name > select 

a Diagnostic Provider from the list. 

The attributes show information that has been configured for the Diagnostic Provider. You can use the 

Save  button to save the information to a file. 

Note:   Results from a configuration dump contain names that start with either startup  or current. The 

startup  entries represent data that was read in by the component at server startup time. The current  

entries contain data that is current – meaning the value of the attributes in use by the runtime at the 

time the configuration dump was requested.

Node:   

This is the node name from where the configuration data was collected. 

Server:   

This is the server name from where the configuration data was collected. 

Name:   

This is the name of the attribute for the configuration data. 

Value:   

This is the value of the configuration data. 

Description:   

This is a description of the configuration data. 

 

140 Troubleshooting and support



Viewing  the run time state data or configuring the state data collection 

specifications for a Diagnostic Provider 

Use the administrative console to navigate to the state data that can be used to check the health of a 

server runtime component, or you can configure the state data to be collected for a server. 

Before you begin 

You must have sufficient authority to execute the action. 

About this task 

In the server selection topology section, use the view state data radio button to go to the list of registered 

diagnostic providers. Use the change state data collection specification radio button to modify the state 

collection specification for the runtime components for a server. Runtime components that have associated 

diagnostic providers can include their Diagnostic Provider ID (DPID) in their log entries. If you know the 

DPID, you can enter it directly in the quick link text box. 

1.   Start the administration console. 

2.   Select Troubleshooting. 

3.   Select Diagnostic  Provider. 

4.   Select State  Data. 

5.   Select the View  State  Data  radio button to simply look at the state data, or select the Change  state  

data  collection  specification  radio button to change the configuration. 

6.   Either directly enter a Diagnostic Provider ID in the Quick  link  using  diagnostic  provider  ID  text box, 

or select a process (cluster / node / server) from the available processes displayed at the bottom of the 

panel. 

v   If you chose the View  State  Data  radio button, a panel listing the available Diagnostic Providers 

appears. Choose one of the providers by clicking on it. A panel displaying the state data appears. 

v   If you chose the Change  state  data  collection  specification  radio button, a panel appears that 

contains a list of the available Diagnostic Providers and a text entry block. The state collection 

specification for the selected process is managed from this panel. Select one of the available 

providers by using the checkbox next to it.

Diagnostic Provider State Collection Specification 

The State Collection specification provides a mechanism for indicating what additional data diagnostic 

providers in the system should retain in cases where this additional data could be useful for problem 

determination or application tuning. 

In normal operation, most components should work optimally and not store any operational data that is not 

needed. There are times, however, when an administrator or automated tool may want a component to 

collect more information than normal to help in problem determination. This data could then be exposed 

through a State dump. The State Collection specification was created as a syntax for indicating what 

additional data the diagnostic providers in the system should retain. 

For the syntax of the aCollectionSpec  string, refer to the DiagnosticConfigHome  API documentation. It is 

basically a semicolon (;) separated list of collection specification clauses which are of the form: 

 <DiagnosticProviderName  regexp>:<AttributeId  regexp>=[0|1]  

Where the DiagnosticProviderName  regular expression will make this clause apply to any Diagnostic 

Provider Name that matches that regular expression. The AttributeId  regexp  and the boolean value (0 for 

off, and 1 for on) are stored in the DiagnosticConfig  object that each Diagnostic Provider uses. Turning on 

or off, and processing the clauses left to right allows relatively complex specification. Any specification that 

is not explicitly turned on  is considered to be off. This format is explained further in the following 

examples. 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 141



To turn on tracing for all attributes in the MyDP  Diagnostic Provider: 

MyDP:.*=1  

To turn on tracing for all  attributes of all  Diagnostic Providers (this will probably impact system 

performance): 

.*:.*=1  

To turn on all tracing for all attributes of all Diagnostic Providers beginning with ConnMgr  (for example, 

Data Sources): 

ConnMgr.*:.*=1  

This specification turns on special collection attributes in the MyDP  Diagnostic Provider that begin with the 

string PoolInfo. If, however, the attribute begins with PoolInfo.Db2Pool, then the collection is off (because 

it is read left to right). 

MyDP:PoolInfo.*=1;MyDP:PoolInfo.Db2Pool.*=0  

It should be noted that State dumps can return important information even in the case where there is no 

State Collection Specification turned on for a Diagnostic Provider. Diagnostic Providers frequently have to 

keep some state information in order to operate. Anything in this category is available in a State dump 

even if there is no special data collection going on. Using the State Collection Specification may increase 

the amount of data available. 

State Data Quick Link or Server Selection 

Use this panel to select a server or cluster to either view collected state data, or to configure state data to 

collect for a Diagnostic Provider. 

To view this administrative console page, click Troubleshooting  > Diagnostic  Provider  > State  Data. 

Quick  link  using  Diagnostic  Provider  ID:   

Enter a Diagnostic Provider ID to go directly to the view page for the collected state data for the 

Diagnostic Provider. 

Server  selection  topology:   

Use these radio buttons and folders to select a specific server or cluster for viewing of state data or 

configuring the specification of state data. 

 If you choose a cluster, whatever action you choose is performed on each  server in the cluster. 

The enterprise applications section shows you the servers that a particular application is running on. If you 

select a server from this list, the action is performed on that server, not specifically that application. 

View  state  data  

Select this radio button to view the state data for a Diagnostic Provider. Then select the cell or 

cluster you want to work with. 

Change  state  data  collection  settings   

Select this radio button to configure the state collection specification for a Diagnostic Provider. 

Then select the cluster or managed server you want to work with.

State data 

Use this panel to view the current state data for a Diagnostic Provider on a selected server or cluster. 

To view this administrative console page, click Troubleshooting  > Diagnostic  Provider  > State  data  > 

select the View state data radio button and then select a server or cluster name > select a Diagnostic 

Provider from the list. 

 

142 Troubleshooting and support



The attributes show information that has been collected as part of the enabled state collection specification 

for the Diagnostic Provider. You can use the save...  button to save the information to a file 

Node:   

This is the node name from where the state data was collected. 

Server:   

This is the server name from where the state data was collected. 

Name:   

This is the name of the state collection specification used to collect the state data. 

Value:   

This is the value of the state collection specification used to collect the state data. 

Description:   

This is a description of the state collection specification used to collect the state data. 

Detailed state specification 

Use this panel to view the attributes and descriptions of the Diagnostic Provider that you have selected. 

To add attributes, select the checkbox next to your chosen diagnostic provider, then select the Add  to  

specification  button. 

To remove a diagnostic provider’s sub-component attribute from the state specification, select the 

sub-component attribute in the displayed list and then select the Remove  from  specification  button. 

When you are done adding or removing a diagnostic provider’s sub-component attributes, select the Done  

button. 

To view this administrative console page, click Troubleshooting  > Diagnostic  Provider  > State  data  

>select the View state data radio button and then select a server or cluster name > select a Diagnostic 

Provider from the list. 

Attribute:   

This is the individual state collection specification available for the Diagnostic Provider. 

Description:   

This is the description of the individual state collection specification item. 

Change state specification 

Use this panel to add a Diagnostic Provider and its attributes to the specification for collecting state data. 

To add a diagnostic provider (DP) and all  of its attributes, select the checkbox next to your chosen DP, 

then click on the Add  to  specification  button. To add only some  of the DP’s attributes, click on the DP 

name itself in the list, and a new panel where you can perform this task appears. 

To put the state specification into affect, select the Apply  or OK  button. 

To reset the specification to its original state, use the Reset  button. 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 143



To manually enter a state specification, update the text area with the state specification and use the 

Update  button. 

To view this administrative console page, click Troubleshooting  > Diagnostic  Provider  > State  data  > 

select the Change state data collection specification radio button and then select a server or cluster name 

> select a Diagnostic Provider from the list. 

Name:   

This is a list of available Diagnostic Providers for the server selected. 

Modifying the State Collection Specification from wsadmin scripts 

In addition to modifying the State Collection Specification from the administrative console, you can also 

modify these settings using scripts and the wsadmin tool. 

About this task 

In doing problem determination, you might want to begin collecting additional data during normal 

processing. This can be accomplished by modifying the State Collection Specification dynamically. This 

section illustrates how to do that through the Wsadmin tool. This technique can be used to turn on traces, 

as well as to turn off traces. Depending on the usage pattern of the component, the impact should take 

affect shortly after it is set. For more information on this tool, see the chapter, Wsadmin tool in the 

Administering  applications  and  their  environment  PDF book. 

1.   Capture the DiagnosticService ObjectName into a variable. Enter 

set  DS [lindex  [$AdminControl  queryNames  name=DiagnosticService,*]  0] 

2.   Use this variable to drive the method to set the specification. Enter 

$AdminControl  invoke  $DS  setStateCollectionSpec  "SampleDiagnosticProvider:player.*=1;  

SampleDiagnosticProvider:defense.*=1"  

The specification is of the form DiagnosticProviderName:AttributeId=0|1...  (with a semicolon at the 

end, multiple sub-specifications can be entered similar to the TraceSpec). The 

DiagnosticProviderName and AttributeId can be proper regular expressions.

Running a self diagnostic on a Diagnostic Provider 

You can check the status of server runtime components with predefined tests that can be associated with 

a Diagnostic Provider. Use the administrative console to access these functions. 

Before you begin 

You must have sufficient authority to execute the action. 

About this task 

You can access a list of predefined diagnostic tests that you can use to check the status of a server 

runtime component. Runtime components that have associated diagnostic providers can include their 

Diagnostic Provide ID (DPID) in their log entries. If you know the DPID, you can enter it directly in the 

quick link text box. Otherwise, navigate to the desired process by using the tree view displayed at the 

bottom of the panel. 

1.   Start the administration console. 

2.   Select Troubleshooting. 

3.   Select Diagnostic  Provider. 

4.   Select Tests . 

 

144 Troubleshooting and support



5.   Either directly enter a Diagnostic Provider ID in the Quick  link  using  diagnostic  provider  ID  text box, 

or select a process (cluster / node / server) from the available processes displayed in the Server  

selection  topology  section. 

6.   Select the desired self diagnostic test. 

7.   Read the output messages from the self diagnostic test. 

8.   Select a self diagnostic test message by clicking on it. The console displays a panel with the attributes 

related to the message you chose.

Tests Quick Link or Server Selection 

Use this panel to select a Diagnostic Provider server for diagnostic tests. 

To view this administrative console page, click Troubleshooting  > Diagnostic  Provider  > Tests. 

Quick  link  using  Diagnostic  Provider  ID:   

Enter a Diagnostic Provider ID to go directly to the view page for the collected state data for the 

Diagnostic Provider. 

Server  selection  topology:   

Use these folders to select server or cluster for viewing the available tests for a Diagnostic Provider. 

 If you choose a cluster, whatever action you choose is performed on each  server in the cluster. 

The enterprise applications section shows you the servers that a particular application is running on. If you 

select a server from this list, the action is performed on that server, not specifically that application. 

Test selection 

Use this panel to select one of the tests that are available for the chosen Diagnostic Provider on the 

chosen server or cluster. 

You can follow several navigation paths to view this administrative console page. For example, click 

Troubleshooting  > Diagnostic  Provider  > Tests  > select a server or cluster name > select a Diagnostic 

Provider from the list. 

Test  identification:   

Choosing a test ID causes the test to run. Results of the test are shown on the Test Results panel. 

Test  description:   

A description of the test available to run on the Diagnostic Provider. 

Test Results 

Use this panel to see the results from the server or cluster members for the selected test. 

You can follow several navigation paths to view this administrative console page. For example, click 

Troubleshooting  > Diagnostic  Provider  > Tests  > select a cluster name > select a Diagnostic Provider 

from the list > select a Test identification from the list. 

Multiple results can be returned from a test from each server. The results are sorted by Node, then by 

Server, then by Severity. You can page through the messages that are returned. 

Server:   

The name of the server where the test result came back from. 

 

Chapter 3. Diagnosing problems (using diagnosis tools) 145



Node:   

The name of the node where the test result came back from. 

Severity:   

The severity of the result from the test run. 

Message:   

A description of the test result. 

 The entries in this column are linked to another panel. If you click on a message, you can see additional 

attributes associated with the message. 

Test result details 

Use this panel to see additional attributes for the selected test result. 

To view this administrative console page, click Troubleshooting  > Diagnostic  Provider  > Tests  > select 

a cluster name > select a Diagnostic Provider from the list > select a Test identification from the list > 

select a message. 

The attributes show information that helped to diagnose the condition described in the message. You can 

use the Save  button to save to a file the attributes and the messages to which they correspond. 

Name:   

The name of the test. 

Value:   

This is the value of the test result. 

Description:   

This is a description of the test. 

 

146 Troubleshooting and support



Appendix.  Directory  conventions  

References in product information to app_server_root, profile_root, and other directories infer specific 

default directory locations. This topic describes the conventions in use for WebSphere Application Server. 

Default product locations (i5/OS) 

These file paths are default locations. You can install the product and other components in any directory 

where you have write access. You can create profiles in any valid directory where you have write access. 

Multiple installations of WebSphere Application Server products or components require multiple locations. 

app_client_root  

The default installation root directory for the Java EE WebSphere Application Client is the 

/QIBM/ProdData/WebSphere/AppClient/V7/client directory. 

app_client_user_data_root  

The default Java EE WebSphere Application Client user data root is the /QIBM/UserData/
WebSphere/AppClient/V7/client directory. 

app_client_profile_root  

The default Java EE WebSphere Application Client profile root is the /QIBM/UserData/WebSphere/
AppClient/V7/client/profiles/profile_name  directory. 

app_server_root  

The default installation root directory for WebSphere Application Server Network Deployment is the 

/QIBM/ProdData/WebSphere/AppServer/V7/ND directory. 

cip_app_server_root  

The default installation root directory is the /QIBM/ProdData/WebSphere/AppServer/V7/ND/cip/
cip_uid  directory for a customized installation package (CIP) produced by the Installation Factory. 

 A CIP is a WebSphere Application Server Network Deployment product bundled with optional 

maintenance packages, an optional configuration archive, one or more optional enterprise archive 

files, and other optional files and scripts. 

cip_profile_root  

The default profile root directory is the /QIBM/UserData/WebSphere/AppServer/V7/ND/cip/cip_uid/
profiles/profile_name  directory for a customized installation package (CIP) produced by the 

Installation Factory. 

cip_user_data_root  

The default user data root directory is the /QIBM/UserData/WebSphere/AppServer/V7/ND/cip/
cip_uid  directory for a customized installation package (CIP) produced by the Installation Factory. 

if_root  This directory represents the root directory of the IBM WebSphere Installation Factory. Because 

you can download and unpack the Installation Factory to any directory on the file system to which 

you have write access, this directory’s location varies by user. The Installation Factory is an 

Eclipse-based tool which creates installation packages for installing WebSphere Application Server 

in a reliable and repeatable way, tailored to your specific needs. 

iip_root  

This directory represents the root directory of an integrated  installation  package  (IIP) produced by 

the IBM WebSphere Installation Factory. Because you can create and save an IIP to any directory 

on the file system to which you have write access, this directory’s location varies by user. An IIP is 

an aggregated installation package created with the Installation Factory that can include one or 

more generally available installation packages, one or more customized installation packages 

(CIPs), and other user-specified files and directories. 

 java_home  

The following directories are the root directories for all supported Java Virtual Machines (JVMs). 

 

© IBM Corporation 2005, 2007 147



JVM Directory 

Classic JVM /QIBM/ProdData/Java400/jdk6 

32–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit 

64–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit

  

plugins_profile_root  

The default Web server plug-ins profile root is the /QIBM/UserData/WebSphere/Plugins/V7/
webserver/profiles/profile_name  directory. 

plugins_root  

The default installation root directory for Web server plug-ins is the /QIBM/ProdData/WebSphere/
Plugins/V7/webserver directory. 

plugins_user_data_root  

The default Web server plug-ins user data root is the /QIBM/UserData/WebSphere/Plugins/V7/
webserver directory. 

product_library
product_lib  

This is the product library for the installed product. The product library for each Version 7.0 

installation on the system contains the program and service program objects (similar to .exe, .dll, 

.so objects) for the installed product. The product library name is QWAS7x (where x is A, B, C, 

and so on). The product library for the first WebSphere Application Server Version 7.0 product 

installed on the system is QWAS7A. The app_server_root/properties/product.properties file contains 

the value for the product library of the installation, was.install.library, and is located under the 

app_server_root  directory. 

profile_root  

The default directory for a profile named profile_name  for WebSphere Application Server Network 

Deployment is the /QIBM/UserData/WebSphere/AppServer/V7/ND/profiles/profile_name  directory. 

shared_product_library  

The shared product library, which contains all of the objects shared by all installations on the 

system, is QWAS7. This library contains objects such as the product definition, the subsystem 

description, the job description, and the job queue. 

updi_root  

The default installation root directory for the Update Installer for WebSphere Software is the 

/QIBM/ProdData/WebSphere/UpdateInstaller/V7/updi directory. 

user_data_root  

The default user data directory for WebSphere Application Server Network Deployment is the 

/QIBM/UserData/WebSphere/AppServer/V7/ND directory. 

 The profiles and profileRegistry subdirectories are created under this directory when you install the 

product. 

web_server_root  

The default web server path is /www/web_server_name.

 

148 Troubleshooting and support



Notices  

References in this publication to IBM products, programs, or services do not imply that IBM intends to 

make these available in all countries in which IBM operates. Any reference to an IBM product, program, or 

service is not intended to state or imply that only IBM’s product, program, or service may be used. Any 

functionally equivalent product, program, or service that does not infringe any of IBM’s intellectual property 

rights may be used instead of the IBM product, program, or service. Evaluation and verification of 

operation in conjunction with other products, except those expressly designated by IBM, is the user’s 

responsibility. 

IBM may have patents or pending patent applications covering subject matter in this document. The 

furnishing of this document does not give you any license to these patents. You can send license inquiries, 

in writing, to: 

    IBM Director of Intellectual Property & Licensing 

    IBM Corporation 

    North Castle Drive 

    Armonk, NY 10504-1785 

    USA 

 

© Copyright IBM Corp. 2008 149



150 Troubleshooting and support



Trademarks  and  service  marks  

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business 

Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked 

terms are marked on their first occurrence in this information with a trademark symbol (® or 

™), these 

symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information 

was published. Such trademarks may also be registered or common law trademarks in other countries. For 

a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site 

(www.ibm.com/legal/copytrade.shtml). 

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or 

both. 

UNIX is a registered trademark of The Open Group in the United States and other countries. 

Java is a trademark of Sun Microsystems, Inc. in the United States, other countries, or both. 

Other company, product, or service names may be trademarks or service marks of others. 

 

© Copyright IBM Corp. 2008 151

http://www.ibm.com/legal/copytrade.shtml

	Contents
	How to send your comments
	Changes to serve you more quickly
	Chapter 1. Debugging applications
	Debugging components in the IBM Rational Application Developer for WebSphere

	Chapter 2. Adding logging and tracing to your application
	Configuring Java logging using the administrative console
	Java logging
	Log level settings
	Loggers
	Log handlers
	Log levels
	Log filters
	Log formatters
	Using loggers in an application
	Using a logger
	Configuring the logger hierarchy
	Creating log resource bundles and message files
	Changing the message IDs used in log files
	Example: Creating custom log handlers with java.util.logging
	Example: Creating custom filters with java.util.logging
	Example: Creating custom formatters with java.util.logging
	Example: Adding custom handlers, filters, and formatters

	HTTP error, FRCA, and NCSA access log settings
	Enable logging service at server start-up
	Enable NCSA access logging
	NCSA access log file path
	NCSA access log maximum size
	Maximum number of historical files
	NCSA access log format
	Enable error logging
	Error log file path
	Error log maximum size
	Maximum number of historical files
	Error log level

	Logger.properties file for configuring logger settings
	Example: Sample security policy for logging

	Configuring applications to use Jakarta Commons Logging
	Jakarta Commons Logging
	Configurations for the WebSphere Application Server logger

	Programming with the JRas framework
	JRas logging toolkit
	JRas Extensions
	JRas extension classes
	JRas framework (deprecated)
	Programming model summary

	JRas messages and trace event types
	Instrumenting an application with JRas extensions
	Creating JRas resource bundles and message files
	JRas manager and logger instances
	Setting up for integrated JRas operation
	Setting up for combined JRas operation
	Setting up for stand-alone JRas operation


	Logging Common Base Events in WebSphere Application Server
	The Common Base Event in WebSphere Application Server
	Types of problem determination events
	Common Base Event structure
	Sample Common Base Event instance
	Sample Common Base Event template
	Component identification for problem determination

	Logging with Common Base Event API and the Java logging API
	Generate Common Base Event content with the default event factory
	Common Base Event content handler
	Creating custom Common Base Event content handlers
	Common Base Event factory home
	Creating custom Common Base Event factory homes
	Common Base Event factory context
	Common Base Event factory

	java.util.logging -- Java logging programming interface
	Logger.properties file
	Logging Common Base Events in WebSphere Application Server


	Chapter 3. Diagnosing problems (using diagnosis tools)
	Troubleshooting class loaders
	Class loading exceptions
	Class loader viewer service settings
	Enable service at server startup

	Enterprise application topology
	Enterprise applications topology

	Class loader viewer settings
	Class Loader

	Search settings
	Search type
	Search terms


	Diagnosing problems with message logs
	Viewing JVM logs
	JVM log interpretation
	Configuring the JVM logs
	Java virtual machine (JVM) log settings

	Process logs
	Configuring the service log
	IBM service log settings

	Viewing the service log

	CORBA minor codes
	Configuring the hang detection policy
	Hung threads in Java Platform, Enterprise Edition applications
	Example: Adjusting the thread monitor to affect server hang detection

	Working with trace
	Enabling trace on client and stand-alone applications
	Tracing and logging configuration
	Enabling trace at server startup
	Enabling trace on a running server
	Managing the application server trace service
	Trace output
	Diagnostic trace service settings
	Trace Output
	Trace Output Format
	Runtime tab
	Trace Output

	Select a server to configure logging and tracing
	Server
	Node
	Host name
	Version
	Type
	Status

	Log and trace settings
	Diagnostic Trace
	Java virtual machine (JVM) Logs
	Process Logs
	IBM Service Logs
	Change Log Level Details


	Working with troubleshooting tools
	Gathering information with the collector tool
	Collector tool output
	collector command - summary option

	Configuring first failure data capture log file purges

	Using IBM Support Assistant
	Diagnosing problems using IBM Support Assistant tooling
	Troubleshooting help from IBM
	Diagnosing and fixing problems: Resources for learning
	Debugging Service details
	Enable service at server startup
	JVM debug port
	JVM debug arguments
	Debug class filters

	Configuration problem settings
	Configuration document validation
	Enable Cross validation
	Configuration Problems
	Scope
	Message
	Explanation
	User action
	Target Object
	Severity
	Local URI
	Full URI
	Validator classname
	Runtime events
	Timestamp
	Message originator
	Message

	Message details
	Message
	Message type
	Explanation
	User action
	Message originator
	Source object type
	Timestamp
	Thread ID
	Node name
	Server name
	Diagnostic Provider ID


	Showlog commands for Common Base Events
	Working with Diagnostic Providers
	Diagnostic Providers
	Diagnostic Provider IDs
	Diagnostic Provider configuration dumps, state dumps, and self tests
	Diagnostic Provider registered attributes and registered tests
	Diagnostic Provider names
	The simpler interfaces provided by the Diagnostic Service MBean

	Creating a Diagnostic Provider
	Diagnostic Provider Extensible Markup Language
	Choosing a Diagnostic Provider name
	Implementing a Diagnostic Provider
	Creating a Diagnostic Provider registration XML file

	Associating a Diagnostic Provider ID with a logger
	Static Assignment
	Dynamic Assignment

	Using Diagnostic Providers from wsadmin scripts
	Viewing the run time configuration of a component using Diagnostic Providers
	Configuration data quick link or server selection
	Diagnostic Providers (selection)
	Configuration data

	Viewing the run time state data or configuring the state data collection specifications for a Diagnostic Provider
	Diagnostic Provider State Collection Specification
	State Data Quick Link or Server Selection
	State data
	Detailed state specification
	Change state specification
	Modifying the State Collection Specification from wsadmin scripts

	Running a self diagnostic on a Diagnostic Provider
	Tests Quick Link or Server Selection
	Test selection
	Test Results
	Test result details



	Appendix. Directory conventions
	Notices
	Trademarks and service marks

